

This book is compiled in PDF format by The Admin®. Please visit my web site
www.theadmin.data.bg

http://www.theadmin.data.bg/

Contents

Preface xlv

1 Introduction to Computers and the Internet 1
1.1 Introduction 2
1.2 What Is a Computer? 4
1.3 Types of Programming Languages 5
1.4 Other High-Level Languages 7
1.5 Structured Programming 7
1.6 History of the Internet 8
1.7 Personal Computing 9
1.8 History of the World Wide Web 10
1.9 World Wide Web Consortium (W3C) 10
1.10 Hardware Trends 11
1.11 Key Software Trend: Object Technology 12
1.12 JavaScript: Object-Based Scripting for the Web 13
1.13 Browser Portability 14
1.14 C and C++ 15
1.15 Java 16
1.16 Internet and World Wide Web How to Program 16
1.17 Dynamic HTML 18
1.18 Tour of the Book 18
1.19 Internet and World Wide Web Resources 30

2 Microsoft® Internet Explorer 5.5 35
2.1 Introduction to the Internet Explorer 5.5 Web Browser 36
2.2 Connecting to the Internet 36
2.3 Internet Explorer 5.5 Features 37
2.4 Searching the Internet 41

iw3htp2TOC.fm Page vii Monday, July 23, 2001 4:43 PM

VIII

2.5 Online Help and Tutorials 42
2.6 Keeping Track of Favorite Sites 43
2.7 File Transfer Protocol (FTP) 44
2.8 Outlook Express and Electronic Mail 46
2.9 NetMeeting 49
2.10 MSN Messenger Service 55
2.11 Customizing Browser Settings 56

3 Photoshop® Elements 63
3.1 Introduction 64
3.2 Image Basics 64
3.3 Vector and Raster Graphics 74
3.4 Toolbox 75

3.4.1 Selection Tools 76
3.4.2 Painting Tools 80
3.4.3 Shape Tools 86

3.5 Layers 91
3.6 Screen Capturing 93
3.7 File Formats: GIF and JPEG 94
3.8 Internet and World Wide Web Resources 95

4 Introduction to XHTML: Part 1 101
4.1 Introduction 102
4.2 Editing XHTML 103
4.3 First XHTML Example 103
4.4 W3C XHTML Validation Service 106
4.5 Headers 108
4.6 Linking 109
4.7 Images 112
4.8 Special Characters and More Line Breaks 116
4.9 Unordered Lists 118
4.10 Nested and Ordered Lists 119
4.11 Internet and World Wide Web Resources 122

5 Introduction to XHTML: Part 2 127
5.1 Introduction 128
5.2 Basic XHTML Tables 128
5.3 Intermediate XHTML Tables and Formatting 131
5.4 Basic XHTML Forms 133
5.5 More Complex XHTML Forms 136
5.6 Internal Linking 143
5.7 Creating and Using Image Maps 146
5.8 meta Elements 148
5.9 frameset Element 150
5.10 Nested framesets 153
5.11 Internet and World Wide Web Resources 155

iw3htp2TOC.fm Page viii Monday, July 23, 2001 4:43 PM

IX

6 Cascading Style Sheets™ (CSS) 161
6.1 Introduction 162
6.2 Inline Styles 162
6.3 Embedded Style Sheets 163
6.4 Conflicting Styles 166
6.5 Linking External Style Sheets 169
6.6 W3C CSS Validation Service 172
6.7 Positioning Elements 173
6.8 Backgrounds 176
6.9 Element Dimensions 178
6.10 Text Flow and the Box Model 180
6.11 User Style Sheets 185
6.12 Internet and World Wide Web Resources 189

7 JavaScript: Introduction to Scripting 194
7.1 Introduction 195
7.2 Simple Program: Printing a Line of Text in a Web Page 195
7.3 Another JavaScript Program: Adding Integers 203
7.4 Memory Concepts 208
7.5 Arithmetic 209
7.6 Decision Making: Equality and Relational Operators 212
7.7 JavaScript Internet and World Wide Web Resources 219

8 JavaScript: Control Structures 1 229
8.1 Introduction 230
8.2 Algorithms 230
8.3 Pseudocode 231
8.4 Control Structures 231
8.5 if Selection Structure 234
8.6 if/else Selection Structure 235
8.7 while Repetition Structure 240
8.8 Formulating Algorithms:

Case Study 1 (Counter-Controlled Repetition) 241
8.9 Formulating Algorithms with Top-Down, Stepwise Refinement: Case Study 2

(Sentinel-Controlled Repetition) 245
8.10 Formulating Algorithms with Top-Down, Stepwise Refinement: Case Study 3

(Nested Control Structures) 251
8.11 Assignment Operators 255
8.12 Increment and Decrement Operators 256
8.13 Note on Data Types 259
8.14 JavaScript Internet and World Wide Web Resources 260

9 JavaScript: Control Structures II 271
9.1 Introduction 272
9.2 Essentials of Counter-Controlled Repetition 272
9.3 for Repetition Structure 275
9.4 Examples Using the for Structure 279

iw3htp2TOC.fm Page ix Monday, July 23, 2001 4:43 PM

X

9.5 switch Multiple-Selection Structure 284
9.6 do/while Repetition Structure 289
9.7 break and continue Statements 291
9.8 Labeled break and continue Statements 294
9.9 Logical Operators 296
9.10 Summary of Structured Programming 301

10 JavaScript: Functions 315
10.1 Introduction 316
10.2 Program Modules in JavaScript 316
10.3 Programmer-Defined Functions 318
10.4 Function Definitions 318
10.5 Random-Number Generation 324
10.6 Example: Game of Chance 329
10.7 Duration of Identifiers 337
10.8 Scope Rules 338
10.9 JavaScript Global Functions 340
10.10 Recursion 341
10.11 Example Using Recursion: Fibonacci Series 345
10.12 Recursion vs. Iteration 349
10.13 JavaScript Internet and World Wide Web Resources 351

11 JavaScript: Arrays 365
11.1 Introduction 366
11.2 Arrays 366
11.3 Declaring and Allocating Arrays 368
11.4 Examples Using Arrays 369
11.5 References and Reference Parameters 376
11.6 Passing Arrays to Functions 377
11.7 Sorting Arrays 380
11.8 Searching Arrays: Linear Search and Binary Search 382
11.9 Multiple-Subscripted Arrays 388
11.10 JavaScript Internet and World Wide Web Resources 392

12 JavaScript: Objects 402
12.1 Introduction 403
12.2 Thinking About Objects 403
12.3 Math Object 405
12.4 String Object 407

12.4.1 Fundamentals of Characters and Strings 407
12.4.2 Methods of the String Object 407
12.4.3 Character Processing Methods 409
12.4.4 Searching Methods 411
12.4.5 Splitting Strings and Obtaining Substrings 413
12.4.6 XHTML Markup Methods 415

12.5 Date Object 417
12.6 Boolean and Number Objects 423

iw3htp2TOC.fm Page x Monday, July 23, 2001 4:43 PM

XI

12.7 JavaScript Internet and World Wide Web Resources 424

13 Dynamic HTML: Object Model and Collections 435
13.1 Introduction 436
13.2 Object Referencing 436
13.3 Collections all and children 438
13.4 Dynamic Styles 441
13.5 Dynamic Positioning 444
13.6 Using the frames Collection 446
13.7 navigator Object 448
13.8 Summary of the DHTML Object Model 450

14 Dynamic HTML: Event Model 456
14.1 Introduction 457
14.2 Event onclick 457
14.3 Event onload 459
14.4 Error Handling with onerror 460
14.5 Tracking the Mouse with Event onmousemove 462
14.6 Rollovers with onmouseover and onmouseout 464
14.7 Form Processing with onfocus and onblur 468
14.8 More Form Processing with onsubmit and onreset 470
14.9 Event Bubbling 472
14.10 More DHTML Events 474

15 Dynamic HTML: Filters and Transitions 480
15.1 Introduction 481
15.2 Flip filters: flipv and fliph 482
15.3 Transparency with the chroma Filter 484
15.4 Creating Image masks 486
15.5 Miscellaneous Image filters: invert, gray and xray 487
15.6 Adding shadows to Text 489
15.7 Creating Gradients with alpha 491
15.8 Making Text glow 493
15.9 Creating Motion with blur 496
15.10 Using the wave Filter 499
15.11 Advanced Filters: dropShadow and light 501
15.12 Transitions I: Filter blendTrans 505
15.13 Transitions II: Filter revealTrans 509

16 Dynamic HTML: Data Binding with Tabular Data
Control 517
16.1 Introduction 518
16.2 Simple Data Binding 519
16.3 Moving a Recordset 523
16.4 Binding to an img 526
16.5 Binding to a table 529
16.6 Sorting table Data 530

iw3htp2TOC.fm Page xi Monday, July 23, 2001 4:43 PM

XII

16.7 Advanced Sorting and Filtering 533
16.8 Data Binding Elements 540
16.9 Internet and World Wide Web Resources 541

17 Dynamic HTML: Structured Graphics ActiveX Control 545
17.1 Introduction 546
17.2 Shape Primitives 546
17.3 Moving Shapes with Translate 550
17.4 Rotation 552
17.5 Mouse Events and External Source Files 554
17.6 Scaling 556
17.7 Internet and World Wide Web Resources 560

18 Dynamic HTML: Path, Sequencer and
Sprite ActiveX Controls 564
18.1 Introduction 565
18.2 DirectAnimation Path Control 565
18.3 Multiple Path Controls 567
18.4 Time Markers for Path Control 570
18.5 DirectAnimation Sequencer Control 573
18.6 DirectAnimation Sprite Control 576
18.7 Animated GIFs 579
18.8 Internet and World Wide Web Resources 581

19 Macromedia® Flash™: Building Interactive
Animations 584
19.1 Introduction 585
19.2 Flash™ Movie Development 586
19.3 Learning Flash with Hands-on Examples 589

19.3.1 Creating a Shape With the Oval Tool 590
19.3.2 Adding Text to a Button 593
19.3.3 Converting a Shape into a Symbol 594
19.3.4 Editing Button Symbols 595
19.3.5 Adding Keyframes 597
19.3.6 Adding Sound to a Button 597
19.3.7 Verifying Changes with Test Movie 600
19.3.8 Adding Layers to a Movie 600
19.3.9 Animating Text with Tweening 602
19.3.10 Adding a Text Field 604
19.3.11 Adding ActionScript 605

19.4 Creating a Projector (.exe) File With Publish 608
19.5 Manually Embedding a Flash Movie in a Web Page 609
19.6 Creating Special Effects with Flash 610

19.6.1 Importing and Manipulating Bitmaps 610
19.6.2 Create an Advertisement Banner with Masking 611
19.6.3 Adding Online Help to Forms 613

19.7 Creating a Web-Site Introduction 622

iw3htp2TOC.fm Page xii Monday, July 23, 2001 4:43 PM

XIII

19.8 ActionScript 627
19.9 Internet and World Wide Web Resources 628

20 Extensible Markup Language (XML) 633
20.1 Introduction 634
20.2 Structuring Data 635
20.3 XML Namespaces 641
20.4 Document Type Definitions (DTDs) and Schemas 643

20.4.1 Document Type Definitions 643
20.4.2 W3C XML Schema Documents 645

20.5 XML Vocabularies 648
20.5.1 MathML™ 648
20.5.2 Chemical Markup Language (CML) 652
20.5.3 Other Markup Languages 654

20.6 Document Object Model (DOM) 654
20.7 DOM Methods 655
20.8 Simple API for XML (SAX) 662
20.9 Extensible Stylesheet Language (XSL) 663
20.10 Microsoft BizTalk™ 670
20.11 Simple Object Access Protocol (SOAP) 671
20.12 Internet and World Wide Web Resources 672

21 Web Servers (IIS, PWS and Apache) 681
21.1 Introduction 682
21.2 HTTP Request Types 683
21.3 System Architecture 684
21.4 Client-Side Scripting versus Server-Side Scripting 685
21.5 Accessing Web Servers 686
21.6 Microsoft Internet Information Services (IIS) 687
21.7 Microsoft Personal Web Server (PWS) 690
21.8 Apache Web Server 692
21.9 Requesting Documents 692

21.9.1 XHTML 692
21.9.2 ASP 694
21.9.3 Perl 694
21.9.4 Python 695
21.9.5 PHP 697

21.10 Internet and World Wide Web Resources 698

22 Database: SQL, MySQL, DBI and ADO 702
22.1 Introduction 703
22.2 Relational Database Model 704
22.3 Relational Database Overview 705
22.4 Structured Query Language 709

22.4.1 Basic SELECT Query 710
22.4.2 WHERE Clause 711
22.4.3 GROUP BY Clause 713

iw3htp2TOC.fm Page xiii Monday, July 23, 2001 4:43 PM

XIV

22.4.4 ORDER BY Clause 714
22.4.5 Merging Data from Multiple Tables 715
22.4.6 Inserting a Record 718
22.4.7 Updating a Record 719
22.4.8 DELETE FROM Statement 720
22.4.9 TitleAuthor Query from Books.mdb 720

22.5 MySQL 723
22.6 Introduction to DBI 723

22.6.1 Perl Database Interface 724
22.6.2 Python DB-API 724
22.6.3 PHP dbx module 725

22.7 ActiveX Data Objects (ADO) 725
22.8 Internet and World Wide Web Resources 727

23 Wireless Internet and m-Business 734
23.1 Introduction 735
23.2 M-Business 736
23.3 Identifying User Location 736

23.3.1 E911 A\ct 737
23.3.2 Location-Identification Technologies 737

23.4 Wireless Marketing, Advertising and Promotions 738
23.5 Wireless Payment Options 740
23.6 Privacy and the Wireless Internet 741
23.7 International Wireless Communications 742
23.8 Wireless-Communications Technologies 743
23.9 WAP and WML 744
23.10 Phone Simulator and Setup Instructions 745
23.11 Creating WML Documents 746
23.12 WMLScript Programming 753
23.13 String Object Methods 760
23.14 Wireless Protocols, Platforms and Programming Languages 770

23.14.1 WAP 2.0 770
23.14.2 Handheld Devices Markup Languages (HDML) 771
23.14.3 Compact HTML (cHTML) and i-mode 771
23.14.4 Java and Java 2 Micro Edition (J2ME) 771
23.14.5 Binary Run-Time Environment for Wireless (BREW) 772
23.14.6 Bluetooth Wireless Technology 772

23.15 Internet and World Wide Web Resources 773

24 VBScript 783
24.1 Introduction 784
24.2 Operators 784
24.3 Data Types and Control Structures 787
24.4 VBScript Functions 791
24.5 VBScript Example Programs 795
24.6 Arrays 803
24.7 String Manipulation 807

iw3htp2TOC.fm Page xiv Monday, July 23, 2001 4:43 PM

XV

24.8 Classes and Objects 811
24.9 Operator Precedence Chart 820
24.10 Internet and World Wide Web Resources 820

25 Active Server Pages (ASP) 831
25.1 Introduction 832
25.2 How Active Server Pages Work 832
25.3 Setup 833
25.4 Active Server Page Objects 833
25.5 Simple ASP Examples 834
25.6 File System Objects 839
25.7 Session Tracking and Cookies 849
25.8 Accessing a Database from an Active Server Page 859
25.9 Server-Side ActiveX Components 870
25.10 Internet and World Wide Web Resources 878

26 Case Study: Active Server Pages and XML 884
26.1 Introduction 885
26.2 Setup and Message Forum Documents 885
26.3 Forum Navigation 886
26.4 Adding Forums 889
26.5 Forum XML Documents 894
26.6 Posting Messages 898
26.7 Other Documents 902
26.8 Internet and World Wide Web Resources 906

27 Perl and CGI (Common Gateway Interface) 908
27.1 Introduction 909
27.2 Perl 910
27.3 String Processing and Regular Expressions 916
27.4 Viewing Client/Server Environment Variables 921
27.5 Form Processing and Business Logic 924
27.6 Server-Side Includes 930
27.7 Verifying a Username and Password 934
27.8 Using DBI to Connect to a Database 939
27.9 Cookies and Perl 945
27.10 Operator Precedence Chart 950
27.11 Internet and World Wide Web Resources 950

28 Python 962
28.1 Introduction 963

28.1.1 First Python Program 963
28.1.2 Python Keywords 965

28.2 Basic Data Types, Control Structures and Functions 965
28.3 Tuples, Lists and Dictionaries 969
28.4 String Processing and Regular Expressions 974
28.5 Exception Handling 979
28.6 Introduction to CGI Programming 981

iw3htp2TOC.fm Page xv Monday, July 23, 2001 4:43 PM

XVI

28.7 Form Processing and Business Logic 983
28.8 Cookies 989
28.9 Database Application Programming Interface (DB-API) 994

28.9.1 Setup 994
28.9.2 Simple DB-API Program 994

28.10 Operator Precedence Chart 999
28.11 Internet and World Wide Web Resources 1000

29 PHP 1008
29.1 Introduction 1009
29.2 PHP 1010
29.3 String Processing and Regular Expressions 1019
29.4 Viewing Client/Server Environment Variables 1024
29.5 Form Processing and Business Logic 1026
29.6 Verifying a Username and Password 1031
29.7 Connecting to a Database 1039
29.8 Cookies 1043
29.9 Operator Precedence 1048
29.10 Internet and World Wide Web Resources 1048

30 Servlets 1056
30.1 Introduction 1057
30.2 Servlet Overview and Architecture 1059

30.2.1 Interface Servlet and the Servlet Life Cycle 1060
30.2.2 HttpServlet Class 1062
30.2.3 HttpServletRequest Interface 1063
30.2.4 HttpServletResponse Interface 1064

30.3 Handling HTTP get Requests 1064
30.3.1 Setting Up the Apache Tomcat Server 1069
30.3.2 Deploying a Web Application 1071

30.4 Handling HTTP get Requests Containing Data 1076
30.5 Handling HTTP post Requests 1079
30.6 Redirecting Requests to Other Resources 1082
30.7 Session Tracking 1086

30.7.1 Cookies 1087
30.7.2 Session Tracking with HttpSession 1095

30.8 Multi-tier Applications: Using JDBC from a Servlet 1103
30.8.1 Configuring animalsurvey Database and SurveyServlet 1109

30.9 HttpUtils Class 1111
30.10 Internet and World Wide Web Resources 1111

31 JavaServer Pages (JSP) 1119
31.1 Introduction 1120
31.2 JavaServer Pages Overview 1121
31.3 A First JavaServer Page Example 1122
31.4 Implicit Objects 1124
31.5 Scripting 1125

iw3htp2TOC.fm Page xvi Monday, July 23, 2001 4:43 PM

XVII

31.5.1 Scripting Components 1126
31.5.2 Scripting Example 1127

31.6 Standard Actions 1130
31.6.1 <jsp:include> Action 1131
31.6.2 <jsp:forward> Action 1135
31.6.3 <jsp:plugin> Action 1139
31.6.4 <jsp:useBean> Action 1143

31.7 Directives 1160
31.7.1 page Directive 1160
31.7.2 include Directive 1162

31.8 Custom Tag Libraries 1164
31.8.1 Simple Custom Tag 1165
31.8.2 Custom Tag with Attributes 1169
31.8.3 Evaluating the Body of a Custom Tag 1173

31.9 World Wide Web Resources 1179

32 e-Business & e-Commerce 1186
32.1 Introduction 1188
32.2 E-Business Models 1189

32.2.1 Storefront Model 1189
32.2.2 Shopping-Cart Technology 1190
32.2.3 Auction Model 1191
32.2.4 Portal Model 1194
32.2.5 Name-Your-Price Model 1195
32.2.6 Comparison-Pricing Model 1195
32.2.7 Demand-Sensitive Pricing Model 1195
32.2.8 Bartering Model 1195

32.3 Building an e-Business 1196
32.4 e-Marketing 1197

32.4.1 Branding 1197
32.4.2 Marketing Research 1197
32.4.3 e-Mail Marketing 1197
32.4.4 Promotions 1198
32.4.5 Consumer Tracking 1198
32.4.6 Electronic Advertising 1198
32.4.7 Search Engines 1199
32.4.8 Affiliate Programs 1199
32.4.9 Public Relations 1200
32.4.10 Customer Relationship Management (CRM) 1200

32.5 Online Payments 1201
32.5.1 Credit-Card Payment 1201
32.5.2 Digital Cash and e-Wallets 1201
32.5.3 Micropayments 1201
32.5.4 Smart Cards 1202

32.6 Security 1202
32.6.1 Public-Key Cryptography 1203
32.6.2 Secure Sockets Layer (SSL) 1205

iw3htp2TOC.fm Page xvii Monday, July 23, 2001 4:43 PM

XVIII

32.6.3 WTLS 1207
32.6.4 IPSec and Virtual Private Networks (VPN) 1207
32.6.5 Security Attacks 1208
32.6.6 Network Security 1208

32.7 Legal Issues 1209
32.7.1 Privacy 1209
32.7.2 Defamation 1209
32.7.3 Sexually Explicit Speech 1210
32.7.4 Copyright and Patents 1210

32.8 XML and e-Commerce 1211
32.9 Internet and World Wide Web Resources 1212

33 Multimedia: Audio, Video, Speech Synthesis and
Recognition 1223
33.1 Introduction 1224
33.2 Audio and Video 1225
33.3 Adding Background Sounds with the bgsound Element 1225
33.4 Adding Video with the img Element’s dynsrc Property 1228
33.5 Adding Audio or Video with the embed Element 1230
33.6 Using the Windows Media Player ActiveX Control 1232
33.7 Microsoft® Agent Control 1236
33.8 RealPlayer™ Plug-in 1249
33.9 Synchronized Multimedia Integration Language (SMIL) 1252
33.10 Scalable Vector Graphics (SVG) 1254
33.11 Internet and World Wide Web Resources 1259

34 Accessibility 1267
34.1 Introduction 1268
34.2 Web Accessibility 1268
34.3 Web Accessibility Initiative 1269
34.4 Providing Alternatives for Images 1271
34.5 Maximizing Readability by Focusing on Structure 1272
34.6 Accessibility in XHTML Tables 1272
34.7 Accessibility in XHTML Frames 1276
34.8 Accessibility in XML 1277
34.9 Using Voice Synthesis and Recognition with VoiceXML™ 1277
34.10 CallXML™ 1284
34.11 JAWS® for Windows 1289
34.12 Other Accessibility Tools 1291
34.13 Accessibility in Microsoft® Windows® 2000 1292

34.13.1 Tools for People with Visual Impairments 1294
34.13.2 Tools for People with Hearing Impairments 1296
34.13.3 Tools for Users Who Have Difficulty Using the Keyboard 1296
34.13.4 Microsoft Narrator 1302
34.13.5 Microsoft On-Screen Keyboard 1303
34.13.6 Accessibility Features in Microsoft Internet Explorer 5.5 1304

iw3htp2TOC.fm Page xviii Monday, July 23, 2001 4:43 PM

XIX

34.14 Internet and World Wide Web Resources 1305

A XHTML Special Characters 1313

B Operator Precedence Chart 1314

C ASCII Character Set 1316

D Number Systems 1317
D.1 Introduction 1318
D.2 Abbreviating Binary Numbers as Octal Numbers and Hexadecimal Numbers 1321
D.3 Converting Octal Numbers and Hexadecimal Numbers to Binary Numbers 1322
D.4 Converting from Binary, Octal, or Hexadecimal to Decimal 1322
D.5 Converting from Decimal to Binary, Octal, or Hexadecimal 1323
D.6 Negative Binary Numbers: Two’s Complement Notation 1325

E XHTML Colors 1330

F Career Opportunities 1333
F.1 Introduction 1334
F.2 Resources for the Job Seeker 1335
F.3 Online Opportunities for Employers 1336

F.3.1 Posting Jobs Online 1338
F.3.2 Problems with Recruiting on the Web 1340
F.3.3 Diversity in the Workplace 1340

F.4 Recruiting Services 1341
F.4.1 Testing Potential Employees Online 1342

F.5 Career Sites 1343
F.5.1 Comprehensive Career Sites 1343
F.5.2 Technical Positions 1344
F.5.3 Wireless Positions 1345
F.5.4 Contracting Online 1345
F.5.5 Executive Positions 1346
F.5.6 Students and Young Professionals 1347
F.5.7 Other Online Career Services 1348

F.6 Internet and World Wide Web Resources 1349

G Unicode® 1357
G.1 Introduction 1358
G.2 Unicode Transformation Formats 1359
G.3 Characters and Glyphs 1360
G.4 Advantages/Disadvantages of Unicode 1360
G.5 Unicode Consortium’s Web Site 1361
G.6 Using Unicode 1362
G.7 Character Ranges 1366

Bibliography 1370

Index 1372

iw3htp2TOC.fm Page xix Monday, July 23, 2001 4:43 PM

Preface

Live in fragments no longer. Only connect.
Edward Morgan Forster

Welcome to the exciting world of Internet and World Wide Web programming. This book
is by an old guy and two young guys. The old guy (HMD; Massachusetts Institute of Tech-
nology 1967) has been programming and/or teaching programming for 40 years. The two
young guys (PJD; MIT 1991 and TRN; MIT 1992) have been programming and/or teaching
programming for over 20 years. The old guy programs and teaches from experience; the
young guys do so from an inexhaustible reserve of energy. The old guy wants clarity; the
young guys want performance. The old guy seeks elegance and beauty; the young guys
want results. We got together to produce a book we hope you will find informative, chal-
lenging and entertaining.

The explosion and popularity of the Internet and the World Wide Web creates tremen-
dous challenges for us as authors, for our publisher—Prentice Hall, for instructors, for stu-
dents and for professionals.

The World Wide Web increases the prominence of the Internet in information systems,
strategic planning and implementation. Organizations want to integrate the Internet “seam-
lessly” into their information systems and the World Wide Web offers endless opportunity
to do so.

New Features in Internet & World Wide Web How to Program:
Second Edition
This edition contains many new features and enhancements including:

• Full-Color Presentation. The book enhances LIVE-CODE™ examples by using full
color. Readers see sample outputs as they would appear on a color monitor. We
have syntax colored all the code examples, as many of today’s development envi-
ronments do. Our syntax-coloring conventions are as follows:

iw3htp2_preface.fm Page xli Wednesday, July 25, 2001 5:04 PM

XLII Preface Appendix

comments appear in green
keywords appear in dark blue
literal values appear in light blue
XHTML text and scripting text appear in black
ASP and JSP delimiters appear in red

• XHTML. This edition uses XHTML as the primary means of describing Web con-
tent. The World Wide Web Consortium deprecated the use of HTML 4 and replaced
it with XHTML 1.0 (Extensible Hypertext Markup Language). XHTML is derived
from XML (Extensible Markup Language), which allows Web developers to create
their own tags and languages. XHTML is replacing HTML as the standard for mark-
ing up Web content because it is more robust and offers more features.

• Chapter 19, Macromedia® Flash.™ Flash is a cutting-edge multimedia applica-
tion that enables Web developers to create interactive, animated content. Through
hands-on examples, we show how to add interactivity, sound and animation to
Web sites while teaching the fundamentals of Flash and ActionScript—Flash’s
scripting language. The chapter examples include creating interactive buttons, an-
imated banners and animated splash screens (called animation pre-loaders).

• Chapter 20, Extensible Markup Language (XML). Throughout the book we em-
phasize XHTML, which derived from XML and HTML. XML derives from
SGML (Standardized General Markup Language), whose sheer size and complex-
ity limits its use beyond heavy-duty, industrial-strength applications. XML is a
technology created by the World Wide Web Consortium for describing data in a
portable format. XML is an effort to make SGML-like technology available to a
much broader community. XML is a condensed subset of SGML with additional
features for usability. Document authors use XML’s extensibility to create entire-
ly new markup languages for describing specific types of data, including mathe-
matical formulas, chemical molecular structures and music. Markup languages
created with XML include XHTML (Chapters 4 and 5), MathML (for mathemat-
ics), VoiceXML™ (for speech), SMIL™ (the Synchronized Multimedia Integra-
tion Language for multimedia presentations), CML (Chemical Markup Language
for chemistry) and XBRL (Extensible Business Reporting Language for financial
data exchange).

• Chapter 23, Wireless Internet and m-Business. We introduce the impact of wire-
less communications on individuals and businesses. The chapter then explores
wireless devices and communications technologies and introduces wireless pro-
gramming. The Wireless Application Protocol (WAP) is designed to enable differ-
ent kinds of wireless devices to communicate and access the Internet using the
Wireless Markup Language (WML). WML tags mark up a Web page to specify
how to format a page on a wireless device. WMLScript helps WAP applications
“come alive” by allowing a developer to manipulate WML document content dy-
namically. In addition to WAP/WML, we explore various platforms and program-
ming languages on the client, such as Java 2 Micro Edition (J2ME), Qualcomm’s
Binary Runtime Environment for Wireless (BREW), the enormously popular Japa-
nese i-mode service, Compact HyperText Markup Language (cHTML) and Blue-
tooth™ wireless technology.

iw3htp2_preface.fm Page xlii Wednesday, July 25, 2001 5:04 PM

Appendix Preface XLIII

• Server-Side Technology. We present condensed treatments of six popular Internet/
Web programming languages for building the server side of Internet- and Web-
based client/server applications. In Chapters 25 and 26, we discuss Active Server
Pages (ASP)—Microsoft’s technology for server-side scripting. In Chapter 27, we
introduce Perl, an open-source scripting language for programming Web-based ap-
plications. In Chapters 28 and 29, we introduce Python and PHP—two emerging,
open-source scripting languages. In Chapters 30 and 31, we provide two bonus
chapters for Java programmers on Java™ servlets and JavaServer Pages™ (JSP).

• Chapter 34, Accessibility. Currently, the World Wide Web presents many chal-
lenges to people with disabilities. Individuals with hearing and visual impairments
have difficulty accessing multimedia-rich Web sites. To rectify this situation, the
World Wide Web Consortium (W3C) launched the Web Accessibility Initiative
(WAI), which provides guidelines for making Web sites accessible to people with
disabilities. This chapter provides a description of these guidelines. We also intro-
duce VoiceXML and CallXML, two technologies for increasing the accessibility of
Web-based content.

• Appendix F, Career Opportunities. This detailed appendix introduces career ser-
vices on the Internet. We explore online career services from the employer and em-
ployee’s perspective. We suggest sites on which you can submit applications, search
for jobs and review applicants (if you are interested in hiring people). We also re-
view services that build recruiting pages directly into e-businesses. One of our re-
viewers told us that he had just gone through a job search largely using the Internet
and this chapter would have expanded his search dramatically.

• Appendix G, Unicode. This appendix overviews the Unicode Standard. As com-
puter systems evolved worldwide, computer vendors developed numeric repre-
sentations of character sets and special symbols for the local languages spoken in
different countries. In some cases, different representations were developed for
the same languages. Such disparate character sets made communication between
computer systems difficult. XML and XML-derived languages, such as XHTML,
support the Unicode Standard (maintained by a non-profit organization called the
Unicode Consortium), which defines a single character set with unique numeric
values for characters and special symbols in most spoken languages. This appen-
dix discusses the Unicode Standard, overviews the Unicode Consortium Web site
(unicode.org) and shows an XML example that displays “Welcome to Uni-
code!” in ten different languages!

Some Notes to Instructors

Why We Wrote Internet & World Wide Web How to Program: Second Edition
Dr. Harvey M. Deitel taught introductory programming courses in universities for 20 years
with an emphasis on developing clearly written, well-designed programs. Much of what is
taught in these courses are the basic principles of programming with an emphasis on the
effective use of control structures and functionalization. We present these topics in Internet
& World Wide Web How to Program: Second Edition, the way HMD has done in his uni-
versity courses. Students are highly motivated by the fact that they are learning six leading-

iw3htp2_preface.fm Page xliii Wednesday, July 25, 2001 5:04 PM

XLIV Preface Appendix

edge scripting languages (JavaScript, VBScript, Perl, Python, PHP and Flash ActionScript)
and a leading-edge programming paradigm (object-based programming). We also teach
Dynamic HTML, a means of adding “dynamic content” to World Wide Web pages. Instead
of Web pages with only text and static graphics, Web pages “come alive” with audios, vid-
eos, animations, interactivity and three-dimensional moving images. Dynamic HTML’s
features are precisely what businesses and organizations need to meet today’s information
processing requirements. These programming languages will be useful to students imme-
diately as they leave the university environment and head into a world in which the Internet
and the World Wide Web have massive prominence.

Focus of the Book
Our goal was clear: produce a textbook for introductory university-level courses in com-
puter programming for students with little or no programming experience, yet offer the
depth and rigorous treatment of theory and practice demanded by traditional, upper-level
programming courses and professionals. To meet this goal, we produced a comprehensive
book that teaches the principles of control structures, object-based programming, various
markup languages (XHTML, Dynamic HTML and XML) and scripting languages such as
JavaScript, VBScript, Perl, Python, PHP and Flash ActionScript. After mastering the ma-
terial in this book, students entering upper-level programming courses and industry will be
well prepared to take advantage of the Internet and the Web.

Using Color to Enhance Pedagogy and Clarity
We have emphasized color throughout the book. The World Wide Web is a colorful, multi-
media-intensive medium. It appeals to our visual and audio senses. Someday it may even ap-
peal to our senses of touch, taste and smell! We suggested to our publisher, Prentice Hall, that
they publish this book in color. The use of color is crucial to understanding and appreciating
many of the programs we present. Almost from its inception, the Web has been a color-inten-
sive medium. We hope it helps you develop more appealing Web-based applications.

Web-Based Applications Development
Many books about the Web concentrate on developing attractive Web pages. We discuss
Web-page design intensely. But more importantly, the key focus of this book is on Web-
based applications development. Our audiences want to build real-world, industrial-strength,
Web-based applications. These audiences care about good looking Web pages, but they also
care about client/server systems, databases, distributed computing, etc. Many books about the
Web are reference manuals with exhaustive listings of features. That is not our style. We con-
centrate on creating real applications. We provide the LIVE-CODE™ examples on the CD ac-
companying this book (and at www.deitel.com) so that you can run the applications and
see and hear the multimedia outputs. You can interact with our game and art programs. The
Web is an artist’s paradise. Your creativity is your only limitation. However, the Web con-
tains so many tools and mechanisms to leverage your abilities that even if you are not artisti-
cally inclined, you can create stunning output. Our goal is to help you master these tools so
that you can maximize your creativity and development abilities.

Multimedia-Intensive Communications
People want to communicate. Sure, they have been communicating since the dawn of civ-
ilization, but computer communications have been limited mostly to digits, alphabetic char-

iw3htp2_preface.fm Page xliv Wednesday, July 25, 2001 5:04 PM

Appendix Preface XLV

acters and special characters. The next major wave of communication technology is
multimedia. People want to transmit pictures and they want those pictures to be in color.
They want to transmit voices, sounds and audio clips. They want to transmit full-motion
color video. At some point, they will insist on three-dimensional, moving-image transmis-
sion. Our current flat, two-dimensional televisions eventually will be replaced with three-
dimensional versions that turn our living rooms into “theaters-in-the-round.” Actors will
perform their roles as if we were watching live theater. Our living rooms will be turned into
miniature sports stadiums. Our business offices will enable video conferencing among col-
leagues half a world apart, as if they were sitting around one conference table. The possi-
bilities are intriguing, and the Internet is sure to play a key role in making many of these
possibilities become reality. Dynamic HTML and Flash ActionScript are means of adding
“dynamic content” to World Wide Web pages. Instead of Web pages with only text and
static graphics, Web pages “come alive” with audios, videos, animations, interactivity and
three-dimensional imaging. Dynamic HTML’s and Flash ActionScript’s features are pre-
cisely what businesses and organizations need to meet today’s multimedia-communica-
tions requirements. There have been predictions that the Internet will eventually replace the
telephone system. Why stop there? It could also replace radio and television as we know
them today. It is not hard to imagine the Internet and the World Wide Web replacing news-
papers with electronic news media. Many newspapers and magazines already offer Web-
based versions, some fee based and some free. Increased bandwidth makes it possible to
stream audio and video over the Web. Both companies and individuals run their own Web-
based radio and television stations. Just a few decades ago, there were only a few television
stations. Today, standard cable boxes accommodate about 100 stations. In a few more
years, we will have access to thousands of stations broadcasting over the Web worldwide.
This textbook may someday appear in a museum alongside radios, TVs and newspapers in
an “early media of ancient civilization” exhibit.

Teaching Approach
Internet & World Wide Web How to Program: Second Edition contains a rich collection of
examples, exercises and projects drawn from many fields to provide the student with a
chance to solve interesting real-world problems. The book concentrates on the principles
of good software engineering and stresses program clarity. We avoid arcane terminology
and syntax specifications in favor of teaching by example. The book is written by educators
who spend much of their time teaching edge-of-the-practice topics in industry classrooms.
The text emphasizes good pedagogy.

LIVE-CODE™ Teaching Approach
The book is loaded with hundreds of LIVE-CODE™ examples. This is how we teach and write
about programming, and is the focus of each of our multimedia Cyber Classrooms as well.
Each new concept is presented in the context of a complete, working example immediately
followed by one or more windows showing the example’s input/output dialog. We call this
style of teaching and writing our LIVE-CODE™ approach. We use the language to teach the
language. Reading these examples is much like entering and running them on a computer.

Internet & World Wide Web How to Program: Second Edition “jumps right in” with
XHTML in Chapter 4, then rapidly proceeds with programming in JavaScript, Microsoft’s
Dynamic HTML, XML, VBScript/ASP, Perl, Python, PHP, Flash ActionScript, Java Serv-

iw3htp2_preface.fm Page xlv Wednesday, July 25, 2001 5:04 PM

XLVI Preface Appendix

lets and JavaServer Pages. Many students wish to “cut to the chase;” there is great stuff to
be done in these languages so let’s get to it! Web programming is not trivial by any means,
but it is fun, and students can see immediate results. Students can get graphical, animated,
multimedia-based, audio-intensive, database-intensive, network-based programs running
quickly through “reusable components.” They can implement impressive projects. They
can be more creative and productive in a one- or two-semester course than is possible in
introductory courses taught in conventional programming languages, such as C, C++,
Visual Basic and Java. [Note: This book includes Java Servlets and JavaServer Pages as
“bonus chapters;” it does not teach the fundamentals of Java programming. Readers who
want to learn Java may want to consider reading our book, Java How to Program: Fourth
Edition. Readers who desire a deeper, more developer-oriented treatment of Java may want
to consider reading our book, Advanced Java 2 Platform How to Program.]

World Wide Web Access
All the code for Internet & World Wide Web How to Program: Second Edition (and our other
publications) is on the Internet free for download at the Deitel & Associates, Inc. Web site

www.deitel.com

Please download all the code, then run each program as you read the text. Make changes to
the code examples and immediately see the effects of those changes. A great way to learn
programming is by programming. [Note: You must respect the fact that this is copyrighted
material. Feel free to use it as you study, but you may not republish any portion of it in any
form without explicit permission from Prentice Hall and the authors.]

Objectives
Each chapter begins with a statement of Objectives. This tells students what to expect and
gives students an opportunity, after reading the chapter, to determine if they have met these
objectives. This is a confidence builder and a source of positive reinforcement.

Quotations
The learning objectives are followed by quotations. Some are humorous, some are philo-
sophical and some offer interesting insights. Our students enjoy relating the quotations to
the chapter material. Many of the quotations are worth a “second look” after reading the
chapter.

Outline
The chapter Outline helps the student approach the material in top-down fashion. This, too,
helps students anticipate what is to come and set a comfortable and effective learning pace.

15,836 Lines of Code in 311 Example LIVE-CODE™ Programs (with Program Outputs)
Each program is followed by the outputs produced when the document is rendered and its
scripts are executed. This enables the student to confirm that the programs run as expected.
Reading the book carefully is much like entering and running these programs on a comput-
er. The programs range from just a few lines of code to substantial examples with several
hundred lines of code. Students should run each program while studying that program in
the text. The examples are available on the CD and at our Deitel (www.deitel.com) and
Prentice Hall Web sites (www.prenhall.com\deitel).

iw3htp2_preface.fm Page xlvi Wednesday, July 25, 2001 5:04 PM

Appendix Preface XLVII

714 Illustrations/Figures
An abundance of charts, line drawings and program outputs is included. The discussion of
control structures, for example, features carefully drawn flowcharts. [Note: We do not teach
flowcharting as a program development tool, but we do use a brief, flowchart-oriented pre-
sentation to specify the precise operation of JavaScript’s and VBScript’s control structures.]

466 Programming Tips
We have included programming tips to help students focus on important aspects of program
development. We highlight hundreds of these tips in the form of Good Programming Prac-
tices, Common Programming Errors, Testing and Debugging Tips, Performance Tips,
Portability Tips, Software Engineering Observations and Look-and-Feel Observations.
These tips and practices represent the best we have gleaned from a combined seven decades
of programming and teaching experience. One of our students—a mathematics major—
told us that she feels this approach is like the highlighting of axioms, theorems and corol-
laries in mathematics books; it provides a foundation on which to build good software.

86 Good Programming Practices
Good Programming Practices call the students’ attention to techniques for writing programs
that are clearer, more understandable and more maintainable. 0.0

143 Common Programming Errors
Students learning a language—especially in their first programming course—tend to make
certain errors frequently. Focusing on these Common Programming Errors helps students
avoid making the same errors. It also helps reduce long lines outside instructors’ offices dur-
ing office hours! 0.0

48 Performance Tips
In our experience, teaching students to write clear and understandable programs is by far
the most important goal of a first programming course. However, students want to write the
programs that run the fastest, use the least memory, require the smallest number of key-
strokes or dazzle in other nifty ways. Students care about performance. They want to know
what they can do to “turbo charge” their programs. Therefore, we include Performance Tips
to highlight opportunities for improving program performance. 0.0

31 Portability Tips
There is a strong emphasis today on portability (i.e., on producing software that will run on
a variety of computer systems with few, if any, changes). Achieving portability requires care-
ful and cautious design. There are many pitfalls. We include numerous Portability Tips to
help students write portable code. 0.0

118 Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that affect
the construction of software systems, especially large-scale systems. Much of what the stu-
dent learns here will be useful in upper-level courses and in industry as the student begins to
work with large, complex real-world systems. 0.0

31 Testing and Debugging Tips
This “tip type” may be misnamed. When we first decided to incorporate Testing and Debug-
ging Tips, we thought these tips would be suggestions for testing programs to expose bugs and
suggestions to remove those bugs. In fact, most of these tips tend to be observations about ca-
pabilities and features that prevent bugs from getting into programs in the first place. 0.0

iw3htp2_preface.fm Page xlvii Wednesday, July 25, 2001 5:04 PM

XLVIII Preface Appendix

9 Look-and-Feel Observations
We provide Look-and-Feel Observations to highlight graphical user interface (GUI) conven-
tions. These observations help students design their own graphical user interfaces that con-
form with industry norms. 0.0

Summary (1274 Summary bullets)
Each chapter includes additional pedagogical devices. We present a thorough, bullet-list-
style Summary of the chapter. On average, each chapter contains 37 summary bullets that
help students review and reinforce important concepts.

Terminology (2921 Terms)
In the Terminology section, we include an alphabetized list of the important terms defined
in the chapter—again, further reinforcement. On average, there are 86 terms per chapter.

652 Self-Review Exercises and Answers (Count Includes Separate Parts)
Extensive self-review exercises and answers are included for self-study. They provide the
student with a chance to build confidence with the material and to prepare for the regular
exercises. Students should attempt all the self-review exercises and check their answers.

633 Exercises (Solutions in Instructor’s Manual; Count Includes Separate Parts)
Each chapter concludes with a substantial set of exercises, including simple recall of im-
portant terminology and concepts; writing individual statements; writing small portions of
functions; writing complete functions and scripts; and writing major term projects. The
large number of exercises across a wide variety of topics enables instructors to tailor their
courses to the unique needs of their audiences and to vary course assignments each semes-
ter. Instructors can use these exercises to form homework assignments, short quizzes and
major examinations. The solutions for the vast majority of the exercises are included in the
Instructor’s Manual and on the disks available only to instructors through their Prentice-
Hall representatives. [NOTE: Please do not write to us requesting the instructor’s man-
ual. Distribution of this publication is strictly limited to college professors teaching
from the book. Instructors may obtain the solutions manual only from their regular
Prentice Hall representatives. We regret that we cannot provide the solutions to pro-
fessionals.] Solutions to approximately half the exercises are included on the Internet &
World Wide Web Multimedia Cyber Classroom: Second Edition CD (available in book-
stores and computer stores; please see the last few pages of this book or visit our Web site
at www.deitel.com for ordering instructions).

Approximately 6657 Index Entries (with approximately 8208 Page References)
At the back of the book, we have included an extensive Index to help students find any term
or concept by keyword. The Index is useful to people reading the book for the first time and
is especially useful to practicing programmers who use the book as a reference. Most of the
terms in the Terminology sections appear in the Index (along with many more index items
from each chapter). Students can use the Index in conjunction with the Terminology sec-
tions to be sure they have covered the key material of each chapter.

“Double Indexing” of All LIVE-CODE™ Examples and Exercises
Internet & World Wide Web How to Program: Second Edition has 311 LIVE-CODE™ exam-
ples and 633 exercises (including parts). Many of the exercises are challenging problems

iw3htp2_preface.fm Page xlviii Wednesday, July 25, 2001 5:04 PM

Appendix Preface XLIX

or projects requiring substantial effort. We have double indexed each of the LIVE-CODE™
examples and most of the more challenging projects. For every source-code program in the
book, we took the file name and indexed it both alphabetically and as a subindex item under
“Examples.” This makes it easier to find examples using particular features. The more sub-
stantial exercises are indexed both alphabetically and as subindex items under “Exercises.”

Bibliography
An extensive bibliography of books, articles and online documentation is included to en-
courage further reading.

The student should have two key projects in mind while reading through this book—
developing a personal Web site using XHTML markup and JavaScript coding, and devel-
oping a complete client/server, database-intensive Web-based application by using tech-
niques taught throughout this book.

Software Included with Internet & World Wide Web How to
Program: Second Edition
The CD-ROM at the end of this book contains Microsoft Internet Explorer 5.5, Microsoft
Agent 2.0, Adobe® Acrobat® Reader 5.0, MySQL 3.23, Jasc® Paint Shop Pro™ 7.0 (90-
day evaluation version; this product is included as a bonus—it is not described in the book),
ActivePerl 5.6.1, ActivePython 2.1, PHP 4.0.5 and Apache Web Server 1.3.20. The CD
also contains the book’s examples and an HTML Web page with links to the Deitel & As-
sociates, Inc. Web site, to the Prentice Hall Web site and to the Web site that contains the
links to the Web resources mentioned in the chapters. If you have access to the Internet, this
Web page can be loaded into your World Wide Web browser to give you quick access to
all the resources. We especially would like to thank Jasc Software for providing a trial ver-
sion of their graphics and photo editor; again, this product is not discussed in the book, but
a tutorial can be found at their Web site, www.jasc.com.

If you have any questions about the software on the CD, please read the introductory
documentation on the CD. We will post additional information on our Web site
www.deitel.com. If you have any technical questions about the installation of the CD
or about any of the software supplied with Deitel/Prentice Hall products, please e-mail
media.support@pearsoned.com. They will respond promptly.

On our Web site, we provide installation instructions for ODBC, MySQL, IBM
VoiceServer SDK 1.5, Microsoft Internet Information Services (IIS), Microsoft Personal
Web Server (PWS), Apache Web server, Microsoft’s MSXML 3.0 Parser, Perl, Python,
PHP, World Wide Web Consortium’s Validation Service (both for XHTML and Cascading
Style Sheets), IBM Voice Server SDK 1.1, Java 2 Platform Standard Edition, the Microsoft
Agent character Wartnose. We also illustrate how to create a database in MySQL and
Microsoft Access.

Ancillary Package for Internet & World Wide Web How to
Program: Second Edition
[NOTE: Please do not write to us requesting the instructor’s manual. Distribution of
this publication is strictly limited to college professors teaching from the book. In-
structors may obtain the solutions manual only from their regular Prentice Hall rep-

iw3htp2_preface.fm Page xlix Wednesday, July 25, 2001 5:04 PM

L Preface Appendix

resentatives. We regret that we cannot provide the solutions to professionals.] Internet
& World Wide Web How to Program: Second Edition has extensive ancillary materials for
instructors teaching from the book. The Instructor’s Manual CD contains solutions to the
vast majority of the end-of-chapter exercises and a test bank of multiple choice questions
(approximately 2 per book section). In addition, we provide PowerPoint® slides containing
all the code and figures in the text. You are free to customize these slides to meet your own
classroom needs. Prentice Hall provides a Companion Web Site (www.prenhall.com/
deitel) that includes resources for instructors and students. For instructors, the Web site
has a Syllabus Manager for course planning, links to the PowerPoint slides and reference
materials from the appendices of the book (such as the operator precedence chart, character
sets and Web resources). For students, the Web site provides chapter objectives, true/false
exercises with instant feedback, chapter highlights and reference materials.

Internet & World Wide Web Programming Multimedia Cyber
Classroom: Second Edition and The Complete Internet & World
Wide Web Programming Training Course: Second Edition
We have prepared an interactive, CD-ROM-based, software version of Internet & World
Wide Web How to Program: Second Edition, called the Internet & World Wide Web Pro-
gramming Multimedia Cyber Classroom: Second Edition. It is loaded with features for
learning and reference. The Cyber Classroom is wrapped with the textbook at a discount in
The Complete Internet & World Wide Web Programming Training Course: Second Edi-
tion. If you already have the book and would like to purchase the Internet & World Wide
Web Programming Multimedia Cyber Classroom: Second Edition separately, please call 1-
800-811-0912 and ask for ISBN# 0-13-089559-8. Please be sure to give the name of the
product as well to avoid errors.

The CD includes an introduction with the authors overviewing the Cyber Classroom’s
features. The 311 LIVE-CODE™ example programs in the textbook truly “come alive” in the
Cyber Classroom. If you are viewing a program and want to execute it, simply click the
lightning bolt icon and the program will run. You will see—and hear for the audio-based
multimedia programs—the program’s outputs. If you want to modify a program and see
and hear the effects of your changes, simply click the floppy-disk icon that causes the
source code to be “lifted off” the CD and “dropped into” one of your own directories so that
you can edit the text and try out your new version. Click the speaker icon for an audio that
talks about the program and “walks you through” the code.

The Cyber Classroom also provides navigational aids, including extensive hyperlinking.
With its browser-based front-end, the Cyber Classroom remembers recent sections you have
visited and allows you to move forward or backward in that list. The thousands of index
entries are hyperlinked to their text occurrences. You can key in a term using the “find” fea-
ture and, the Cyber Classroom will locate occurrences of that term throughout the text. The
Table of Contents entries are “hot,” so clicking a chapter name takes you to that chapter.

Students appreciate the hundreds of solved problems from the textbook (about half of
the book exercises) that are included with the Cyber Classroom. Studying and running
these extra programs is a great way for students to enhance their learning experience.

Students and professional users of our Cyber Classrooms tell us they like the interac-
tivity and that the Cyber Classroom is an effective reference, due to the extensive hyper-
linking and other navigational features. We recently received an e-mail from a person who

iw3htp2_preface.fm Page l Wednesday, July 25, 2001 5:04 PM

Appendix Preface LI

said that he lives “in the boonies” and cannot take a live course at a university, so the Cyber
Classroom was the solution to his educational needs.

Professors tell us that their students enjoy using the Cyber Classroom, spend more time
on the course and master more of the material than in textbook-only courses. Also, the
Cyber Classroom helps shrink lines outside professors’ offices during office hours. We
have published the Cyber Classrooms for most of our books.

Acknowledgments
One of the great pleasures of writing a textbook is acknowledging the efforts of the many
people whose names may not appear on the cover, but whose hard work, cooperation,
friendship and understanding were crucial to the production of the book.

Other people at Deitel & Associates, Inc. devoted long hours to this project.We would
like to acknowledge the efforts of our full-time Deitel & Associates, Inc. colleagues Abbey
Deitel, Sean Santry, Laura Treibick, Rashmi Jayaprakash, Cheryl Yaeger, Ben Wieder-
mann, Kate Steinbuhler, Matthew R. Kowalewski, Christine Connolly, Betsy DuWaldt and
Christi Kelsey.

• Abbey Deitel, a graduate of Carnegie Mellon University’s Industrial Manage-
ment program, and President of Deitel & Associates, Inc., co-authored the secu-
rity section of Chapter 32.

• Sean Santry, a graduate of Boston College with a major in Computer Science
and Philosophy, and Director of Software Development at Deitel & Associates,
Inc., co-authored Chapters 30 and 31. In addition, he revised Chapters 6 and 20.

• Laura Treibick, a graduate of the University of Colorado at Boulder with a major
in Photography and Multimedia, co-authored Chapters 3 and 19. In addition, she
revised Chapters 2 and 33 and edited Chapter 25.

• Rashmi Jayaprakash, a graduate of Boston University with a major in Computer
Science, co-authored Chapter 21 and Appendix G. In addition, she revised
Chapters 3, 4, 22, 23, 26, 32 and 34.

• Cheryl Yaeger, a graduate of Boston University with a major in Computer Sci-
ence, and Director of Microsoft Software Publications at Deitel & Associates,
Inc., revised Chapter 27.

• Ben Wiedermann, a graduate of Boston University with a major in Computer
Science, co-authored Chapter 28.

• Kate Steinbuhler, a graduate of Boston College with a major in English and
Communications, and co-Editorial Director at Deitel & Associates, Inc., co-au-
thored Chapters 23, 32 and Appendix F.

• Matthew R. Kowalewski, a graduate of Bentley College with a major in Ac-
counting Information Systems, and Director of Wireless Development at Deitel
& Associates, Inc., co-authored Chapters 19 and 23.

• Christine Connolly, a graduate of Boston College Carroll School of Manage-
ment with a major in Marketing and Finance, and Director of Public Relations
and Advertising at Deitel & Associates, Inc., revised Chapters 23 and 32.

iw3htp2_preface.fm Page li Wednesday, July 25, 2001 5:04 PM

LII Preface Appendix

• Betsy DuWaldt, a graduate of Metropolitan State College of Denver with a major
in Technical Communications (Technical Writing and Editing), and Editorial Di-
rector at Deitel & Associates, Inc., revised Chapters 1, 2, 3, 4, 5, 6, 19, 21, 22, 23
and 32.

• Christi Kelsey, a graduate of Purdue University Krannert School of Management
with a major in Management and Information Systems, and Director of Corporate
Training at Deitel & Associates, Inc., edited Chapters 2, 4, 5, 25, 32 and 34.

• Peter Brandano, a graduate of Boston College with a major in Computer Science,
contributed to Chapters 23, 33 and 34. He also created the majority of examples
in Chapter 19.

We would also like to thank the participants in our Deitel & Associates, Inc. College
Internship Program.1

• Peter Lavelle, a senior in Computer Information Systems at Bentley College, re-
vised Chapters 4, 5, 23, 25, 29 and 33. He also converted all HTML-based code
in the book to XHTML.

• Gary Grinev, a freshman in Computer Science at the University of Connecticut
at Storrs, helped edit the Bibliography and Chapters 1, 21 and 23. He tested all
LIVE-CODE™ examples on Netscape Communicator 6, Internet Explorer 5.5 and
Internet Explorer 6 (beta). He assisted with the ancillary questions and the in-
stallation instructions.

• Zachary Bouchard, a junior in Economics and Philosophy at Boston College, re-
vised Chapters 4, 5 and 6, and he created questions for Chapters 4, 5, 6, 14 and
16. He solved the exercises for Chapter 20, updated all code examples to XHT-
ML 1.0, and converted all code examples for the Cyber Classroom and for the
Instructor’s Manual to XHTML.

• Reshma Khilnani, a junior in Computer Science and Mathematics at Massachu-
setts Institute of Technology, contributed to Appendix G and assisted with the
ancillary questions for the test bank and the companion Web site.

• Mary Pacold, a sophomore in Computer Science at the University of Illinois at
Urbana-Champaign, assisted with the ancillary questions for the test bank and
the companion Web site. She wrote the installation instructions for various soft-
ware products.

• Lauren Trees, a graduate of Brown University in English, revised Chapters 23
and 32.

• Andrew Jones, a fifth-year student at Dartmouth College, co-authored Chapter
29. He also contributed to Chapter 27.

1. The Deitel & Associates, Inc. College Internship Program offers a limited number of salaried po-
sitions to Boston-area college students majoring in Computer Science, Information Technology,
Marketing or English. Students work at our corporate headquarters in Sudbury, Massachusetts
full-time in the summers and (for those attending college in the Boston area) part-time during the
academic year. Full-time positions are available to college graduates. For more information about
this competitive program, please contact Abbey Deitel at deitel@deitel.com and visit our
Web site, www.deitel.com.

iw3htp2_preface.fm Page lii Wednesday, July 25, 2001 5:04 PM

Appendix Preface LIII

• Elizabeth Rockett, a senior in English at Princeton University, edited Chapters
1, 2, 3, 21, 22, 23, 33 and 34.

• Barbara Strauss, a senior in English at Brandeis University, co-authored the secu-
rity section of Chapter 32. She also edited Chapters 6, 21, 22, 34 and Appendix G.

• A. James O’Leary, a sophomore in Computer Science and Psychology at Rens-
selaer Polytechnic Institute, co-authored the security section of Chapter 32.

• Joshua Modell, a freshman at Duke University, formulated exercises for Chapter
32. He helped design the PowerPoint slides.

• Christina Carney, a senior in Psychology and Business at Framingham State Col-
lege, researched URLs for the Internet and World Wide Web Resources section.

• Amy Gips, a sophomore in Marketing and Finance at Boston College, re-
searched quotes for Chapters 3, 19, 23, 29 and 31.

Moreover, we would like to thank Su Zhang, Marina Zlatkina, Carol Treibick, Ana
Rodrigues and Muni Jayaprakash for providing translations in Appendix G.

We would also like to acknowledge the following people who contributed to the first
edition of Internet & World Wide Web How to Program: Jacob Ellis, an undergraduate stu-
dent at the University of Pennsylvania, worked on Chapter 2, 3 and 4. David Gusovsky, an
undergraduate student at the University of California at Berkeley, worked on Chapter 2, 4,
5, 6, 11, 12, 15, 16, 17, 18, 27 and 33. Robin Trudel, an independent consultant, co-
authored Chapter 25 of the first edition. Chris Poirier, a senior at the University of Rhode
Island, worked on Chapter 27 for the first edition.

We are fortunate to have been able to work on this project with the talented and dedi-
cated team of publishing professionals at Prentice Hall. We especially appreciate the
extraordinary efforts of our computer science editor, Petra Recter, her assistant Crissy
Statuto and their boss—our mentor in publishing—Marcia Horton, Editor-in-Chief of Pren-
tice-Hall’s Engineering and Computer Science Division. Camille Trentacoste and her boss
Vince O’Brien, did a marvelous job managing the production of the book.

The Internet & World Wide Web Programming Multimedia Cyber Classroom: Second
Edition was developed in parallel with Internet & World Wide Web How to Program:
Second Edition. We sincerely appreciate the “new media” insight, savvy and technical
expertise of our editor Karen McLean. She did a remarkable job bringing the Internet &
World Wide Web Programming Multimedia Cyber Classroom: Second Edition to publica-
tion under a tight schedule. Michael Ruel did a marvelous job as production manager. Mark
Taub (their boss) is our e-publishing mentor and guides all our efforts in Cyber Classrooms,
Complete Training Courses, Web-based training, e-books and e-whitepaper publications.

We owe special thanks to the creativity of Tamara Newnam Cavallo
(smart_art@earthlink.net), who did the art work for our programming tips icons
and the cover. She created the delightful bug creature that has become our corporate mascot.

We sincerely appreciate the efforts of our second edition reviewers:

Internet & World Wide Web How to Program: Second Edition Reviewers
Richard Albright (University of Delaware)
Joan Aliprand (Unicode Consortium)
Race Bannon (Information Architects)
Paul Bohman (WebAIM)

iw3htp2_preface.fm Page liii Wednesday, July 25, 2001 5:04 PM

LIV Preface Appendix

Steve Burnett (RSA)
Carl Burnham (Southpoint.com)
Sylvia Candelaria de Ram (Editor, Python Journal)
Shane Carareo (Active State)
Kelly Carey (West Valley College)
Chris Constentino (Cisco Systems Inc., PTR Author)
Kevin Dorff (Honeywell)
Fred Drake (PythonLabs)
Jonathan Earl (Technical Training and Consulting)
Amanda Farr (Virtual-FX.net)
Avi Finkel (WhizBang! Labs)
Seth Fogie (Donecker’s, PTR Author)
Steven Franklin (UC Irvine)
Charles Fry (thesundancekid.org)
Phillip Gordon (Berkeley)
Christopher Haupt (Adobe)
Auda Hesham (CUNY)
Damon Houghland (Author of PTR book “Essential WAP for Web Professionals”)
Bryan Hughes (Adobe)
Jeff Isom (WebAIM)
John Jenkins (Unicode Consortium)
Simon Johnson (Shake Communications Pty Ltd)
Alwyn Joy (Whiz Networks Pvt. Ltd.)
Ankur Kapoor (MIND UR Web)
Elizabeth Lane Lawley (RIT)
Mike Leavy (Adobe)
Ze-Nian Li (Simon Frasier University)
Luby Liao (University of San Diego)
Maxim Loukianov (SoloMio Corp.)
Marc Loy (Consultant)
Rick McGowan (Unicode Consortium)
Julie McVicar (Oakland Community College)
Jasmine Merced (PerlArchive.com)
Mark Michael (Kings College)
Scott Mitchell (Consultant)
Dan Moore (XOR, Inc.)
Charles McCathie Neville (W3C)
Simon North (Synopsys)
Dr. Cyrus Peikari (VirusMD Corp., PTR Author)
Steven Pemberton (CWI, Amsterdam)
Shep Perkins (Fidelity Select Wireless Portfolio)
Corrin Pitcher (DePaul University)
Paul Prescod (Active State)
Keith Roberts (Prentice Hall PTR Author “Core CSS”)
Rama Roberts (Sun)
Chad Rolfs (Adobe)

iw3htp2_preface.fm Page liv Wednesday, July 25, 2001 5:04 PM

Appendix Preface LV

Robert Rybaric (PRO-INFO Systems)
Devan Shepherd (Shepherd Consulting Services)
Steve Smith (ASP Alliance)
M.G. Sriram (HelloBrian Corp.)
Dan Steinman (Consultant)
Vadim Tkachenko (Sera Nova)
Guido Van Rossum (python.org)
Nic Van’t Schip (vanschip.com)
Ken Whistler (Sybase; Unicode Consortium)
Monty Widenius (MySQL)
Jesse Wilkins (Metalinear Media)
Michael Willett (wavesys.com)
Bernard Wong (Microsoft)
Ed Wright (Jet Propulsion Laboratory)

We would also like to thank our first edition reviewers.
Kamaljit Bath (Microsoft)
Sunand Bhattacharya (ITT Technical Schools)
Jason Bronfeld (Bristol-Myers Squibb Company)
Bob DuCharme (XML Author)
Jonathan Earl (Technical Training and Consulting)
Jim Gips (Boston College)
Jesse Glick (NetBeans)
Jesse Heines (UMass Lowell)
Shelly Heller (George Washington University)
Peter Jones (SUN Microsystems)
David Kershaw (Art Technology)
Ryan Kuykendall (Amazon)
Hunt LaCascia (Engenius, Inc.)
Yves Lafon (W3C)
Daniel LaLiberte (W3C/Mosaic/NASA)
Wen Liu (ITT)
Marc Loy, (Java Consultant/Cyber Classroom)
Dan Lynch (CyberCash)
Massimo Marchiori (W3C)
Simon North (XML Author)
Ashish Prakash (IBM)
Rama Roberts (SUN Microsystems)
Arie Schlessinger (Columbia University)
Deb Shapiro (Computer Learning Centers)
MG Sriram (GoMo Technologies)
Sumanth Sukumar, (IBM Transarc Labs [HTTP / AFS & DCE DFS])
Scott Tilley (University of California, Riverside)
William Vaughn (Microsoft)
Michael Wallent (Microsoft)
Susan Warren (Microsoft)
Stephen Wynne (IBM Transarc Labs/Carnegie Mellon University)

iw3htp2_preface.fm Page lv Wednesday, July 25, 2001 5:04 PM

LVI Preface Appendix

Under a tight time schedule, our reviewers scrutinized every aspect of the text and made
countless suggestions for improving the accuracy and completeness of the presentation.

We would sincerely appreciate your comments, criticisms, corrections and suggestions
for improving the text. Please address all correspondence to:

deitel@deitel.com

We will respond promptly. Well, that’s it for now. Welcome to the exciting world of
Internet and World Wide Web programming. We hope you enjoy your look at leading-edge
computer applications development. Good luck!

Dr. Harvey M. Deitel
 Paul J. Deitel
 Tem R. Nieto

About the Authors
Dr. Harvey M. Deitel, CEO of Deitel & Associates, Inc., has 40 years in the computing field
including extensive industry and academic experience. He is one of the world’s leading com-
puter science instructors and seminar presenters. Dr. Deitel earned B.S. and M.S. degrees
from the Massachusetts Institute of Technology and a Ph.D. from Boston University. He has
20 years of college teaching experience including earning tenure and serving as the Chairman
of the Computer Science Department at Boston College before founding Deitel & Associates,
Inc. with his son Paul J. Deitel. He is author or co-author of several dozen books and multi-
media packages and is currently writing many more. With translations published in Japanese,
Russian, Spanish, Traditional Chinese, Simplified Chinese, Korean, French, Polish, Italian
and Portuguese, Dr. Deitel's texts have earned international recognition. Dr. Deitel has deliv-
ered professional seminars internationally to major corporations, government organizations
and various branches of the military.

Paul J. Deitel, Executive Vice President of Deitel & Associates, Inc., is a graduate of
the Massachusetts Institute of Technology’s Sloan School of Management where he
studied Information Technology. Through Deitel & Associates, Inc. he has delivered
Internet and World Wide Web courses and programming language classes for industry cli-
ents including Compaq, Sun Microsystems, White Sands Missile Range, Rogue Wave
Software, Stratus, Fidelity, Cambridge Technology Partners, Lucent Technologies, Adra
Systems, Entergy, CableData Systems, NASA at the Kennedy Space Center, the National
Severe Storm Laboratory, IBM and many other organizations. He has lectured on for the
Boston Chapter of the Association for Computing Machinery, and has taught satellite-
based courses through a cooperative venture of Deitel & Associates, Inc., Prentice Hall and
the Technology Education Network. He and his father, Dr. Harvey M. Deitel, are the
world’s best-selling Computer Science textbook authors.

Tem R. Nieto is a graduate of the Massachusetts Institute of Technology where he
studied engineering and computing. Through Deitel & Associates, Inc. he has delivered
courses for industry clients including Sun Microsystems, Compaq, EMC, Stratus, Fidelity,
Art Technology, Progress Software, Toys “R” Us, Operational Support Facility of the
National Oceanographic and Atmospheric Administration, Jet Propulsion Laboratory,
Nynex, Motorola, Federal Reserve Bank of Chicago, Banyan, Schlumberger, University of

iw3htp2_preface.fm Page lvi Wednesday, July 25, 2001 5:04 PM

Appendix Preface LVII

Notre Dame, NASA, various military installations and many others. He has co-authored
several books and multimedia packages with the Deitels and has contributed to virtually
every Deitel & Associates, Inc. publication.

About Deitel & Associates, Inc.
Deitel & Associates, Inc. is an internationally recognized corporate training and content-
creation organization specializing in Internet/World Wide Web software technology, e-
business/e-commerce software technology and computer programming languages educa-
tion. Deitel & Associates, Inc. is a member of the World Wide Web Consortium. The com-
pany provides courses on Internet and World Wide Web programming, object technology
and major programming languages. The founders of Deitel & Associates, Inc. are Dr. Har-
vey M. Deitel and Paul J. Deitel. The company’s clients include many of the world’s largest
computer companies, government agencies, branches of the military and business organi-
zations. Through its publishing partnership with Prentice Hall, Deitel & Associates, Inc.
publishes leading-edge programming textbooks, professional books, interactive CD-ROM-
based multimedia Cyber Classrooms, satellite courses and Web-based training courses.
Deitel & Associates, Inc. and the authors can be reached via e-mail at

deitel@deitel.com

To learn more about Deitel & Associates, Inc., its publications and its worldwide corporate
on-site curriculum, see the last few pages of this book and visit:

www.deitel.com

Individuals wishing to purchase Deitel books, Cyber Classrooms, Complete Training
Courses and Web-based training courses can do so through

www.deitel.com

Bulk orders by corporations and academic institutions should be placed directly with Pren-
tice Hall. See the last few pages of this book for worldwide ordering details.

The World Wide Web Consortium (W3C)
Deitel & Associates, Inc. is a member of the World Wide Web Consortium
(W3C). The W3C was founded in 1994 “to develop common protocols for
the evolution of the World Wide Web.” As a W3C member, Deitel and As-
sociates, Inc. holds a seat on the W3C Advisory Committee (the compa-

ny’s representative is its Chief Technology Officer, Paul Deitel). Advisory Committee
members help provide “strategic direction” to the W3C through worldwide meetings.
Member organizations also help develop standards recommendations for Web technologies
(such as HTML, XML and many others) through participation in W3C activities and
groups. Membership in the W3C is intended for companies and large organizations. For in-
formation on becoming a member of the W3C visit www.w3.org/Consortium/
Prospectus/Joining.

iw3htp2_preface.fm Page lvii Wednesday, July 25, 2001 5:04 PM

LVIII Preface Appendix

iw3htp2_preface.fm Page lviii Wednesday, July 25, 2001 5:04 PM

1
Introduction to

Computers and the
Internet

Objectives
• To understand basic computer science concepts.
• To become familiar with different types of

programming languages.
• To understand the evolution of the Internet and the

World Wide Web.
• To understand the roles XHTML, JavaScript,

Dynamic HTML, Active Server Pages, Perl, Python,
PHP, Java servlets and JavaServer pages have in
developing distributed client/server applications for
the Internet and the World Wide Web.

• To preview the remaining chapters of the book.
Our life is frittered away by detail … Simplify, simplify.
Henry Thoreau

What networks of railroads, highways and canals were in
another age, networks of telecommunications, information
and computerization...are today.
Bruno Kreisky, Austrian Chancellor

My object all sublime
I shall achieve in time.
W. S. Gilbert

He had a wonderful talent for packing thought close, and
rendering it portable.
Thomas Babington Macaulay

iw3htp2.book Page 1 Wednesday, July 18, 2001 9:01 AM

2 Introduction to Computers and the Internet Chapter 1

1.1 Introduction
Welcome to Internet and World Wide Web programming! We have worked hard to create
what we hope will be an informative, entertaining and challenging learning experience for
you. As you read this book, you may want to refer to our Web site

www.deitel.com

for updates and additional information on each subject.
The technologies you will learn in this book are fun for novices, while simultaneously

being appropriate for experienced professionals who build substantial information systems.
Internet and World Wide Web How to Program, Second Edition is designed to be an effec-
tive learning tool for each of these audiences. How can one book appeal to both groups?
The answer is that the core of this book emphasizes achieving program clarity through the
proven techniques of structured programming, object-based programming and—in the
optional Java sections—object-oriented programming. Beginners will learn programming
the right way from the beginning. We have attempted to write in a clear and straightforward
manner.

Outline

1.1 Introduction
1.2 What Is a Computer?
1.3 Types of Programming Languages
1.4 Other High-Level Languages
1.5 Structured Programming
1.6 History of the Internet
1.7 Personal Computing
1.8 History of the World Wide Web
1.9 World Wide Web Consortium (W3C)
1.10 Hardware Trends
1.11 Key Software Trend: Object Technology
1.12 JavaScript: Object-Based Scripting for the Web
1.13 Browser Portability
1.14 C and C++
1.15 Java
1.16 Internet and World Wide Web How to Program
1.17 Dynamic HTML
1.18 Tour of the Book
1.19 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2.book Page 2 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 3

Perhaps most importantly, the book presents hundreds of working examples and shows
the outputs produced when these examples are rendered in browsers or run on computers.
We present all concepts in the context of complete working programs. We call this the live-
code™ approach. These examples are available in three locations—on the CD-ROM inside
the back cover of this book, by download from our Web site www.deitel.com and on
our interactive CD-ROM product, the Internet and World Wide Web Programming Multi-
media Cyber Classroom: Second Edition. The Cyber Classroom’s features and ordering
information appear in the last few pages of this book. The Cyber Classroom also contains
answers to approximately half the exercises in this book, including short-answer questions,
small programs and many full projects. Our boxed product, The Complete Internet and
World Wide Web Programming Training Course, Second Edition, includes the Cyber
Classroom.

The early chapters introduce computer fundamentals, the Internet and the World Wide
Web. We show how to use software packages for browsing the Web and for creating
images for the Web. We present a carefully paced introduction to computer programming,
using the popular JavaScript programming language. In this book, we will often refer to
“programming” as scripting for reasons that will soon become clear. Novices will find that
the material in the JavaScript chapters presents a solid foundation for the deeper treatment
of scripting in VBScript, Perl, Python and PHP in the later chapters. Experienced program-
mers will read the early chapters for a review of technologies and find that the treatment of
scripting in the later chapters is rigorous and challenging.

Most people are familiar with the exciting things computers do. Using this textbook,
you will learn how to command computers to perform specific tasks. Software (i.e., the
instructions you write to command the computer to perform actions and make decisions)
controls computers (often referred to as hardware), and JavaScript is one of today’s most
popular software development languages for Web-based applications.

Computer use is increasing in almost every field of endeavor. In an era of steadily
rising costs, computing costs have been decreasing dramatically because of rapid develop-
ments in both hardware and software technologies. A computer that filled large rooms and
cost millions of dollars just two decades ago can now be inscribed on the surfaces of silicon
chips smaller than fingernails, costing perhaps a few dollars each. Silicon is one of the most
abundant materials on earth—it is an ingredient in common sand. Silicon chip technology
has made computing so economical that hundreds of millions of general-purpose com-
puters worldwide are helping people in business, industry, government and in their per-
sonal lives. The number of computers could easily double in a few years.

This book will challenge you on several levels. Your peers over the last few years
probably have learned C, C++, Visual Basic® or Java™ as their first computer program-
ming language. Indeed, the Advanced Placement Examination administered to high school
students wishing to earn college credit in computer programming is now based on C++
(switched recently from Pascal, a programming language widely used at the college level
for two decades and soon to be switched to Java). Until recently, students in introductory
programming courses learned only the methodology called structured programming. You
will learn both structured programming and the exciting newer methodology called object-
based programming. After this, you will be well-prepared to study the C++ and Java pro-
gramming languages and learn the even more powerful programming methodology of
object-oriented programming (which we include in the bonus Java chapters on servlets and

iw3htp2.book Page 3 Wednesday, July 18, 2001 9:01 AM

4 Introduction to Computers and the Internet Chapter 1

JavaServer Pages). We believe that object-oriented programming will be the key program-
ming methodology at least for the next decade.

Today’s users are accustomed to applications with graphical user interfaces (GUIs).
Users want applications that use the multimedia capabilities of graphics, images, anima-
tion, audio and video. They want applications that can run on the Internet and the World
Wide Web and communicate with other applications. Users want to move away from older
file-processing techniques to newer database technologies. They want applications that are
not limited to the desktop or even to some local computer network, but that can integrate
Internet, World Wide Web components and remote databases as well. Programmers want
all these capabilities in a truly portable manner so that applications will run without modi-
fication on a variety of platforms (i.e., different types of computers running different oper-
ating systems).

In this book, we present a number of powerful software technologies that enable you
to build these kinds of systems. The first part of the book (through Chapter 20) concentrates
on using technologies such as Extensible HyperText Markup Language (XHTML), Java-
Script, Dynamic HTML, Flash and Extensible Markup Language (XML) to build the por-
tions of Web-based applications that reside on the client side (i.e., the portions of applica-
tions that typically run on Web browsers such as Netscape’s Communicator or Microsoft’s
Internet Explorer). The second part of the book (through Chapter 34) concentrates on using
technologies such as Web servers, databases, Active Server Pages, Perl/CGI, Python, PHP,
Java servlets and JavaServer Pages. Programmers use these technologies to build the other
major portion of Web-based applications, the server side (i.e., the portions of applications
that typically run on “heavy-duty,” complex computer systems on which an organization’s
business-critical Web sites reside). Each of these terms will be introduced in this chapter
and carefully explained throughout the book. Readers who master the technologies in this
book will be able to build substantial Web-based, client/server, database-intensive, “multi-
tier” applications. We begin with a discussion of computer hardware and software funda-
mentals. If you are generally familiar with computers, you may want to skip portions of
Chapter 1.

1.2 What Is a Computer?
A computer is a device capable of performing computations and making logical decisions
at speeds millions, even billions, of times faster than human beings can. For example, a per-
son operating a desk calculator might require a lifetime to complete the hundreds of mil-
lions of calculations a powerful personal computer can perform in one second. (Points to
ponder: How would you know whether the person had added the numbers correctly? How
would you know whether the computer had added the numbers correctly?) Today, the
world’s fastest supercomputers can perform hundreds of billions of additions per second,
and computers that perform a trillion instructions per second are already functioning in re-
search laboratories!

Computers process data under the direction of sets of instructions called computer pro-
grams. Computer programs guide the computer through orderly sets of actions specified by
people called computer programmers.

The various devices, such as the keyboard, screen, disks, memory and processing units,
that comprise a computer system are referred to as hardware. Regardless of differences in

iw3htp2.book Page 4 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 5

physical appearance, virtually every computer may be envisioned as being divided into six
logical units or sections. These are as follows:

1. Input unit. This is the “receiving” section of the computer. It obtains information
(data and computer programs) from various input devices and makes the informa-
tion available to the other units so that the information can be processed. Most in-
formation is entered into computers today through keyboards, “mouse” devices
and disks. In the future, most information will be entered by speaking to comput-
ers, by electronically scanning images and by video recording.

2. Output unit. This is the “shipping” section of the computer. It takes information
processed by the computer and sends it to various output devices to make the in-
formation available for use outside the computer. Information output from com-
puters is displayed on screens, printed on paper, played through audio speakers
and video devices, magnetically recorded on disks and tapes and used to control
other devices.

3. Memory unit. This is the rapid access, relatively low-capacity “warehouse” sec-
tion of the computer. It retains information entered through the input unit so that
the information may be made available for processing. The memory unit also re-
tains information which has already been processed until that information can be
placed on output devices by the output unit. The memory unit often is called either
memory, primary memory, primary storage or random access memory (RAM).

4. Arithmetic and logic unit (ALU). This is the “manufacturing” section of the com-
puter. It is responsible for performing calculations, such as addition, subtraction,
multiplication and division. It contains the decision mechanisms that allow the
computer, for example, to compare two items from the memory unit to determine
whether or not they are equal.

5. Central processing unit (CPU). This is the “administrative” section of the com-
puter. The CPU acts as the computer’s coordinator and is responsible for super-
vising the operation of the other sections. The CPU tells the input unit when
information should be read into the memory unit, tells the ALU when information
from the memory unit should be utilized in calculations and tells the output unit
when to send information from the memory unit to certain output devices.

6. Secondary storage unit. This is the long-term, high-capacity “warehousing” sec-
tion of the computer. Programs or data not being used by the other units are nor-
mally placed on secondary storage devices (such as disks) until they are needed,
possibly hours, days, months or even years later. Information in secondary storage
takes longer to access than information in primary memory. The cost per unit of
secondary storage is much less than the cost per unit of primary memory.

1.3 Types of Programming Languages
The computer programs that run on a computer are referred to as software. Programmers
write the instructions that comprise software in various programming languages, some that
the computer can understand and others that require intermediate translation steps. The
hundreds of computer languages in use today may be divided into three types:

iw3htp2.book Page 5 Wednesday, July 18, 2001 9:01 AM

6 Introduction to Computers and the Internet Chapter 1

1. Machine languages

2. Assembly languages

3. High-level languages

Any computer can directly understand only its own machine language. Machine lan-
guage is the “natural language” of a particular computer and is defined by the hardware
design of that computer. Machine languages generally consist of strings of numbers (ulti-
mately reduced to 1s and 0s) that instruct computers to perform their most elementary oper-
ations one at a time. Machine languages are machine dependent (i.e., a particular machine
language can be used on only one type of computer). Machine languages are cumbersome
for humans, as illustrated by the following section, in which a machine-language program
adds overtime pay to base pay and stores the result in gross pay.

+1300042774
+1400593419
+1200274027

As computers became more popular, it became apparent that machine-language pro-
gramming was too slow and tedious for most programmers. Instead of using strings of num-
bers that computers could directly understand, programmers began using English-like
abbreviations to represent the elementary operations of the computer. These abbreviations
formed the basis of assembly languages. Translator programs, called assemblers, were
developed to convert assembly-language programs to machine language at computer
speeds. The following section of an assembly-language program also adds overtime pay to
base pay and stores the result in gross pay, but more clearly than its machine-language
equivalent.

LOAD BASEPAY
ADD OVERPAY
STORE GROSSPAY

Although such code is understandable to humans, it is incomprehensible to computers until
translated to machine language.

Computer use increased rapidly with the advent of assembly languages, but program-
ming in these still required many instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed, in which single
statements could be written to accomplish substantial tasks. The translator programs that
convert high-level language programs into machine language are called compilers. High-
level languages allow programmers to write instructions that are similar to everyday
English and contain commonly used mathematical notations. A payroll program written in
a high-level language might contain the statement:

grossPay = basePay + overTimePay

From this, it is easy to see that programmers find high-level languages more desirable
than either machine languages or assembly languages. C, C++, Visual Basic and Java are
among the most powerful and most widely used high-level programming languages.

The process of compiling a high-level language program into machine language can
take a considerable amount of computer time. Interpreter programs were developed to exe-

iw3htp2.book Page 6 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 7

cute high-level language programs directly, without the need for compiling those programs
into machine language. Although compiled programs execute faster than interpreted pro-
grams, interpreters are popular in program-development environments, in which programs
are recompiled frequently as new features are added and errors are corrected. In this book,
we study six key programming languages: JavaScript, WMLScript, VBScript, Perl, Python
and PHP (along with many other languages including XHTML, XML, WML) and—in the
bonus chapters—we use Java. Each of these scripting languages is processed by inter-
preters. You will see that interpreters have played an especially important role in helping
scripting languages achieve their goal of portability across a variety of platforms.

Performance Tip 1.1
Interpreters have an advantage over compilers in the scripting world. An interpreted pro-
gram can begin executing immediately as soon as it is downloaded to the client’s machine,
whereas a source program must first be compiled before it can execute. 1.1

1.4 Other High-Level Languages
Only a few high-level languages have achieved broad acceptance, out of the hundreds de-
veloped. IBM Corporation developed Fortran (FORmula TRANslator) from 1954–1957
for scientific and engineering applications that require complex mathematical computa-
tions. Fortran is still widely used.

A group of computer manufacturers and government and industrial computer users
developed COBOL (COmmon Business Oriented Language) in 1959. Commercial applica-
tions that manipulate large amounts of data are programmed in COBOL. Today, about half
of all business software is still programmed in COBOL. Approximately one million people
are actively writing COBOL programs.

Basic was developed in 1965 at Dartmouth University as a simple language to help
novices learn programming. Bill Gates implemented Basic on several early personal com-
puters. Today, Microsoft—the company Bill Gates created—is the world’s leading soft-
ware development organization. Gates has become one of the world’s wealthiest people,
and Microsoft is included in the list of prestigious stocks that form the Dow Jones Indus-
trials—from which the Dow Jones Industrial Average is calculated as a measure of stock
market performance.

1.5 Structured Programming
During the 1960s, many large software development efforts encountered severe difficul-
ties. Software schedules were typically late, costs greatly exceeded budgets and the fin-
ished products were unreliable. People began to realize that software development was a
far more complex activity than they had imagined. Research activity in the 1960s resulted
in the evolution of structured programming—a disciplined approach to writing programs
that are clearer than unstructured programs, easier to test and debug and easier to modify.
Chapters 7–9 discuss the principles of structured programming.

One of the more tangible results of this research was the development of the Pascal
programming language by Professor Nicklaus Wirth in 1971. Pascal, named after the 17th-
century mathematician and philosopher Blaise Pascal, was designed for teaching structured

iw3htp2.book Page 7 Wednesday, July 18, 2001 9:01 AM

8 Introduction to Computers and the Internet Chapter 1

programming in academic environments and rapidly became the preferred programming
language in most universities.

The Ada programming language was developed under the sponsorship of the United
States Department of Defense (DOD) during the 1970s and early 1980s. Hundreds of sep-
arate languages had been used to produce DOD’s massive command-and-control software
systems. DOD wanted a single language that would fulfill most of the department’s needs.
Pascal was chosen as a base, but the final Ada language is quite different from Pascal. The
language was named after Lady Ada Lovelace, daughter of the poet Lord Byron. Lady
Lovelace is generally credited with writing the world’s first computer program, in the early
1800s (for the Analytical Engine mechanical computing device designed by Charles Bab-
bage).

One important capability of Ada is called multitasking, which allows programmers to
have many activities running simultaneously. Java, through a technique called multi-
threading, also enables programmers to write programs with parallel activities. Other
widely used high-level languages such as C and C++, generally allow programs to perform
only one activity at a time (although they can support multithreading through special-pur-
pose libraries).

1.6 History of the Internet
In the late 1960s, one of the authors (HMD) was a graduate student at MIT. His research at
MIT’s Project Mac (now the Laboratory for Computer Science—the home of the World
Wide Web Consortium) was funded by ARPA—the Advanced Research Projects Agency
of the Department of Defense. ARPA sponsored a conference at which several dozen
ARPA-funded graduate students were brought together at the University of Illinois at Ur-
bana-Champaign to meet and share ideas. During this conference, ARPA rolled out the
blueprints for networking the main computer systems of about a dozen ARPA-funded uni-
versities and research institutions. They were to be connected with communications lines
operating at a then-stunning 56Kbps (i.e., 56,000 bits per second)—this at a time when
most people (of the few who could) were connecting over telephone lines to computers at
a rate of 110 bits per second. HMD vividly recalls the excitement at that conference. Re-
searchers at Harvard talked about communicating with the Univac 1108 “supercomputer”
at the University of Utah to handle calculations related to their computer graphics research.
Many other intriguing possibilities were raised. Academic research was on the verge of tak-
ing a giant leap forward. Shortly after this conference, ARPA proceeded to implement the
ARPAnet, the grandparent of today’s Internet.

Things worked out differently from what was originally planned. Rather than the pri-
mary benefit of researchers sharing each other’s computers, it rapidly became clear that
enabling the researchers to communicate quickly and easily among themselves via what
became known as electronic mail (e-mail, for short) was the key benefit of the ARPAnet.
This is true even today on the Internet, as e-mail facilitates communications of all kinds
among millions of people worldwide.

One of the primary goals for ARPAnet was to allow multiple users to send and receive
information simultaneously over the same communications paths (such as phone lines).
The network operated with a technique called packet-switching, in which digital data was
sent in small packages called packets. The packets contained data address, error control and

iw3htp2.book Page 8 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 9

sequencing information. The address information allowed packets to be routed to their des-
tinations. The sequencing information helped reassemble the packets (which, because of
complex routing mechanisms, could actually arrive out of order) into their original order
for presentation to the recipient. Packets from different senders were intermixed on the
same lines. This packet-switching technique greatly reduced transmission costs compared
with the cost of dedicated communications lines.

The network was designed to operate without centralized control. If a portion of the
network should fail, the remaining working portions would still route packets from senders
to receivers over alternate paths.

The protocols for communicating over the ARPAnet became known as TCP—the
Transmission Control Protocol. TCP ensured that messages were properly routed from
sender to receiver and that those messages arrived intact.

As the Internet evolved, organizations worldwide were implementing their own net-
works for both intraorganization (i.e., within the organization) and interorganization (i.e.,
between organizations) communications. A wide variety of networking hardware and soft-
ware appeared. One challenge was to get these different networks to communicate. ARPA
accomplished this with the development of IP—the Internetworking Protocol, truly cre-
ating a “network of networks,” the current architecture of the Internet. The combined set of
protocols is now commonly called TCP/IP.

Initially, Internet use was limited to universities and research institutions; then the mil-
itary began using the Internet. Eventually, the government decided to allow access to the
Internet for commercial purposes. Initially, there was resentment among the research and
military communities—these groups were concerned that response times would become
poor as “the Net” became saturated with users.

In fact, the exact opposite has occurred. Businesses rapidly realized that they could
tune their operations and offer new and better services to their clients, so they started
spending vasts amounts of money to develop and enhance the Internet. This generated
fierce competition among the communications carriers and hardware and software sup-
pliers to meet this demand. The result is that bandwidth (i.e., the information carrying
capacity) on the Internet has increased tremendously and costs have decreased signifi-
cantly. It is widely believed that the Internet has played a significant role in the economic
prosperity that the United States and many other industrialized nations have enjoyed
recently and are likely to enjoy for many years.

1.7 Personal Computing
In 1977, Apple Computer popularized the phenomenon of personal computing. Initially, it
was a hobbyist’s dream, but computers quickly became economical enough for people to
buy for personal use. In 1981, IBM, the world’s largest computer vendor, introduced the
IBM Personal Computer, making computing legitimate in business, industry and govern-
ment organizations.

However, these computers were “stand-alone” units—people did their work on their
own machines and then transported disks back and forth to share information (this was
called “sneakernet”). Although early personal computers were not powerful enough to
timeshare several users, these machines could be linked together in computer networks,
sometimes over telephone lines and sometimes in local area networks (LANs) within an

iw3htp2.book Page 9 Wednesday, July 18, 2001 9:01 AM

10 Introduction to Computers and the Internet Chapter 1

organization. This led to the phenomenon of distributed computing, in which an organiza-
tion’s computing, instead of being performed strictly at a central computer installation, is
distributed over networks to the sites at which the bulk of the organization’s work is per-
formed. Personal computers were powerful enough to handle the computing requirements
of individual users and to enable the basic communications tasks of passing information
back and forth electronically.

Today’s most powerful personal computers are as powerful as the million dollar
machines of two decades ago. Desktop computers—called workstations—provide indi-
vidual users with enormous capabilities. Information is easily shared across computer net-
works in which some computers, called servers, offer common stores of programs and data
that may be used by client computers distributed throughout the network—hence the term
client/server computing. Today’s popular operating systems, such as Unix, MacOS, Win-
dows NT, Windows 2000 and Linux provide the kinds of capabilities discussed in this sec-
tion.

1.8 History of the World Wide Web
The World Wide Web allows computer users to locate and view multimedia-based docu-
ments (i.e., documents with text, graphics, animations, audios or videos) on almost any sub-
ject. Even though the Internet was developed more than three decades ago, the introduction
of the World Wide Web is a relatively recent event. In 1990, Tim Berners-Lee of CERN
(the European Laboratory for Particle Physics) developed the World Wide Web and several
communication protocols that form the backbone of the Web.

The Internet and the World Wide Web surely will be listed among the most important
and profound creations of humankind. In the past, most computer applications executed on
“stand-alone” computers (i.e., computers that were not connected to one another). Today’s
applications can be written to communicate with hundreds of millions of computers. The
Internet mixes computing and communications technologies. It makes our work easier. It
makes information instantly and conveniently accessible worldwide. Individuals and small
businesses can receive worldwide exposure on the Internet. It is changing the nature of the
way business is done. People can search for the best prices on virtually any product or ser-
vice. Special-interest communities can stay in touch with one another and researchers can
learn of scientific and academic breakthroughs worldwide.

1.9 World Wide Web Consortium (W3C)
In October 1994, Tim Berners-Lee founded an organization—called the World Wide Web
Consortium (W3C)—devoted to developing nonproprietary, interoperable technologies for
the World Wide Web. One of the W3C’s primary goals is to make the Web universally ac-
cessible—regardless of disability, language or culture.

The W3C is also a standardization organization. Web technologies standardized by the
W3C are called Recommendations. W3C Recommendations include the Extensible Hyper-
Text Markup Language (XHTML), Cascading Style Sheets (CSS), HyperText Markup
Language (HTML; now considered a “legacy” technology) and the Extensible Markup
Language (XML). A recommendation is not an actual software product, but a document
that specifies a technology’s role, syntax, rules, etc. Before becoming a W3C Recommen-

iw3htp2.book Page 10 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 11

dation, a document passes through three phases: Working Draft—which, as its name
implies, specifies an evolving draft, Candidate Recommendation—a stable version of the
document that industry may begin implementing and Proposed Recommendation—a Can-
didate Recommendation that is considered mature (i.e., has been implemented and tested
over a period of time) and is ready to be considered for W3C Recommendation status. For
detailed information about the W3C Recommendation process, see “6.2 The W3C Recom-
mendation track” at

www.w3.org/Consortium/Process/Process-19991111/
process.html#RecsCR

The W3C is comprised of three hosts—the Massachusetts Institute of Technology
(MIT), Institut National de Recherche en Informatique et Automatique (INRIA) and Keio
University of Japan—and over 400 members, including Deitel & Associates, Inc. Members
provide the primary financing for the W3C and help provide the strategic direction of the
Consortium.

The W3C homepage (www.w3.org) provides extensive resources on Internet and
Web technologies. For each Internet technology with which the W3C is involved, the site
provides a description of the technology and its benefits to Web designers, the history of
the technology and the future goals of the W3C in developing the technology. This site also
describes W3C’s goals. The goals of the W3C are divided into the following categories:
User Interface Domain, Technology and Society Domain, Architecture Domain and Web
Accessibility Initiatives.

1.10 Hardware Trends
The Internet community thrives on the continuing stream of dramatic improvements in
hardware, software and communications technologies. In general, people expect to pay at
least a little more for most products and services every year. The exact opposite has been
the case in the computer and communications fields, especially with regard to the hardware
costs of supporting these technologies. For many decades, and with no change in the fore-
seeable future, hardware costs have fallen rapidly, if not precipitously. This is a phenome-
non of technology, another driving force powering the current economic boom. Every year
or two, the capacities of computers tend to double, especially the amount of memory they
have in which to execute programs, the amount of secondary memory (such as disk storage)
they have to hold programs and data over the longer term and the processor speeds—the
speed at which computers execute their programs (i.e., do their work). The same has been
true in the communications field, especially in recent years, with the enormous demand for
communications bandwidth attracting tremendous competition. We know of no other fields
in which technology moves so quickly and costs fall so rapidly.

When computer use exploded in the sixties and seventies, there was talk of huge
improvements in human productivity that computing and communications would bring
about. However, these productivity improvements did not materialize. Organizations were
spending vast sums on computers and distributing them to their workforce, but without the
expected productivity gains. It was the invention of microprocessor chip technology and its
wide deployment in the late 1970s and 1980s which laid the groundwork for the produc-
tivity improvements of the 1990s that have been so crucial to economic prosperity.

iw3htp2.book Page 11 Wednesday, July 18, 2001 9:01 AM

12 Introduction to Computers and the Internet Chapter 1

1.11 Key Software Trend: Object Technology
One of the authors, HMD, remembers the frustration that was felt in the 1960s by software
development organizations, especially those developing large-scale projects. During his
undergraduate years, HMD had the privilege of working summers at a leading computer
vendor on the teams developing time-sharing, virtual-memory operating systems. He re-
members it as a great experience for a college student. In the summer of 1967, however,
reality set in when the company “decommitted” from commercially producing the particu-
lar system that hundreds of people had been working on for many years. It was difficult to
get this software right. Software is “complex stuff.”

Hardware costs have been declining rapidly in recent years, to the point that personal
computers have become a commodity. Unfortunately, software development costs have
been rising steadily as programmers develop ever more powerful and complex applications
without significantly improving the underlying technologies of software development.

There is a revolution brewing in the software community. Building software quickly,
correctly and economically remains an elusive goal at a time when demands for new and
more powerful software are soaring. Objects are essentially reusable software components
that model real-world items. Software developers are discovering that using a modular,
object-oriented design and implementation approach can make software development
groups much more productive than is possible with previous popular programming tech-
niques, such as structured programming. Object-oriented programs are often easier to
understand, correct and modify.

Improvements to software technology did start to appear with the benefits of structured
programming (and the related discipline of structured systems analysis and design) being
realized in the 1970s. It was not until the technology of object-oriented programming
became widely used in the 1980s, and especially in the 1990s, that software developers
finally felt they had the tools to make major strides in the software development process.

Actually, object technology dates back at least to the mid-1960s. The C++ program-
ming language, developed at AT&T by Bjarne Stroustrup in the early 1980s, is based on
two languages: C, which was initially developed at AT&T to implement the Unix operating
system in the early 1970s and Simula 67, a simulation programming language developed
in Europe and released in 1967. C++ absorbed the capabilities of C and added Simula’s
capabilities for creating and manipulating objects.

Before object-oriented languages appeared, programming languages (such as Fortran,
Pascal, Basic and C) focused on actions (verbs), rather than things or objects (nouns). This
style of programming is called procedural programming. One of the key problems with
procedural programming is that the program units programmers create do not mirror real-
world entities effectively, so they are not particularly reusable. We live in a world of
objects. Just look around you. Cars, planes, people, businesses, animals, buildings, traffic
lights and elevators are all examples of objects. It is not unusual for programmers to “start
fresh” on each new project and wind up writing similar software “from scratch.” This
wastes resources as people repeatedly “reinvent the wheel.”

With object technology, properly designed software tends to be more reusable in future
projects. Libraries of reusable components such as MFC (Microsoft Foundation Classes)
and those produced by Rogue Wave and many other software development organizations
can greatly reduce the effort it takes to implement certain kinds of systems (compared with
the effort required to reinvent these capabilities on new projects).

iw3htp2.book Page 12 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 13

Some organizations report that software reuse is not, in fact, the key benefit they derive
from object-oriented programming. Rather, companies indicate that object-oriented pro-
gramming tends to produce software that is more understandable, better organized and
easier to maintain. These improvements are significant, because it has been estimated that
as much as 80% of software costs are not associated with the original efforts to develop the
software, but are in fact, attributed to the evolution and maintenance of that software
throughout its lifetime. Whatever perceived benefits object orientation offers, it is clear that
object-oriented programming will be the primary programming methodology for at least
the next decade or two.

Software Engineering Observation 1.1
Use a building-block approach to creating programs. Avoid reinventing the wheel. Use ex-
isting pieces—this is called software reuse and it is central to object-oriented programming. 1.1

[Note: We will include many Software Engineering Observations throughout the text
to explain concepts that affect and improve the overall architecture and quality of a soft-
ware system, and particularly, of large software systems. We also highlight Good Program-
ming Practices (practices that can help you write programs that are clearer, more
understandable, more maintainable and easier to test and debug), Common Programming
Errors (problems to watch out for so you do not make these same errors in your programs),
Performance Tips (techniques that will help you write programs that run faster and use less
memory), Portability Tips (techniques that will help you write programs that can run, with
little or no modification, on a variety of computers), Testing and Debugging Tips (tech-
niques that will help you remove bugs from your programs and, more important, techniques
that will help you write bug-free programs in the first place) and Look-and-Feel Observa-
tions (techniques that will help you design the “look” and “feel” of your graphical user
interfaces for appearance and ease of use). Many of these techniques and practices are only
guidelines; you will, no doubt, develop your own preferred programming style.]

Performance Tip 1.2
Reusing proven code components instead of writing your own versions can improve program
performance, because these components normally are written to perform efficiently. 1.2

Software Engineering Observation 1.2
Extensive class libraries of reusable software components are available over the Internet and
the World Wide Web. Many of these libraries are available at no charge. 1.2

1.12 JavaScript: Object-Based Scripting for the Web
JavaScript provides an attractive package for advancing the state of programming language
education, especially at the introductory and intermediate levels. JavaScript is an object-
based language with strong support for proper software engineering techniques. Students
learn to create and manipulate objects from the start in JavaScript. The fact that JavaScript
is built into today’s most popular Web browsers is appealing to colleges facing tight bud-
gets and lengthy budget-planning cycles. Bug fixes and new versions of JavaScript are
available on the Internet, so colleges can keep their JavaScript software current.

Does JavaScript provide the solid foundation of programming principles typically
taught in first programming courses—the intended audience for this book? We think so.

iw3htp2.book Page 13 Wednesday, July 18, 2001 9:01 AM

14 Introduction to Computers and the Internet Chapter 1

The JavaScript chapters of this book are much more than just an introduction to the lan-
guage. The chapters also present an introduction to computer programming fundamentals,
including control structures, functions, arrays, recursion, strings and objects. Experienced
programmers will read Chapters 7–12 quickly and master JavaScript by reading our live-
code™ examples and by examining the corresponding input/output screens. Nonprogram-
mers will learn computer programming in these carefully paced chapters by reading the
code explanations and completing a large number of exercises. We do not provide answers
to all exercises, because this is a textbook—college professors use the exercises for home-
work assignments, labs, short quizzes, major examinations and even term projects. We do,
however, provide answers to about half of the exercises in the companion product to this
book called The Internet and World Wide Web Programming Multimedia Cyber Class-
room, Second Edition. If you have the book and would like to order the CD separately,
please check our Web site or the last few pages of the this book.

JavaScript is a powerful scripting language. Experienced programmers sometimes take
pride in creating strange, contorted, convoluted JavaScript expressions. These make pro-
grams more difficult to read, test and debug. This book is also geared for novice program-
mers; for them we stress program clarity. The following is our first Good Programming
Practice:

Good Programming Practice 1.1
Write your programs in a simple and straightforward manner. This is sometimes referred to
as KIS (“keep it simple”). Do not “stretch” the language by trying bizarre uses. 1.1

You will read that JavaScript is a portable scripting language and that programs written
in JavaScript can run in many different Web browsers. Actually, portability is an elusive
goal. Here is our first Portability Tip and our first Testing and Debugging Tip:

Portability Tip 1.1
Although it is easier to write portable programs in JavaScript than in many other program-
ming languages, differences among interpreters and browsers make portability difficult to
achieve. Simply writing programs in JavaScript does not guarantee portability. The pro-
grammer occasionally needs to deal directly with platform variations. 1.1

Testing and Debugging Tip 1.1
Always test your JavaScript programs on all systems for which the programs are intended. 1.1

Good Programming Practice 1.2
Read the documentation for the JavaScript version you are using to access JavaScript’s rich
collection of features. 1.2

Testing and Debugging Tip 1.2
Your computer and interpreter are good teachers. If you are not sure how a feature works
even after studying the documentation, experiment and see what happens. Study each error
or warning message and correct it. 1.2

1.13 Browser Portability
Ensuring a consistent look and feel on client-side browsers is one of the great challenges of
developing Web-based applications. Currently, a standard does not exist to which software

iw3htp2.book Page 14 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 15

developers must adhere when creating Web browsers. Although browsers share a common
set of features, each browser can render pages differently. Browsers are available in many
versions (1.0, 2.0 etc.) and on many different platforms (Unix, Microsoft Windows, Apple
Macintosh, IBM OS/2, Linux etc.). Vendors add features to each new version that result in
increased cross-platform incompatibility issues. Clearly it is difficult, if not impossible, to
develop Web pages that render correctly on all versions of each browser. This book at-
tempts to minimize these problems by teaching XHTML, which is widely supported by
browsers.

This book focuses on platform-independent topics such as XHTML, JavaScript, Cas-
cading Style Sheets, database/SQL/MySQL, Apache Web server, Perl/CGI, Python, PHP
and XML. However, it also features many topics that are Microsoft Windows-specific,
including the Internet Explorer 5.5 browser, the Adobe PhotoShop Elements graphics
package for Windows, Dynamic HTML, multimedia, VBScript, Internet Information Ser-
vices (IIS), database access via ActiveX Data Objects (ADO) and Active Server Pages
(ASP).

Portability Tip 1.2
The Web world is highly fragmented which, makes it difficult for authors and Web developers
to create universal solutions. The World Wide Web Consortium (W3C) is working toward the
goal of creating a universal client-side platform. 1.2

1.14 C and C++
For many years, the Pascal programming language was preferred for introductory and in-
termediate programming courses. The C language evolved from a language called B, de-
veloped by Dennis Ritchie at Bell Laboratories. C was implemented in 1972, making C a
contemporary of Pascal. C initially became known as the development language of the
Unix operating system. Today, virtually all new major operating systems are written in C
and/or C++. Over the past two decades, C has become available for most computers and is
generally considered to be hardware independent.

Many people said that C was too difficult a language for the courses in which Pascal
was being used. In 1992, we published the first edition of C How to Program to encourage
universities to replace Pascal with introductory C courses. The students were able to handle
C at about the same level as Pascal, but we discovered that there was one noticeable differ-
ence: Students appreciated that they were learning a language (C) likely to be valuable to
them in industry. Our industry clients appreciated the availability of C-literate graduates
who could work immediately on substantial projects, rather than first having to go through
costly and time-consuming training programs.

Bjarne Stroustrup developed C++, an extension of C, in the early 1980s. C++ provides
a number of features that “spruce up” the C language, but more importantly, it provides
capabilities for object-oriented programming. C++ is a hybrid language: it is possible to
program in either a C-like style (procedural programming) in which the focus is on actions,
or an object-oriented style (in which the focus is on objects) or both.

One reason that C++ use has grown so quickly is that it extends C programming into
the area of object orientation. For the huge community of C programmers, this has been a
powerful advantage. An enormous amount of C code has been written in industry over the
last several decades. Because C++ is a superset of C, many organizations find it to be an

iw3htp2.book Page 15 Wednesday, July 18, 2001 9:01 AM

16 Introduction to Computers and the Internet Chapter 1

ideal next step. Programmers can take their C code, compile it, often with nominal changes,
in a C++ compiler and continue writing C-like code, while mastering the object paradigm.
Programmers then can migrate portions of the legacy C code into C++, as time permits.
New systems can be entirely written in object-oriented C++. Such strategies have been
appealing to many organizations. The downside is that even after adopting this strategy,
companies tend to continue producing C-like code for many years. This, of course, means
that they do not realize the full benefits of object-oriented programming and continue to
produce programs that are confusing and hard to maintain due to their hybrid design. C and
C++ have influenced many programming languages such as Java, Microsoft C# and Java-
Script, which adopted syntax similar to C and C++ to appeal to C and C++ programmers.

1.15 Java
Intelligent consumer electronic devices may be the next major area in which microproces-
sors will have a profound impact. Recognizing this, Sun Microsystems funded an internal
corporate research project that was code named Green in 1991. The project resulted in the
development of an object-oriented, C- and C++-based language, which its creator, James
Gosling, called Oak, after an oak tree outside his office window. It was later discovered that
a computer language already in use was named Oak. When a group of Sun employees vis-
ited a local coffee shop, the name Java was suggested, and it stuck.

The Green project ran into some difficulties, the marketplace for intelligent consumer
electronic devices was not developing as quickly as Sun had anticipated. Worse yet, a major
contract for which Sun competed was awarded to another company. The Green project was
in jeopardy of being cancelled. By sheer good fortune, the World Wide Web exploded in
popularity in 1993, and the people on the Green project saw the immediate potential to use
Java as a Web programming language. This breathed new life into the project.

Java allows programmers to create Web pages with dynamic and interactive content, to
develop large-scale enterprise applications, to enhance the functionality of Web servers (soft-
ware that provides the content we see in our Web browsers), to provide applications for con-
sumer devices (such as wireless phones and personal digital assistants) and much more.

In 1995, we were carefully following Sun’s development of Java. In November 1995,
we attended an Internet conference in Boston in which a representative from Sun gave a
rousing presentation on Java. As the talk proceeded, it became clear to us that Java would
play an important part in developing Internet-based applications. Since its release, Java has
become one of the most widely used programming languages in the world.

In addition to its prominence in developing Internet- and intranet-based applications,
Java is certain to become the language of choice for implementing software for devices that
communicate over a network. Do not be surprised when your new stereo and other devices in
your home will be networked together using Java technology! Although we do not teach Java
in this book, we have included as a bonus for Java programmers Chapters 30, Java Servlets
and 31, JavaServer Pages. The reader interested in learning Java may wish to read our texts,
Java How to Program, Fourth Edition and Advanced Java 2 Platform How to Program.

1.16 Internet and World Wide Web How to Program
In 1998, we saw an explosion of interest in the Internet and the World Wide Web. We im-
mersed ourselves in these technologies, and a clear picture started to emerge in our minds

iw3htp2.book Page 16 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 17

of the next direction to take in introductory programming courses. Electronic commerce, or
e-commerce, as it is typically called, began to dominate the business, financial and comput-
er industry news. This was a total reconceptualization of the way business was conducted.
We were faced with a dilemma: Should we be writing programming language principles
textbooks or writing textbooks focused more on these enhanced capabilities that organiza-
tions want to incorporate into their information systems? We still wanted to teach program-
ming principles, but we felt compelled to do it in the context of the technologies that
businesses and organizations needed to create Internet-based and Web-based applications.
With this realization, Internet and World Wide Web How to Program was born and pub-
lished in December of 1999.

Internet and World Wide Web How to Program, Second Edition teaches programming
languages and programming language principles. In addition, we focus on the broad range
of technologies that will help you build real-world Internet-based and Web-based applica-
tions that interact with other applications and with databases. These capabilities allow pro-
grammers to develop the kinds of enterprise-level, distributed applications popular in
industry today. Applications can be written to execute on any computer platform, yielding
major savings in systems development time and costs. If you have been hearing a great deal
about the Internet and World Wide Web lately, and if you are interested in developing
applications to run over the Internet and the Web, then learning the software-development
techniques discussed in this book could be the key to challenging and rewarding career
opportunities for you. Please be sure to check out our Appendix F, Career Resources.

This book is intended for several academic markets, namely, the introductory course
sequences in which C++, Java and Visual Basic are traditionally taught; upper-level elec-
tive courses for students who already know programming and as a supplement in introduc-
tory courses, where students are first becoming familiar with computers, the Internet and
the Web. The book offers a solid one- or two-semester introductory programming experi-
ence or an extensive one-semester upper-level elective. The book is also intended for pro-
fessional programmers in corporate training programs or for doing self-study.

In this book, you will learn computer programming and basic principles of computer
science and information technology. You also will learn proven software-development
methods that can reduce software-development costs—top-down stepwise refinement,
functionalization and especially object-based programming. JavaScript is our primary pro-
gramming language, a condensed programming language that is especially designed for
developing Internet- and Web-based applications. Chapters 7–12 present a rich discussion
of JavaScript and its capabilities, including dozens of complete, live-code™ examples fol-
lowed by screen images that illustrate typical program inputs and outputs.

After you have learned programming principles from the detailed JavaScript discus-
sions, we present condensed treatments of six other popular Internet/Web programming
languages for building the server side of Internet- and Web-based client/server applica-
tions. In Chapters 25 and 26, we discuss Active Server Pages (ASP)—Microsoft’s tech-
nology for server-side scripting. In Chapter 27, we introduce Perl—throughout the 1990s,
Perl was the most widely used scripting language for programming Web-based applications
and is certain to remain popular for many years. In Chapters 28 and 29, we introduce
Python and PHP—two emerging scripting languages. In Chapters 30 and 31, we provide
two bonus chapters for Java programmers on Java servlets and JavaServer Pages (JSP). We
will say more about these exciting server-side programming languages momentarily.

iw3htp2.book Page 17 Wednesday, July 18, 2001 9:01 AM

18 Introduction to Computers and the Internet Chapter 1

We will publish new editions of this book promptly in response to rapidly evolving
Internet and Web technologies. [Note: Our publishing plans are updated regularly at our
Web site www.deitel.com. The contents and publication dates of our forthcoming pub-
lications are always subject to change. If you need more specific information, please e-mail
us at deitel@deitel.com.]

1.17 Dynamic HTML
Dynamic HTML is geared to developing high-performance, Web-based applications in
which much of an application is executed directly on the client rather than on the server.
Dynamic HTML makes Web pages “come alive” by providing stunning multimedia effects
that include animation, audio and video. What exactly is Dynamic HTML? This is an in-
teresting question, because if you walk into a computer store or scan online software stores,
you will not find a product by this name offered for sale. Rather, Dynamic HTML, which
has at least two versions—Microsoft’s and Netscape’s—consists of a number of technolo-
gies that are freely available and are known by other names. Microsoft Dynamic HTML in-
cludes XHTML, JavaScript, Cascading Style Sheets, the Dynamic HTML Object Model
and Event Model, ActiveX controls—each of which we discuss in this book—and other re-
lated technologies. Netscape Dynamic HTML provides similar capabilities.1 Microsoft Dy-
namic HTML is introduced in Chapters 13–18.

1.18 Tour of the Book
In this section, we take a tour of the subjects you will study in Internet and World Wide Web
How to Program, Second Edition. Many of the chapters end with an Internet and World
Wide Web Resources section that provides a listing of resources through which you can en-
hance your knowledge and use of the Internet and the World Wide Web. In addition, you
may want to visit our Web site www.deitel.com for additional resources.

Chapter 1—Introduction to Computers and the Internet
In Chapter 1, we present historical information about computers and computer program-
ming and introductory information on the Internet and the World Wide Web. We also over-
view the technologies and concepts discussed in the remaining chapters of the book.

Chapter 2—Microsoft® Internet Explorer 5.52

Prior to the explosion of interest in the Internet and the World Wide Web, if you heard the
term browser, you probably thought about browsing at a bookstore. Today “browser” has
a whole new meaning—an important piece of software that enables you to view Web pages.
The two most popular browsers are Microsoft’s Internet Explorer and Netscape’s Commu-

1. Microsoft Dynamic HTML and Netscape Dynamic HTML are incompatible. In this book, we fo-
cus on Microsoft Dynamic HTML. We have tested all of the Dynamic HTML examples in Mi-
crosoft Internet Explorer 5.5 and Netscape® Communicator® 6. All of these examples execute in
Microsoft Internet Explorer; most do not execute in Netscape Communicator 6. We have posted
the testing results at www.deitel.com. In this book, the material we present in Chapter 19,
Macromedia® Flash™, executes properly in both of the latest Microsoft and Netscape browsers.

2. We provide a comparable chapter on Netscape Communicator 6 at www.deitel.com.

iw3htp2.book Page 18 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 19

nicator. Throughout this book, we use Internet Explorer 5.5, but we provide a solid intro-
duction to Netscape Communicator 6 at www.deitel.com. Using tools included with
Internet Explorer, we demonstrate how to use the Web. These tools include, but are not lim-
ited to, the Web browser, e-mail, newsgroups (i.e., where users can post messages on a va-
riety of topics to the general public) and instant messaging, which allows users to
communicate over the Internet in real time. This chapter shows readers unfamiliar with the
World Wide Web how to browse the Web with Internet Explorer. We demonstrate several
commonly used features for searching the Web, keeping track of the sites you visit and
transferring files between computers. We also discuss several programs included with In-
ternet Explorer. We demonstrate sending and receiving e-mail, and using Internet news-
groups with Microsoft Outlook Express. We demonstrate MSN Instant Messenger, which
enables almost instant conferencing with friends, family and coworkers. We demonstrate
Microsoft NetMeeting and Microsoft Chat for having live meetings and discussions with
other people on the Internet. The chapter concludes with a discussion of browser plug-ins
that provide access to the ever-increasing number of programs and features that make
browsing more enjoyable and interactive.

Chapter 3—Adobe® PhotoShop® Elements
The Internet and World Wide Web are rich in multimedia content. Web pages contain col-
orful graphics, sounds and text. Graphics are an essential element of Web-page design that
convey visual information about a site’s contents. In this chapter, we introduce Adobe Pho-
toShop Elements, a graphics software package that contains an extensive set of tools and
features for creating high-quality graphics and animations. These tools and features include
filters for applying special effects and screen capturing for taking “snap shots” of the
screen. Chapter examples demonstrate creating title images for a Web page, creating a nav-
igation bar that contains a series of buttons used to connect a Web site’s pages and manip-
ulating images by using advanced photographic effects. We focus on creating and
manipulating the two most popular image formats used in Web documents: Graphics In-
terchange Format (GIF) and Joint Photographic Expert Group (JPEG) files. [Note: Read-
ers can download a 30-day evaluation copy of PhotoShop Elements from
www.adobe.com/support/downloads. The chapter examples were developed us-
ing that version of PhotoShop Elements.]

Chapter 4—Introduction to XHTML: Part 1
In this chapter, we unlock the power of Web-based application development by introducing
XHTML—the Extensible Hypertext Markup Language. XHTML is a markup language for
identifying the elements of an XHTML document (or Web page) so that a browser can ren-
der (i.e., display) that document on a computer screen. We introduce basic XHTML Web-
page creation using a technique we call the live-code™ approach. Every concept is present-
ed in the context of a complete working XHTML document. We render each working ex-
ample in Internet Explorer and show the screen outputs. We present many short Web pages
that demonstrate XHTML features. Later chapters introduce more sophisticated XHTML
techniques, such as tables, which are useful for formatting information retrieved from a da-
tabase. We introduce XHTML tags and attributes, which describe the document’s informa-
tion. A key issue when using XHTML is the separation of the presentation of a document
(i.e., how the document is rendered on the screen by a browser) from the structure of the

iw3htp2.book Page 19 Wednesday, July 18, 2001 9:01 AM

20 Introduction to Computers and the Internet Chapter 1

information in that document (i.e., the information the document contains). This chapter in-
troduces our in-depth discussion of this issue. As the book proceeds, you will be able to cre-
ate appealing and powerful Web pages and Web-based applications. Other topics in this
chapter include incorporating text, images and special characters (such as copyright and
trademark symbols) into an XHTML document, validating an XHTML document to ensure
that it is written correctly, placing information inside lists, separating parts of an XHTML
document with horizontal lines (called horizontal rules) and linking to other XHTML doc-
uments on the Web. In one of the chapter exercises, we ask readers to mark up their resume
with XHTML.

Chapter 5—Introduction to XHTML: Part 2
In this chapter, we discuss more substantial XHTML elements and features. We demon-
strate how to present information in tables and how to gather user input. We explain and
demonstrate internal linking and image maps to make Web pages more navigable and how
to use frames to display multiple XHTML documents in a browser. XHTML forms are one
of the most important features introduced in this chapter—forms display information to the
user and accept user input. By the end of this chapter, readers should be familiar with the
most popular XHTML tags and features used to create Web sites.

Chapter 6—Cascading Style Sheets (CSS)
Web browsers control the appearance (i.e., the rendering) of every Web page. For instance,
one browser may render an h1 (i.e., a large heading) element in an XHTML document dif-
ferently than another browser. With the advent of Cascading Style Sheets (CSS), Web de-
velopers can control the appearance of their Web pages. CSS allows Web developers to
specify the style of their Web page’s elements (spacing, margins etc.) separately from the
structure of their pages (section headers, body text, links etc.). This separation of structure
from content allows greater manageability and makes changing document styles easier and
faster. We introduce inline, embedded and external style sheets. Inline style sheets are ap-
plied to individual XHTML elements, embedded style sheets are entire style sheets placed
directly inside an XHTML document and external style sheets are style sheets located out-
side an XHTML document.

Chapter 7—JavaScript:3 Introduction to Scripting
Chapter 7 presents our first JavaScript programs4 (also called scripts). Scripting helps Web
pages “come alive.” Web developers dynamically manipulate Web-page elements through
scripting as clients browse Web pages. Chapters 7–12 present JavaScript, which is then
used in Chapters 13–18 to manipulate Web-page content. We present the key fundamental
computer-science concepts of JavaScript at the same depth as we do in our other books on

3. Netscape created JavaScript; the Microsoft version is called JScript. The two scripting languages
are similar. Netscape, Microsoft and other companies cooperated with the European Computer
Manufacturer’s Association (ECMA) to produce a universal, client-side scripting language, which
is referred to as ECMA-262. JavaScript and JScript each conform to this standard.

4. The book’s JavaScript examples execute in Microsoft Internet Explorer 5.5. We have tested these
examples on the following clients: Internet Explorer 5.5, Internet Explorer 6 Beta and Netscape
Communicator 6. For those few examples that do not execute in Netscape Communicator 6, we
have (when possible) created Netscape Communicator 6 equivalent examples. These examples
and the test results are available at www.deitel.com.

iw3htp2.book Page 20 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 21

conventional programming languages (such as C, C++, C#, Java and Visual Basic), but in
the exciting context of the Internet and World Wide Web. Using our live-code™ approach,
we present every concept in the context of a working JavaScript program that is immedi-
ately followed by the screen output. The chapter introduces nonprogrammers to basic pro-
gramming concepts and constructs. The scripts in this chapter illustrate how to output text
to a browser and how to obtain user input through the browser. Some of the input and output
is performed using the browser’s capability to display predefined graphical user interface
(GUI) windows (called dialogs). This allows nonprogrammers to concentrate on funda-
mental programming concepts and constructs rather than on GUI components and on GUI
event handling. Chapter 7 also provides detailed treatments of decision making and arith-
metic operations.

Chapter 8—JavaScript: Control Structures 1
Chapter 8 focuses on the program-development process. The chapter discusses how to de-
velop a working JavaScript program from a problem statement (i.e., a requirements docu-
ment). We show the intermediate steps using, a program development tool called
pseudocode. The chapter introduces some simple control structures used for decision mak-
ing (if and if/else) and repetition (while). We examine countercontrolled repetition
and sentinel-controlled repetition and introduce the increment, decrement and assignment
operators. Simple flowcharts illustrate graphically the flow of control through each of the
control structures. This chapter helps the student develop good programming habits in
preparation for the more substantial programming tasks in the remainder of the book.

Chapter 9—JavaScript: Control Structures 2
Chapter 9 discusses much of the material JavaScript has in common with the C program-
ming language, especially the sequence, selection and repetition control structures. Here,
we introduce one additional control structure for decision making (switch) and two ad-
ditional control structures for repetition (for and do/while). This chapter also introduces
several operators that allow programmers to define complex conditions in their decision-
making and repetition structures. The chapter uses flowcharts to illustrate the flow of con-
trol through each of the control structures, and concludes with a summary that enumerates
each of the structures. The techniques discussed in this chapter and in Chapter 10 constitute
a large part of what has been traditionally taught in universities under the topic of structured
programming.

Chapter 10—JavaScript: Functions
Chapter 10 takes a deeper look inside scripts. Scripts contain data called global (or script-
level) variables and executable units called functions. We discuss JavaScript functions,
programmer-defined functions and recursive functions (i.e., functions that call them-
selves). The techniques presented in Chapter 10 are essential to produce properly structured
programs, especially large programs that Web developers are likely to build in real-world,
Web-based applications. The divide-and-conquer strategy is presented as an effective
means for solving complex problems by dividing them into simpler, interacting compo-
nents. The chapter offers a solid introduction to recursion and includes a table summarizing
the many recursion examples and exercises in Chapters 10–12. We introduce events and
event handling—elements required for programming graphical user interfaces (GUIs) in
XHTML forms. Events are notifications of state changes, such as button clicks, mouse

iw3htp2.book Page 21 Wednesday, July 18, 2001 9:01 AM

22 Introduction to Computers and the Internet Chapter 1

clicks, pressing keyboard keys, etc. JavaScript allows programmers to respond to various
events by coding functions called event handlers. This begins our discussion of event-driv-
en programming—the user drives the program by interacting with GUI components (caus-
ing events such as mouse clicks), and the scripts respond to the events by performing
appropriate tasks (event handling). The event-driven programming techniques introduced
here are used in scripts throughout the book. Dynamic HTML event handling is introduced
in Chapter 14. Chapter 10 contains a rich set of exercises that include the Towers of Hanoi,
computer-aided instruction and a guess-the-number game.

Chapter 11—JavaScript: Arrays
Chapter 11 explores the processing of data in lists and tables of values. We discuss the
structuring of data into arrays, or groups, of related data items. The chapter presents nu-
merous examples of both single-subscripted arrays and double-subscripted arrays. It is
widely recognized that structuring data properly is as important as using control structures
effectively in the development of properly structured programs. Examples in the chapter in-
vestigate various common array manipulations, searching arrays, sorting data and passing
arrays to functions. This chapter introduces JavaScript’s for/in control structure, which
interacts with collections of data stored in arrays. The end-of-chapter exercises include a
variety of interesting and challenging problems, such as the Sieve of Eratosthenes and the de-
sign of an airline reservations system. The chapter exercises also include a delightful sim-
ulation of the classic race between the tortoise and the hare.

Chapter 12—JavaScript: Objects
This chapter discusses object-based programming with JavaScript’s built-in objects. The
chapter introduces the terminology of objects. We overview the methods (functions asso-
ciated with particular objects) of the JavaScript Math object and provide several examples
of JavaScript’s string-, date- and time-processing capabilities with the String and Date
objects. An interesting feature of the String object is a set of methods that help a pro-
grammer output XHTML from a script by enclosing strings in XHTML elements. The
chapter also discusses JavaScript’s Number and Boolean objects. Many of the features
discussed in this chapter are used in Chapters 13–18 to illustrate that every XHTML ele-
ment is an object that can be manipulated by JavaScript statements. Many challenging, yet
entertaining, string-manipulation exercises are included.

Chapter 13—Dynamic HTML:5 DHTML Object Model and Collections
A massive switch is occurring in the computer industry. The procedural programming style
used since the inception of the industry is being replaced by the object-oriented style of pro-
gramming. The vast majority of new software efforts use object technology in one form or
another. The scripting languages we discuss in this book usually manipulate existing ob-
jects by sending messages that either inquire about the objects’ attributes or ask the objects
to perform certain actions. In this chapter, we continue the discussion of object technology

5. Microsoft Dynamic HTML and Netscape Dynamic HTML are incompatible. In this book, we fo-
cus on Microsoft Dynamic HTML. We have tested all of the Dynamic HTML examples in Internet
Explorer 5.5 and Netscape Communicator 6. All of these examples execute in Internet Explorer,
but do not execute in Netscape Communicator 6. We have posted the testing results at www.de-
itel.com. In this book, we also present Macromedia® Flash™, which executes in Internet Ex-
plorer and Netscape Communicator 6.

iw3htp2.book Page 22 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 23

by presenting Microsoft’s Dynamic HTML object model. As Internet Explorer downloads
a Web page from a server, it converts each element to an object. Objects store data (their
attributes) and perform functions (their methods). Through scripting languages such as Jav-
aScript, you can write commands that get or set (i.e., read or write) an object’s attributes.
You can also write commands that invoke an object’s methods. The chapter exercises pro-
vide the opportunity to program the classic “15-puzzle” game.

Chapter 14—Dynamic HTML: Event Model
We have discussed how scripting can control XHTML pages. Dynamic HTML includes
event models that enable scripts to respond to user actions. This allows Web applications to
be more responsive and user friendly, and can it reduce server load—a performance con-
cern we discuss in Chapters 21–31 on server-side programming. With the event model,
scripts can respond to a user moving or clicking the mouse, scrolling up or down the screen
or entering keystrokes. Content becomes more dynamic, while interfaces become more in-
tuitive. We discuss how to use the event model to respond to user actions. We provide ex-
amples of event handling, which range from mouse capture to error handling to form
processing. For example, we call the onreset event to confirm that a user wants to reset
the form (i.e., the GUI in which the user inputs data). For one of the chapter exercises, the
reader creates an interactive script that displays an image alongside the mouse pointer.
When the mouse pointer is moved, the image moves with it.

Chapter 15—Dynamic HTML: Filters and Transitions
Internet Explorer includes a set of filters that allow developers to perform complex image
transformations entirely in the Web browser without the need for additional downloads
from a Web server. Filters are scriptable, so the developer can create stunning, customized
animations with a few lines of client-side JavaScript. We introduce the fliph and flipv
filters, which mirror text and images horizontally and vertically. We explain the gray,
xray and invert filters, which all apply simple transformations to images. We introduce
many of the filters that apply effects such as shadows, transparency gradients and distor-
tions. Internet Explorer enables transitions that are similar to transitions between slides in
PowerPoint-like presentations. The revealTrans filter applies visual effects such as box
in, circle out, wipe left, vertical blinds, checkerboard across, random dissolve, split hori-
zontal in, strips right up and random bars horizontal. This chapter also introduces the
blendTrans filter, which allows you to fade in or fade out of an XHTML element over
a set interval.

Chapter 16—Dynamic HTML: Data Binding with Tabular Data Control
This is one of the most important chapters in the book for people who want to build sub-
stantial, real-world Web-based applications. Businesses thrive on data, and Dynamic
HTML helps Web developers build data-intensive applications. With data binding, data
does not reside exclusively on the server. Data are sent from the server to the client, and all
subsequent manipulations of the data occur on the client. Data can be maintained on the cli-
ent in a manner that distinguishes the data from the XHTML markup. Manipulating data on
the client improves performance by eliminating server activity and network delays. Once
data is available on the client, the data can be sorted (i.e., arranged into ascending or de-
scending order) and filtered (i.e., selected according to some criterion) in various ways. We
present examples of each of these operations. To bind external data to XHTML elements,

iw3htp2.book Page 23 Wednesday, July 18, 2001 9:01 AM

24 Introduction to Computers and the Internet Chapter 1

Internet Explorer employs software capable of connecting the browser to live data sources,
known as Data Source Objects (DSOs). Several DSOs are available in Internet Explorer—
in this chapter, we discuss the most popular DSO, Tabular Data Control (TDC).

Chapter 17—Dynamic HTML: Structured Graphics ActiveX Control
Although high-quality content is important to a Web site, it does not attract or maintain vis-
itors’ attention like eye-catching, animated graphics. This chapter explores the Structured
Graphics ActiveX Control included with Internet Explorer. The Structured Graphics Con-
trol is a Web interface for the DirectAnimation subset of Microsoft’s DirectX software. Di-
rectAnimation is used in many popular video games and graphical applications. This
control allows you to create complex graphics containing lines, shapes, textures and fills.
In addition, scripting allows the graphics to be manipulated dynamically. The exercises at
the end of the chapter ask the reader to create three-dimensional shapes and rotate them.

Chapter 18—Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls
In this chapter, we discuss three additional DirectAnimation ActiveX controls available for
Internet Explorer: the Path Control, the Sequencer Control and the Sprite Control. Each of
these controls allow Web developers to add animated multimedia effects to Web pages. The
Path Control allows the user to determine the positioning of elements on the screen. This is
more elaborate than CSS absolute positioning, because the user can define lines, ovals and
other shapes as paths along which objects move. Every aspect of motion is controllable
through scripting. The Sequencer Control performs tasks at specified time intervals. This
is useful for presentationlike effects, especially when used with the transitions discussed in
Chapter 15. The Sprite Control creates Web animations. We also discuss, for comparison
purposes, animated GIFs—another technique for producing Web-based animations.

Chapter 19—Macromedia® Flash™: Creating Interactive Web Pages
Macromedia Flash6 is a cutting-edge multimedia application that creates interactive con-
tent for the World Wide Web. Through hands-on examples, this chapter shows how to add
interactivity, sound and animation to Web sites, while teaching the fundamentals of Mac-
romedia Flash and ActionScript, Flash’s scripting language. The chapter examples include
creating interactive buttons, animated banners and animated splash screens (called anima-
tion preloaders). The exercises ask the reader to create a navigation bar, a spotlight effect
and a morphing effect. The morphing effect exercise in particular is a wonderful illustration
of the power of Flash. Readers will enjoy watching text transform into a shape and back.

Chapter 20—Extensible Markup Language (XML)
Throughout the book, we have been emphasizing XHTML. This language derives from
SGML (Standardized General Markup Language), which became an industry standard in
1986. SGML is employed in publishing applications worldwide, but it has not been incor-
porated into mainstream computing and information technology curricula. Its sheer size
and complexity limit its use beyond heavy-duty, industrial-strength applications. The Ex-

6. Many browsers, including Internet Explorer 5.5 and Netscape Communicator 6, support Macro-
media Flash content. All of the functionality in this chapter has been tested on, and properly works
on both Internet Explorer 5.5 and Netscape Communicator 6. Some Web developers prefer Flash
to Dynamic HTML. Some use both.

iw3htp2.book Page 24 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 25

tensible Markup Language (XML) is an effort to make SGML-like technology available to
a much broader community. XML, a condensed subset of SGML, contains additional fea-
tures for usability. XML differs in concept from XHTML. XHTML is a markup language,
and XML is a language for creating markup languages. XML enables document authors to
create their own markup for virtually any type of information. As a result, document au-
thors use this extensibility to create entirely new markup languages to describe specific
types of data, including mathematical formulas, chemical molecular structures, music and
recipes. Markup languages created with XML include XHTML (Chapters 4 and 5), Math-
ML (for mathematics), VoiceXML™ (for speech), SMIL™ (the Synchronized Multimedia
Integration Language, for multimedia presentations), CML (Chemical Markup Language,
for chemistry) and XBRL (Extensible Business Reporting Language, for financial data ex-
change). XML is a technology created by the World Wide Web Consortium for describing
data in a portable format. XML is one of most important technologies in industry today and
is being integrated into almost every field. Every-day, companies and individuals are find-
ing new and exciting uses for XML. In this chapter, we present examples that illustrate the
basics of marking up data using XML. We demonstrate several XML-derived markup lan-
guages, such as MathML, CML, XML Schema (for checking an XML document’s gram-
mar), XSLT (Extensible Stylesheet Language Transformations, for transforming an XML
document’s data into an XHTML document) and Microsoft’s BizTalk™ (for marking up
business transactions). The reader interested in a deeper treatment of XML may want to
consider our book, XML How to Program.

Chapter 21—Web Servers (IIS, PWS and Apache)
Through Chapter 20, we have focused on the client side of Web-based applications. Chap-
ters 21–31 focus on the server side, discussing many technologies crucial to implementing
successful Web-based systems. A Web server is part of a multitiered application—some-
times referred to as an n-tier application. A three-tier application contains a data tier (bot-
tom tier), middle tier and client tier (top tier). The bottom tier is an organization’s database.
The middle tier receives client requests from the top tier, references the data stored in the
bottom tier and sends the requested information to the client. The client tier renders a Web
page and executes any scripting commands contained in the Web page. A crucial decision
in building Web-based systems is which Web server to use. The Apache Web Server and
Microsoft Internet Information Services (IIS) are the two most popular Web servers used
in industry. Each of these is an “industrial-strength” server designed to handle the high vol-
umes of transactions that occur in real-world systems. They require considerable system re-
sources and administrative support. To help people enter the world of server programming,
Microsoft provides Personal Web Server (PWS)—a scaled-down version of IIS. In this
chapter, we provide a brief introduction to IIS, PWS and Apache. We provide installation
instructions for these Web servers at www.deitel.com. We discuss how to request
XHTML, ASP, Perl, Python and PHP documents from these Web servers when using In-
ternet Explorer. The chapter concludes by listing some additional Web servers that are
available on the Internet. [Note: The world of server software is complex and evolving
quickly. Our goal in this chapter is to give you a “handle” on setting up and using server-
side software. Deitel & Associates, Inc., does not provide software support for these serv-
ers. We suggest that you browse the Web sites we list at the end of this chapter for organi-
zations that may provide such support.]

iw3htp2.book Page 25 Wednesday, July 18, 2001 9:01 AM

26 Introduction to Computers and the Internet Chapter 1

Chapter 22—Database: SQL, MySQL, DBI and ADO
The vast majority of an organizations' data is stored in databases. In this chapter, we introduce
databases as well as the Structured Query Language (SQL) for making database queries. The
chapter also introduces MySQL, an open source, enterprise-level database server, and high-
lights several key features of this database server. We provide a list of data objects that access
MySQL through various programmatic libraries called database interfaces (DBIs). We spe-
cifically discuss DBIs for Perl, Python and PHP. In addition, a brief discussion of Microsoft’s
version of data storage, called universal database access (UDA), is provided. A key UDA
component is ActiveX Data Objects (ADO), which we introduce in this chapter and use in
Chapter 25, Active Server Pages. ADO provides a set of objects used by Microsoft languages
such as Visual Basic, Visual C++, C# and Active Server Pages to interact with databases. We
list additional resources related to MySQL and Microsoft Access at www.deitel.com.

Chapter 23—Wireless7 Internet Technology
In Chapter 23, we discuss the impact of wireless communications on individuals and busi-
nesses. We investigate mobile business applications such as shipping and tracking. We ex-
plore location-identification technologies and the services they enable, including wireless
marketing and advertising. Privacy issues, related to the ability to locate a user, are carefully
examined. The chapter then explores wireless devices and communications technologies and
introduces wireless programming. The Wireless Application Protocol (WAP) is designed to
enable different kinds of wireless devices to communicate and access the Internet using the
Wireless Markup Language (WML). WML tags mark up a Web page to specify how the page
is to be formatted on a wireless device. WMLScript helps WAP applications “come alive” by
allowing a developer to manipulate WML document content dynamically. In addition to
WAP/WML, we explore various platforms and programming languages, such as Java 2 Micro
Edition (J2ME), Qualcomm’s Binary Runtime Environment for Wireless (BREW), i-mode,
Compact HyperText Markup Language (cHTML) and Bluetooth™ wireless technology.

Chapter 24—VBScript
JavaScript has become the de facto standard for client-side scripting. All major browsers
support this language, which has been standardized through the European Computer Man-
ufacturers Association as ECMA-262. Visual Basic Scripting Edition (VBScript) is a script-
ing language developed by Microsoft. Although it is not supported by many leading
browsers, plug-ins help some of those browsers understand and process VBScript. VB-
Script, however, is the most widely used language for writing Active Server Pages (ASP)—
a server-side technology we discuss in Chapters 25 and 26. Chapter 24 prepares you to use
VBScript on the client side in Microsoft communities and in Microsoft-based intranets
(i.e., internal networks that use the same communications protocols as the Internet). It will
also prepare you to use VBScript to program Active Server Pages in the next two chapters.

Chapter 25—Active Server Pages (ASP)
This chapter introduces Microsoft’s Active Server Pages (ASP), the first of the six server-
side software development paradigms we discuss. Active Server Pages can be programmed
in a variety of languages—by far the most popular is Microsoft’s VBScript (Chapter 24).
Active Server Pages implement middle-tier business logic. In this chapter, we introduce the

7. The reader interested in a deeper treatment of wireless Internet programming may want to consid-
er our book, Wireless Internet and Mobile Business How to Program.

iw3htp2.book Page 26 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 27

reader to dynamic content generation (i.e., the process by which a scripting language gen-
erates an XHTML document, an XML document etc.). Chapter examples include a wide
range of server-side programming topics, such as writing text files, querying an Access da-
tabase and using server-side ActiveX controls to extend Web server functionality. Key ex-
amples include an ASP document that allows users to create Web pages, a guestbook
application and an ASP document that displays information about the client’s browser. This
is a crucial chapter for those readers who want to implement Web-based applications by
using Microsoft technologies.

Chapter 26—Case Study: Active Server Pages and XML
In this chapter, we build on the material presented in Chapter 25 by creating an online mes-
sage forum using ASP. Message forums are “virtual” bulletin boards in which users discuss
a variety of topics. The case study presented allows users to post messages to an existing
forum and to create new forums. Each forum’s data are stored in XML documents that are
dynamically manipulated using ASP. This chapter ties together many of the technologies
presented earlier in the book, including XHTML, CSS, ASP, XML and XSLT. Chapter ex-
ercises ask the reader to modify the case study to delete individual messages from a forum
and to delete individual forums.

Chapter 27—Perl and CGI8 (Common Gateway Interface)
Historically, the most widely used server-side technology for developing Web-based appli-
cations has been Perl/CGI. Despite the emergence of newer technologies such as Active
Server Pages (Chapters 25 and 26), Python (Chapter 28), PHP (Chapter 29), Java Servlets
(Chapter 30) and JavaServer Pages (Chapter 31), the Perl community is well entrenched,
and Perl will remain popular for the foreseeable future. Chapter 27 presents an introduction
to Perl/CGI, including many real-world, live-code™ examples and discussions, and dem-
onstrations of some of the most recent features of each of these technologies. Key examples
demonstrate how to interact with a MySQL database and regular expressions (i.e., state-
ments that efficiently search strings for patterns of characters).

Chapter 28—Python9

In this chapter, we introduce Python, an interpreted, cross-platform, object-oriented, gen-
eral-purpose programming language. We begin by presenting basic syntax, data types, con-
trol structures and functions. We then introduce lists (i.e., data structures similar to a
JavaScript array), tuples (i.e., immutable lists) and dictionaries, which are high-level data
structures that store pairs of related data items. String processing and regular expressions
are discussed, as is exception handling, which provides a structured mechanism for recov-
ering from run-time errors. Chapter examples include implementing an XHTML registra-
tion form and showing how to use cookies (i.e., small text files written to the client
machine). In addition, a three-tier Web-based example queries a MySQL database for au-
thor information.

8. The reader interested in a deeper treatment of Perl and CGI may want to consider our book, Perl
How to Program.

9. The reader interested in a deeper treatment of Python may want to consider our book, Python How
to Program.

iw3htp2.book Page 27 Wednesday, July 18, 2001 9:01 AM

28 Introduction to Computers and the Internet Chapter 1

Chapter 29—PHP
In this chapter, we introduce PHP, another popular server-side scripting language for Web-
based application development. Similar to Perl and Python, PHP has a large community of
users and developers. We begin the chapter by introducing basic syntax, data types, opera-
tors and arrays, string processing and regular expressions. Chapter examples include form
processing and business logic, connecting to a database and writing cookies. The chapter
examples include a three-tier Web-based application that queries a MySQL database.

Chapter 30—Java™ Servlets (Bonus Chapter for Java Developers)
Java servlets represent a fifth popular way of building server-side Web-based applications.
Servlets are written in Java (not JavaScript), which requires a substantial book-length treat-
ment to learn. We do not teach Java in Internet and World Wide Web How to Program: Sec-
ond Edition. This chapter (from our book Advanced Java 2 Platform How to Program)10

is provided as a “bonus chapter” for readers familiar with Java. Readers who want to learn
Java may want to consider reading our book Java How to Program, Fourth Edition.

Chapter 31—JavaServer™ Pages (Bonus Chapter for Java Developers)
In this chapter (from our book Advanced Java 2 Platform How to Program), we introduce
JavaServer Pages (JSP)—an extension of Java servlet technology. JavaServer Pages en-
able Web-application programmers to create dynamic Web content, using familiar XML
syntax and scripting with Java. Using JavaServer Pages, Web-application programmers can
create custom tag libraries that encapsulate complex and dynamic functionality in XML
tags. Web-page designers who are not familiar with Java can use these custom tag libraries
to integrate information from databases, business-logic components and other resources
into dynamically generated Web pages. This chapter is provided as a “bonus” chapter for
readers familiar with Java. Readers who want to learn Java may want to consider reading
our book Java How to Program, Fourth Edition.

Chapter 32—E-Business and E-Commerce
Chapter 32 explores the world of e-business and e-commerce. It begins by discussing the
various business models associated with e-businesses. These include storefronts, auctions,
portals, dynamic pricing, comparison shopping and demand-sensitive and name-your-
price models. We also discuss the management and maintenance of an e-business, which
includes advertising and marketing, accepting online payments, securing online transac-
tions and understanding legal issues. We address such topics as branding, e-advertising,
customer relationship management, e-wallets, micropayments, privacy and copyright. We
also discuss security topics, including public-key cryptography, Secure Socket Layer (SSL)
and wireless security. The final section in this chapter discusses the emergence of XML and
how it enables the standardization of business transactions worldwide.

Chapter 33—Multimedia: Audio, Video, Speech Synthesis and Recognition
This chapter focuses on the explosion of audio, video and speech technology appearing on the
Web. We discuss adding sound, video and animated characters to Web pages (primarily using
existing audio and video clips). Your first reaction may be a sense of caution, because these

10. This book also discusses Java 2 Enterprise Edition, Java 2 Micro Edition (J2ME), XML, Peer-to-
Peer, Java3D, security, Java Database Connectivity (JDBC), Jini and many other advanced topics.

iw3htp2.book Page 28 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 29

are complex technologies about which most readers have had little education. You quickly
will see how easy it is to incorporate multimedia into Web pages and control multimedia com-
ponents with Dynamic HTML. Multimedia files can be large. Some multimedia technologies
require that an entire multimedia file be downloaded to the client before the audio or video
begins playing. With streaming audio and streaming video technologies, audio and video can
begin playing while the files are downloading, thus reducing delays. Streaming technologies
are popular on the Web. This chapter demonstrates how to incorporate the RealNetworks Re-
alPlayer into a Web page to receive streaming media. The chapter also includes an extensive
set of Internet and Web resources that discuss interesting ways in which designers use multi-
media-enhanced Web pages. This chapter introduces an exciting technology called Microsoft
Agent for adding interactive animated characters to an XHTML document. Agent characters
include Peedy the Parrot, Genie, Merlin and Robby the Robot, as well as those created by
third-party developers. Each character allows users to interact with the application, using
more natural human communication techniques such as speech. The agent characters accept
mouse and keyboard interaction, speak and hear (i.e., they support speech synthesis and
speech recognition). With these capabilities, your Web pages can speak to users and can ac-
tually respond to their voice commands! Microsoft Agent is included on the CD-ROM that
accompanies this book. The chapter exercises ask the reader to create a karaoke machine and
to incorporate an agent character into a Web page.

Chapter 34—Accessibility
Currently, the World Wide Web presents a challenge to individuals with disabilities. Mul-
timedia-rich Web sites are difficult for text readers and other programs to interpret, espe-
cially for deaf users and users with visual impairments. To rectify this situation, the World
Wide Web Consortium (W3C) launched the Web Accessibility Initiative (WAI), which pro-
vides guidelines for making Web sites accessible to people with disabilities. This chapter
provides a description of these guidelines, such as the use of the <headers> tag to make
tables more accessible to page readers, the alt attribute of the tag to describe im-
ages, and XHTML and CSS to ensure that a page can be viewed on any type of display or
reader. We also introduce VoiceXML and CallXML, two technologies for increasing the ac-
cessibility of Web-based content. VoiceXML helps people with visual impairments to ac-
cess Web content via speech synthesis and speech recognition. CallXML allows users with
visual impairments to access Web-based content through a telephone. In the chapter exer-
cises, readers create their own voicemail applications using CallXML.

Appendix A—XHTML Special Characters
This appendix shows many commonly used XHTML special characters, called character
entity references by the World Wide Web Consortium (W3C).

Appendix B—Operator Precedence Chart
This appendix contains a JavaScript operator precedence chart.

Appendix C—ASCII Character Set
This appendix contains a table of the 128 ASCII alphanumeric symbols.

Appendix D—Number Systems
This appendix explains the binary, octal, decimal and hexadecimal number systems. It
shows how to convert between bases and perform mathematical operations in each base.

iw3htp2.book Page 29 Wednesday, July 18, 2001 9:01 AM

30 Introduction to Computers and the Internet Chapter 1

Appendix E—XHTML Colors
This appendix explains how to create colors by using either color names or hexadecimal
RGB values. Included is a table that matches colors to values.

Appendix F—Career Resources
The Internet presents valuable resources and services for job seekers and employers. Auto-
matic search features allow employees to scan the Web for open positions. Employers also
can find job candidates by using the Internet. This greatly reduces the amount of time spent
preparing and reviewing resumes, as well as travel expenses for distance recruiting and in-
terviewing. In this chapter, we explore career services on the Web from the perspectives of
of job seekers and employers. We introduce comprehensive job sites, industry-specific sites
(including sites geared specifically for Java and wireless programmers) and contracting op-
portunities, as well as additional resources and career services designed to meet the needs
of a variety of individuals.

Appendix G—Unicode®
This appendix introduces the Unicode Standard, an encoding scheme that assigns unique
numeric values to the world’s characters. It includes an XML-based example that uses Uni-
code encoding to print a welcome message in 10 different languages.

Well, there you have it! We have worked hard to create this book and its optional inter-
active multimedia Cyber Classroom version. The book is loaded with hundreds of working,
live-code™ examples, programming tips, self-review exercises and answers, challenging
exercises and projects and numerous study aids to help you master the material. The tech-
nologies we introduce will help you write Web-based applications quickly and effectively.
As you read the book, if something is not clear or if you find an error, please write to us at
deitel@deitel.com. We will respond promptly, and we will post corrections, clarifi-
cations and additional materials on our Web site

www.deitel.com

Prentice Hall maintains www.prenhall.com/deitel—a Web site dedicated to
our Prentice Hall textbooks, multimedia packages and Web-based e-learning training prod-
ucts. For each of our books, the site contains “Companion Web Sites” that include fre-
quently asked questions (FAQs), sample downloads, errata, updates, additional self-test
questions, Microsoft® PowerPoint® slides and other resources.

You are about to start on a challenging and rewarding path. We hope you enjoy
learning with Internet and World Wide Web How to Program, Second Edition as much as
we enjoyed writing it!

1.19 Internet and World Wide Web Resources
www.deitel.com
Please check this site for updates, corrections and additional resources for all Deitel & Associates,
Inc., publications.

www.learnthenet.com/english/index.html
Learn the Net is a Web site containing a complete overview of the Internet, the World Wide Web and
the underlying technologies. The site contains much information appropriate for novices.

iw3htp2.book Page 30 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 31

www.w3.org
The World Wide Web Consortium (W3C) Web site offers a comprehensive description of the Web
and where it is headed. For each Internet technology with which the W3C is involved, the site pro-
vides a description of the technology, its benefits to Web designers, the history of the technology and
the future goals of the W3C in developing the technology. This site is of great benefit for understand-
ing the technologies of the World Wide Web.

www.ukans.edu/cwis/units/coms2/class/intro/index.htm
This University of Kansas Web site gives a comprehensive overview of the Internet and World Wide
Web, with an interactive slide presentation of each topic covered.

members.tripod.com/~teachers/index.html
This site introduces novices to the Internet and the World Wide Web, targeting users who will be surf-
ing the Web in a classroom setting.

www.ed.gov/pubs/OR/ConsumerGuides/internet.html
The U.S. Department of Education’s Consumer Guide provides a clear, concise tutorial on the struc-
ture, content and compatibilities of the Internet and the Web.

SUMMARY
[Note: Because this chapter is primarily a summary of the rest of the book, we have not provided a
summary section. In each of the remaining chapters, we provide a detailed summary of the points cov-
ered in that chapter.]

TERMINOLOGY
ActionScript computer
Active Server pages (ASP) computer program
ActiveX Data Objects (ADO) computer programmer
Ada cookie
ALU (arithmetic and logic unit) CPU (central processing unit)
Apache Web Server data binding
arithmetic and logic unit (ALU) Data Source Object (DSO)
ARPA data tier
ARPANet database
array Database Interface (DBI)
assembly language disk
bandwidth divide-and-conquer strategy
Basic dynamic content
Binary Runtime Environment (BREW) Dynamic HTML
bottom tier ECMA-262
browser e-commerce
C editor
C++ event-driven programming
CallXML execute phase
Cascading Style Sheets (CSS) filter
central processing unit (CPU) filtering data
client Fortran
client/server computing function
client-side scripting hardware
COBOL high-level language
compiler i-mode

iw3htp2.book Page 31 Wednesday, July 18, 2001 9:01 AM

32 Introduction to Computers and the Internet Chapter 1

SELF-REVIEW EXERCISES
1.1 Fill in the blanks in each of the following statements:

a) The company that popularized personal computing was .
b) The computer that made personal computing legitimate in business and industry was

the .
c) Computers process data under the control of sets of instructions called .
d) The six key logical units of the computer are the , , ,

, and .

input device presentation of a document
input unit primary memory
input/output (I/O) problem statement
Internet procedural programming
Internet Explorer 5.5 programming language
Internet Information Services (IIS) Python
interpreter reusable components
intranet regular expression
IP (Internet Protocol) secondary storage unit
Java Sequencer Control
Java 2 Micro Edition (J2ME) server-side scripting
Java Servlet software
JavaScript software reuse
JavaServer Pages (JSP) sorting data
JScript speech
KIS (keep it simple) Sprite Control
live-code™ approach streaming audio and video
machine language structure of a document
memory unit Structured Graphics Control
method structured programming
Microsoft Sun Microsystems
Microsoft Agent syntax error
Microsoft’s Internet Explorer Web browser TCP (Transmission Control protocol)
middle tier TCP/IP
multimedia top tier
multitasking transition
multithreading translator program
MySQL database Unicode
Netscape’s Communicator Unicode Standard
object
object-based programming (OBP)

VBScript (Visual Basic Scripting Edition)
VoiceXML

object-oriented programming (OOP) W3C Recommendation
output device Web server
output unit Wireless Markup Language (WML)
Pascal WMLScript
Path Control World Wide Web (WWW)
Perl World Wide Web Consortium (W3C)
personal computing
Personal Web Server (PWS)

XHTML (Extensible Hypertext Markup
Language)

PhotoShop Elements
PHP

XHTML form
XML (Extensible Markup Language)

iw3htp2.book Page 32 Wednesday, July 18, 2001 9:01 AM

Chapter 1 Introduction to Computers and the Internet 33

e) The three classes of languages discussed in the chapter are , and
.

f) The programs that translate high-level language programs into machine language are
called .

1.2 Fill in the blanks in each of the following statements:
a) The programming language was created by Professor Nicklaus Wirth and

was intended for academic use.
b) One important capability of Ada is called ; this allows programmers to spec-

ify that many activities are to occur in parallel.
c) The is the grandparent of what is today called the Internet.
d) The information-carrying capacity of a communications medium like the Internet is

called .
e) The acronym TCP/IP stands for .

1.3 Fill in the blanks in each of the following statements.
a) The allows computer users to locate and view multimedia-based documents

on almost any subject over the Internet.
b) of CERN developed the World Wide Web and several of the communica-

tions protocols that form the backbone of the Web.
c) are essentially reusable software components that model items in the real

world.
d) C initially became widely known as the development language of the oper-

ating system.
e) In a client/server relationship, the requests that some action be performed

and the performs the action and responds.

ANSWERS TO SELF-REVIEW EXERCISES
1.1 a) Apple. b) IBM Personal Computer. c) programs (or scripts). d) input unit, output unit,
memory unit, arithmetic and logic unit, central processing unit, secondary storage unit. e) machine
languages, assembly languages, high-level languages. f) compilers.

1.2 a) Pascal. b) multitasking. c) ARPAnet. d) bandwidth. e) Transmission Control Protocol/
Internet Protocol.

1.3 a) World Wide Web. b) Tim Berners-Lee. c) Objects. d) Unix. e) client, server.

EXERCISES
1.4 Categorize each of the following items as either hardware or software:

a) CPU
b) compiler
c) ALU
d) interpreter
e) input unit
f) an editor program

1.5 Why might you want to write a program in a machine-independent language instead of a ma-
chine-dependent language? Why might a machine-dependent language be more appropriate for writ-
ing certain types of programs?

1.6 Fill in the blanks in each of the following statements:
a) Which logical unit of the computer receives information from outside the computer for

use by the computer? .

iw3htp2.book Page 33 Wednesday, July 18, 2001 9:01 AM

34 Introduction to Computers and the Internet Chapter 1

b) The process of instructing the computer to solve specific problems is called .
c) What type of computer language uses English-like abbreviations for machine language

instructions? .
d) Which logical unit of the computer sends information that has already been processed by

the computer to various devices so that the information may be used outside the comput-
er? .

e) Which logical unit of the computer retains information? .
f) Which logical unit of the computer performs calculations? .
g) Which logical unit of the computer makes logical decisions? .
h) The level of computer language most convenient to the programmer for writing programs

quickly and easily is .
i) The only language that a computer can directly understand is called that computer's

.
j) Which logical unit of the computer coordinates the activities of all the other logical

units? .

1.7 Fill in the blanks in each of the following statements:
a) The two most popular World Wide Web browsers are Netscape Communicator and Mi-

crosoft .
b) A key issue when using XHTML is the separation of the presentation of a document from

the of that document.
c) A function associated with a particular object is called a .
d) With the advent of Style Sheets, you can now take control of the way the

browsers render your pages.
e) The data of an object is also referred to as that object’s .
f) Visual effects such as Box in, Circle out, Wipe left, Vertical blinds, Checkerboard across,

Random dissolve, Split horizontal in, Strips right up and Random bars horizontal are all
examples of Internet Explorer 5.5 .

g) The process of arranging data into ascending or descending order is called .

1.8 Fill in the blanks in each of the following statements:
a) The Control allows you to perform tasks at specified time intervals.
b) With audio and video technologies, audios and videos can begin playing

while the files are downloading, thus reducing delays.
c) The scripting language has become the de facto standard for writing server-

side Active Server Pages.
d) The acronym XML stands for the Markup Language.
e) The two most popular Web Servers are and .
f) In a three-tier Web-based application, the tier renders a Web page and exe-

cutes scripting commands.
g) MathML and CML are markup languages created from .

iw3htp2.book Page 34 Wednesday, July 18, 2001 9:01 AM

2
Microsoft® Internet

Explorer 5.5

Objectives
• To become familiar with the Microsoft Internet

Explorer 5.5 (IE5.5) Web browser’s capabilities.
• To be able to use IE5.5 to search the “world of

information” available on the World Wide Web.
• To be able to use Microsoft Outlook Express to send

and receive e-mail.
• To be able to use Microsoft NetMeeting for online

conferences with friends and colleagues.
• To be able to use the Internet as an information tool.
Give us the tools, and we will finish the job.
Sir Winston Spencer Churchill

We must learn to explore all the options and possibilities that
confront us in a complex and rapidly changing world.
James William Fulbright

iw3htp2.book Page 35 Wednesday, July 18, 2001 9:01 AM

36 Microsoft® Internet Explorer 5.5 Chapter 2

2.1 Introduction to the Internet Explorer 5.5 Web Browser
The Internet is an essential medium for communicating and interacting with people world-
wide. The need to publish and share information has fueled the rapid growth of the Web.
Web browsers are software programs that allow users to access the Web’s rich multimedia
content. Whether for business or for personal use, millions of people use Web browsers to
access the tremendous amount of information available on the Web.

The two most popular Web browsers are Microsoft’s Internet Explorer and Netscape’s
Communicator. This chapter focuses on the features of Internet Explorer (IE5.5) to view,
exchange and transfer information, such as images, messages and documents, over the
Internet. We provide an equivalent chapter-length treatment on Netscape Communicator 6
at our Web site, www.deitel.com.

2.2 Connecting to the Internet
A computer alone is not enough to access the Internet. In addition to Web browser software,
the computer needs specific hardware and a connection to an Internet Service Provider to
view Web pages. This section describes the necessary components that enable Internet access.

First, a computer must have a modem or network card. A modem is hardware that enables
a computer to connect to a network. A modem converts data to audio tones and transmits the
data over phone lines. A network card, also called a network interface card (NIC), is hardware
that allows a computer to connect to the Internet through a network or a high-speed Internet
connection such as a cable modem or a Digital Subscriber Line (DSL).

After ensuring that a computer has a modem or network card, the next step is to register
with an Internet Service Provider (ISP). Computers connect to an ISP using a modem and
phone line or a NIC using DSL or cable modem. The ISP connects computers to the
Internet. Many college campuses have free network connections available. If a network

Outline

2.1 Introduction to the Internet Explorer 5.5 Web Browser
2.2 Connecting to the Internet
2.3 Internet Explorer 5.5 Features
2.4 Searching the Internet
2.5 Online Help and Tutorials
2.6 Keeping Track of Favorite Sites
2.7 File Transfer Protocol (FTP)
2.8 Outlook Express and Electronic Mail
2.9 NetMeeting
2.10 MSN Messenger Service
2.11 Customizing Browser Settings

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2.book Page 36 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 37

connection is not available, then popular commercial ISPs such as America Online
(www.aol.com), Microsoft Network (essentials.msn.com/access) and
NetZero (www.netzero.com) are alternatives.

Bandwidth and cost are two considerations when deciding on which commercial ISP
service to use. Bandwidth refers to the amount of data that can be transferred through a
communications medium in a fixed amount of time. Different ISPs offer different types of
high-speed connections, called broadband connections that include DSL, cable modem,
Integrated Services Digital Network (ISDN) and the slower dial-up connections, each of
which has different bandwidths and costs to users.

Broadband is a category of high-bandwidth Internet service that is most often provided
by cable television and telephone companies to home users. DSL is a broadband service
that allows computers to be constantly connected to the Internet over existing phone lines,
without interfering with voice services. However, DSL requires a special modem that is
acquired from the ISP. Like DSL, cable modems enable the computer to be connected to
the Internet at all times. Cable modems transmit data over the cables that bring television
to homes and businesses. Unlike DSL, the bandwidth is shared among many users. This
sharing can reduce the bandwidth available to each person when many use the system
simultaneously. ISDN provides Internet service over either digital or standard telephone
lines. ISDN requires specialized hardware, called a terminal adaptor (TA), which is usually
obtained from the ISP.

Dial-up service shares an existing telephone line. If the computer is connected to the
Internet, users usually cannot receive voice calls during this time. If the voice calls do con-
nect, the Internet connection is interrupted. To prevent this, users often have an extra phone
line installed, dedicated to Internet service.

Once a network connection is established, IE5.5’s Internet Connection Wizard
(ICW) can be used to configure the computer to connect to the Internet. Access the ICW
through the Start menu. Select the Accessories option in the Programs menu, then
Communications and Internet Connection Wizard. Use the connection information
provided by the ISP and follow the instructions in the ICW dialog (Fig. 2.1). Click Tutorial
to learn more about the Internet and its features. Once ICW finishes, the computer can con-
nect to the Internet.

2.3 Internet Explorer 5.5 Features
A Web browser is software that allows users to view certain types of Internet files in an
interactive environment. Figure 2.2 shows the Deitel Web page on the Prentice Hall Web
site using IE5.5 Web browser. The URL (Uniform Resource Locator or Universal Resource
Locator), is http://www.prenticehall.com/deitel/ found in the Address
bar. The URL is the address of the Web page displayed in the browser window. Each Web
page on the Internet is associated with a unique URL. URLs usually begin with http://
, which stands for HyperText Transfer Protocol (HTTP), the industry standard for transfer-
ring Web documents over the Internet.

Several methods are available to navigate between different URLs. In one method, a
user clicks the Address field and types a Web page’s URL. The user then presses Enter
or clicks Go to request the Web page located at that URL. For example, to visit Yahoo!'s
Web site, type www.yahoo.com in the Address bar and press the Enter key. IE5.5 adds
the http:// prefix to the Web site name because HTTP is the protocol used for the Web.

iw3htp2.book Page 37 Wednesday, July 18, 2001 9:01 AM

38 Microsoft® Internet Explorer 5.5 Chapter 2

Fig. 2.1Fig. 2.1Fig. 2.1Fig. 2.1 Using the Internet Connection Wizard to access the Internet.

Fig. 2.2Fig. 2.2Fig. 2.2Fig. 2.2 Prentice Hall Web site. (Courtesy of Prentice Hall, Inc.).

Specify what type
of connection to
use by clicking one
of the option
buttons.

Tutorial
button

Address bar

Scroll barsPointer
 (over a menu-bar

 Text hyperlinks

Back Forward Stop Refresh
Recent
history

 hyperlink)

iw3htp2.book Page 38 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 39

Another way to navigate the Web is via visual elements on Web pages called hyper-
links that, when clicked, load a specified Web document. Both images and text may be
hyperlinked. When the mouse pointer hovers over a hyperlink, the default arrow pointer
changes into a hand with the index finger pointing upward. Often hyperlinked text appears
as a different color than the text that is not hyperlinked. Originally used as a publishing tool
for scientific research, hyperlinking creates the effect of the “Web.”

Hyperlinks can reference other Web pages, e-mail addresses and files. If a hyperlink
is an e-mail address, clicking the link loads the computer’s default e-mail program and
opens a message window addressed to the specified recipient’s e-mail address. E-mail is
discussed later in this chapter.

If a hyperlink references a file that the browser is incapable of displaying, the browser
prepares to download the file by prompting the user for information. When a file is down-
loaded, it is copied onto the user’s computer. Programs, documents, images and sound files
are all examples of downloadable files.

IE5.5 maintains a history list of previously visited URLs in chronological order. This
feature allows users to return to recently visited Web sites easily.

The history feature can be accessed several different ways. The simplest and most fre-
quently used methods are to click the Forward and Back buttons located at the top of the
browser window (Fig. 2.2). The Back button reloads the previously viewed page into the
browser. The Forward button loads the next URL from the history into the browser.

When users view frequently updated Web pages, they should click the Refresh button
to load the most current version. If a URL is not loading correctly or is slow, click the Stop
button to stop loading the Web page.

The user can view the last/next nine URLs visited by clicking the down-arrows imme-
diately to the right of both the Back and Forward buttons; the user can then request a page
at a given URL by clicking that URL.

Clicking the History button (Fig. 2.3) divides the browser window into two sections:
the History window and the content window. The History window lists the URLs vis-
ited in the past 30 days.

The History window contains heading levels ordered chronologically. Within each
time frame (e.g., Today) headings are alphabetized by site directory name. This window
is useful for finding previously visited URLs without having to remember the exact URL.
Selecting a URL from the History window loads the Web page into the content window.
The History window can be resized by clicking and dragging the vertical bar that separates
it from the content window.

URLs from the history are displayed in a drop-down list when a user types a URL into
the Address bar. This feature is called Autocomplete. Any URL from this drop-down list
can be selected with the mouse to load the Web page at that URL into the browser (Fig. 2.4).

For some users, such as those with dial-up connections, maintaining a connection for
long periods of time may not be practical. For this reason, Web pages can be saved directly
to the computer’s hard drive for off-line browsing (i.e., browsing while not connected to the
Internet). Select Save As from the File menu at the top of the browser window to save a
Web page and all its components (e.g., images, etc.).

Individual images from a Web site can also be saved by clicking the image with the
right mouse button and selecting Save Picture As... from the displayed context menu
(Fig. 2.5).

iw3htp2.book Page 39 Wednesday, July 18, 2001 9:01 AM

40 Microsoft® Internet Explorer 5.5 Chapter 2

Fig. 2.3Fig. 2.3Fig. 2.3Fig. 2.3 Using the History menu to navigate to previously visited Web sites
(Courtesy of Prentice Hall, Inc.).

Fig. 2.4Fig. 2.4Fig. 2.4Fig. 2.4 Using the Autocomplete feature to enter URLs.

Interactive History window History date options History button

Directory Site from directory

Content window

Click and drag here to resize

URLs

Partial
address

iw3htp2.book Page 40 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 41

Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5 Saving a picture from a Web site. (Courtesy of Prentice Hall, Inc.)

2.4 Searching the Internet
The Internet provides a wealth of information on virtually any topic. You might think that
the volume of information would make it difficult for users to find specific information. To
help users locate information, many Web sites provide search engines that explore the In-
ternet and maintain searchable records containing information about Web sites. This sec-
tion explains how search engines work and discusses two types of search engines.

Search engines such as Google (www.google.com), Yahoo! (www.yahoo.com),
Altavista (www.altavista.com) or HotBot (www.hotbot.com) store information in
data repositories called databases, which allow for quick retrieval of information. When
the user enters a word or phrase, the search engine returns a list of hyperlinks to sites that
satisfy the search criteria. Each search-engine site has different criteria for narrowing
searches such as publishing date, language and relevance. Using multiple search engines
may provide the best results.

Other sites, such as Microsoft Network (www.msn.com), use metasearch engines,
which do not maintain databases. Instead, they send the search criteria to other search
engines and aggregate the results. IE5.5 has a built-in metasearch engine that is accessed
by clicking the Search button on the toolbar (Fig. 2.6). As with the history feature, the
browser window divides into two sections, with the Search window on the left and the

iw3htp2.book Page 41 Wednesday, July 18, 2001 9:01 AM

42 Microsoft® Internet Explorer 5.5 Chapter 2

content window on the right. Several predefined searching categories are provided. Type
the keyword for which you are searching and click the Search button. The search results
appear as hyperlinks in the search window. Clicking a hyperlink loads the Web page at that
URL into the content window.

2.5 Online Help and Tutorials
Web browsers are complex pieces of software with rich functionality. Although browser ven-
dors make every effort to produce user-friendly software, users still need time to familiarize
themselves with each Web browser and its particular features. Answers to frequently asked
questions about using the Web browser are included with IE5.5. This information is accessi-
ble through the online tour and built-in help feature available in the Help menu (Fig. 2.7).

When Tour is selected from the Help menu, the Web browser loads a document from
Microsoft’s Web site. The page features an expanded version of the tour available from the
Internet Connection Wizard. The tour includes an overview of the Internet, browsers
and IE5.5.

A good source for locating help about a specific feature is the Contents and Index
menu item accessible through the Help menu. When Contents and Index is selected,
the Microsoft Internet Explorer Help dialog is displayed. The Contents tab organizes
the help topics by category, the Index tab contains an alphabetical list of Help topics and
the Search tab provides capabilities for searching the help documents.

Fig. 2.6Fig. 2.6Fig. 2.6Fig. 2.6 Searching the Internet with IE5.5. (Courtesy of Prentice Hall, Inc.)

Search wordSearch categories

Search window Search buttonNew search Toolbar

iw3htp2.book Page 42 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 43

Fig. 2.7Fig. 2.7Fig. 2.7Fig. 2.7 IE5.5 online Tour and Help windows.

2.6 Keeping Track of Favorite Sites
As users browse the Web, they often visit certain sites repeatedly. Internet Explorer provides
a feature called favorites for bookmarking such sites (Fig. 2.8). Any page’s URL can be added
to the list of favorites using the Favorites menu’s Add to Favorites... command.

Favorites can be categorized by grouping them into folders and can be accessed at any
time by selecting them with the mouse. Favorites can be renamed, moved and deleted in the
Organize Favorites dialog. This dialog is displayed when Organize Favorites... is
selected from the Favorites menu. For each favorite, the Organize Favorites dialog
displays information about how frequently that page is visited. Favorites may also be saved
for off-line browsing.

Help menu IE5.5 online tour siteTour options (Hyperlinks)

Categories

iw3htp2.book Page 43 Wednesday, July 18, 2001 9:01 AM

44 Microsoft® Internet Explorer 5.5 Chapter 2

Fig. 2.8Fig. 2.8Fig. 2.8Fig. 2.8 Using the Favorites menu to organize frequently visited Web sites.
(Courtesy of Library of Congress.)

2.7 File Transfer Protocol (FTP)
As mentioned earlier, files from the Internet may be copied to a computer’s hard drive by a
process called downloading. This section discusses the types of documents commonly
downloaded from the Internet and methods of downloading them.

The most common Internet downloads are applications (i.e., software that performs
specific functions such as word processing) and plug-ins. Plug-ins are specialized pieces of
software that extend other applications, such as IE5.5, by providing additional function-
ality. An example of an IE5.5 plug-in is the Acrobat Reader® from Adobe®, Inc.
(www.adobe.com), which allows users to view PDF (Portable Document Format) doc-
uments that otherwise cannot be rendered by the browser. Another popular plug-in is Mac-
romedia Shockwave, which adds audio, video and animation effects to a Web site. To view

Add/Organize favorites

 Favorites menu

 Favorites

Organize dialog

Site information

iw3htp2.book Page 44 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 45

sites enabled with Shockwave, visit www.shockwave.com. Normally the browser
prompts the user to download a plug-in when one is needed. Plug-ins may also be down-
loaded from CNET (www.download.com) or from www.plugins.com. These sites
have large, searchable indexes and databases of almost every plug-in program available for
download on the Internet.

When browsing the Web, downloading is initiated by clicking a hyperlink that refer-
ences a document at an FTP (file transfer protocol) site. FTP is an older, but still popular,
protocol for transferring information, especially large files, over the Internet.

An FTP site’s URL begins with ftp://, rather than http://. FTP sites are typi-
cally accessed via hyperlinks (Fig. 2.9), but can also be accessed by any software that sup-
ports FTP. Such software may or may not use a Web browser.

When the browser is pointed to an FTP site’s URL, the contents of the specified site
directory appear on the right side of the screen, with FTP information on the left. Two types
of icons appear in the directory: files and directories. Files are downloaded by right clicking
their icons, selecting Copy to Folder... and specifying the locations where the files are to
be saved.

Fig. 2.9Fig. 2.9Fig. 2.9Fig. 2.9 Using IE5.5 to access an FTP site.

FTP address Folders in the FTP directory File Login window

iw3htp2.book Page 45 Wednesday, July 18, 2001 9:01 AM

46 Microsoft® Internet Explorer 5.5 Chapter 2

When a user visits an FTP site, IE5.5 sends the user’s e-mail address and name (which
is set by default to anonymous) to the site. This procedure occurs on FTP sites with public
access, where any user is permitted access. Many FTP sites on the Internet have restricted
access; only users with authorized user names and passwords are permitted to access such
sites. When a user is trying to enter a restricted-access FTP site, a dialog like the one in Fig.
2.9 is displayed, prompting the user for login information.

Transferring a file from the local machine to another location on the Internet is called
uploading and can be accomplished using the FTP protocol. To place information on a Web
site, the files must be uploaded to a specific restricted-access FTP server (this is dependent
on the ISP). The process involves uploading the file to a directory on the FTP site that is
accessible through the Web.

2.8 Outlook Express and Electronic Mail
Electronic mail (e-mail for short) is a method of sending and receiving formatted messages
and files over the Internet to other people. Depending on Internet traffic, an e-mail message
can go anywhere in the world in as little as a few seconds. Internet Service Providers issue
e-mail addresses in the form username@domainname (e.g., deitel@deitel.com).
Many e-mail programs are available, such as Pegasus Mail and Eudora. This section intro-
duces Microsoft’s Outlook Express (Fig. 2.10).

Outlook Express’s opening screen is divided into three panes: Folders, Contacts
and a content pane. Folders contains directories for organizing e-mail. Contacts con-
tains online contacts added using the MSN Messenger Service, which allows users to send
text and voice messages over the Internet. We discuss the MSN Messenger Service in detail
in Section 2.10. When starting Outlook Express for the first time, it is necessary to provide
information about your ISP connection and e-mail accounts. This dialog asks for the names
of the incoming and outgoing e-mail servers. These names are addresses of servers located
at the ISP that administer incoming and outgoing e-mail. The server addresses can be
obtained from the network administrator.

More than one e-mail account may be managed with Outlook Express. Click the
Accounts option in the Tools menu to add new accounts. This displays the Internet
Accounts dialog shown in Fig. 2.10. This dialog lists all accounts (a number of predefined
accounts appear in this dialog). Click the Add button in the upper-right corner of the dialog
to add a new account. Selecting Mail sets up an e-mail account. The screen shots in Fig.
2.11 show the e-mail account setup dialog at various points in the setup process. Selecting
News sets up a newsgroup account. Newsgroups allow users to post and respond to mes-
sages on a wide variety of topics.

Outlook Express provides a graphical interface (Fig. 2.12) for managing e-mail
accounts. When messages are received, they are saved on the local computer. Outlook
Express checks for new messages several times per hour (this frequency can be changed
depending on a user’s preference). When a new e-mail message arrives, it is placed in the
Inbox.

Outlook Express contains buttons for creating e-mails, replying to e-mails and for-
warding e-mails. The right side of the window contains a chronological list of e-mails from
the selected folder (Fig. 2.12).

iw3htp2.book Page 46 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 47

Fig. 2.10Fig. 2.10Fig. 2.10Fig. 2.10 Outlook Express opening screen and the Internet Accounts dialog.

Tools menu Outlook Express welcome screen

New
News
account

Add account

New
E-mail
account

Lists of Accounts
by type

Available preloaded
accounts

iw3htp2.book Page 47 Wednesday, July 18, 2001 9:01 AM

48 Microsoft® Internet Explorer 5.5 Chapter 2

Fig. 2.11Fig. 2.11Fig. 2.11Fig. 2.11 Adding e-mail and news accounts in Outlook Express.

E-mail messages can be organized by sender or by subject. Click From in the message
list to sort by sender. Click Subject to sort by subject. Selecting an e-mail in the message
lists displays the e-mail’s contents in the bottom portion of the right pane. Double clicking
an e-mail opens a new window containing the e-mail’s contents. To reply to or forward an
e-mail, select the e-mail and click the appropriate button (e.g., Reply, Forward, etc.). E-
mails can be moved from one folder to another by dragging and dropping the message into
the appropriate folder.

 The address book stores names and e-mail addresses of people with whom you com-
municate frequently. Click the Addresses button (Fig. 2.12), or select Address Book...
from the Tools menu, to display the Address Book dialog (2.13).

Adding a News server

Setting the
e-mail address

Adding e-mail
servers

iw3htp2.book Page 48 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 49

Fig. 2.12Fig. 2.12Fig. 2.12Fig. 2.12 Outlook Express e-mail main screen.

A message can be sent to anyone in the list by highlighting that person’s entry, clicking
the Action button and selecting Send Mail. This sequence opens a blank e-mail message
addressed to the selected recipient. To add a new contact, click the New button and select
Contact. This displays the Properties dialog (Fig. 2.13) where information is input.

When composing an e-mail, the dialog of Fig. 2.14 is used. The e-mail address of the
intended recipient is placed in the To: field. If the e-mail is being sent to multiple recipi-
ents, separate each address by a semicolon (;). The Cc: (carbon copy) field is for sending
e-mails to people who, although the e-mail is not addressed to them directly, may be inter-
ested in the message. The priority of the e-mail can be changed by clicking the Priority
button on the toolbar. High-priority e-mails are flagged (typically with an exclamation
point) to emphasize its importance.

The e-mail’s text is typed in the message body. Text can be formatted (e.g., by
changing font size, color, style, etc.) using the buttons above the message body. Clicking
Send sends the e-mail.

2.9 NetMeeting
Internet Explorer 5.5 is bundled with two programs for communicating with people over
the Internet using text, audio (with a microphone) and video (with a camera). The first of
these programs, NetMeeting, is designed for business- and work-related collaborations.

Mailboxes Message listMessage toolbar items

Message-preview windowAddress book

iw3htp2.book Page 49 Wednesday, July 18, 2001 9:01 AM

50 Microsoft® Internet Explorer 5.5 Chapter 2

Fig. 2.13Fig. 2.13Fig. 2.13Fig. 2.13 Adding and modifying names in the Address Book.

NetMeeting enables communication among groups of people via textual and visual
aids such as sound (using a microphone connected to your computer so you can speak with
people) and video (using video cameras to transmit live video). In addition, NetMeeting has
four main tools which individuals can use to enhance their meeting sessions: chat, sharing,
file transfer and whiteboard. Sharing is used to describe the method NetMeeting uses to
share program files (e.g., programs installed or applications downloaded and stored on a
computer) between to users. Built-in mechanisms are available for group editing of files
and for sharing diagrams via the whiteboard, a drawing application that allows sharing
visual effects with others in the meeting. File transfer allows one user to download and save
an application or file from one computer to another so that the new information can be per-
manently stored on the user’s system without losing the information once the NetMeeting
session is ended. Finally, chat allows users to send and receive text, images, video or audio
messages instantaneously.

Microsoft provides users with direct and indirect ways to use NetMeeting. To start a
NetMeeting, select the Start menu, Accessories, Communications and click Net-
Meeting. Once NetMeeting is launched, the NetMeeting user interface with appear with
all program options and meeting choices (Fig. 2.15).

View/Edit entry properties

Category tabs

Address and
Subject bars

Add New entry

Add new e-mail

Edit name

iw3htp2.book Page 50 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 51

Fig. 2.14Fig. 2.14Fig. 2.14Fig. 2.14 Composing a message with Outlook Express.

Fig. 2.15Fig. 2.15Fig. 2.15Fig. 2.15 NetMeeting User Interface.

Tools menuSend message Text formatting tools

Address bar

Subject bar

Message
body

Online video
conferencing

Place a call

End call

Address book

Adjust audio

Start video

Chat

Whiteboard

Transfer files

Share program

People in
meeting

NetMeeting status

Call Menu

Tool options

iw3htp2.book Page 51 Wednesday, July 18, 2001 9:01 AM

52 Microsoft® Internet Explorer 5.5 Chapter 2

Users can select two options from the Call menu, New Call... or Host Meeting....If
a user opts to place a new call, the user is prompted by the Place a Call box (Fig. 2.16) to
enter the individual’s name they wish to contact, security preference and where the call will
occur (e.g., over the network, MSN directory, etc.). Users can also select the Address
Book icon to find a contact already stored in their personal address database. The
Address Book in NetMeeting works the same as the address book in Outlook Express.

If a user wishes to contact multiple users at one time, then a user can host a meeting.
Meetings allow users to interact in the same communications environment at one time
without the need to establish multiple individual connections (i.e., making a new call to
each meeting participant). When a new meeting session is opened for the first time on a
computer, it asks the user to set the initial options, such as contact information and security
preferences (i.e., only accept incoming calls or can only place outgoing calls to other users)
as shown in on the right in Fig. 2.17. The user hosting the meeting must establish a meeting
name and password that will be used only by those members participating in the meeting.
In addition, users have the options to restrict certain uses of meeting tools (e.g., sharing,
whiteboard, file transfer and chat).

An indirect way to use NetMeeting is through Microsoft Outlook e-mail. Outlook
allows users to establish NetMeeting sessions for specific times and dates in the future, sim-
ilar to a conference call on a telephone. From the Outlook menu, select File, New,
Meeting Request (Fig. 2.18) and users are taken to the Meeting screen (Fig.2.19).

Fig. 2.16Fig. 2.16Fig. 2.16Fig. 2.16 Placing a new call to another user in NetMeeting.

Address book

iw3htp2.book Page 52 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 53

Fig. 2.17Fig. 2.17Fig. 2.17Fig. 2.17 Hosting a new NetMeeting or Joining an existing one.

Fig. 2.18Fig. 2.18Fig. 2.18Fig. 2.18 Using Microsoft Outlook to set-up a NetMeeting.

Security options Meeting tools

Meeting PasswordNetMeeting name

Place a call online

iw3htp2.book Page 53 Wednesday, July 18, 2001 9:01 AM

54 Microsoft® Internet Explorer 5.5 Chapter 2

Fig. 2.19Fig. 2.19Fig. 2.19Fig. 2.19 Sending invitations through Microsoft Outlook for a NetMeeting session.

Users then specify who to invite to the NetMeeting session. Also, users can specify
other meeting options such as the date, time, location and host e-mail address. Users then
e-mail invitations and maintain a record of all the responses. Users can receive notifications
daily, hourly, etc. to remind them of upcoming meetings sessions. When the pre-deter-
mined date and time for the NetMeeting session arrives, NetMeeting launches automati-
cally and begins a new session with those users that accepted invitations. Microsoft
Outlook does not directly establish this session, but is used more as a planning tool to notify
and manage contact information for the session

NetMeeting can be an effective tool for enhancing work-related meetings and confer-
encing for individuals in different geographic locations or as an alternative form of com-
munications and informative collaboration. However, NetMeeting is not as popular as other
forms of messaging. Typically, it is used in conjunction with more popular forms of instant
messaging services such as Microsoft’s MSN Messenger Service.

e-mail invitation
Meeting date, start
time and end time

Meeting time availabiltiy

Invititation
recipients

NetMeeting session
option

Invitation
Status Reminder

Notifications

iw3htp2.book Page 54 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 55

2.10 MSN Messenger Service
MSN Messenger Service is a program that establishes live chats among Microsoft Passport
holders. To begin using MSN Messenger, a free passport account must be created with Mi-
crosoft at www.passport.com. This passport supplies a free messaging service and a
free e-mail account. Different domain names or account types can be created including
hotmail.com, msn.com and passport.com. Once registered, users must go to
http://messenger.msn.com and follow the instructions to download MSN messen-
ger. When the download is complete, users sign into MSN messenger using their newly cre-
ated or existing passport account (Fig. 2.20)

Once signed-in, users can link their MSN Messengers to those of friends, family and
business associates also running MSN Messenger. MSN Messenger users can communi-
cate only with other MSN Messenger users. However, users can send e-mail messages via
Messenger to invite others to download the service.

MSN Messenger offers a direct link for users to communicate in a text-based chat.
Users can initiate text and audio chat sessions with other users through the MSN Messenger
interface. The service is compatible with Microsoft NetMeeting and offers easy access to
the conferencing tool. A user only needs to select the Invite option to initiate a conference
using Microsoft NetMeeting.

Double click the name of a contact that is currently online to initiate a chat session (Fig.
2.21). A chat opens, allowing two-way text communication. Once a chat session has been ini-
tiated, other contacts can be added to the conversation by using the Invite feature. Users can
also transfer files over the MSN messenger, eliminating the need to send an e-mail message.

Fig. 2.20Fig. 2.20Fig. 2.20Fig. 2.20 Sign-in screen for access to MSN Messenger.

iw3htp2.book Page 55 Wednesday, July 18, 2001 9:01 AM

56 Microsoft® Internet Explorer 5.5 Chapter 2

Fig. 2.21Fig. 2.21Fig. 2.21Fig. 2.21 Chatting with MSN Messenger Service

A contact may be blocked using the Block feature. The Block feature makes a user
appear offline to blocked users. Have fun meeting and chatting with new people; however,
be careful about revealing personal information to users you do not know.

2.11 Customizing Browser Settings
Internet Explorer 5.5 has many default settings that determine how sites are displayed, how
security measures are applied and how outputs are rendered. Most of these settings are lo-
cated in the Internet Options dialog (Fig. 2.22).

Consider some of the more significant options that affect your browsing experience. If
you are browsing the Web with a slow connection, the page download time can be decreased
by deselecting the Load Pictures setting, located under the Advanced tab. Toggling this
setting off prevents the browser from loading Web-page images. Images can require consid-
erable time to download, so this toggle could save time during browsing sessions.

Default programs used for common Internet procedures such as sending e-mail are set in
the Programs tab. Specifying these settings causes the designated programs to execute
when there is a need for their respective technologies while browsing. For example, if Out-
look Express is designated as the default e-mail program, every time an e-mail hyperlink is
clicked, Outlook Express opens an e-mail message dialog directed to the designated recipient.

The security level for IE5.5 can be set under the Security tab. There are four levels
of security. The most lenient level permits downloading and cookies (files that are placed
on the computer by Web sites to retain or gather information about the user); the strictest
level renders a constant flow of alerts and alarms about browsing security.

Hyperlink to e-mail
account

Double-click a

Double click to send e-mail
to off-line users

Conversation
window

Message

Send

Invite other
to join the chat

Block user

contact to initiate a chat
Audio chat

iw3htp2.book Page 56 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 57

Fig. 2.22Fig. 2.22Fig. 2.22Fig. 2.22 Changing the Internet Options in IE5.5.

A personal home page can be specified under the General tab. The home page is the
Web page that loads when the browser is first opened and appears when the Home button
at the top of the browser window is clicked.

History options also may be adjusted in this category. By clicking the Settings...
button, the amount of disk space to be reserved for Web page cache can be set. The cache
is an area on the hard drive that a browser designates for saving Web pages for rapid, future
access. When a page is viewed that has been visited recently, IE5.5 checks if it already has
some elements on that page saved in the cache, to reduce download time. Having a large
cache can considerably speed up Web browsing, whereas having a small cache saves disk
space. Caching can sometimes cause problems, as Internet Explorer does not always check
to ensure that a cached page is the same as the latest version residing on the Web server.
Clicking the Refresh button at the top of the browser window remedies this problem by
forcing Internet Explorer to retrieve the latest version of the Web page from the Web site.
Once the Internet Options are set, click Apply and click OK.

In this chapter we introduced the features of Internet Explorer 5.5 and showed how to
search the Internet, send e-mail, and conference with friends and co-workers. In the next
chapter we introduce Adobe’s PhotoShop Elements and show how to create your own
graphics.

Tools menu Internet Options dialog Options categories

Changeable options Restore default settings

iw3htp2.book Page 57 Wednesday, July 18, 2001 9:01 AM

58 Microsoft® Internet Explorer 5.5 Chapter 2

SUMMARY
• Web browsers are software programs that allow users to access the Web’s rich multimedia content.

• The two most popular Web browsers are Microsoft’s Internet Explorer and Netscape’s Communi-
cator.

• A computer alone is not enough to access the Internet. In addition to Web browser software, the
computer needs specific hardware and a connection to an Internet Service Provider to view Web
pages.

• A modem is hardware that enables a computer to connect to the Internet. A modem converts data
to audio tones and transmits the data over phone lines. A network card, also called a network in-
terface card (NIC), is hardware that allows a computer to connect to the Internet through a network
or a high-speed Internet connection such as a cable modem or a Digital Subscriber Line (DSL).

• Bandwidth and cost are two considerations when deciding on which commercial ISP service to
use. Bandwidth refers to the amount of data that can be transferred through a communications me-
dium in a fixed amount of time. Different ISPs offer different types of high-speed connections,
called broadband connections that include DSL, cable modem, Integrated Services Digital Net-
work (ISDN) and the slower dial-up connections, each of which has different bandwidths and costs
to users.

• Broadband is a category of high-bandwidth Internet service that is most often provided by cable
television and telephone companies to home users.

• DSL is a broadband service that allows computers to be constantly connected to the Internet over
existing phone lines, without interfering with voice services. However, DSL requires a special mo-
dem that is acquired from the ISP.

• Cable modems enable the computer to be connected to the Internet at all times. Cable modems
transmit data over the cables that bring television to homes and businesses. The bandwidth is
shared among many users.

• ISDN provides Internet service over either digital or standard telephone lines. ISDN requires spe-
cialized hardware, called a terminal adaptor (TA), which is usually obtained from the ISP. ISDN
service has limited availability.

• Once a network connection is established, IE 5.5’s Internet Connection Wizard (ICW) can be
used to configure the computer to connect to the Internet.

• The URL is the address of the Web page displayed in the browser window. Each Web page is as-
sociated with a unique URL. URLs usually begin with http://, which stands for HyperText
Transfer Protocol (HTTP), the industry standard for transferring Web documents over the Internet.

• Several methods are available to navigate between different URLs. In one method, a user clicks
the Address field and types a Web page’s URL. The user then presses Enter or clicks Go to re-
quest the Web page located at that URL.

• Another way to navigate the Web is via visual elements on Web pages called hyperlinks that, when
clicked, load a specified Web document. Both images and text may be hyperlinked.

• Hyperlinks can reference other Web pages, e-mail addresses and files. If a hyperlink is an e-mail
address, clicking the link loads the computer’s default e-mail program and opens a message win-
dow addressed to the specified recipient’s e-mail address.

• When a file is downloaded, it is copied onto the user’s computer. Programs, documents, images
and sound files are all downloadable files.

• IE5.5 maintains a list of previously visited URLs. This list is called the history and stores URLs
in chronological order.

iw3htp2.book Page 58 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 59

• The History window contains heading levels ordered chronologically. Within each time frame
headings are alphabetized by site directory name. This window is useful for finding previously vis-
ited URLs without having to remember the exact URL.

• URLs from the history are displayed in a drop-down list when a user types a URL into the Ad-
dress bar. This feature is called Autocomplete. Any URL from this drop-down list can be selected
with the mouse to load the Web page at that URL into the browser.

• Web pages can be saved directly to the computer’s hard drive for off-line browsing (i.e., browsing
while not connected to the Internet). Select Save As from the File menu at the top of the browser
window to save a Web page and all its components (e.g., images, etc.).

• Individual images from a Web site can also be saved by clicking the image with the right mouse
button and selecting Save Picture As... from the displayed context menu (i.e., pop-up menu).

• Search engines explore the Internet and maintain searchable records containing information about
Web sites. This section explains how search engines work and discusses two types of search engines.

• Metasearch engines do not maintain databases. Instead, they send the search criteria to other
search engines and aggregate the results. IE5.5 has a built-in metasearch engine that is accessed
by clicking the Search button on the toolbar.

• As users browser the Web, they often visit certain sites repeatedly. Internet Explorer provides a
feature called favorites for bookmarking such sites.

• Plug-ins are specialized pieces of software that extend other applications, such as IE5.5, by pro-
viding additional functionality. Normally the browser prompts the user to download a plug-in
when a plug-in is needed.

• FTP (file transfer protocol) is an older protocol for transferring information, especially large files,
over the Internet. An FTP site’s URL begins with ftp://, rather than http://. FTP sites are
typically accessed via hyperlinks, but can also be accessed by any software that supports FTP.

• FTP sites with public access allow any user access. Many FTP sites on the Internet have restricted
access; only users with authorized user names and passwords are permitted to access such sites.

• Transferring a file from the local machine to another location on the Internet is called uploading
and can accomplished using the FTP protocol.

• Electronic mail (e-mail for short) is a method of sending and receiving formatted messages and
files over the Internet to other people. Internet Service Providers issue e-mail addresses in the form
username@domainname. Many e-mail programs are available, such as Pegasus Mail, Messenger,
Eudora and Microsoft’s Outlook Express.

• Outlook Express provides a graphical interface for managing e-mail accounts. When messages are
received, they are saved on the local computer. Outlook Express checks for new messages several
times per hour (this frequency can be changed depending on a user’s preference). When a new e-
mail message arrives, it is placed in the Inbox.

• The address book stores names and e-mail addresses of people with whom you communicate fre-
quently. Click the Addresses button, or select Address Book... from the Tools menu, to dis-
play the Address Book dialog.

• A message can be sent to anyone in the list by highlighting that person’s entry, clicking the Action
button and selecting Send Mail. This sequence opens a blank e-mail message addressed to the
selected recipient.

• Internet Explorer is bundled with two programs for communicating with people over the Internet
using text, audio (with a microphone) and video (with a camera). NetMeeting shares files; built-in
mechanisms are available for group editing of files and for sharing diagrams via the whiteboard,

iw3htp2.book Page 59 Wednesday, July 18, 2001 9:01 AM

60 Microsoft® Internet Explorer 5.5 Chapter 2

a drawing application that allows sharing visual effects with others in the meeting. MSN Messen-
ger Service is a program that establishes live chats among Microsoft Passport holders.

• Internet Explorer has many default settings that determine how sites are displayed, how security
measures are applied and how outputs are rendered.

• Default programs used for common Internet procedures such as sending e-mail are set in the Pro-
grams tab of the Internet Options dialog. Specifying these settings causes the designated pro-
grams to execute when there is a need for their respective technologies while browsing.

• The security level for IE5.5 can be set under the Security tab of the Internet Options dialog.
There are four levels of security. The most lenient level permits downloading and cookies (files
that are placed on the computer by Web sites to retain or gather information about the user); the
strictest level renders a constant flow of alerts and alarms about browsing security.

• A personal home page can be specified under the General tab of the Internet Options dialog.
The home page is the Web page that loads when the browser is first opened and appears when the
Home button at the top of the browser window is clicked.

• History options also may be adjusted in the General tab of the Internet Options dialog. By
clicking the Settings... button, the amount of disk space to be reserved for Web page cache can
be set. The cache is an area on the hard drive that a browser designates for saving Web pages and
their elements for rapid, future access.

TERMINOLOGY
Address bar HyperText Transfer Protocol (HTTP)
Address Book hyperlink
Adobe Acrobat Reader Inbox
anonymous Integrated Services Digital Network (ISDN)
applications Internet Connection Wizard (ICW)
Autocomplete Internet Explorer 5.5 (IE5.5)
Back button Internet Options
bandwidth Internet Service Provider (ISP)
broadband connection Macromedia Shockwave
cable modem message window
cache metasearch engine
chat modem
context menu Microsoft Internet Explorer
cookie Microsoft NetMeeting
database Microsoft Outlook Express
dial-up connection MSN Messenger Service
Digital Subscriber Line (DSL) Netscape Communicator
download network
electronic mail (e-mail) network administrator
e-mail server network card
Favorites network interface card (NIC)
file transfer off-line browsing
File Transfer Protocol (FTP) Passport
Forward button Portable Document Format (PDF)
Help menu priority
high-priority message public access
History Refresh
home page restricted access

iw3htp2.book Page 60 Wednesday, July 18, 2001 9:01 AM

Chapter 2 Microsoft® Internet Explorer 5.5 61

SELF REVIEW EXERCISES
2.1 Fill in the blanks in each of the following statements:

a) The two most popular Web browsers are and .
b) A browser is used to view files on the .
c) The location of a file on the Internet is called its .
d) The element in a Web page that, when clicked, causes a new Web page to load is called

a ; when your mouse passes over this element, the mouse pointer changes
into a in IE5.5.

e) The list IE5.5 keeps of visited URLs is called the .
f) You can save an image from a Web page by right clicking the image and selecting

.
g) The feature of IE5.5 that provides options for completing URLs is called .
h) The feature of IE5.5 that enables the user to save URLs of frequently visited sites is called

.

2.2 State whether each of the following is true or false. If the statement is false, explain why.
a) A whiteboard is a drawing application that allows sharing visual effects with oth-

ers in a NetMeeting.
b) Plug-ins must be downloaded and installed to use them.
c) NetMeeting and MSN Messenger are identical programs that do the same thing, but look

different.
d) FTP is a popular Internet mechanism by which files are uploaded and downloaded.
e) You can access any FTP site by logging in as anonymous.

ANSWERS TO SELF-REVIEW EXERCISES
2.1 a) Internet Explorer, Netscape Communicator. b) Internet and the Web. c) URL. d) hyperlink,
hand. e) history. f) Save Picture as.... g) Autocomplete. h) Favorites.

2.2 a) True. b) True. c) False. NetMeeting is geared more for business use and includes many
features that facilitate the sharing of information. MSN Messenger is intended for more casual, “chat”
use. d) True. e) False. Many FTP sites are restricted and do not admit the general public.

EXERCISES
2.3 Expand the following acronyms, and include a description of each:

a) HTTP
b) FTP
c) URL
d) DSL
e) PDF
f) ISP

2.4 Use Internet Explorer’s FTP capability to access both ftp.cdrom.com and
sunsite.unc.edu. List the directory output for both sites.

sharing terminal adaptor (TA)
Search uploading
search engine Universal Resource Locator (URL)
Security Web browser
security level whiteboard

iw3htp2.book Page 61 Wednesday, July 18, 2001 9:01 AM

62 Microsoft® Internet Explorer 5.5 Chapter 2

2.5 Open a passport at passport.msn.com. Then log onto MSN Messenger Service, and ini-
tiate a conversation with a friend.

2.6 Log on to a NetMeeting server and initiate a conversation with a friend.

2.7 Go to www.shockwave.com/software/shockwaveplayer and download the
Shockwave Player to your computer. Use the shockwave plug-in to view shockwave content from this
site.

2.8 Download the Adobe Acrobat Reader from www.adobe.com/products/acrobat.
Once the reader is installed, visit www.prenhall.com/deitel and download the Deitel Buzz.

iw3htp2.book Page 62 Wednesday, July 18, 2001 9:01 AM

3
Photoshop® Elements

Objectives
• To explore the basics of Photoshop Elements.
• To be able to design images for Web pages.
• To learn how colors are represented in image files and

what “color mode” and “transparency” are.
• To understand the techniques of layering, selection,

image slicing and other image-preparation processes.
• To understand the difference between graphic file

formats.
• To be able to take screen shots using screen capture

technology.
Now follow in this direction, now turn a different hue.
Theognis

Beware lest you lose the substance by grasping at the
shadow.
Aesop

Before a diamond shows its brilliancy and prismatic colors
it has to stand a good deal of cutting and smoothing.

Anonymous

iw3htp2.book Page 63 Wednesday, July 18, 2001 9:01 AM

64 Photoshop® Elements Chapter 3

3.1 Introduction
The most successful Web pages use both text and graphics to enhance the user experience.
The graphic design of a Web page can greatly influence the amount of time a user spends
at a site. For instance, if a company’s Web site contains only text, it may not produce as
many online sales. Web site graphics, such as buttons, banners or product images, define
the user experience and distinguish a company’s site from its competition. While many im-
ages are available free for download on the Internet, creating original images helps make a
Web site unique. This chapter teaches basic image-creation techniques for producing at-
tractive, user-friendly Web pages.

This chapter introduces Adobe® Inc.’s Photoshop Elements—an easy-to-use graphics
package that offers the functionality of more expensive packages at an economical price.
Graphics such as title images, banners, buttons and advanced photographic effects all can
be created using this program. A 30-day free-trial version of Photoshop Elements is avail-
able at www.adobe.com/support/downloads.1 The full version may be purchased
at this site.

3.2 Image Basics
Photoshop Elements is best taught by example. This chapter provides several examples that
illustrate how to use Photoshop Elements’ tools and functions. This section examines the
basic steps for creating original images.

Outline

3.1 Introduction
3.2 Image Basics
3.3 Vector and Raster Graphics
3.4 Toolbox

3.4.1 Selection Tools
3.4.2 Painting Tools
3.4.3 Shape Tools

3.5 Layers
3.6 Screen Capturing
3.7 File Formats: GIF and JPEG
3.8 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. Caution: Do not change the clock settings of a computer after installing Photoshop Elements. Do-
ing so causes the 30-day trial to expire, immediately disabling the program. Photoshop Elements
cannot be re-enabled, even by reinstalling it.

iw3htp2.book Page 64 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 65

Begin by opening Photoshop Elements. When the program first opens, the Quick
Start menu appears in the center of the screen and presents several options (Fig. 3.1).
Some options include creating a new file, opening an existing file or acquiring an image
from an outside source such as a scanner or a digital camera. This window appears when
the program is started, but also may be accessed at any time through the Window menu by
selecting Show Quick Start. The File menu also opens new or existing files.

Click New in the Quick Start menu to open the New dialog (Fig. 3.2), to begin cre-
ating an image.

The New dialog specifies initial image settings and appears each time a new image file
is created. The initial image settings include Height and Width and the units in which
these are measured. The dialog sets the image resolution. Resolution is a measurement of
image clarity and is measured in pixels per unit—every image in Photoshop Elements is
composed of a grid of dots called pixels, which store color information.

Performance Tip 3.1
Higher image resolutions result in better image clarity. However, higher resolutions produce
larger file sizes. The standard resolution for the Web is 72 pixels per inch. 3.1

The New dialog sets an image’s Background Color and color Mode. The three
color modes available are red-green-blue (RGB), grayscale and bitmap. Color mode deter-
mines the number of colors that Photoshop Elements uses to compose an image. RGB and
grayscale are the most commonly used color modes for creating Web graphics. Color
images use the RGB mode and black-and-white images use the grayscale mode.

Fig. 3.1Fig. 3.1Fig. 3.1Fig. 3.1 Photoshop Elements Quick Start menu. (Adobe and Photoshop are
either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

iw3htp2.book Page 65 Wednesday, July 18, 2001 9:01 AM

66 Photoshop® Elements Chapter 3

Fig. 3.2Fig. 3.2Fig. 3.2Fig. 3.2 Creating a new image in Photoshop Elements. (Adobe and Photoshop
are either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

In RGB mode, each pixel in the image is assigned an intensity value for the primary
colors in light (i.e., red, green and blue) that create a color range of 16.7 million colors
when combined in different intensity values from 0 (full saturation) to 255 (no saturation).
This spectrum is comparable to that of human vision and is adequate for developing screen
images. For instance, a bright-blue pixel might have a red value of 16, a green value of 20
and a blue value of 200. Grayscale model uses only neutral grays which have identical red,
green and blue values. The bitmap mode uses only black and white.

Create a new image by entering typefun in the New dialog’s Name field. Set the
image width to 300 pixels, the height to 150 pixels and the resolution to 72 pixels per inch
by typing the numbers into the Width, Height, and Resolution fields. Choose the mea-
surement units from the drop-down lists.

Select the RGB Color mode from the color Mode drop-down list. Set the Back-
ground Color to white by clicking the White radio button in the Contents frame. These
settings can be changed at any point during the image-editing process. The background
color is the image’s initial color. Click OK to create the new file typefun.

A new image window opens in the development environment with the name typefun
in the title bar (Fig. 3.3). The development environment is the gray area that contains the
toolbox, palettes and image window. The toolbox is the vertical window to the left of the
image window that contains different tools to create images. Palettes are windows that con-
tain different image-editing options. The Hints palette is open by default.

The development environment can be customized to suit users’ preferences. For
instance, the image window may be resized by clicking and dragging any of the sides or
corners. Also, the palettes, toolbox and image window can be dragged to different loca-
tions. Selecting Reset Palette Locations from the Window menu restores the default
development environment settings.

Palettes, located inside the palette well, are windows that contain image editing and
effects options. A palette is opened by clicking its tab in the palette well, and is closed by
clicking outside the palette. Palettes may be organized in different ways to make image

 Dimension
measurement

Name

Image Size

Image dimensions

Resolution

Color Mode

Background color

iw3htp2.book Page 66 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 67

editing easier. Several palettes can be open at one time by clicking and dragging their tabs out
of the palette well and into the development environment. Palettes outside the palette well
remain open until they are closed by clicking the x button in the upper-right corner of the pal-
ette. Palette locations may be restored to their default locations by selecting Reset Palette
Locations from the Windows menu. Different palette options will be discussed shortly.

The toolbox contains selection, editing, painting and type tools that add to or subtract
graphic elements from images. The active tool applies changes to an image and is high-
lighted in the toolbox. Only one tool can be active at a time. Tips for using the active tool
are found in the status bar at the bottom of the screen or in the Hints palette.

The two squares at the bottom of the toolbox represent the two active colors—the fore-
ground color and the background color. These squares are called swatches. Click the fore-
ground color swatch to display the Color Picker dialog (Fig. 3.4) that allows the user to
select the foreground or background color. Colors are selected based on the HSB (Hue, Satu-
ration, Brightness) model or the RGB (Red, Green, Blue) model. These color models form
the 16.7 million colors available in the RGB model based on combinations of their three pri-
mary values. Both color models produce the same colors except that they measure color dif-
ferently.

Fig. 3.3Fig. 3.3Fig. 3.3Fig. 3.3 Photoshop Elements development environment. (Adobe and Photoshop
are either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

Zoom
factor

Background
color swatch

Image
dimensions

Development
environment

Status bar

Foreground
color

swatch

Image
window

Toolbox

Active tool options bar Title bar Main menu bar Palette well Hints palette

Active
tool

iw3htp2.book Page 67 Wednesday, July 18, 2001 9:01 AM

68 Photoshop® Elements Chapter 3

Fig. 3.4Fig. 3.4Fig. 3.4Fig. 3.4 Selecting a color using the Color Picker dialog. (Adobe and Photoshop
are either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

Hue is selected for the HSB model from the vertical color slider in the Color Picker
dialog (Fig. 3.4). Hue is measured in degrees from 0–360 representing the colors of the
color wheel. The color wheel is a theoretical model that shows how colors are created from
combinations of the three primary colors in light—red, green and blue. Saturation is a
color’s intensity measured in the percentage of gray that the color contains. Saturated colors
appear more vivid; less saturated colors appear dull. Brightness is a color’s relative light-
ness or darkness and is measured in the amount of black or white a color contains.

RGB color selection is based on the same principle as the RGB color mode, in which
each pixel has a red, green and blue value between 0 and 255 assigned to it. When RGB
values are entered into the Color Picker, the HSB values change to reflect the selection.

The Color Picker allows the user to choose colors from a Web-safe palette,
restricting color selection to the 216 colors that are cross-platform (e.g., Windows, Macin-
tosh and UNIX) and cross-browser (e.g., Internet Explorer and Communicator) compatible.

Portability Tip 3.1
Web-safe colors should display in almost the same way in any browser on any platform.
However, some color inconsistencies do occur between colors on different platforms and
browsers. It is a good idea to try to choose only Web-safe colors when designing original im-
ages for the Web. 3.1

Look-and-Feel Observation 3.1
Too many colors make a site look confusing and erratic. Pick three or four main colors to
use as the prominent colors for images and text. 3.1

When selecting a foreground or background color, either click inside the color field on
the desired color or enter that color’s numerical values. The Color Picker dialog allows
the user to choose colors based on hexadecimal notation. Hexadecimal notation is equiva-
lent to RGB notation except that it uses a 6-digit combination of the numbers 0–9 and the
letters A–F to represent the 256-color range for each red, green and blue specification. The

Selection

Color field

Color slider
(Hue)

Only Web
Colors

New color
Previous color

Cosest Web-
safe color

Saturation

Hue

Brightness

Red

Green

Blue

Hexadecimal

Brightness

Saturation

iw3htp2.book Page 68 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 69

first two digits are the red value, the second two are the green value and the last two are the
blue value—00 signifies the least intensity and FF the greatest intensity. For more informa-
tion on hexadecimal notation, see Appendix D, Number Systems.

Portability Tip 3.2
It is easy to tell if a color is part of the Web-safe palette by examining its hexadecimal nota-
tion. The hexadecimal notation for any Web-safe color contains only the digits 00, 33, 66, 99,
CC and FF for each red, green and blue value. 3.2

Select a foreground color by adjusting the color slider to the desired hue, then pick the
color from the color field and click OK. This color displays in the foreground color swatch
of the toolbox.

The following example shows how to place text into an image and how to apply special
effects to that text. Select the type tool from the toolbox by clicking the tool containing the
capital letter T. Notice that the active tool options bar changes to reflect the new active tool
(Fig. 3.5).

Similar to word-processing programs, the type options bar allows the user to alter text
properties such as font face, font weight and alignment. For this example, choose Hel-
vetica 30 point bold and click the image with the type tool. A cursor appears indicating
the point where the text begins. Type in two lines of text and select it with the cursor. Type
properties may be changed when text is selected. For instance, double clicking the type
color swatch in the type options bar changes the type color.

Be sure to have the Anti-aliased checkbox selected in the type options bar. Anti-
aliasing is a process that smooths edges on scalable fonts and other graphics by blending
the color of the edge pixels with the color of the background on which the text is placed.
Fonts can look jagged without anti-aliasing (Fig. 3.6).

Once the text is typed, it can be moved with either the type tool or the move tool. The
move tool is indicated by an arrow with cross hairs (Fig. 3.7). As soon as the move tool is
selected, a bounding box with side and corner anchors appears around the text. Anchors are
the small boxes that appear on the edges of a bounding box. Clicking and dragging the
anchors resizes the contents of the bounding box.

Select the move tool and click anywhere within the bounding box. Drag the text to the
center of the image window. Click and drag any anchor to resize the text. Dragging a corner
anchor while pressing the Shift key resizes the bounding box contents proportionately.

Fig. 3.5Fig. 3.5Fig. 3.5Fig. 3.5 Type options bar. (Adobe and Photoshop are either registered
trademarks of Adobe Systems Incorporated in the United States and/or
other countries.)

Default settings Font face Font weight Anti-aliased Type direction

Select mode Font size Alignment Warped text

Type color

Type mode

iw3htp2.book Page 69 Wednesday, July 18, 2001 9:01 AM

70 Photoshop® Elements Chapter 3

Fig. 3.6Fig. 3.6Fig. 3.6Fig. 3.6 Example of anti-aliasing. (Adobe and Photoshop are either registered
trademarks of Adobe Systems Incorporated in the United States and/or
other countries.)

Photoshop Elements has several options for applying special effects to text and images.
Click and drag the Layer Styles tab out of the palettes well to open the Layer Styles
palette. If this palette tab is not visible in the palettes well, it can be opened by selecting
Show Layer Styles from the Window menu. The Layer Styles palette offers a variety
of effects that can be applied to text or shapes. Select Drop Shadows as the style type
from the drop-down list inside this palette (Fig. 3.8).

Next select Low as the type of drop shadow from the style selection. A drop-shadow
effect is applied to the text. Any layer style can be removed by selecting the Default Style
from the Layer Styles palette.

A user can edit an effect, such as a drop shadow in two ways. The first is by selecting
Scale Effects... from the Layer Style submenu of the Layer menu. The scale adjust-
ment in the Scale Effects dialog increases or decreases the intensity of any layer effect.
Scale the low drop shadow to 31 percent (Fig. 3.8).

Fig. 3.7Fig. 3.7Fig. 3.7Fig. 3.7 Adding text to an image. (Adobe and Photoshop are either registered
trademarks of Adobe Systems Incorporated in the United States and/or
other countries.)

Non-anti-aliased
type

Anit-aliased type

Anit-aliasing

Type tool AnchorBounding box

iw3htp2.book Page 70 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 71

Fig. 3.8Fig. 3.8Fig. 3.8Fig. 3.8 Adding a drop shadow to text with the Layer Styles palette. (Adobe and
Photoshop are either registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.)

The second way to adjust a layer style is through the Layers palette. Drag the Layers
palette out of the palette well. This palette controls the use of layers in Photoshop Elements.
Layers organize the different components that compose an image. The active layer is high-
lighted in blue in the Layers palette. When using tools or applying special effects, only the
active layer is affected. Notice that the text occupies its own type layer indicated by a T on
its layer in the Layers palette (Fig. 3.9). Having the type on its own layer enables it to be
edited independently of any other part of the image. Click the type layer in the Layers pal-
ette to activate it. The f symbol in the blue area of the type layer indicates that the layer has
a style applied to it. Double click the f to open the Style Settings dialog (Fig. 3.9).

Different options are available depending on the type of style applied to the layer. Set the
drop shadow Lighting Angle to 120 degrees and the Shadow Distance to 3 pixels. The
Lighting Angle controls the direction of the light source creating the shadow. The Shadow
Distance determines the size of the drop shadow. Press OK to apply these changes.

Text also can be warped to conform to a shape. Select the type tool from the toolbox
to reveal the Type options bar. Click the Warp text button in the Type options bar indi-
cated by a T with an arc beneath it (Fig. 3.10).

The Warp Text dialog allows the user to select different shapes. For this example,
select Flag from the Styles drop-down list and set the Bend slider to +50%. The three
sliders modify the bend, horizontal distortion and vertical distortion of the text shape,
respectively. The text changes to reflect the selection in real time in the original image
window; however, the change is not applied until OK is clicked in the dialog.

The next step is to create the effect of transparency. Transparency allows the back-
ground of the Web page to show through in the white portions of the image. Recall that
when this file was created, the background color was set to white. A transparent back-
ground could have been specified. Creating a transparent background at this stage requires
using the Layers palette (Fig. 3.11).

Low drop-shadowDefault Style

Drop-shadow types Scale adjustment

iw3htp2.book Page 71 Wednesday, July 18, 2001 9:01 AM

72 Photoshop® Elements Chapter 3

Fig. 3.9Fig. 3.9Fig. 3.9Fig. 3.9 Customizing layer effects. (Adobe and Photoshop are either registered
trademarks of Adobe Systems Incorporated in the United States and/or
other countries.)

Fig. 3.10Fig. 3.10Fig. 3.10Fig. 3.10 Warped Text dialog. (Adobe and Photoshop are either registered
trademarks of Adobe Systems Incorporated in the United States and/or
other countries.)

New layers are transparent by default. The type layer is transparent with the exception
of the type and its effects. Deleting the white background layer makes the image back-
ground transparent. Select the background layer in the Layers palette to make it the active
layer. Click the Trashcan button to delete this layer. The new image should have a gray
and white checkerboard background, representing transparency. When the image is placed
in a Web document, the background color of the Web page appears in the transparent parts.

Photoshop Elements provides an option for saving images for the Web. Choosing
Save for Web... option, located under the File menu, opens a dialog Save for Web
dialog. This dialog allows the user to determine the file format and color settings for saving
an image. The original image appears on the left side of the dialog and the optimized ver-
sion appears on the right (Fig. 3.12). Information about the graphic file, including file type,
file size, estimated download time and the number of colors, appears for each image.

Layers palette Layer effects Shadow Distance

Type layer

Lighting Angle

Active
layer

Background layer

Style

Warp orientation Resulting text

iw3htp2.book Page 72 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 73

Fig. 3.11Fig. 3.11Fig. 3.11Fig. 3.11 Deleting a layer using the Layers palette. (Adobe and Photoshop are
either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

The optimized version is a preview of what the image will look like after it is saved.
The different optimization settings such as file type, compression quality and number of
colors the image utilizes, are all set in the Save for Web dialog. The file type determines
the compression Photoshop Elements uses to save an image. Compression is defined by an
algorithm that Photoshop Elements uses to save file data. The compression quality is the
accuracy of the compression algorithm and determines the quality of the saved image.

The number of colors an image contains also affects the image quality. The more
colors an image uses, the higher the image clarity. The number of colors may only be
selected with certain file types.

Reducing the number of colors or the compression quality may decrease file size, thus
lessening the image’s download time. Optimization is the process of finding the correct bal-
ance between the number of colors, the compression quality and the file size such that the
download time is ideal for the target audience.

Different file formats are appropriate for different types of graphics. The GIF (Com-
puserve Graphics Interchange Format) format preserves transparency (saving pixels void
of color information), making GIF ideal for transparent Web graphics such as typefun.
Other file formats are discussed later in this chapter. Select GIF from the file type drop-
down list. Make sure that the Transparency box is checked in the Save for Web dialog;
otherwise, the image will not be saved as a transparent image.

When saving transparent images, it is important to choose a matte color with the Matte
selector. A matte color optimizes the effect of transparency by blending the transparent
edge pixels with the color so that the graphic blends into the page without having jagged
edges. It is ideal to select a matte color that closely matches the background color of the
Web page into which the image is placed. Select a matte color and notice the change to the
optimized image.

Type layer

Background
layer

Delete layerNew layer

Resulting transparent image after
deleting the background layer

iw3htp2.book Page 73 Wednesday, July 18, 2001 9:01 AM

74 Photoshop® Elements Chapter 3

Fig. 3.12Fig. 3.12Fig. 3.12Fig. 3.12 Adding a matte color to a transparent GIF in the Save for Web dialog.
(Adobe and Photoshop are either registered trademarks of Adobe
Systems Incorporated in the United States and/or other countries.)

An image may be previewed in a Web browser by clicking the browser preview button
before it is saved. This option creates a temporary Web document with the image
embedded. The background color of the preview is the Matte color. This preview also pro-
vides information about the image such as file format, image dimensions, file size and file
settings. Close the browser window to return to Photoshop Elements and click OK in the
Save for Web dialog. Choose a descriptive name for the file so that it is easily identified
when it is placed in a Web document. Inserting images into Web pages is introduced in
Chapters 4 and 5.

3.3 Vector and Raster Graphics
Photoshop Elements creates and edits two types of graphics that are standard for Web de-
sign—raster and vector. A raster image is composed of pixels organized on a grid. Each pixel
in a raster image is stored as a particular combination of colors when it is saved. If the size of
a raster image is increased, the image editing program adds pixels in a process called interpo-
lation. Interpolation lowers the image quality, making raster images resolution dependent.
Raster graphics are ideal for images that have subtle gradations of colors such as photographs

Pan Zoom
Original
image

Optimized
image Transparency File type

Number
of colors

File info Applied matte Zoom% Matte
color

Browser
preview

Settings
selection

iw3htp2.book Page 74 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 75

and original artwork, or images created with the raster tool set in Photoshop Elements. Raster
tools are discussed in the next section.

A vector graphic is not stored as a grid of pixels. Instead, a vector graphic is created by
a set of user-determined mathematical properties called vectors. These properties include a
graphic’s dimensions, attributes and position. Examples of vector graphics in Photoshop
Elements are text created with the type tool and shapes created with the shape tool. The
shape tool can create rectangles, ellipses, polygons, lines and custom shapes. Vector
images exist as individual objects that can be edited separately from one another. They can
also be resized without losing clarity because vector information is stored as sets of instruc-
tions instead of groups of pixels. It is this characteristic which makes vector graphics res-
olution independent. Vector graphics are ideal for creating solid areas of color and text;
however, they cannot handle the image quality of photographs or other color-complex
images. Figure 3.13 demonstrates the difference between scaling raster and vector
graphics. The raster image becomes pixelated while the vector does not lose any clarity.

3.4 Toolbox
Photoshop Elements offers tools which simplify the image-composition process. The tool-
box, which appears by default on the left side of the editing area, groups these tools by ed-
iting function. The names of the different tools are highlighted in Fig. 3.14.

Photoshop Elements provides navigation tools that aid the user in the editing process.
The magnifying glass is a navigation tool that zooms in on an image. Click and drag with
the magnifying glass tool to zoom into a particular area. Click a spot to zoom in with that
spot centered in the image window. Hold down the Alt key while clicking to zoom out. The
shortcut for zooming in is Ctrl+ (plus) and the shortcut for zooming out is Ctrl– (minus).

Clicking and dragging with the hand tool pans from one side of an image to the other.
This tool is useful when an image is large or when an image is magnified. The hand tool is
accessible at any time by holding down the Spacebar key.

Some tools have hidden tools beneath them in the toolbox. A small triangle in the
lower-right corner of the tool button indicates hidden tools. The marquee tool, the type tool
and the lasso tool have hidden tools beneath them. Click and hold the tool button to reveal
hidden options.

Fig. 3.13Fig. 3.13Fig. 3.13Fig. 3.13 Raster and vector graphics scaled. (Adobe and Photoshop are either
registered trademarks of Adobe Systems Incorporated in the United
States and/or other countries.)

100%
200%

100%

200%

Raster image Vector image

iw3htp2.book Page 75 Wednesday, July 18, 2001 9:01 AM

76 Photoshop® Elements Chapter 3

Fig. 3.14Fig. 3.14Fig. 3.14Fig. 3.14 Photoshop Elements Toolbox. (Adobe and Photoshop are either
registered trademarks of Adobe Systems Incorporated in the United
States and/or other countries.)

3.4.1 Selection Tools

The selection tools—the “marquee”, “lasso” and “magic wand”—create a border called a
marquee. A marquee bounds a selected area of pixels that can be modified by filters, moved
or have their colors adjusted. Filters are special effects that perform uniform changes to an
area of pixels. A selection marquee is moved by dragging it with a selection tool. Moving
a selection marquee with the move tool moves the pixels bounded inside the marquee, leav-
ing the area the selection previously occupied transparent, revealing any layers beneath
(Fig. 3.15).

The rectangular marquee and the elliptical marquee tools select areas of pixels. The
default marquee is the rectangular marquee tool and the elliptical marquee is hidden
beneath it. These tools may be constrained to either a perfect circle or square by pressing
the Shift key while clicking and dragging.

The lasso tools (regular, polygonal and magnetic) allow the user to customize a selec-
tion area. The regular lasso, the default, draws a freehand marquee around an area of
pixels, following every move of the mouse. Clicking and dragging the magnetic lasso tool,
hidden behind the regular lasso, traces a selection area by adhering to the edges of an object
in an image. The magnetic lasso finds the edges by the difference in pixel color. The polyg-
onal lasso draws straight-edged selections by clicking at the selection corner points.
Figure 3.16 illustrates the selections using the various lasso tools.

The magic wand tool selects areas of similarly colored adjacent pixels. The tolerance
setting increases or decreases the pixel color range that the magic wand selects (Fig. 3.17).
The Magic Wand options bar provides the tolerance settings.

The selection tool option bars help customize selection areas (Fig. 3.18). A selection
can be added to, subtracted from or intersected with another selection with these options.
These options also may be used while toggling between different selection tools.

Marquee
Lasso
Crop

Shape
Airbrush

Eraser
Paint bucket

Blur
Sponge

Red eye brush

Rubber stamp
Hand

Foreground color swatch
Balck and white

Move
Magic wand
Type

Gradient
Paintbrush
Pencil
Impressionist brush

Sharpen
Smudge
Dodge

Eyedropper
Magnifying glass
Switch foreground and
background colors
Background color swatch

iw3htp2.book Page 76 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 77

Fig. 3.15Fig. 3.15Fig. 3.15Fig. 3.15 Moving a selection with the move tool. (Adobe and Photoshop are
either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

Fig. 3.16Fig. 3.16Fig. 3.16Fig. 3.16 Drawing selection areas with the lasso tools. (Adobe and Photoshop are
either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

 The next example shows how to use the selection tools to create a blurred frame for
an image so that it gradually blends into the background color of a Web page. Open the file
eiffel.jpg located in the Chapter 3 examples directory on the CD-ROM that accom-
panies this book. Choose the rectangular marquee tool from the toolbox and set the feath-
ering to 8 pixels in the Marquee tool options bar. Feathering blurs the edges of a selection
so the pixels inside the selection blend with the pixels outside the selection. The number of
pixels, in this case, determines the amount of blur around the selection’s edge. The effects
of feathering a selection are shown in Fig. 3.19.

 Click and drag the rectangular marquee tool from the upper left to the lower right of
the photograph, leaving some space between the edge of the picture and the selection. Any
selection may be removed or modified. Clicking the image with any of the selection tools
while a marquee is active, removes the marquee. Notice that the corners of the selection are
rounded, indicating that it is feathered. The image on the left in Fig. 3.19 has selection
feathering set to 0.

Selection with the regular lasso Selection with the magnetic lasso

iw3htp2.book Page 77 Wednesday, July 18, 2001 9:01 AM

78 Photoshop® Elements Chapter 3

Fig. 3.17Fig. 3.17Fig. 3.17Fig. 3.17 Changing the magic wand tolerance to affect the size of a selection.
(Adobe and Photoshop are either registered trademarks of Adobe
Systems Incorporated in the United States and/or other countries.)

Fig. 3.18Fig. 3.18Fig. 3.18Fig. 3.18 Making multiple selections using the selection tool options bar. (Adobe
and Photoshop are either registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.)

Select Inverse from the Select menu or use the shortcut Ctrl+Shift+I to invert the
selection. Inverting selects all the pixels outside the current selection marquee. Click the
foreground color and choose RGB 204, 0, 1 or #CC0033 in the Color Picker dialog.
Choose Fill... from the Edit menu. The Fill dialog (Fig. 3.20) presents several options for
filling a selection or layer. For this example, set the fill to Foreground Color, leave the
blending mode set to Normal and click OK. The shortcut to fill any selection with the fore-
ground color is Alt+Backspace. Alternatively, pressing Ctrl+Backspace fills a selection
with the background color. These shortcuts only work with the normal blending mode. The
blending mode determines how color interacts with the image color to which it is applied.
Blending modes are explored in a later example.

Look-and-Feel Observation 3.2
Changing the blending mode in the Fill dialog produces different blending effects between
the border and the image. Test the different blending modes to view the differences. 3.2

Tolerance set to 15 Tolerance set to 50

HeightWidth StyleFeather
Selection

modes
Default tool

settings

Subtract from selection

Intersect selections

Anti-aliased

Add to selection

Single selection

iw3htp2.book Page 78 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 79

Fig. 3.19Fig. 3.19Fig. 3.19Fig. 3.19 Feathering a selection. (Adobe and Photoshop are either registered
trademarks of Adobe Systems Incorporated in the United States and/or
other countries.)

Fig. 3.20Fig. 3.20Fig. 3.20Fig. 3.20 Filling a selection with color. (Adobe and Photoshop are either registered
trademarks of Adobe Systems Incorporated in the United States and/or
other countries.)

Choose Deselect from the Select menu or use the shortcut Ctrl+D to remove a
selection marquee. As in the first example in which we created the file typefun, this
image is saved for the Web. This time save the file in JPEG (Joint Photographic Experts
Group) format, by selecting JPEG as the file type in the Save for Web dialog. JPEG is a
format commonly used on the Web for saving photographic-quality images.

The JPEG format allows the user to specify the quality of the image being saved. For
this image, set the quality to 50, which is medium quality. Most JPEG images intended for
the Web are saved as medium or low quality to reduce their file size. JPEG images are pre-
viewed in a Web browser in the same way as GIF files. Choose RGB 204, 0, 1 or

Feathering set to 8 pixelsFeathering set to 0 pixels

Blending Mode

Opacity

Fill contents

Fill the feathered selection

iw3htp2.book Page 79 Wednesday, July 18, 2001 9:01 AM

80 Photoshop® Elements Chapter 3

#CC0033 as the matte color so that the background color of the preview Web page is the
same as the blurred frame around the photograph (Fig. 3.21).

3.4.2 Painting Tools

The second group of toolbox tools are the painting tools, which apply color to an image in
simulated brush strokes or in constrained shapes. Paintbrush and airbrush are raster tools
that draw with virtual paintbrush or airbrush strokes by clicking and dragging them on the
image area. Different brush size and stroke options are selected in the options bar.

 The paint bucket tool adds the foreground color to selections or areas of similarly col-
ored pixels. The pixel selection process for this tool is the same as the selection process for
the magic wand tool. The paint bucket tool fills large areas with color.

Another interesting way to fill an area with color is with the gradient tool. The gradient
tool fills an area with a progression of colors (Fig. 3.22). The area to be filled must be
selected with one of the selection tools before a gradient is applied to it, otherwise the gra-
dient fills the entire canvas. Click and drag with the gradient tool, in the direction of the
gradient movement to create patterns of color. Gradients can be created in many shapes and
colors depending on which options are selected in the Gradients options bar.

Fig. 3.21Fig. 3.21Fig. 3.21Fig. 3.21 Previewing the feathered image in a Web browser. (Adobe and
Photoshop are either registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.)

iw3htp2.book Page 80 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 81

 The following example shows the different uses of the painting tools, filters and type
tools to create a title image for a Web page. Filters alter the appearance of a selection or an
entire raster layer by applying uniform changes to every pixel. Create a new image that is
200 pixels high, 600 pixels wide with a white background in RGB mode. Select RGB 153,
204, 255 or #99CCFF, a light blue, as the foreground color and RGB 0, 0, 153 or
#000099, a darker blue, as the background color. Fill the background layer with the fore-
ground color by using the shortcut Alt+Backspace. This shortcut works on an entire layer
if no selection is made. Next choose the paintbrush tool and select a brush size of 13 from
the Paintbrush options bar. Several brush types and sizes are available in this options bar,
including some that are hidden. The hidden brushes are found in different categories under
the brush drop-down list (Fig. 3.23). This brush menu may also be accessed by right
clicking in the image area with any of the paint-brush tools.

Feel free to experiment with these different brushes. For this example, it does not
matter which brushes are used because painting will be distorted. Painting tools always
paint with the foreground color. For this example, we want to paint with the dark blue back-
ground color. Make the background color become the foreground color by clicking the
switch foreground and background arrow found directly above the background color swatch
in the toolbox. Once the colors are switched, paint randomly on the canvas with the dark
blue color (Fig. 3.24).

Fig. 3.22Fig. 3.22Fig. 3.22Fig. 3.22 Using the gradient tool. (Adobe and Photoshop are either registered
trademarks of Adobe Systems Incorporated in the United States and/or
other countries.)

Gradient picker

Default tool
settings

Edit gradient
colors

Gradient pattern Color blend Mode Opacity Color Dither

Reverse
gradient colors

Preserve
Transparency

iw3htp2.book Page 81 Wednesday, July 18, 2001 9:01 AM

82 Photoshop® Elements Chapter 3

Fig. 3.23Fig. 3.23Fig. 3.23Fig. 3.23 Brush options. (Adobe and Photoshop are either registered trademarks
of Adobe Systems Incorporated in the United States and/or other
countries.)

Fig. 3.24Fig. 3.24Fig. 3.24Fig. 3.24 Painting with the paintbrush tool. (Adobe and Photoshop are either
registered trademarks of Adobe Systems Incorporated in the United
States and/or other countries.)

This “painting” will eventually become a design that fills the title text. Designs can be
created by using one of Photoshop Elements’ many filters. Begin to create the pattern by
choosing Liquify… from the Filters menu. The liquify filter distorts an image by modi-
fying color placement. When the Liquify dialog opens (Fig. 3.25), choose a brush size of

Default settings

Current brush

Brush menu

Brush sizes

Brush menu options

Brush options

Brush menu display

Brush menus

Blending Mode

Switch
foreground and

background
colors

iw3htp2.book Page 82 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 83

50 with a brush pressure of 50. The brush size determines the area affected by the filter.
The brush pressure determines the filter’s intensity. Click and drag in the painted area to
apply the liquify filter. Eight different modes for the liquify filter can be selected with but-
tons along the left side of the dialog. The default mode for this tool is warp, however, feel
free to experiment with the other modes. If a mistake is made, click Revert to change the
image back to its original appearance.

The liquify filter is one of the few filters that creates its effects based on the artistic
input of the user, making it more like a tool than an actual filter. Most of the other filter
effects are performed uniformly on image pixels. Continue to click and drag with the liquify
brush until a design is created. Press OK to apply the filter to the original image.

Performance Tip 3.2
Applying filters can take a long time if the computer is low on memory. Closing other appli-
cations can free up memory and improve Photoshop Elements’ performance. 3.2

The next step is to define the text area to which the design is applied. Instead of cre-
ating regular text, we want to create a selection marquee in the shape of text. Select the type
tool and choose the type selection option from the type options bar. The type selection tool
is indicated by a dashed line T (Fig. 3.26). Choose a font face of Brush Script with font
size 150 point (type the font size). The purpose of using the type selection tool instead of
the regular type tool is to capture the pattern inside the selection boundaries of the type.
Then the selection can be separated from the rest of the pattern and placed onto a new layer.
Set the alignment for the type selection tool to center and click the middle of the image.
The image turns red, indicating that a text selection is being made. Type the word “Wel-
come.” The background remains red and the type shows through in the original blue color
(Fig. 3.26).

Fig. 3.25Fig. 3.25Fig. 3.25Fig. 3.25 Using the Liquify filter to create a pattern. (Adobe and Photoshop are
either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

Liquify
modes

Brush
Pressure

Brush
SizeRevert

iw3htp2.book Page 83 Wednesday, July 18, 2001 9:01 AM

84 Photoshop® Elements Chapter 3

Fig. 3.26Fig. 3.26Fig. 3.26Fig. 3.26 Using the type selection tool to create a title image. (Adobe and
Photoshop are either registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.)

The selection is not applied until another tool is chosen. For this example, select the move
tool to apply the selection. The move tool creates a bounding box around the selection.

Separate the text from the background by copying its contents to a new layer. Use the
Layer via Copy (Ctrl+J) function found under the New submenu of the Layer menu to
create a new layer with the contents of a selection. Even though the text exists in its own
layer, it is still not visible because it is hidden by the background layer. Turn off the back-
ground layer visibility by opening the Layers palette and clicking the layer’s visibility
button (Fig. 3.27). A layer is not deleted when the visibility is turned off; it is only deacti-
vated so that contents of other layers can be better identified. The copied text in the new
layer should be the only visible element.

The next step is to crop out the background area using the crop tool located in the
toolbox next to the type tool. Click and drag with the crop tool to make a crop box that elim-
inates the extra background area. The area being cropped turns gray and a bounding box
with anchors surrounds the remaining area (Fig. 3.28). Adjust the bounding box that elim-
inates the background area around the word. Once the crop selection is set, press the Enter
key to crop the image.

The next step in creating the title image is to give the word a layer effect to raise it off
the page. Select the background layer in the Layers palette if it is not already selected. As
in the first example, open the Layer Styles palette. Instead of applying a Drop Shadow,
this time choose Bevels from the style-selection drop-down list. Apply the Simple
Sharp Inner bevel to the “Welcome” layer (Fig. 3.29).

The last step is to create a color border to outline the text. Choose the Magic Wand
tool and click outside the word, selecting the transparent area. Add spaces inside the o, e
and l by either clicking the add to selection button in the Magic Wand options bar
(Fig. 3.18) or holding down Shift while clicking the letter spaces with the magic wand tool.
Next, invert the selection so that the word is selected instead of the transparent background
(Ctrl+Shift+I). Create a line with an even pixel weight along the selection by choosing
Stroke from the Edit menu. The Stroke dialog has options for stroke width, stroke color,
stroke location, blending mode and opacity (Fig. 3.29).

Selection area

Regular type tool

Type
selection tool

iw3htp2.book Page 84 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 85

Fig. 3.27Fig. 3.27Fig. 3.27Fig. 3.27 Turning off layer visibility in the Layers palette. (Adobe and Photoshop
are either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

Fig. 3.28Fig. 3.28Fig. 3.28Fig. 3.28 Using the crop tool to eliminate excess image area. (Adobe and
Photoshop are either registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.)

Set the line weight to 3 pixels and Location to center in the Stroke dialog. The stroke
Color defaults to the current foreground color, and can be changed by double clicking the
stroke swatch. Make sure that the Preserve Transparency box is unchecked, otherwise
the stroke will not appear in the transparent area around the word. Click OK.

iw3htp2.book Page 85 Wednesday, July 18, 2001 9:01 AM

86 Photoshop® Elements Chapter 3

Fig. 3.29Fig. 3.29Fig. 3.29Fig. 3.29 Applying a simple inner bevel and a stroke selection. (Adobe and
Photoshop are either registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.)

3.4.3 Shape Tools

The shape tool draws vector shapes filled with color. Unlike raster graphics in the same lay-
er, vector graphics can be edited independently from one another. Every time a shape tool
is used, a new vector shape layer is created. Shape layers contain only shapes created with
the shape tool and cannot contain raster graphics. The shape tool’s default setting is a rect-
angle; however the shape can be changed to an ellipse, polygon, line or custom shape with
the shape tool options bar. The options change depending on the selected tool (Fig. 3.30).

To demonstrate the shape tool, we will create a navigation bar. Each button on the bar
is created as a vector shape with the shape tool and converted into a raster graphic to create
the navigation bar.

Create a new file that is 625 pixels wide and 100 pixels high. For guidance when cre-
ating the navigation bar, turn on the grid by choosing Show Grid from the View menu.
This option helps to space the buttons evenly. The settings for the grid are changed in the
Grid Preferences dialog by choosing Grid... from the Preferences submenu of the
Edit menu. Set the grid lines to appear for every pixel and set the grid line color to light
blue.

Choose a new foreground color to become the color of the buttons. The navigation but-
tons are created as a series of duplicate rectangles. Select the shape tool from the toolbox
and select the rectangle tool from the Shape tool options bar. Create a rectangle that fills
a little less than 1/4 of the image width, approximately 15 grid squares, as shown in
Fig. 3.31.

Stroke Width

Stroke Color

Stroke Location

Blending Mode

Opacity
Preserve

Transparency

iw3htp2.book Page 86 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 87

Fig. 3.30Fig. 3.30Fig. 3.30Fig. 3.30 Custom shape options bar. (Adobe and Photoshop are either registered
trademarks of Adobe Systems Incorporated in the United States and/or
other countries.)

Fig. 3.31Fig. 3.31Fig. 3.31Fig. 3.31 Creating a rectangle with the shape tool. (Adobe and Photoshop are
either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

Duplicate this rectangle three times (once for each link in the navigation bar). Select
the shape select tool, indicated by an arrow, from the Shape options bar. Copy the rect-
angle to the clipboard by clicking the copy button in the main menu bar (Fig. 3.32) or use
the shortcut Ctrl+C. The clipboard is an area of temporary memory in the computer in
which text and graphics can be stored for immediate reuse. The paste command places the
information from the clipboard into a document. Use the paste button or the shortcut
Ctrl+V to paste the rectangle from the clipboard back into the main image. This new rect-
angle is placed directly on top of the existing rectangle in the same vector layer. Drag the
new rectangle next to the original using the shape select tool. Space the rectangles two grid
lines apart. Repeat the copy and paste step two more times to create the four navigation bar
buttons (Fig. 3.33).

If the rectangles were placed unevenly, adjust their position using the shape select tool.
It is also possible to use the Undo command in the Edit menu, or the Ctrl+Z command to
correct mistakes. Actions can be undone as far back as the last time the image was saved
by using the History palette. The History palette (Fig. 3.34) displays every action per-
formed since the last save. Selecting an action in the palette creates a preview of the image
if that action were undone. Click the trashcan button in the History palette to undo an
action permanently.

Shape select tool

Custom shape selector

Layer Style Shape Color

iw3htp2.book Page 87 Wednesday, July 18, 2001 9:01 AM

88 Photoshop® Elements Chapter 3

Fig. 3.32Fig. 3.32Fig. 3.32Fig. 3.32 Using the main menu bar to copy and paste. (Adobe and Photoshop are
either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

Fig. 3.33Fig. 3.33Fig. 3.33Fig. 3.33 Creating multiple rectangles with the move shape tool. (Adobe and
Photoshop are either registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.)

Fig. 3.34Fig. 3.34Fig. 3.34Fig. 3.34 Using the History palette to reverse actions. (Adobe and Photoshop are
either registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.)

 New Open Print
Print

preview Step back Step forward

Save Save for
Web

Cut Copy Paste Ruler Help

Active actions

Inactive actions

Delete actions

Current action

iw3htp2.book Page 88 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 89

The rectangles should now be in a straight line and evenly spaced. The next step is to
change the shape of the rectangles uniformly, turning them into parallelograms by skewing
the rectangles with the transformation option to tilt them along the horizontal or vertical
axis. To achieve this, select all the rectangles by clicking each with the shape select tool
while holding down the Shift key. All rectangles are selected simultaneously when each has
a shape selection box around it. Apply a skew transformation by selecting Skew from the
Transform Shape submenu of the Image menu. During the skew transformation a
bounding box encloses all four rectangles. Hover near the top center anchor until a two-way
arrow appears. Click and drag the bounding box two grid lines to the right, transforming
the rectangles (Fig. 3.35).

All four rectangles slant to the right when the mouse is released. Transformations are
not applied until the Enter key is pressed, so if the shapes do not look correct, the transfor-
mation still can be changed.

 A navigation bar effect is created by connecting the buttons. For this example, the but-
tons will be connected by a heavy-weight line created with the line shape tool. The line
shape tool is located in the Shape tool options bar between the polygon tool and the
custom shape tool. Set the line weight for the line tool to 20 pixels in the tool options bar.
Click and drag from left to right with the line shape tool, creating a line in a new vector
layer (Fig. 3.36).

The outline of the four parallelograms connected with the line outlines the navigation
bar. Apply a bevel to these shapes to make them appear as buttons; however the steps to do
this are more complicated than applying layer styles to text or shapes alone. First the rect-
angles and line layers must be converted from vector shape layers into regular raster layers.
Then they must be merged together so the buttons and line are treated as one area of pixels.

Fig. 3.35Fig. 3.35Fig. 3.35Fig. 3.35 Applying the skew transformation. (Adobe and Photoshop are either
registered trademarks of Adobe Systems Incorporated in the United
States and/or other countries.)

Fig. 3.36Fig. 3.36Fig. 3.36Fig. 3.36 Line added to link the skewed rectangles together. (Adobe and
Photoshop are either registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.)

iw3htp2.book Page 89 Wednesday, July 18, 2001 9:01 AM

90 Photoshop® Elements Chapter 3

Open the Layers palette and select the line layer. Change both the line layer and but-
tons layer into regular raster layers separately by choosing Simplify Layer from the layer
options menu (Fig. 3.37). Both the line and the parallelograms are no longer individual
vector objects. Instead they are raster areas of pixels.

The next step is to merge the line layer with the rectangles layer so when the bevel is
applied, it is applied uniformly around the perimeter of the navigation bar. Merge the layers
by selecting the line layer in the Layers palette and choose Merge Down from the Layer
options menu. Merging two raster layers unifies their contents into a combined area of
pixels. Next, layer styles may be applied to the navigation bar. Create the button effect by
applying a simple sharp inner bevel with the Layer Styles palette.

The navigation bar is completed by adding titles to the buttons. Select a large font face
and type the following button labels: Links, News, Files and E-mail. Center the type
over the buttons with the move tool (Fig. 3.38). This example uses font face Courier, bold,
italic at 30 point.

Fig. 3.37Fig. 3.37Fig. 3.37Fig. 3.37 Simplifying a shape layer using the Layers palette. (Adobe and
Photoshop are either registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.)

Fig. 3.38Fig. 3.38Fig. 3.38Fig. 3.38 Navigation bar. (Adobe and Photoshop are either registered trademarks
of Adobe Systems Incorporated in the United States and/or other
countries.)

Press to access layer options menu

Button layer
Line layer

iw3htp2.book Page 90 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 91

There are a few ways to implement a navigation bar on a Web page. One way is to
create hot spots which are sensitive to the mouse and link to different locations. Another
way is to break apart the navigation bar into separate buttons through a process called
image slicing. Image slicing creates smaller individual images from an original larger
image. First turn the grid back on and turn off the visibility of the background layer. Reduce
the file size by eliminating the unnecessary background area with the crop tool.

Select each button with the rectangular marquee tool and then copy the selection con-
tents into a new document. First check to make sure that snap is on by checking Snap in
the View menu. The snap option makes selections adhere to grid lines. Click and drag the
rectangular marquee tool using the grid as a guide to select only the links button (Fig. 3.39).

Copy the contents of the selection to the clipboard by choosing Copy Merged from
the Edit menu. This command copies pixels within the selection from all visible layers.
Open a new file with a transparent background. The default height and width should match
the contents of the clipboard, so do not change them. Now paste the links button into the
new file (Ctrl+P) to be saved as a transparent GIF. Repeat these steps for each of the but-
tons (Fig. 3.40). These files are ready to be inserted into a Web document by rebuilding the
navigation bar.

3.5 Layers
One of the most important features of Photoshop Elements is the ability to edit images in
layers. Any image can be composed of many layers, each with its own attributes and ef-
fects. Each element of an image can be moved and edited independently if kept in its own
layer. Layers are sometimes complicated; however, they ultimately save time in the overall
process. The concept of layers is somewhat like animation cells. An animator uses separate
layers of transparencies to create a scene so that each item can be edited individually.

Fig. 3.39Fig. 3.39Fig. 3.39Fig. 3.39 Slicing an image with the rectangular marquee tool. (Adobe and
Photoshop are either registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.)

Fig. 3.40Fig. 3.40Fig. 3.40Fig. 3.40 Sliced image as individual buttons. (Adobe and Photoshop are either
registered trademarks of Adobe Systems Incorporated in the United
States and/or other countries.)

iw3htp2.book Page 91 Wednesday, July 18, 2001 9:01 AM

92 Photoshop® Elements Chapter 3

Photoshop Elements has three categories of layers: vector, raster and adjustment.
Each object on a vector layer is an independent element that is stored as a set of proper-
ties. Raster layers exist as a grid of colored pixels. Editing elements in raster layers
affects all other parts of that layer. Open the file arches.psd located in the Chapter 3
examples directory on the CD-ROM that accompanies this book. This file shows the dif-
ferent types of layers.

Portability Tip 3.3
The psd extension, which stands for Photoshop Document, is a file format that is specific to
Adobe image editing programs. This file format supports layers, making it ideal for images
that are in the middle of the editing process and for archiving. Web documents do not support
this file format. 3.0

This file has several different layers which can be seen individually in the Layers pal-
ette. The layers are arranged hierarchically, with the uppermost layer at the top of the list.
The active layer is highlighted in blue (Fig. 3.41).

Click the New Layer button in the Layers palette to create a new raster layer. Only
raster layers are created with the New Layer button. Vector layers are created when a
vector tool such as the type or shape tool is used. The difference in the ways vector and
raster information is stored prevents these two types of graphics from existing on the
same layer.

Fig. 3.41Fig. 3.41Fig. 3.41Fig. 3.41 Layers in the Layers palette. (Adobe and Photoshop are either
registered trademarks of Adobe Systems Incorporated in the United
States and/or other countries.)

Color blending
mode

Layer visibility

New adjustment layer New layer Delete layer

Locked for
editing

Background
layer

Type layer

Shape layer

Raster layers

Layer lock

Layer opacity

iw3htp2.book Page 92 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 93

Each layer occupies one row in the palette. A row displays that layer’s name, its posi-
tion relative to other layers and several properties that modify the function of the layer. It
is a good idea to name each layer for the objects it contains to make it easier to remember
what layers effect what images. Select the Arrange submenu from the Layers menu to
move a layer up or down in the hierarchy. Layers also can be dragged up or down in the
hierarchy inside the Layers palette.

The background layer is always a raster layer anchored to the bottom of the image. The
layer order, color blending mode and opacity cannot be changed on the background layer.
Convert the background layer into a regular raster layer by double clicking Background
in the Layers palette. The displayed dialog provides the option of renaming the layer.
Renaming a background layer converts it to an independent raster layer. Files with trans-
parent backgrounds do not have background layers. Instead the bottommost layer is an
independent raster layer named Layer 1.

The layer opacity is the measure of a layer’s transparency, given as a percentage. The
Bug layer in arches.psd (Fig. 3.41) has an opacity of 70% making the layer beneath it
visible through the bug. An opacity of 0% makes the layer completely transparent.

The color blending mode determines how a layer is affected by painting or editing
tools. The blending mode for the Sun layer in arches.psd is set to Hard Light,
affecting the image in the Sun layer as if a spotlight were pointed at it. There are several
blending modes from which to choose. Select the Sun layer from the Layers palette. Try
applying different blending modes by changing the selection in the blending modes drop-
down list in the Layers palette, and note the varying effects.

Adjustment Layers allow color adjustments to be made to the layer beneath it without
affecting color in the other layers. An adjustment layer acts as a preview of what a particular
adjustment would look like if directly applied to a layer, without making any permanent
changes. Select the background layer in the Layers palette for the arches.psd file.
Create an adjustment layer by clicking the New Adjustment Layer button (Fig. 3.42).
The new adjustment layer is placed directly above the selected layer.

When the New Adjustment Layer button is pressed a menu opens allowing the user
to choose the type of adjustment. Choose Hue/Saturation from this menu to open the
Hue/Saturation dialog. Change the hue to +121 and the saturation to +45, then click OK
to apply the adjustment to the background layer. Notice that the adjustment only affects the
background layer. If the visibility of an adjustment layer is turned off, the layers beneath
appear as if no changes were made.

3.6 Screen Capturing
Screen capturing is a widely used technique to create images from a screen display. The
process takes the content of a screen and “captures” it so that the capture can be used as an
image. For instance, the diagrams in this chapter that show actual windows and tools from
Photoshop Elements were all created using screen capturing. Screen capturing in Photo-
shop Elements works like the copy and paste functions—when performing a screen cap-
ture, the image is copied to the clipboard until it is pasted into a document.

Press the Print Screen key on the keyboard, found above the Delete and Insert keys, to
capture the entire screen area. Pressing this button copies the screen contents to the clip-
board. Open a new image in Photoshop Elements. The default dimensions for the new

iw3htp2.book Page 93 Wednesday, July 18, 2001 9:01 AM

94 Photoshop® Elements Chapter 3

image are the same as the screen capture on the clipboard. Then paste the screen capture
into the new image. (Alt+Print Screen captures only the active window).

3.7 File Formats: GIF and JPEG
You probably know that the two major file formats for pictures on the Web are GIF and JPG. But what are they? Why would you use one, and not the other?

The three major file formats for images on the Web are GIF, JPEG, and PNG. Each format
has a specific use when saving images for the Web. Web developers and designers need to
know the differences between these formats to optimize download times and user compat-
ibility.

The Graphics Interchange Format (GIF), developed by CompuServe, is based on a
256-color palette. GIF is best used for screen captures, line drawings, graphics with sharp
edges and images with transparency. When reducing colors to the 256 available in the GIF
file format, Photoshop Elements performs dithering on the image. Dithering simulates the
desired color with a color from the GIF palette. GIF is a lossless format, meaning that the
picture quality is not reduced by the compression algorithm. The compression algorithm is
the formula that a file format uses to store file information.

Performance Tip 3.3
A GIF file is typically larger than a JPEG file. If server space is a problem and the image
has many more than 256 colors, the JPEG format is preferable. 3.3

Fig. 3.42Fig. 3.42Fig. 3.42Fig. 3.42 Adjusting the hue and saturation using an adjustment layer. (Adobe and
Photoshop are either registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.)

Hue/saturation
adjustment to
background layer

Types of
adjustment layers

Adjustment layer
menu

 New adjustment layer

Adjustment layer
inserted behoves
background layer

iw3htp2.book Page 94 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 95

Dithering may be effective, but often it destroys the quality of an image that has color
complexity. Such richness is characteristic of real-world images such as photographs,
scanned images and computer art created with 3-D rendering programs. Images that are
“color complex” are better-suited to the JPEG format. However, this format is not without
limitations. JPEG is a lossy format (i.e., saving an image in this format gradually reduces
the quality of the image due to loss of color information). The JPEG compression algorithm
handles sharp edges and abrupt changes poorly.

Performance Tip 3.4
The JPEG format has scalable compression. When saving a JPEG image, in the Save Op-
tions dialog, sliding the compression slider to the right causes the image to retain high qual-
ity, but the file size also remains large. Sliding the compression slider to the left causes the
file size to decrease, but image quality suffers. This graduated scale helps to find a good bal-
ance between file size and image quality. 3.4

One feature that GIF and JPEG share is interlacing (in GIF terminology) or progres-
sive encoding (in JPEG terminology). Interlacing or progressive encoding creates a rough
image preview at the beginning of the download process. The image clarity then gradually
increases as the image loads. This behavior often keeps the user’s attention while a page
loads. Interlacing is specified in the Save for Web dialog. Non-interlaced images down-
load at the highest quality and are ideal for images that have small file sizes.

Performance Tip 3.5
Do not place too many interlaced images on any one Web page; doing so slows page rendering. 3.5

A newer image standard is making its mark on the Web. The Portable Network
Graphics (PNG, pronounced ping) format was developed in response to a decision by the
UniSys corporation to start charging royalties on the GIF format, on which UniSys holds a
patent. PNG is a suitable replacement for both GIF and JPEG because it has the better qual-
ities of both formats. For example, PNG can encode in RGBA—the A stands for alpha
transparency, which makes images transparent against any background, similar to opacity.
The PNG file format solves many problems that previously existed with transparency. An
image with both color complexity and transparency could not be saved as a transparent GIF
or a JPEG. The PNG file format supports millions of colors as well as transparency. This
makes it a great alternative for both GIF and JPEG. Photoshop Elements supports the PNG
format, as do the latest versions of both Netscape Communicator and Internet Explorer.
Web developers increasingly are using the PNG file format. For more information on the
PNG format, visit www.w3.org/Graphics/PNG.

3.8 Internet and World Wide Web Resources
Many resources are available on the topic of using Photoshop Elements to create images for
Web pages. A good resource is the interactive help file packaged with Photoshop Elements.
This help file covers almost every function Photoshop Elements has to offer. The interactive
help file is accessed by clicking the question mark button on the main menu bar. Also check
out www.adobe.com (Adobe Inc.’s home page) to stay up-to-date on general information
about Photoshop Elements. The majority of information on the Web, however, is available at

iw3htp2.book Page 95 Wednesday, July 18, 2001 9:01 AM

96 Photoshop® Elements Chapter 3

user-run sites offering information and tutorials. For example, www.photoshop-ca-
fe.com has excellent in-depth tutorials, for both Photoshop beginners and for experts who
want to explore new techniques. Another site for tutorials is located at www.planetpho-
toshop.com. Keep in mind that many Photoshop tutorials are written for different versions
of Photoshop other than Elements; however, many of the main concepts carry over to the El-
ements version. If looking for more diverse effects than those included in Photoshop Ele-
ments, new filters can be downloaded for free from sites such as www.plugins.com/
plugins/photoshop. Plug-in filters, brushes and fonts are installed to the hard drive of
the computer under the Photoshop Elements directory.

SUMMARY
• The most successful Web pages use both text and graphics to enhance the user experience.

• Adobe Inc.’s Photoshop Elements is an easy-to-use graphics package that offers the functionality
of more expensive packages at an economical price.

• The File menu is used to open new or existing files.

• Initial image settings, such as image height and width, image resolution and background color are
specified in the New dialog that appears every time a new image file is created.

• Every image in Photoshop Elements is composed of a series of dots called pixels organized in a
grid.

• The number of pixels-per-unit measure is called the image resolution. The resolution is set in the
New dialog.

• The three color modes available are RGB, Grayscale and Bitmap, of which RGB and Grayscale
are the most commonly used for creating Web graphics.

• Red, Green and Blue are the primary colors in light which when combined in different intensity
values from 0 (black) to 255 (white), create a color range of 16.7 million colors.

• Palettes are opened by clicking their tabs in the palette well. Each palette contains options for im-
age editing and effects.

• The toolbox contains selection, editing, painting and type tools that are all used to modify existing
images or to create new ones.

• The two squares at the bottom of the toolbox are the two active colors—the foreground color and
the background color.

• The Color Picker dialog is where the foreground or background color is selected.

• A Web-safe palette refers to the 216 colors that are cross-platform and cross-browser compatible.

• Hexadecimal notation is the color code used in most Web documents to define font and back-
ground colors.

• Anti-aliasing is a process that smooths image edges by blending the color of the edge pixels with
the color of the background on which the text is being placed.

• The move tool moves an object or resizes a selected object.

• The Layer Styles palette offers a variety of special effects that can be applied to text or shapes.

• Photoshop Elements uses layers so that items can be edited independently.

• Type layers are indicated by a T in the Layers palette.

• Clicking the Trashcan button in the Layers palette deletes the active layer.

• The Save for Web... option sets the file format and color strategy for saving an image based on
certain Internet standards.

iw3htp2.book Page 96 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 97

• GIF (Compuserve Graphics Interchange Format) is a file format that preserves transparency (sav-
ing pixels void of color information), making GIF appropriate for transparent Web graphics.

• Photoshop Elements creates and edits two different types of graphics that are standard for Web
design—raster and vector.

• Raster images are composed of pixels organized on a grid.

• Vector images exist as individual objects that can be edited separately from one another.

• The selection tools—the lasso, magic wand, and marquee tools create a border called a marquee
which bounds a selected area of pixels that can be modified by filters, moved or have color adjust-
ments made.

• Feathering blurs the edges of a selection such that the pixels inside the selection will blend with
the pixels outside the selection.

• Inverting a selection selects all the pixels outside the current selection marquee.

• A selection is filled with a color by choosing Fill... from the Edit menu.

• Patterns can be created from scratch by using one of many filters.

• The type selection tool, indicated by a dashed line T in the Type options bar, creates a marquee
selection in the shape of text.

• The crop tool eliminates unnecessary image area.

• The shape tool is a vector tool that draws precise shapes filled with a particular color.

• Paste a clipboard item into an image by using Paste button or the shortcut Ctrl+V.

• Image slicing creates smaller images from an original larger image by separating it into pieces.

• Layers organize the different parts of an image.

• Photoshop Elements has three categories of layers: vector, raster and adjustment.

• The active layer is highlighted in blue in the Layers palette.

• Each layer occupies one row in the palette which displays the layer’s name, its position relative to
other layers and several properties that modify the function of the layer.

• Adjustment layers allow adjustments to be made to the layers beneath them without affecting any
of the pixels in the lower layers.

• Photoshop Elements performs screen captures and adds the convenience of being able to edit them.

• The two major file formats used for images are GIF and JPEG.

• GIF is best used for screen captures, line drawings and other graphics with sharp edges.

• JPEG is ideal for images with “color complexity” such as photographs and original art.

• The PNG file format supports millions of colors as well as transparency, making it an effective
alternative to both GIF and JPEG.

TERMINOLOGY
active layer background color
active tool options bar background layer
adjustment layer blending mode
alignment bounding box
alpha transparency brightness
anchor browser preview
animation cells brush pressure
anti-alias brush size

iw3htp2.book Page 97 Wednesday, July 18, 2001 9:01 AM

98 Photoshop® Elements Chapter 3

clipboard lossless format
color blending mode lossy format
color mode magic wand tool
Color Picker magnetic lasso
color wheel magnifying glass tool
compression algorithm marquee tool
compression quality matte
constrain proportions matte color
Copy move tool
Copy Merged multiple selections
crop tool New Layer
custom shape tool New Layer via Copy
Deselect normal blending mode
development environment opacity
dithering optimize
drop shadow paintbrush tool
elliptical marquee palette
feathering palette well
file size paste
fill selection Photoshop Document (psd) extension
filter pixel
font PNG (Portable Network Graphics)
font face polygon tool
font weight polygonal lasso
foreground color primary colors in light
GIF (Graphics Interchange Format) progressive encoding
gradient tool psd extension
grayscale color mode raster layer
grid rectangular marquee
hexadecimal regular raster layer
hidden tools Reset Palette Locations
History palette resize
hot spots resolution dependent
HSB color model resolution independent
hue Revert
image slicing RGB color mode
image window RGB color model
interlacing saturation
interpolation Save for Web
invert selection screen capture
JPEG (Joint Photographic Experts Group) selection tools
lasso tool shape layer
layer shape tool
layer opacity skew
layer order status bar
layer styles stroke selection
Layers palette swatches
line tool tolerance
line weight toolbox
Liquify filter transform

iw3htp2.book Page 98 Wednesday, July 18, 2001 9:01 AM

Chapter 3 Photoshop® Elements 99

SELF-REVIEW EXERCISES
3.1 Fill in the blanks in each of the following statements:

a) The __________ palette is used to organize different image components.
b) A __________ is the dashed line that indicates a selection.
c) A full screen capture is performed by hitting the __________ button.
d) Selection __________ is when the pixels inside the selection are blended with the pixels

outside the selection.
e) The Fill command is found under the __________ menu.

3.2 State whether each of the following is true or false. If the answer is false, explain why.
a) The best file format to save a transparent image is GIF.
b) Raster images do not lose image quality when they are enlarged.
c) The three main types of layers are transparent, color and drawing.
d) The type selection tool creates a marquee selection in the shape of text.
e) Hexadecimal color notation produces different colors than the RGB color notation.

ANSWERS TO SELF-REVIEW EXERCISES
3.1 a) Layers. b) marquee. c) Print Screen. d) feathering. e) Edit.

3.2 a) True. b) False. Raster images lose image quality as they are enlarged because of pixels be-
ing added in the interpolation process. c) False. The three main types of layers are vector, raster and
adjustment. d) True. e) False. Hexadecimal produces the same colors as the RGB color notation.

EXERCISES
3.3 Create a vertical navigation bar (145×350 px) with six different-colored, identical-shaped, el-
liptical navigation buttons. Name these buttons About Us, News, Portfolio, Programs, Events
and Contact. Give the buttons a simple inner bevel. Slice the image into six different files and save
each button as a transparent GIF.

3.4 This exercise uses several of the filters which Photoshop Elements has to offer, all of which
can be found in the Filters palette in the palette well. Create a title image (500×150 px) with a trans-
parent background. Choose white as the foreground color and a medium green as the background col-
or. Using the type selection tool, type in the title of a Web page and center the selection on the page.
Expand the borders of the selection by one pixel by choosing Expand from the Modify submenu
of the Select menu. Apply the clouds filter. To create a texture, apply the grain filter, with grain
intensity set to 40, the contrast set to 50, and the grain type to regular. Now apply the watercolor filter
with the brush detail set to 14, the shadow intensity set to 0 and the texture set to 1. Finally, apply the
glowing edges filter with the edge brightness set to 4 and the smoothness set to 1. Stroke the text se-
lection with yellow, a pixel weight of 2, inside the selection. Save the image as a transparent GIF.

transparency type tool
transparent GIF vector layer
type layer warped text
type selection tool Web-safe palette

iw3htp2.book Page 99 Wednesday, July 18, 2001 9:01 AM

100 Photoshop® Elements Chapter 3

3.5 Create a new image (250×250 px) with a white background. Create five separate ellipses with
the ellipse shape tool on five separate shape layers. Make each ellipse a different color. Make the ellipses
overlap one another in several places, but not completely. For each layer, change the blending mode to
multiply (from the drop-down list of the Layers palette). Save the image for the Web.

3.6 Create a new image (500×150 px) with a white background. Apply the render clouds filter.
Apply the chrome filter with detail set to 4 and smoothness set to 7. Using the text selection tool, type
“Chrome” with a large, heavy font. With this selection, make a new layer via copy. On the new layer,
apply a simple outer bevel. Select the background layer and add a contrast adjustment layer to it. In-
crease the brightness to +50. Now select the type layer. Change the color balance by choosing Hue/
Saturation from the Color submenu of the Enhance menu. With the Colorize checkbox selected,
adjust the hue to 245, the saturation to 50 and the lightness to 17. Save the image for Web as a JPEG.

3.7 Discuss the differences between the GIF, JPEG and PNG file formats and when each should
be used.

3.8 Define the following terms: Interlacing, tolerance, matte, feathering, Web-safe palette, filter
and image slicing.

iw3htp2.book Page 100 Wednesday, July 18, 2001 9:01 AM

4
Introduction to XHTML:

Part 1

Objectives
• To understand important components of XHTML

documents.
• To use XHTML to create World Wide Web pages.
• To be able to add images to Web pages.
• To understand how to create and use hyperlinks to

navigate Web pages.
• To be able to mark up lists of information.
To read between the lines was easier than to follow the text.
Henry James

High thoughts must have high language.
Aristophanes

iw3htp2.book Page 101 Wednesday, July 18, 2001 9:01 AM

102 Introduction to XHTML: Part 1 Chapter 4

4.1 Introduction
Welcome to the world of opportunity created by the World Wide Web. The Internet is now
three decades old, but it was not until the World Wide Web became popular in the 1990s
that the explosion of opportunity that we are still experiencing began. Exciting new devel-
opments occur almost daily—the pace of innovation is unprecedented by any other tech-
nology. In this chapter, you will develop your own Web pages. As the book proceeds, you
will create increasingly appealing and powerful Web pages. In the later portion of the book,
you will learn how to create complete Web-based applications.

In this chapter, we begin unlocking the power of Web-based application development
with XHTML1—the Extensible Hypertext Markup Language. In later chapters, we intro-
duce more sophisticated XHTML techniques, such as tables, which are particularly useful
for structuring information from databases (i.e., software that stores structured sets of
data), and Cascading Style Sheets (CSS), which make Web pages more visually appealing.

Unlike procedural programming languages such as C, Fortran, Cobol and Pascal,
XHTML is a markup language that specifies the format of text that is displayed in a Web
browser such as Microsoft’s Internet Explorer or Netscape’s Communicator.

One key issue when using XHTML2 is the separation of the presentation of a document
(i.e., the document’s appearance when rendered by a browser) from the structure of the doc-
ument’s information. Over the next several chapters, we will discuss this issue in depth.

Outline

4.1 Introduction
4.2 Editing XHTML
4.3 First XHTML Example
4.4 W3C XHTML Validation Service
4.5 Headers
4.6 Linking
4.7 Images
4.8 Special Characters and More Line Breaks
4.9 Unordered Lists
4.10 Nested and Ordered Lists
4.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. XHTML has replaced the HyperText Markup Language (HTML) as the primary means of describ-
ing Web content. XHTML provides more robust, richer and extensible features than HTML. For
more on XHTML/HTML visit www.w3.org/markup.

2. As this book was being submitted to the publisher, XHTML 1.1 became a World Wide Web Con-
sortium (W3C) Recommendation. The XHTML examples presented in this book are based upon
the XHTML 1.0 Recommendation, because Internet Explorer 5.5 does not support the full set of
XHTML 1.1 features. In the future, Internet Explorer and other browsers will support XHTML
1.1. When this occurs, we will update our Web site (www.deitel.com) with XHTML 1.1 ex-
amples and information.

iw3htp2.book Page 102 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 103

4.2 Editing XHTML
In this chapter, we write XHTML in its source-code form. We create XHTML documents
by typing them in with a text editor (e.g., Notepad, Wordpad, vi, emacs, etc.), saving the
documents with either an.html or .htm file-name extension.

Good Programming Practice 4.1
Assign documents file names that describe their functionality. This practice can help you
identify documents faster. It also helps people who want to link to a page, by giving them an
easy-to-remember name. For example, if you are writing an XHTML document that contains
product information, you might want to call it products.html. 4.1

Machines running specialized software called Web servers store XHTML documents.
Clients (e.g., Web browsers) request specific resources such as the XHTML documents from
the Web server. For example, typing www.deitel.com/books/downloads.htm into
a Web browser’s address field requests downloads.htm from the Web server running at
www.deitel.com. This document is located in a directory named books. We discuss
Web servers in detail in Chapter 21. For now, we simply place the XHTML documents on
our machine and open them using Internet Explorer as discussed in Section 4.3.

4.3 First XHTML Example3

In this chapter and the next, we present XHTML markup and provide screen captures that
show how Internet Explorer 5.5 renders (i.e., displays) the XHTML. Every XHTML doc-
ument we show has line numbers for the reader’s convenience. These line numbers are not
part of the XHTML documents.

Our first example (Fig. 4.1) is an XHTML document named main.html that dis-
plays the message “Welcome to XHTML!” in the browser.

The key line in the program is line 14, which tells the browser to display “Welcome to
XHTML!” Now let us consider each line of the program.

Lines 1–3 are required in XHTML documents to conform with proper XHTML syntax.
For now, copy and paste these lines into each XHTML document you create. The meaning
of these lines is discussed in detail in Chapter 20, Extensible Markup Language (XML).

Lines 5–6 are XHTML comments. XHTML document creators insert comments to
improve markup readability and describe the content of a document. Comments also help
other people read and understand an XHTML document’s markup and content. Comments
do not cause the browser to perform any action when the user loads the XHTML document
into the Web browser to view the document. XHTML comments always start with <!--
and end with -->. Each of our XHTML examples includes comments that specify the
figure number and file name, and provide a brief description of the example’s purpose. Sub-
sequent examples include comments in the markup, especially to highlight new features.

Good Programming Practice 4.2
Place comments throughout your markup. Comments help other programmers understand
the markup, assist in debugging and list useful information that you do not want the browser
to render. Comments also help you understand your own markup when you revisit a docu-
ment for modifications or updates in the future. 4.2

3. All of the examples presented in this book are available at www.deitel.com and on the CD-
ROM that accompanies this book.

iw3htp2.book Page 103 Wednesday, July 18, 2001 9:01 AM

104 Introduction to XHTML: Part 1 Chapter 4

XHTML markup contains text that represents the content of a document and elements
that specify a document’s structure. Some important elements of an XHTML document
include the html element, the head element and the body element. The html element
encloses the head section (represented by the head element) and the body section (repre-
sented by the body element). The head section contains information about the XHTML
document, such as the title of the document. The head section also can contain special doc-
ument formatting instructions called style sheets and client-side programs called scripts for
creating dynamic Web pages. (We introduce style sheets in Chapter 6 and we introduce
scripting with JavaScript in Chapter 7.) The body section contains the page’s content that
the browser displays when the user visits the Web page.

XHTML documents delimit an element with start and end tags. A start tag consists of
the element name in angle brackets (e.g., <html>). An end tag consists of the element
name preceded by a / in angle brackets (e.g., </html>). In this example lines 8 and 16
define the start and end of the html element. Note that the end tag on line 16 has the same
name as the start tag, but is preceded by a / inside the angle brackets. Many start tags define
attributes that provide additional information about an element. Browsers can use this addi-
tional information to determine how to process the element. Each attribute has a name and
a value separated by an equal sign (=). Line 8 specifies a required attribute (xmlns) and
value (http://www.w3.org/1999/xhtml) for the html element in an XHTML
document. For now, simply copy and paste the html element start tag on line 8 into your
XHTML documents. We discuss the details of the html element’s xmlns attribute in
Chapter 20, Extensible Markup Language (XML).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 4.1: main.html -->
6 <!-- Our first Web page -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Welcome</title>
11 </head>
12
13 <body>
14 <p>Welcome to XHTML!</p>
15 </body>
16 </html>

Fig. 4.1Fig. 4.1Fig. 4.1Fig. 4.1 First XHTML example.

iw3htp2.book Page 104 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 105

Common Programming Error 4.1
Not enclosing attribute values in either single or double quotes is a syntax error. 4.1

Common Programming Error 4.2
Using uppercase letters in an XHTML element or attribute name is a syntax error. 4.2

An XHTML document divides the html element into two sections—head and body.
Lines 9–11 define the Web page’s head section with a head element. Line 10 specifies a
title element. This is called a nested element, because it is enclosed in the head ele-
ment’s start and end tags. The head element also is a nested element, because it is enclosed
in the html element’s start and end tags. The title element describes the Web page.
Titles usually appear in the title bar at the top of the browser window and also as the text
identifying a page when users add the page to their list of Favorites or Bookmarks,
which enable users to return to their favorite sites. Search engines (i.e., sites that allow users
to search the Web) also use the title for cataloging purposes.

Good Programming Practice 4.3
Indenting nested elements emphasizes a document’s structure and promotes readability. 4.3

Common Programming Error 4.3
XHTML does not permit tags to overlap—a nested element’s end tag must appear in the doc-
ument before the enclosing element’s end tag. For example, the nested XHTML tags
<head><title>hello</head></title> cause a syntax error, because the enclos-
ing head element’s ending </head> tag appears before the nested title element’s end-
ing </title> tag. 4.3

Good Programming Practice 4.4
Use a consistent title naming convention for all pages on a site. For example, if a site is
named “Bailey’s Web Site,” then the title of the main page might be “Bailey’s Web Site—
Links,” etc. This practice can help users better understand the Web site’s structure. 4.4

Line 13 opens the document’s body element. The body section of an XHTML docu-
ment specifies the document’s content, which may include text and tags.

Some tags, such as the paragraph tags (<p> and </p>) in line 14, markup text for dis-
play in a browser. All text placed between the <p> and </p> tags form one paragraph. When
the browser renders a paragraph, a blank line usually precedes and follows paragraph text.

This document ends with two closing tags (lines 15–16). These tags close the body
and html elements, respectively. The ending </html> tag in an XHTML document
informs the browser that the XHTML markup is complete.

To view this example in Internet Explorer, perform the following steps:

1. Copy the Chapter 4 examples onto your machine from the CD that accompanies
this book (or download the examples from www.deitel.com).

2. Launch Internet Explorer and select Open... from the File Menu. This displays
the Open dialog.

3. Click the Open dialog’s Browse... button to display the Microsoft Internet
Explorer file dialog.

iw3htp2.book Page 105 Wednesday, July 18, 2001 9:01 AM

106 Introduction to XHTML: Part 1 Chapter 4

4. Navigate to the directory containing the Chapter 4 examples and select the file
main.html, then click Open.

5. Click OK to have Internet Explorer render the document. Other examples are
opened in a similar manner.

At this point your browser window should appear similar to the sample screen capture
shown in Fig. 4.1. (Note that we resized the browser window to save space in the book.)

4.4 W3C XHTML Validation Service
Programming Web-based applications can be complex and XHTML documents must be
written correctly to ensure that browsers process them properly. To promote correctly writ-
ten documents, the World Wide Web Consortium (W3C) provides a validation service
(validator.w3.org) for checking a document’s syntax. Documents can be validated
from either a URL that specifies the location of the file or by uploading a file to the site
validator.w3.org/file-upload.html. Uploading a file copies the file from the
user’s computer to another computer on the Internet. Figure 4.2 shows main.html (Fig.
4.1) being uploaded for validation. Although the W3C’s Web page indicates that the ser-
vice name is HTML Validation Service,4 the validation service is able to validate the
syntax of XHTML documents. All the XHTML examples in this book have been validated
successfully using validator.w3.org.

4. HTML (HyperText Markup Language) is the predecessor of XHTML designed for marking up
Web content. HTML is a deprecated technology.

Fig. 4.2Fig. 4.2Fig. 4.2Fig. 4.2 Validating an XHTML document. (Courtesy of World Wide Web
Consortium (W3C).)

iw3htp2.book Page 106 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 107

By clicking Browse..., users can select files on their own computers for upload. After
selecting a file, clicking the Validate this document button uploads and validates the
file. Figure 4.3 shows the results of validating main.html. This document does not con-
tain any syntax errors. If a document does contain syntax errors, the Validation Service dis-
plays error messages describing the errors. In Exercise 4.13, we ask readers to create an
invalid XHTML document (i.e., one that contains syntax errors) and to check the docu-
ment’s syntax using the Validation Service. This enables readers to see the types of error
messages generated by the validator.

Testing and Debugging Tip 4.1
Use a validation service, such as the W3C HTML Validation Service, to confirm that an XHT-
ML document is syntactically correct. 4.1

Fig. 4.3Fig. 4.3Fig. 4.3Fig. 4.3 XHTML validation results. (Courtesy of World Wide Web Consortium (W3C).)

iw3htp2.book Page 107 Wednesday, July 18, 2001 9:01 AM

108 Introduction to XHTML: Part 1 Chapter 4

4.5 Headers
Some text in an XHTML document may be more important than others. For example, the
text in this section is considered more important than a footnote. XHTML provides six
headers, called header elements, for specifying the relative importance of information. Fig-
ure 4.4 demonstrates these elements (h1 through h6).

Portability Tip 4.1
The text size used to display each header element can vary significantly between browsers.
In Chapter 6, we discuss how to control the text size and other text properties. 4.1

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 4.4: header.html -->
6 <!-- XHTML headers -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Headers</title>
11 </head>
12
13 <body>
14
15 <h1>Level 1 Header</h1>
16 <h2>Level 2 header</h2>
17 <h3>Level 3 header</h3>
18 <h4>Level 4 header</h4>
19 <h5>Level 5 header</h5>
20 <h6>Level 6 header</h6>
21
22 </body>
23 </html>

Fig. 4.4Fig. 4.4Fig. 4.4Fig. 4.4 Header elements h1 through h6.

iw3htp2.book Page 108 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 109

Header element h1 (line 15) is considered the most significant header and is rendered
in a larger font than the other five headers (lines 16–20). Each successive header element
(i.e., h2, h3, etc.) is rendered in a smaller font.

Look-and-Feel Observation 4.1
Placing a header at the top of every XHTML page helps viewers understand the purpose of
each page. 4.1

Look-and-Feel Observation 4.2
Use larger headers to emphasize more important sections of a Web page. 4.2

4.6 Linking
One of the most important XHTML features is the hyperlink, which references (or links to)
other resources such as XHTML documents and images. In XHTML, both text and images
can act as hyperlinks. Web browsers typically underline text hyperlinks and color their text
blue by default, so that users can distinguish hyperlinks from plain text. In Fig. 4.5, we cre-
ate text hyperlinks to four different Web sites.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 4.5: links.html -->
6 <!-- Introduction to hyperlinks -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Links</title>
11 </head>
12
13 <body>
14
15 <h1>Here are my favorite sites</h1>
16
17 <p>Click a name to go to that page.</p>
18
19 <!-- Create four text hyperlinks -->
20 <p>Deitel</p>
21
22 <p>Prentice Hall</p>
23
24 <p>Yahoo!</p>
25
26 <p>USA Today</p>
27
28 </body>
29 </html>

Fig. 4.5Fig. 4.5Fig. 4.5Fig. 4.5 Linking to other Web pages (part 1 of 2).

iw3htp2.book Page 109 Wednesday, July 18, 2001 9:01 AM

110 Introduction to XHTML: Part 1 Chapter 4

 Line 17 introduces the tag. Browsers typically display text marked up
with in a bold font.

Links are created using the a (anchor) element. Line 20 defines a hyperlink that links
the text Deitel to the URL assigned to attribute href, which specifies the location of a
linked resource, such as a Web page, a file or an e-mail address. This particular anchor ele-
ment links to a Web page located at http://www.deitel.com. When a URL does not
indicate a specific document on the Web site, the Web server returns a default Web page.
This pages often is called index.html; however, most Web servers can be configured to
to use any file as the default Web page for the site. (Open http://www.deitel.com
in one browser window and http://www.deitel.com/index.html in a second
browser window to confirm that they are identical.) If the Web server cannot locate a
requested document, the server returns an error indication to the Web browser and the
browser displays an error message to the user.

Anchors can link to e-mail addresses using a mailto: URL. When someone clicks
this type of anchored link, most browsers launch the default e-mail program (e.g., Outlook
Express) to enable the user to write an e-mail message to the linked address. Figure 4.6
demonstrates this type of anchor.

Fig. 4.5Fig. 4.5Fig. 4.5Fig. 4.5 Linking to other Web pages (part 2 of 2).

iw3htp2.book Page 110 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 111

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 4.6: contact.html -->
6 <!-- Adding email hyperlinks -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Contact Page
11 </title>
12 </head>
13
14 <body>
15
16 <p>My email address is
17
18 deitel@deitel.com
19
20 . Click the address and your browser will
21 open an e-mail message and address it to me.
22 </p>
23 </body>
24 </html>

Fig. 4.6Fig. 4.6Fig. 4.6Fig. 4.6 Linking to an e-mail address.

iw3htp2.book Page 111 Wednesday, July 18, 2001 9:01 AM

112 Introduction to XHTML: Part 1 Chapter 4

Lines 17–19 contain an e-mail link. The form of an e-mail anchor is <a href =
"mailto:emailaddress">…. In this case, we link to the e-mail address
deitel@deitel.com.

4.7 Images
The examples discussed so far demonstrated how to mark up documents that contain only
text. However, most Web pages contain both text and images. In fact, images are an equal,
if not essential, part of Web-page design. The two most popular image formats used by
Web developers are Graphics Interchange Format (GIF) and Joint Photographic Experts
Group (JPEG) images. Users can create images using specialized pieces of software such
as Adobe PhotoShop Elements (discussed in Chapter 3) and Jasc Paint Shop Pro5

(www.jasc.com). Images may also be acquired from various Web sites, such as gal-
lery.yahoo.com. Figure 4.7 demonstrates how to incorporate images into Web pages.

Lines 15–16 use an img element to insert an image in the document. The image file’s
location is specified with the img element’s src attribute. In this case, the image is located
in the same directory as this XHTML document, so only the image’s file name is required.
Optional attributes width and height specify the image’s width and height, respec-
tively. The document author can scale an image by increasing or decreasing the values of
the image width and height attributes. If these attributes are omitted, the browser uses
the image’s actual width and height. Images are measured in pixels (“picture elements”),
which represent dots of color on the screen. The image in Fig. 4.7 is 183 pixels wide and
238 pixels high.

5. The CD-ROM that accompanies this book contains a 90-day evaluation version of Paint Shop
Pro™.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 4.7: picture.html -->
6 <!-- Adding images with XHTML -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Welcome</title>
11 </head>
12
13 <body>
14
15 <p><img src = "xmlhtp.jpg" height = "238" width = "183"
16 alt = "XML How to Program book cover" />
17 <img src = "jhtp.jpg" height = "238" width = "183"
18 alt = "Java How to Program book cover" />
19 </p>
20 </body>
21 </html>

Fig. 4.7Fig. 4.7Fig. 4.7Fig. 4.7 Placing images in XHTML files (part 1 of 2).

iw3htp2.book Page 112 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 113

Good Programming Practice 4.5
Always include the width and the height of an image inside the tag. When the
browser loads the XHTML file, it will know immediately from these attributes how much
screen space to provide for the image and will lay out the page properly, even before it down-
loads the image. 4.5

Performance Tip 4.1
Including the width and height attributes in an tag can result in the browser
loading and rendering pages faster. 4.1

Common Programming Error 4.4
Entering new dimensions for an image that change its inherent width-to-height ratio distorts
the appearance of the image. For example, if your image is 200 pixels wide and 100 pixels high,
you should ensure that any new dimensions have a 2:1 width-to-height ratio. 4.4

Every img element in an XHTML document has an alt attribute. If a browser cannot
render an image, the browser displays the alt attribute’s value. A browser may not be able
to render an image for several reasons. It may not support images—as is the case with a
text-based browser (i.e., a browser that can display only text)—or the client may have dis-
abled image viewing to reduce download time. Figure 4.7 shows Internet Explorer 5.5 ren-
dering the alt attribute’s value when a document references a non-existent image file
(jhtp.jpg).

The alt attribute is important for creating accessible Web pages for users with dis-
abilities, especially those with vision impairments and text-based browsers. Specialized
software called speech synthesizers often are used by people with disabilities. These soft-
ware applications “speak” the alt attribute’s value so that the user knows what the
browser is displaying. We discuss accessibility issues in detail in Chapter 34.

Fig. 4.7Fig. 4.7Fig. 4.7Fig. 4.7 Placing images in XHTML files (part 2 of 2).

iw3htp2.book Page 113 Wednesday, July 18, 2001 9:01 AM

114 Introduction to XHTML: Part 1 Chapter 4

Some XHTML elements (called empty elements) contain only attributes and do not
markup text (i.e., text is not placed between the start and end tags). Empty elements (e.g.,
img) must be terminated, either by using the forward slash character (/) inside the closing
right angle bracket (>) of the start tag or by explicitly including the end tag. When using
the forward slash character, we add a space before the forward slash to improve readability
(as shown at the ends of lines 16 and 18). Rather than using the forward slash character,
lines 17–18 could be written with a closing tag as follows:

<img src = "jhtp.jpg" height = "238" width = "183"
 alt = "Java How to Program book cover"></p>

By using images as hyperlinks, Web developers can create graphical Web pages that
link to other resources. In Fig. 4.8, we create six different image hyperlinks.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 4.8: nav.html -->
6 <!-- Using images as link anchors -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Navigation Bar
11 </title>
12 </head>
13
14 <body>
15
16 <p>
17
18 <img src = "buttons/links.jpg" width = "65"
19 height = "50" alt = "Links Page" />
20

21
22
23 <img src = "buttons/list.jpg" width = "65"
24 height = "50" alt = "List Example Page" />
25

26
27
28 <img src = "buttons/contact.jpg" width = "65"
29 height = "50" alt = "Contact Page" />
30

31
32
33 <img src = "buttons/header.jpg" width = "65"
34 height = "50" alt = "Header Page" />
35

36

Fig. 4.8Fig. 4.8Fig. 4.8Fig. 4.8 Using images as link anchors (part 1 of 2).

iw3htp2.book Page 114 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 115

Lines 17–20 create an image hyperlink by nesting an img element nested in an anchor
(a) element. The value of the img element’s src attribute value specifies that this image
(links.jpg) resides in a directory named buttons. The buttons directory and the
XHTML document are in the same directory. Images from other Web documents also can
be referenced (after obtaining permission from the document’s owner) by setting the src
attribute to the name and location of the image.

37
38 <img src = "buttons/table.jpg" width = "65"
39 height = "50" alt = "Table Page" />
40

41
42
43 <img src = "buttons/form.jpg" width = "65"
44 height = "50" alt = "Feedback Form" />
45

46 </p>
47
48 </body>
49 </html>

Fig. 4.8Fig. 4.8Fig. 4.8Fig. 4.8 Using images as link anchors (part 2 of 2).

iw3htp2.book Page 115 Wednesday, July 18, 2001 9:01 AM

116 Introduction to XHTML: Part 1 Chapter 4

On line 20, we introduce the br element, which most browsers render as a line break.
Any markup or text following a br element is rendered on the next line. Like the img ele-
ment, br is an example of an empty element terminated with a forward slash. We add a
space before the forward slash to enhance readability.

4.8 Special Characters and More Line Breaks
When marking up text, certain characters or symbols (e.g., <) may be difficult to embed
directly into an XHTML document. Some keyboards may not provide these symbols, or the
presence of these symbols may cause syntax errors. For example, the markup

<p>if x < 10 then increment x by 1</p>

results in a syntax error because it uses the less-than character (<), which is reserved for
start tags and end tags such as <p> and </p>. XHTML provides special characters or en-
tity references (in the form &code;) for representing these characters. We could correct the
previous line by writing

<p>if x < 10 then increment x by 1</p>

which uses the special character < for the less-than symbol.
Figure 4.9 demonstrates how to use special characters in an XHTML document. For a

list of special characters, see Appendix A, Special Characters.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 4.9: contact2.html -->
6 <!-- Inserting special characters -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Contact Page
11 </title>
12 </head>
13
14 <body>
15
16 <!-- special characters are entered -->
17 <!-- using the form &code; -->
18 <p>
19 Click
20 here
21 to open an e-mail message addressed to
22 deitel@deitel.com.
23 </p>
24
25 <hr /> <!-- inserts a horizontal rule -->
26

Fig. 4.9Fig. 4.9Fig. 4.9Fig. 4.9 Inserting special characters into XHTML (part 1 of 2).

iw3htp2.book Page 116 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 117

Lines 27–28 contain other special characters, which are expressed as either word
abbreviations (e.g., amp for ampersand and copy for copyright) or hexadecimal (hex)
values (e.g., & is the hexadecimal representation of &). Hexadecimal numbers
are base 16 numbers—digits in a hexadecimal number have values from 0 to 15 (a total of
16 different values). The letters A–F represent the hexadecimal digits corresponding to dec-
imal values 10–15. Thus in hexadecimal notation we can have numbers like 876 consisting
solely of decimal-like digits, numbers like DA19F consisting of digits and letters, and num-
bers like DCB consisting solely of letters. We discuss hexadecimal numbers in detail in
Appendix D, Number Systems.

In lines 34–36, we introduce three new elements. Most browsers render the del ele-
ment as strike-through text. With this format users can easily indicate document revisions.
To superscript text (i.e., raise text on a line with a decreased font size) or subscript text (i.e.,
lower text on a line with a decreased font size), use the sup and sub elements, respec-
tively. We also use special characters < for a less-than sign and ¼ for the
fraction 1/4 (line 38).

27 <p>All information on this site is ©
28 Deitel & Associates, Inc. 2002.</p>
29
30 <!-- to strike through text use tags -->
31 <!-- to subscript text use <sub> tags -->
32 <!-- to superscript text use <sup> tags -->
33 <!-- these tags are nested inside other tags -->
34 <p>You may download 3.14 x 10²
35 characters worth of information from this site.
36 Only _{one} download per hour is permitted.</p>
37
38 <p>Note: < ¼ of the information
39 presented here is updated daily.</p>
40
41 </body>
42 </html>

Fig. 4.9Fig. 4.9Fig. 4.9Fig. 4.9 Inserting special characters into XHTML (part 2 of 2).

iw3htp2.book Page 117 Wednesday, July 18, 2001 9:01 AM

118 Introduction to XHTML: Part 1 Chapter 4

In addition to special characters, this document introduces a horizontal rule, indicated
by the <hr /> tag in line 24. Most browsers render a horizontal rule as a horizontal line.
The <hr /> tag also inserts a line break above and below the horizontal line.

4.9 Unordered Lists
Up to this point, we have presented basic XHTML elements and attributes for linking to
resources, creating headers, using special characters and incorporating images. In this sec-
tion, we discuss how to organize information on a Web page using lists. In Chapter 5, we
introduce another feature for organizing information, called a table. Figure 4.10 displays
text in an unordered list (i.e., a list that does not order its items by letter or number). The
unordered list element ul creates a list in which each item begins with a bullet symbol
(called a disc).

Each entry in an unordered list (element ul in line 20) is an li (list item) element
(lines 23, 25, 27 and 29). Most Web browsers render these elements with a line break and
a bullet symbol indented from the beginning of the new line.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 4.10: links2.html -->
6 <!-- Unordered list containing hyperlinks -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Links</title>
11 </head>
12
13 <body>
14
15 <h1>Here are my favorite sites</h1>
16
17 <p>Click on a name to go to that page.</p>
18
19 <!-- create an unordered list -->
20
21
22 <!-- add four list items -->
23 Deitel
24
25 W3C
26
27 Yahoo!
28
29 CNN
30
31 </body>
32 </html>

Fig. 4.10Fig. 4.10Fig. 4.10Fig. 4.10 Unordered lists in XHTML (part 1 of 2).

iw3htp2.book Page 118 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 119

4.10 Nested and Ordered Lists
Lists may be nested to represent hierarchical relationships, as in an outline format.
Figure 4.11 demonstrates nested lists and ordered lists (i.e., list that order their items by let-
ter or number).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 4.11: list.html -->
6 <!-- Advanced Lists: nested and ordered -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Lists</title>
11 </head>
12
13 <body>
14
15 <h1>The Best Features of the Internet</h1>
16
17 <!-- create an unordered list -->
18
19 You can meet new people from countries around
20 the world.

Fig. 4.11Fig. 4.11Fig. 4.11Fig. 4.11 Nested and ordered lists in XHTML (part 1 of 3).

Fig. 4.10Fig. 4.10Fig. 4.10Fig. 4.10 Unordered lists in XHTML (part 2 of 2).

iw3htp2.book Page 119 Wednesday, July 18, 2001 9:01 AM

120 Introduction to XHTML: Part 1 Chapter 4

21
22 You have access to new media as it becomes public:
23
24 <!-- this starts a nested list, which uses a -->
25 <!-- modified bullet. The list ends when you -->
26 <!-- close the tag. -->
27
28 New games
29
30 New applications
31
32 <!-- ordered nested list -->
33 <ol type = "I">
34 For business
35 For pleasure
36
37
38
39 Around the clock news
40 Search engines
41 Shopping
42
43 Programming
44
45 <!-- another nested ordered list -->
46 <ol type = "a">
47 XML
48 Java
49 XHTML
50 Scripts
51 New languages
52
53
54
55
56 <!-- ends the nested list of line 27 -->
57
58
59 Links
60 Keeping in touch with old friends
61 It is the technology of the future!
62
63 <!-- ends the unordered list of line 18 -->
64
65 <h1>My 3 Favorite CEOs</h1>
66
67 <!-- ol elements without a type attribute -->
68 <!-- have a numeric sequence type (i.e., 1, 2, ...) -->
69
70 Harvey Deitel
71 Bill Gates
72 Michael Dell
73

Fig. 4.11Fig. 4.11Fig. 4.11Fig. 4.11 Nested and ordered lists in XHTML (part 2 of 3).

iw3htp2.book Page 120 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 121

The first ordered list begins on line 33. Attribute type specifies the sequence type (i.e.,
the set of numbers or letters used in the ordered list). In this case, setting type to "I" spec-
ifies upper-case roman numerals. Line 46 begins the second ordered list and sets attribute
type to "a", specifying lowercase letters for the list items. The last ordered list (lines 64–
68) does not use attribute type. By default, the list’s items are enumerated from one to three.

A Web browser indents each nested list to indicate a hierarchal relationship. By
default, the items in the outermost unordered list (line 18) are preceded by discs. List items
nested inside the unordered list of line 18 are preceded by circles. Although not demon-
strated in this example, subsequent nested list items are preceded by squares. Unordered
list items may be explicitly set to discs, circles or squares by setting the ul element’s type
attribute to "disc", "circle" or "square", respectively.

74
75 </body>
76 </html>

Fig. 4.11Fig. 4.11Fig. 4.11Fig. 4.11 Nested and ordered lists in XHTML (part 3 of 3).

iw3htp2.book Page 121 Wednesday, July 18, 2001 9:01 AM

122 Introduction to XHTML: Part 1 Chapter 4

Note: XHTML is based on HTML (HyperText Markup Language)—a legacy tech-
nology of the World Wide Web Consortium (W3C). In HTML, it was common to specify
the document’s content, structure and formatting. Formatting might specify where the
browser places an element in a Web page or the fonts and colors used to display an element.
The so called strict form of XHTML allows only a document’s content and structure to
appear in a valid XHTML document, and not that document’s formatting. Our first several
examples used only the strict form of XHTML. In fact, the purpose of lines 2–3 in each of
the examples before Fig. 4.11 was to indicate to the browser that each document conformed
to the strict XHTML definition. This enables the browser to confirm that the document is
valid. There are other XHTML document types as well. This particular example uses the
XHTML transitional document type. This document type exists to enable XHTML docu-
ment creators to use legacy HTML technologies in an XHTML document. In this example,
the type attribute of the ol element (lines 33 and 46) is a legacy HTML technology.
Changing lines 2–3 as shown in this example, enables us to demonstrate ordered lists with
different numbering formats. Normally, such formatting is specified with style sheets
(Chapter 6). Most examples in this book adhere to strict HTML form.

Testing and Debugging Tip 4.2
Most current browsers still attempt to render XHTML documents, even if they are invalid. 4.2

4.11 Internet and World Wide Web Resources
www.w3.org/TR/xhtml1
The XHTML 1.0 Recommendation contains XHTML 1.0 general information, compatibility issues,
document type definition information, definitions, terminology and much more.

www.xhtml.org
XHTML.org provides XHTML development news and links to other XHTML resources, which in-
clude books and articles.

www.w3schools.com/xhtml/default.asp
The XHTML School provides XHTML quizzes and references. This page also contains links to XHT-
ML syntax, validation and document type definitions.

validator.w3.org
This is the W3C XHTML validation service site.

hotwired.lycos.com/webmonkey/00/50/index2a.html
This site provides an article about XHTML. Key sections of the article overview XHTML and discuss
tags, attributes and anchors.

wdvl.com/Authoring/Languages/XML/XHTML
The Web Developers Virtual Library provides an introduction to XHTML. This site also contains ar-
ticles, examples and links to other technologies.

www.w3.org/TR/1999/xhtml-modularization-19990406/DTD/doc
The XHTML 1.0 DTD documentation site provides links to DTD documentation for the strict, tran-
sitional and frameset document type definitions.

SUMMARY
• XHTML (Extensible Hypertext Markup Language) is a markup language for creating Web pages.

iw3htp2.book Page 122 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 123

• A key issue when using XHTML is the separation of the presentation of a document (i.e., the
document’s appearance when rendered by a browser) from the structure of the information in
the document.

• In XHTML, text is marked up with elements, delimited by tags that are names contained in pairs
of angle brackets. Some elements may contain additional markup called attributes, which provide
additional information about the element.

• A machine that runs specialized piece of software called a Web server stores XHTML documents.

• XHTML documents that are syntactically correct are guaranteed to render properly. XHTML doc-
uments that contain syntax errors may not display properly.

• Validation services (e.g., validator.w3.org) ensure that an XHTML document is syntacti-
cally correct.

• Every XHTML document contains a start <html> tag and an end </html> tag.

• Comments in XHTML always begin with <!-- and end with -->. The browser ignores all text
inside a comment.

• Every XHTML document contains a head element, which generally contains information, such
as a title, and a body element, which contains the page content. Information in the head element
generally is not rendered in the display window but may be made available to the user through oth-
er means.

• The title element names a Web page. The title usually appears in the colored bar (called the
title bar) at the top of the browser window and also appears as the text identifying a page when
users add your page to their list of Favorites or Bookmarks.

• The body of an XHTML document is the area in which the document’s content is placed. The con-
tent may include text and tags.

• All text placed between the <p> and </p> tags form one paragraph.

• XHTML provides six headers (h1 through h6) for specifying the relative importance of informa-
tion. Header element h1 is considered the most significant header and is rendered in a larger font
than the other five headers. Each successive header element (i.e., h2, h3, etc.) is rendered in a
smaller font.

• Web browsers typically underline text hyperlinks and color them blue by default.

• The tag renders text in a bold font.

• Users can insert links with the a (anchor) element. The most important attribute for the a element
is href, which specifies the resource (e.g., page, file, e-mail address, etc.) being linked.

• Anchors can link to an e-mail address using a mailto URL. When someone clicks this type of
anchored link, most browsers launch the default e-mail program (e.g., Outlook Express) to initiate
e-mail messages to the linked addresses.

• The img element’s src attribute specifies an image’s location. Optional attributes width and
height specify the image width and height, respectively. Images are measured in pixels (“picture
elements”), which represent dots of color on the screen. Every img element in a valid XHTML
document must have an alt attribute, which contains text that is displayed if the client cannot ren-
der the image.

• The alt attribute makes Web pages more accessible to users with disabilities, especially those
with vision impairments.

• Some XHTML elements are empty elements and contain only attributes and do not mark up text.
Empty elements (e.g., img) must be terminated, either by using the forward slash character (/) or
by explicitly writing an end tag.

iw3htp2.book Page 123 Wednesday, July 18, 2001 9:01 AM

124 Introduction to XHTML: Part 1 Chapter 4

• The br element causes most browsers to render a line break. Any markup or text following a br
element is rendered on the next line.

• XHTML provides special characters or entity references (in the form &code;) for representing
characters that cannot be marked up.

• Most browsers render a horizontal rule, indicated by the <hr /> tag, as a horizontal line. The hr
element also inserts a line break above and below the horizontal line.

• The unordered list element ul creates a list in which each item in the list begins with a bullet sym-
bol (called a disc). Each entry in an unordered list is an li (list item) element. Most Web browsers
render these elements with a line break and a bullet symbol at the beginning of the line.

• Lists may be nested to represent hierarchical data relationships.

• Attribute type specifies the sequence type (i.e., the set of numbers or letters used in the ordered list).

TERMINOLOGY

SELF-REVIEW EXERCISES
4.1 State whether the following are true or false. If false, explain why.

a) Attribute type, when used with an ol element, specifies a sequence type.

<!--…--> (XHTML comment) (list item) tag
a element (<a>…) linked document
alt attribute mailto: URL
& (& special character) markup language
anchor nested list
angle brackets (< >) ol (ordered list) element
attribute p (paragraph) element
body element special character
br (line break) element src attribute (img)
comments in XHTML tag
© (© special character) sub element
disc subscript
element superscript
e-mail anchor syntax
empty tag tag
Extensible Hypertext Markup Language
 (XHTML)

text editor
text editor

head element title element
header type attribute
header elements (h1 through h6) unordered-list element (ul)
height attribute valid document
hexadecimal code Web page
<hr /> tag (horizontal rule) width attribute
href attribute World Wide Web (WWW)
.htm (XHTML file-name extension) XHTML (Extensible Hypertext

 Markup Language)<html> tag
.html (XHTML file-name extension) XHTML comment
hyperlink XHTML markup
image hyperlink XHTML tag
img element XML declaration
level of nesting xmlns attribute

iw3htp2.book Page 124 Wednesday, July 18, 2001 9:01 AM

Chapter 4 Introduction to XHTML: Part 1 125

b) An ordered list cannot be nested inside an unordered list.
c) XHTML is an acronym for XML HTML.
d) Element br represents a line break.
e) Hyperlinks are marked up with <link> tags.

4.2 Fill in the blanks in each of the following:
a) The element inserts a horizontal rule.
b) A superscript is marked up using element and a subscript is marked up using

element .
c) The least important header element is and the most important header element

is .
d) Element marks up an unordered list.
e) Element marks up a paragraph.

ANSWERS TO SELF-REVIEW EXERCISES
4.1 a) True. b) False. An ordered list can be nested inside an unordered list. c) False. XHTML is
an acronym for Extensible HyperText Markup Language. d) True. e) False. A hyperlink is marked up
with <a> tags.

4.2 a) hr. b) sup, sub. c) Document Type Definition. d) h6, h1. e) ul.

EXERCISES
4.3 Use XHTML to create a document that contains the to mark up the following text:

Internet and World Wide Web How to Program: Second Edition
Welcome to the world of Internet programming. We have provided topical coverage for
many Internet-related topics.

Use h1 for the title (the first line of text), p for text (the second and third lines of text) and sub for
each world that begins with a capital letter. Insert a horizontal rule between the h1 element and the p
element. Open your new document in a Web browser to view the marked up document.

4.4 Why is the following markup invalid?

<p>Here is some text...
<hr />
<p>And some more text...</p>

4.5 Why is the following markup invalid?

<p>Here is some text...

And some more text...</p>

4.6 An image named deitel.gif is 200 pixels wide and 150 pixels high. Use the width and
height attributes of the tag to (a) increase the size of the image by 100%; (b) increase the
size of the image by 50%; and (c) change the width-to-height ratio to 2:1, keeping the width attained
in part (a). Write separate XHTML statements for parts (a), (b) and (c).

4.7 Create a link to each of the following: (a) index.html, located in the files directory;
(b) index.html, located in the text subdirectory of the files directory; (c) index.html, lo-
cated in the other directory in your parent directory [Hint: .. signifies parent directory.]; (d) A
link to the President of the United States’ e-mail address (president@whitehouse.gov); and
(e) An FTP link to the file named README in the pub directory of ftp.cdrom.com [Hint: Use
ftp://.].

iw3htp2.book Page 125 Wednesday, July 18, 2001 9:01 AM

126 Introduction to XHTML: Part 1 Chapter 4

4.8 Create an XHTML document that marks up your resume.

4.9 Create an XHTML document containing three ordered lists: ice cream, soft serve and frozen
yogurt. Each ordered list should contain a nested, unordered list of your favorite flavors. Provide a
minimum of three flavors in each unordered list.

4.10 Create an XHTML document that uses an image as an e-mail link. Use attribute alt to pro-
vide a description of the image and link.

4.11 Create an XHTML document that contains an ordered list of your favorite Web sites. Your
page should contain the header “My Favorite Web Sites.”

4.12 Create an XHTML document that contains links to all the examples presented in this chapter.
[Hint: Place all the chapter examples in one directory].

4.13 Modify the XHTML document (picture.html) in Fig. 4.7 by removing all end tags. Val-
idate this document using the W3C validation service. What happens? Next remove the alt at-
tributes from the tags and revalidate your document. What happens?

4.14 Identify each of the following as either an element or an attribute:
a) html
b) width
c) href
d) br
e) h3
f) a
g) src

4.15 State which of the following statements are true and which are false. If false, explain why.
a) A valid XHTML document can contain uppercase letters in element names.
b) Tags need not be closed in a valid XHTML document.
c) XHTML documents can have the file extension .htm.
d) Valid XHTML documents can contain tags that overlap.
e) &less; is the special character for the less-than (<) character.
f) In a valid XHTML document, can be nested inside either or tags.

4.16 Fill in the blanks for each of the following:
a) XHTML comments begin with <!-- and end with .
b) In XHTML, attribute values must be enclosed in .
c) is the special character for an ampersand.
d) Element can be used to bold text.

iw3htp2.book Page 126 Wednesday, July 18, 2001 9:01 AM

5
Introduction to XHTML:

Part 2

Objectives
• To be able to create tables with rows and columns of

data.
• To be able to control table formatting.
• To be able to create and use forms.
• To be able to create and use image maps to aid in

Web-page navigation.
• To be able to make Web pages accessible to search

engines using <meta> tags.
• To be able to use the frameset element to display

multiple Web pages in a single browser window.
Yea, from the table of my memory
I’ll wipe away all trivial fond records.
William Shakespeare

iw3htp2.book Page 127 Wednesday, July 18, 2001 9:01 AM

128 Introduction to XHTML: Part 2 Chapter 5

5.1 Introduction
In the previous chapter, we introduced XHTML. We built several complete Web pages fea-
turing text, hyperlinks, images, horizontal rules and line breaks. In this chapter, we discuss
more substantial XHTML features, including presentation of information in tables and in-
corporating forms for collecting information from a Web-page visitor. We also introduce
internal linking and image maps for enhancing Web page navigation and frames for dis-
playing multiple documents in the browser.

By the end of this chapter, you will be familiar with the most commonly used XHTML
features and will be able to create more complex Web documents. In Chapter 6, we discuss
how to make Web pages more visually appealing by manipulating fonts, colors and text.

5.2 Basic XHTML Tables
This section presents XHTML tables—a frequently used feature that organizes data into
rows and columns. Our first example (Fig. 5.1) uses a table with six rows and two columns
to display price information for fruit.

Outline

5.1 Introduction
5.2 Basic XHTML Tables
5.3 Intermediate XHTML Tables and Formatting
5.4 Basic XHTML Forms
5.5 More Complex XHTML Forms
5.6 Internal Linking
5.7 Creating and Using Image Maps
5.8 meta Elements
5.9 frameset Element
5.10 Nested framesets
5.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 5.1: table1.html -->
6 <!-- Creating a basic table -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>A simple XHTML table</title>
11 </head>

Fig. 5.1Fig. 5.1Fig. 5.1Fig. 5.1 XHTML table (part 1 of 3).

iw3htp2.book Page 128 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 129

12
13 <body>
14
15 <!-- the <table> tag opens a table -->
16 <table border = "1" width = "40%"
17 summary = "This table provides information about
18 the price of fruit">
19
20 <!-- the <caption> tag summarizes the table's -->
21 <!-- contents (this helps the visually impaired) -->
22 <caption>Price of Fruit</caption>
23
24 <!-- the <thead> is the first section of a table -->
25 <!-- it formats the table header area -->
26 <thead>
27 <tr> <!-- <tr> inserts a table row -->
28 <th>Fruit</th> <!-- insert a heading cell -->
29 <th>Price</th>
30 </tr>
31 </thead>
32
33 <!-- all table content is enclosed -->
34 <!-- within the <tbody> -->
35 <tbody>
36 <tr>
37 <td>Apple</td> <!-- insert a data cell -->
38 <td>$0.25</td>
39 </tr>
40
41 <tr>
42 <td>Orange</td>
43 <td>$0.50</td>
44 </tr>
45
46 <tr>
47 <td>Banana</td>
48 <td>$1.00</td>
49 </tr>
50
51 <tr>
52 <td>Pineapple</td>
53 <td>$2.00</td>
54 </tr>
55 </tbody>
56
57 <!-- the <tfoot> is the last section of a table -->
58 <!-- it formats the table footer -->
59 <tfoot>
60 <tr>
61 <th>Total</th>
62 <th>$3.75</th>
63 </tr>
64 </tfoot>

Fig. 5.1Fig. 5.1Fig. 5.1Fig. 5.1 XHTML table (part 2 of 3).

iw3htp2.book Page 129 Wednesday, July 18, 2001 9:01 AM

130 Introduction to XHTML: Part 2 Chapter 5

Tables are defined with the table element. Lines 16–18 specify the start tag for a
table element that has several attributes. The border attribute specifies the table’s border
width in pixels. To create a table without a border, set border to "0". This example
assigns attribute width "40%" to set the table’s width to 40 percent of the browser’s
width. A developer can also set attribute width to a specified number of pixels.

Testing and Debugging Tip 5.1
Try resizing the browser window to see how the width of the window affects the width of the
table. 5.1

As its name implies, attribute summary (line 17) describes the table’s contents.
Speech devices use this attribute to make the table more accessible to users with visual
impairments. The caption element (line 22) describes the table’s content and helps text-
based browsers interpret the table data. Text inside the <caption> tag is rendered above
the table by most browsers. Attribute summary and element caption are two of many
XHTML features that make Web pages more accessible to users with disabilities. We dis-
cuss accessibility programming in detail in Chapter 34, Accessibility.

A table has three distinct sections—head, body and foot. The head section (or header
cell) is defined with a thead element (lines 26–31), which contains header information
such as column names. Each tr element (lines 27–30) defines an individual table row. The
columns in the head section are defined with th elements. Most browsers center and dis-
play text formatted by th (table header column) elements in bold. Table header elements
are nested inside table row elements.

The body section, or table body, contains the table’s primary data. The table body
(lines 35–55) is defined in a tbody element. Data cells contain individual pieces of data
and are defined with td (table data) elements.

65
66 </table>
67
68 </body>
69 </html>

Fig. 5.1Fig. 5.1Fig. 5.1Fig. 5.1 XHTML table (part 3 of 3).

Table
border

Table
header

Table
footer

Table
body

iw3htp2.book Page 130 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 131

The foot section (lines 59–64) is defined with a tfoot (table foot) element and repre-
sents a footer. Common text placed in the footer includes calculation results and footnotes.
Like other sections, the foot section can contain table rows and each row can contain columns.

5.3 Intermediate XHTML Tables and Formatting
In the previous section, we explored the structure of a basic table. In Fig. 5.2, we enhance
our discussion of tables by introducing elements and attributes that allow the document au-
thor to build more complex tables.

The table begins on line 17. Element colgroup (lines 22–27) groups and formats
columns. The col element (line 26) specifies two attributes in this example. The align
attribute determines the alignment of text in the column. The span attribute determines
how many columns the col element formats. In this case, we set align’s value to
"right" and span’s value to "1" to right-align text in the first column (the column con-
taining the picture of the camel in the sample screen capture).

Table cells are sized to fit the data they contain. Document authors can create larger
data cells by using attributes rowspan and colspan. The values assigned to these
attributes specify the number of rows or columns occupied by a cell. The th element at
lines 36–39 uses the attribute rowspan = "2" to allow the cell containing the picture of
the camel to use two vertically adjacent cells (thus the cell spans two rows). The th ele-
ment at lines 42–45 uses the attribute colspan = "4" to widen the header cell (containing
Camelid comparison and Approximate as of 9/2002) to span four cells.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 5.2: table2.html -->
6 <!-- Intermediate table design -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Tables</title>
11 </head>
12
13 <body>
14
15 <h1>Table Example Page</h1>
16
17 <table border = "1">
18 <caption>Here is a more complex sample table.</caption>
19
20 <!-- <colgroup> and <col> tags are used to -->
21 <!-- format entire columns -->
22 <colgroup>
23
24 <!-- span attribute determines how many columns -->
25 <!-- the <col> tag affects -->
26 <col align = "right" span = "1" />

Fig. 5.2Fig. 5.2Fig. 5.2Fig. 5.2 Complex XHTML table (part 1 of 3).

iw3htp2.book Page 131 Wednesday, July 18, 2001 9:01 AM

132 Introduction to XHTML: Part 2 Chapter 5

27 </colgroup>
28
29 <thead>
30
31 <!-- rowspans and colspans merge the specified -->
32 <!-- number of cells vertically or horizontally -->
33 <tr>
34
35 <!-- merge two rows -->
36 <th rowspan = "2">
37 <img src = "camel.gif" width = "205"
38 height = "167" alt = "Picture of a camel" />
39 </th>
40
41 <!-- merge four columns -->
42 <th colspan = "4" valign = "top">
43 <h1>Camelid comparison</h1>

44 <p>Approximate as of 9/2002</p>
45 </th>
46 </tr>
47
48 <tr valign = "bottom">
49 <th># of Humps</th>
50 <th>Indigenous region</th>
51 <th>Spits?</th>
52 <th>Produces Wool?</th>
53 </tr>
54
55 </thead>
56
57 <tbody>
58
59 <tr>
60 <th>Camels (bactrian)</th>
61 <td>2</td>
62 <td>Africa/Asia</td>
63 <td rowspan = "2">Llama</td>
64 <td rowspan = "2">Llama</td>
65 </tr>
66
67 <tr>
68 <th>Llamas</th>
69 <td>1</td>
70 <td>Andes Mountains</td>
71 </tr>
72
73 </tbody>
74
75 </table>
76
77 </body>
78 </html>

Fig. 5.2Fig. 5.2Fig. 5.2Fig. 5.2 Complex XHTML table (part 2 of 3).

iw3htp2.book Page 132 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 133

Common Programming Error 5.1
When using colspan and rowspan to adjust the size of table data cells, keep in mind that
the modified cells will occupy more than one column or row. Other rows or columns of the
table must compensate for the extra rows or columns spanned by individual cells. If you do
not, the formatting of your table will be distorted and you may inadvertently create more col-
umns and rows than you originally intended. 5.1

Line 42 introduces attribute valign, which aligns data vertically and may be
assigned one of four values—"top" aligns data with the top of the cell, "middle" ver-
tically centers data (the default for all data and header cells), "bottom" aligns data with
the bottom of the cell and "baseline" ignores the fonts used for the row data and sets
the bottom of all text in the row on a common baseline (i.e., the horizontal line to which
each character in a word is aligned).

5.4 Basic XHTML Forms
When browsing Web sites, users often need to provide information such as e-mail address-
es, search keywords and zip codes. XHTML provides a mechanism, called a form, for col-
lecting such user information.

Data that users enter on a Web page normally is sent to a Web server that provides
access to a site’s resources (e.g., XHTML documents, images, etc.). These resources are
either located on the same machine as the Web server or on a machine that the Web server
can access through the network. When a browser requests a Web page or file that is located
on a server, the server processes the request and returns the requested resource. A request

Fig. 5.2Fig. 5.2Fig. 5.2Fig. 5.2 Complex XHTML table (part 3 of 3).

iw3htp2.book Page 133 Wednesday, July 18, 2001 9:01 AM

134 Introduction to XHTML: Part 2 Chapter 5

contains the name and path of the desired resource and the method of communication
(called a protocol). XHTML documents use the HyperText Transfer Protocol (HTTP).

Figure 5.3 sends the form data to the Web server which passes the form data to a CGI
(Common Gateway Interface) script (i.e., a program) written in Perl, C or some other lan-
guage. The script processes the data received from the Web server and typically returns
information to the Web server. The Web server then sends the information in the form of
an XHTML document to the Web browser. We discuss Web servers in Chapter 21. [Note:
This example demonstrates client-side functionality. If the form is submitted (by clicking
Submit Your Entries) an error occurs. In later chapters such as Perl and Python, we
present the server-side programming necessary to process information entered into a form.]

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 5.3: form.html -->
6 <!-- Form Design Example 1 -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Forms</title>
11 </head>
12
13 <body>
14
15 <h1>Feedback Form</h1>
16
17 <p>Please fill out this form to help
18 us improve our site.</p>
19
20 <!-- this tag starts the form, gives the -->
21 <!-- method of sending information and the -->
22 <!-- location of form scripts -->
23 <form method = "post" action = "/cgi-bin/formmail">
24
25 <p>
26 <!-- hidden inputs contain non-visual -->
27 <!-- information -->
28 <input type = "hidden" name = "recipient"
29 value = "deitel@deitel.com" />
30 <input type = "hidden" name = "subject"
31 value = "Feedback Form" />
32 <input type = "hidden" name = "redirect"
33 value = "main.html" />
34 </p>
35
36 <!-- <input type = "text"> inserts a text box -->
37 <p><label>Name:
38 <input name = "name" type = "text" size = "25"
39 maxlength = "30" />
40 </label></p>

Fig. 5.3Fig. 5.3Fig. 5.3Fig. 5.3 Simple form with hidden fields and a text box (part 1 of 2).

iw3htp2.book Page 134 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 135

Forms can contain visual and non-visual components. Visual components include
clickable buttons and other graphical user interface components with which users interact.
Non-visual components, called hidden inputs, store any data that the document author spec-
ifies, such as e-mail addresses and XHTML document file names that act as links. The form
begins on line 23 with the form element. Attribute method specifies how the form’s data
is sent to the Web server.

Using method = "post" appends form data to the browser request, which contains
the protocol (i.e., HTTP) and the requested resource’s URL. Scripts located on the Web
server’s computer (or on a computer accessible through the network) can access the form
data sent as part of the request. For example, a script may take the form information and
update an electronic mailing list. The other possible value, method = "get" appends the
form data directly to the end of the URL. For example, the URL /cgi-bin/formmail
might have the form information name = bob appended to it.

 The action attribute in the <form> tag specifies the URL of a script on the Web
server; in this case, it specifies a script that e-mails form data to an address. Most Internet
Service Providers (ISPs) have a script like this on their site; ask the Web site system admin-
istrator how to set up an XHTML document to use the script correctly.

41
42 <p>
43 <!-- input types "submit" and "reset" insert -->
44 <!-- buttons for submitting and clearing the -->
45 <!-- form's contents -->
46 <input type = "submit" value =
47 "Submit Your Entries" />
48 <input type = "reset" value =
49 "Clear Your Entries" />
50 </p>
51
52 </form>
53
54 </html>

Fig. 5.3Fig. 5.3Fig. 5.3Fig. 5.3 Simple form with hidden fields and a text box (part 2 of 2).

iw3htp2.book Page 135 Wednesday, July 18, 2001 9:01 AM

136 Introduction to XHTML: Part 2 Chapter 5

Lines 28–33 define three input elements that specify data to provide to the script that
processes the form (also called the form handler). These three input element have type
attribute "hidden", which allows the document author to send form data that is not
entered by a user to a script.

The three hidden inputs are: an e-mail address to which the data will be sent, the e-
mail’s subject line and a URL where the browser will be redirected after submitting the
form. Two other input attributes are name, which identifies the input element, and
value, which provides the value that will be sent (or posted) to the Web server.

Good Programming Practice 5.1
Place hidden input elements at the beginning of a form, immediately after the opening
<form> tag. This placement allows document authors to locate hidden input elements
quickly. 5.1

We introduce another type of input in lines 38–39. The "text" input inserts a
text box into the form. Users can type data in text boxes. The label element (lines 37–40)
provides users with information about the input element’s purpose.

Common Programming Error 5.2
Forgetting to include a label element for each form element is a design error. Without
these labels, users cannot determine the purpose of individual form elements. 5.2

The input element’s size attribute specifies the number of characters visible in the
text box. Optional attribute maxlength limits the number of characters input into the text
box. In this case, the user is not permitted to type more than 30 characters into the text box.

There are two types of input elements in lines 46–49. The "submit" input ele-
ment is a button. When the user presses a "submit" button, the browser sends the data in
the form to the Web server for processing. The value attribute sets the text displayed on
the button (the default value is Submit). The "reset" input element allows a user to
reset all form elements to their default values. The value attribute of the "reset"
input element sets the text displayed on the button (the default value is Reset).

5.5 More Complex XHTML Forms
In the previous section, we introduced basic forms. In this section, we introduce elements
and attributes for creating more complex forms. Figure 5.4 contains a form that solicits user
feedback about a Web site.

The textarea element (lines 37–39) inserts a multiline text box, called a text area,
into the form. The number of rows is specified with the rows attribute and the number of
columns (i.e., characters) is specified with the cols attribute. In this example, the tex-
tarea is four rows high and 36 characters wide. To display default text in the text area,
place the text between the <textarea> and </textarea> tags. Default text can be
specified in other input types, such as text boxes, by using the value attribute.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4

Fig. 5.4Fig. 5.4Fig. 5.4Fig. 5.4 Form with textareas, password boxes and checkboxes (part 1 of 4).

iw3htp2.book Page 136 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 137

5 <!-- Fig. 5.4: form2.html -->
6 <!-- Form Design Example 2 -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Forms</title>
11 </head>
12
13 <body>
14
15 <h1>Feedback Form</h1>
16
17 <p>Please fill out this form to help
18 us improve our site.</p>
19
20 <form method = "post" action = "/cgi-bin/formmail">
21
22 <p>
23 <input type = "hidden" name = "recipient"
24 value = "deitel@deitel.com" />
25 <input type = "hidden" name = "subject"
26 value = "Feedback Form" />
27 <input type = "hidden" name = "redirect"
28 value = "main.html" />
29 </p>
30
31 <p><label>Name:
32 <input name = "name" type = "text" size = "25" />
33 </label></p>
34
35 <!-- <textarea> creates a multiline textbox -->
36 <p><label>Comments:

37 <textarea name = "comments" rows = "4" cols = "36">
38 Enter your comments here.
39 </textarea>
40 </label></p>
41
42 <!-- <input type = "password"> inserts a -->
43 <!-- textbox whose display is masked with -->
44 <!-- asterisk characters -->
45 <p><label>E-mail Address:
46 <input name = "email" type = "password"
47 size = "25" />
48 </label></p>
49
50 <p>
51 Things you liked:

52
53 <label>Site design
54 <input name = "thingsliked" type = "checkbox"
55 value = "Design" /></label>
56

Fig. 5.4Fig. 5.4Fig. 5.4Fig. 5.4 Form with textareas, password boxes and checkboxes (part 2 of 4).

iw3htp2.book Page 137 Wednesday, July 18, 2001 9:01 AM

138 Introduction to XHTML: Part 2 Chapter 5

57 <label>Links
58 <input name = "thingsliked" type = "checkbox"
59 value = "Links" /></label>
60
61 <label>Ease of use
62 <input name = "thingsliked" type = "checkbox"
63 value = "Ease" /></label>
64
65 <label>Images
66 <input name = "thingsliked" type = "checkbox"
67 value = "Images" /></label>
68
69 <label>Source code
70 <input name = "thingsliked" type = "checkbox"
71 value = "Code" /></label>
72 </p>
73
74 <p>
75 <input type = "submit" value =
76 "Submit Your Entries" />
77 <input type = "reset" value =
78 "Clear Your Entries" />
79 </p>
80
81 </form>
82 </html>

Fig. 5.4Fig. 5.4Fig. 5.4Fig. 5.4 Form with textareas, password boxes and checkboxes (part 3 of 4).

iw3htp2.book Page 138 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 139

The "password" input in lines 46–47, inserts a password box with the specified
size. A password box allows users to enter sensitive information, such as credit card num-
bers and passwords, by “masking” the information input with asterisks. The actual value
input is sent to the Web server, not the asterisks that mask the input.

Lines 54–71 introduce the checkbox form element. Checkboxes enable users to select
from a set of options. When a user selects a checkbox, a check mark appears in the check
box. Otherwise, the checkbox remains empty. Each "checkbox" input creates a new
checkbox. Checkboxes can be used individually or in groups. Checkboxes that belong to a
group are assigned the same name (in this case, "thingsliked").

Common Programming Error 5.3
When your form has several checkboxes with the same name, you must make sure that they
have different values, or the scripts running on the Web server will not be able to distin-
guish between them. 5.3

We continue our discussion of forms by presenting a third example that introduces sev-
eral more form elements from which users can make selections (Fig. 5.5). In this example, we
introduce two new input types. The first type is the radio button (lines 76–94) specified
with type "radio". Radio buttons are similar to checkboxes, except that only one radio
button in a group of radio buttons may be selected at any time. All radio buttons in a group
have the same name attributes and are distinguished by their different value attributes. The
attribute-value pair checked = "checked" (line 77) indicates which radio button, if any,
is selected initially. The checked attribute also applies to checkboxes.

Fig. 5.4Fig. 5.4Fig. 5.4Fig. 5.4 Form with textareas, password boxes and checkboxes (part 4 of 4).

iw3htp2.book Page 139 Wednesday, July 18, 2001 9:01 AM

140 Introduction to XHTML: Part 2 Chapter 5

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 5.5: form3.html -->
6 <!-- Form Design Example 3 -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Forms</title>
11 </head>
12
13 <body>
14
15 <h1>Feedback Form</h1>
16
17 <p>Please fill out this form to help
18 us improve our site.</p>
19
20 <form method = "post" action = "/cgi-bin/formmail">
21
22 <p>
23 <input type = "hidden" name = "recipient"
24 value = "deitel@deitel.com" />
25 <input type = "hidden" name = "subject"
26 value = "Feedback Form" />
27 <input type = "hidden" name = "redirect"
28 value = "main.html" />
29 </p>
30
31 <p><label>Name:
32 <input name = "name" type = "text" size = "25" />
33 </label></p>
34
35 <p><label>Comments:

36 <textarea name = "comments" rows = "4"
37 cols = "36"></textarea>
38 </label></p>
39
40 <p><label>E-mail Address:
41 <input name = "email" type = "password"
42 size = "25" /></label></p>
43
44 <p>
45 Things you liked:

46
47 <label>Site design
48 <input name = "thingsliked" type = "checkbox"
49 value = "Design" /></label>
50
51 <label>Links
52 <input name = "thingsliked" type = "checkbox"
53 value = "Links" /></label>

Fig. 5.5Fig. 5.5Fig. 5.5Fig. 5.5 Form including radio buttons and drop-down lists (part 1 of 4).

iw3htp2.book Page 140 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 141

54
55 <label>Ease of use
56 <input name = "thingsliked" type = "checkbox"
57 value = "Ease" /></label>
58
59 <label>Images
60 <input name = "thingsliked" type = "checkbox"
61 value = "Images" /></label>
62
63 <label>Source code
64 <input name = "thingsliked" type = "checkbox"
65 value = "Code" /></label>
66 </p>
67
68 <!-- <input type = "radio" /> creates a radio -->
69 <!-- button. The difference between radio buttons -->
70 <!-- and checkboxes is that only one radio button -->
71 <!-- in a group can be selected. -->
72 <p>
73 How did you get to our site?:

74
75 <label>Search engine
76 <input name = "howtosite" type = "radio"
77 value = "search engine" checked = "checked" />
78 </label>
79
80 <label>Links from another site
81 <input name = "howtosite" type = "radio"
82 value = "link" /></label>
83
84 <label>Deitel.com Web site
85 <input name = "howtosite" type = "radio"
86 value = "deitel.com" /></label>
87
88 <label>Reference in a book
89 <input name = "howtosite" type = "radio"
90 value = "book" /></label>
91
92 <label>Other
93 <input name = "howtosite" type = "radio"
94 value = "other" /></label>
95
96 </p>
97
98 <p>
99 <label>Rate our site:
100
101 <!-- the <select> tag presents a drop-down -->
102 <!-- list with choices indicated by the -->
103 <!-- <option> tags -->
104 <select name = "rating">
105 <option selected = "selected">Amazing</option>
106 <option>10</option>

Fig. 5.5Fig. 5.5Fig. 5.5Fig. 5.5 Form including radio buttons and drop-down lists (part 2 of 4).

iw3htp2.book Page 141 Wednesday, July 18, 2001 9:01 AM

142 Introduction to XHTML: Part 2 Chapter 5

107 <option>9</option>
108 <option>8</option>
109 <option>7</option>
110 <option>6</option>
111 <option>5</option>
112 <option>4</option>
113 <option>3</option>
114 <option>2</option>
115 <option>1</option>
116 <option>Awful</option>
117 </select>
118
119 </label>
120 </p>
121
122 <p>
123 <input type = "submit" value =
124 "Submit Your Entries" />
125 <input type = "reset" value = "Clear Your Entries" />
126 </p>
127
128 </form>
129
130 </body>
131 </html>

Fig. 5.5Fig. 5.5Fig. 5.5Fig. 5.5 Form including radio buttons and drop-down lists (part 3 of 4).

iw3htp2.book Page 142 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 143

Common Programming Error 5.4
When using a group of radio buttons in a form, forgetting to set the name attributes to the same
name lets the user select all of the radio buttons at the same time, which is a logic error. 5.4

The select element (lines 104–117) provides a drop-down list of items from which
the user can select an item. The name attribute identifies the drop-down list. The option
element (lines 105–116) adds items to the drop-down list. The option element’s
selected attribute specifies which item initially is displayed as the selected item in the
select element.

5.6 Internal Linking
In Chapter 4, we discussed how to hyperlink one Web page to another. Figure 5.6 introduc-
es internal linking—a mechanism that enables the user to jump between locations in the
same document. Internal linking is useful for long documents that contain many sections.
Clicking an internal link enables users to find a section without scrolling through the entire
document.

Fig. 5.5Fig. 5.5Fig. 5.5Fig. 5.5 Form including radio buttons and drop-down lists (part 4 of 4).

iw3htp2.book Page 143 Wednesday, July 18, 2001 9:01 AM

144 Introduction to XHTML: Part 2 Chapter 5

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 5.6: links.html -->
6 <!-- Internal Linking -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - List</title>
11 </head>
12
13 <body>
14
15 <!-- creates an internal hyperlink -->
16 <p></p>
17 <h1>The Best Features of the Internet</h1>
18
19 <!-- an internal link's address is "#linkname" -->
20 <p>Go to Favorite CEOs</p>
21
22
23 You can meet people from countries
24 around the world.
25
26 You have access to new media as it becomes public:
27
28 New games
29 New applications
30
31 For Business
32 For Pleasure
33
34
35
36 Around the clock news
37 Search Engines
38 Shopping
39 Programming
40
41 XHTML
42 Java
43 Dynamic HTML
44 Scripts
45 New languages
46
47
48
49
50
51 Links
52 Keeping in touch with old friends

Fig. 5.6Fig. 5.6Fig. 5.6Fig. 5.6 Using internal hyperlinks to make pages more navigable (part 1 of 2).

iw3htp2.book Page 144 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 145

53 It is the technology of the future!
54
55
56 <!-- named anchor -->
57 <p></p>
58 <h1>My 3 Favorite CEOs</h1>
59
60 <p>
61
62 <!-- internal hyperlink to features -->
63 Go to Favorite Features
64 </p>
65
66
67 Bill Gates
68 Steve Jobs
69 Michael Dell
70
71
72 </body>
73 </html>

Fig. 5.6Fig. 5.6Fig. 5.6Fig. 5.6 Using internal hyperlinks to make pages more navigable (part 2 of 2).

iw3htp2.book Page 145 Wednesday, July 18, 2001 9:01 AM

146 Introduction to XHTML: Part 2 Chapter 5

Line 16 contains a named anchor (called features) for an internal hyperlink. To
link to this type of anchor inside the same Web page, the href attribute of another anchor
element includes the named anchor preceded with a pound sign (as in #features). Lines
63–64 contain a hyperlink with the anchor features as its target. Selecting this hyperlink
in a Web browser scrolls the browser window to the features anchor at line 16.

Look-and-Feel Observation 5.1
Internal hyperlinks are useful in XHTML documents that contain large amounts of informa-
tion. Internal links to various sections on the page makes it easier for users to navigate the
page. They do not have to scroll to find a specific section. 5.1

Although not demonstrated in this example, a hyperlink can specify an internal link in
another document by specifying the document name followed by a pound sign and the
named anchor as in:

href = "page.html#name"

For example, to link to a named anchor called booklist in books.html, href is as-
signed "books.html#booklist".

5.7 Creating and Using Image Maps
In Chapter 4, we demonstrated how images can be used as hyperlinks to link to other re-
sources on the Internet. In this section, we introduce another technique for image linking
called image maps, which designate certain areas of an image (called hotspots) as links.
Figure 5.7 introduces image maps and hotspots.

1 <?xml version = "1.0" ?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 5.7: picture.html -->
6 <!-- Creating and Using Image Maps -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>
11 Internet and WWW How to Program - Image Map
12 </title>
13 </head>
14
15 <body>
16
17 <p>
18
19 <!-- the <map> tag defines an image map -->
20 <map id = "picture">
21
22 <!-- shape = "rect" indicates a rectangular -->
23 <!-- area, with coordinates for the upper-left -->
24 <!-- and lower-right corners -->

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 Image with links anchored to an image map (part 1 of 2).

iw3htp2.book Page 146 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 147

Lines 20–48 define an image maps by using a map element. Attribute id (line 20)
identifies the image map. If id is omitted, the map cannot be referenced by an image. We

25 <area href = "form.html" shape = "rect"
26 coords = "2,123,54,143"
27 alt = "Go to the feedback form" />
28 <area href = "contact.html" shape = "rect"
29 coords = "126,122,198,143"
30 alt = "Go to the contact page" />
31 <area href = "main.html" shape = "rect"
32 coords = "3,7,61,25" alt = "Go to the homepage" />
33 <area href = "links.html" shape = "rect"
34 coords = "168,5,197,25"
35 alt = "Go to the links page" />
36
37 <!-- value "poly" creates a hotspot in the shape -->
38 <!-- of a polygon, defined by coords -->
39 <area shape = "poly" alt = "E-mail the Deitels"
40 coords = "162,25,154,39,158,54,169,51,183,39,161,26"
41 href = "mailto:deitel@deitel.com" />
42
43 <!-- shape = "circle" indicates a circular -->
44 <!-- area with the given center and radius -->
45 <area href = "mailto:deitel@deitel.com"
46 shape = "circle" coords = "100,36,33"
47 alt = "E-mail the Deitels" />
48 </map>
49
50 <!-- indicates that the -->
51 <!-- specified image map is used with this image -->
52 <img src = "deitel.gif" width = "200" height = "144"
53 alt = "Deitel logo" usemap = "#picture" />
54 </p>
55 </body>
56 </html>

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 Image with links anchored to an image map (part 2 of 2).

iw3htp2.book Page 147 Wednesday, July 18, 2001 9:01 AM

148 Introduction to XHTML: Part 2 Chapter 5

discuss how to reference an image map momentarily. Hotspots are defined with area ele-
ments (as shown on lines 25–27). Attribute href (line 25) specifies the link’s target (i.e.,
the resource to which to link). Attributes shape (line 25) and coords (line 26) specify
the hotspot’s shape and coordinates, respectively. Attribute alt (line 27) provides alter-
nate text for the link.

Common Programming Error 5.5
Not specifying an id attribute for a map element prevents an img element from using the
map’s area elements to define hotspots. 5.1

The markup on lines 25–27 creates a rectangular hotspot (shape = "rect") for the
coordinates specified in the coords attribute. A coordinate pair consists of two numbers
representing the location of a point on the x-axis and the y-axis, respectively. The x-axis
extends horizontally and the y-axis extends vertically from the upper-left corner of the
image. Every point on an image has a unique x-y-coordinate. For rectangular hotspots, the
required coordinates are those of the upper-left and lower-right corners of the rectangle. In
this case, the upper-left corner of the rectangle is located at 2 on the x-axis and 123 on the
y-axis, annotated as (2, 123). The lower-right corner of the rectangle is at (54, 143). Coor-
dinates are measured in pixels.

Common Programming Error 5.6
Overlapping coordinates of an image map cause the browser to render the first hotspot it en-
counters for the area. 5.1

The map area (lines 39–41) assigns the shape attribute "poly" to create a hotspot
in the shape of a polygon using the coordinates in attribute coords. These coordinates
represent each vertex, or corner, of the polygon. The browser connects these points with
lines to form the hotspot’s area.

The map area (lines 45–47) assigns the shape attribute "circle" to create a cir-
cular hotspot. In this case, the coords attribute specifies the circle’s center coordinates
and the circle’s radius, in pixels.

To use an image map with an img element, the img element’s usemap attribute is
assigned the id of a map. Lines 52–53 reference the image map named "picture". The
image map is located within the same document so internal linking is used.

5.8 meta Elements
People use search engines to find useful Web sites. Search engines usually catalog sites by
following links from page to page and saving identification and classification information
for each page. One way that search engines catalog pages is by reading the content in each
page’s meta elements, which specify information about a document.

Two important attributes of the meta element are name, which identifies the type of
meta element and content, which provides the information search engines use to cat-
alog pages. Figure 5.8 introduces the meta element.

Lines 14–16 demonstrate a "keywords" meta element. The content attribute of
such a meta element provides search engines with a list of words that describe a page.
These words are compared with words in search requests. Thus, including meta elements
and their content information can draw more viewers to your site.

iw3htp2.book Page 148 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 149

Lines 18–21 demonstrate a "description" meta element. The content
attribute of such a meta element provides a three- to four-line description of a site, written
in sentence form. Search engines also use this description to catalog your site and some-
times display this information as part of the search results.

Software Engineering Observation 5.1
meta elements are not visible to users and must be placed inside the head section of your
XHTML document. If meta elements are not placed in this section, they will not be read by
search engines. 5.1

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 5.8: main.html -->
6 <!-- <meta> tag -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Welcome</title>
11
12 <!-- <meta> tags provide search engines with -->
13 <!-- information used to catalog a site -->
14 <meta name = "keywords" content = "Web page, design,
15 XHTML, tutorial, personal, help, index, form,
16 contact, feedback, list, links, frame, deitel" />
17
18 <meta name = "description" content = "This Web site will
19 help you learn the basics of XHTML and Web page design
20 through the use of interactive examples and
21 instruction." />
22
23 </head>
24
25 <body>
26
27 <h1>Welcome to Our Web Site!</h1>
28
29 <p>We have designed this site to teach about the wonders
30 of XHTML. XHTML is
31 better equipped than HTML to represent complex
32 data on the Internet. XHTML takes advantage of
33 XML’s strict syntax to ensure well-formedness. Soon you
34 will know about many of the great new features of
35 XHTML.</p>
36
37 <p>Have Fun With the Site!</p>
38
39 </body>
40 </html>

Fig. 5.8Fig. 5.8Fig. 5.8Fig. 5.8 Using meta to provide keywords and a description .

iw3htp2.book Page 149 Wednesday, July 18, 2001 9:01 AM

150 Introduction to XHTML: Part 2 Chapter 5

5.9 frameset Element
All of the Web pages we have presented in this book have the ability to link to other pages,
but can display only one page at a time. Figure 5.9 uses frames, which allow the browser
to display more than one XHTML document simultaneously, to display the documents in
Fig. 5.8 and Fig. 5.10.

Most of our prior examples adhered to the strict XHTML document type. This partic-
ular example uses the frameset document type—a special XHTML document type specif-
ically for framesets. This new document type is specified in lines 2–3 and is required for
documents that define framesets.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
4
5 <!-- Fig. 5.9: index.html -->
6 <!-- XHTML Frames I -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Main</title>
11 <meta name = "keywords" content = "Webpage, design,
12 XHTML, tutorial, personal, help, index, form,
13 contact, feedback, list, links, frame, deitel" />
14
15 <meta name = "description" content = "This Web site will
16 help you learn the basics of XHTML and Web page design
17 through the use of interactive examples
18 and instruction." />
19
20 </head>
21
22 <!-- the <frameset> tag sets the frame dimensions -->
23 <frameset cols = "110,*">
24
25 <!-- frame elements specify which pages -->
26 <!-- are loaded into a given frame -->
27 <frame name = "leftframe" src = "nav.html" />
28 <frame name = "main" src = "main.html" />
29
30 <noframes>
31 <p>This page uses frames, but your browser does not
32 support them.</p>
33
34 <p>Please, follow this link to
35 browse our site without frames.</p>
36 </noframes>
37
38 </frameset>
39 </html>

Fig. 5.9Fig. 5.9Fig. 5.9Fig. 5.9 Web document containing two frames—navigation and content (part 1
of 2).

iw3htp2.book Page 150 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 151

Fig. 5.9Fig. 5.9Fig. 5.9Fig. 5.9 Web document containing two frames—navigation and content (part 2
of 2).

Left frame
leftframe

Right
frame
main

iw3htp2.book Page 151 Wednesday, July 18, 2001 9:01 AM

152 Introduction to XHTML: Part 2 Chapter 5

A document that defines a frameset normally consists of an html element that con-
tains a head element and a frameset element. The <frameset> tag (line 23) informs
the browser that the page contains frames. Attribute cols specifies the frameset’s column
layout. The value of cols gives the width of each frame, either in pixels or as a percentage
of the browser width. In this case, the attribute cols = "110,*" informs the browser that
there are two vertical frames. The first frame extends 110 pixels from the left edge of the
browser window and the second frame fills the remainder of the browser width (as indi-
cated by the asterisk). Similarly, frameset attribute rows can be used to specify the
number of rows and the size of each row in a frameset.

The documents that will be loaded into the frameset are specified with frame ele-
ments (lines 27–28 in this example). Attribute src specifies the URL of the page to display
in the frame. Each frame has name and src attributes. The first frame (which covers 110
pixels on the left side of the frameset) is named leftframe and displays the page
nav.html (Fig. 5.10). The second frame is named main and displays the page
main.html.

Attribute name identifies a frame, enabling hyperlinks in a frameset to specify the
target frame in which a linked document should display when the user clicks the link.
For example

loads links.html in the frame whose name is "main".
Not all browsers support frames. XHTML provides the noframes element (lines 30–

36) to enable XHTML document designers to specify alternate content for browsers that do
not support frames.

Portability Tip 5.1
Some browsers do not support frames. Use the noframes element inside a frameset to
direct users to a nonframed version of your site. 5.1

Fig. 5.10 is the Web page displayed in the left frame of Fig. 5.9. This XHTML docu-
ment provides the navigation buttons that, when clicked, determine which document is dis-
played in the right frame.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 5.10: nav.html -->
6 <!-- Using images as link anchors -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9

10 <head>
11 <title>Internet and WWW How to Program - Navigation Bar
12 </title>
13 </head>

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 XHTML document displayed in the left frame of Fig. 5.9 (part 1 of 2).

iw3htp2.book Page 152 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 153

Line 27 (Fig. 5.9) displays the XHTML page in Fig. 5.10. Anchor attribute target
(line 18 in Fig. 5.10) specifies that the linked documents are loaded in frame main (line 28
in Fig. 5.9). A target can be set to a number of preset values: "_blank" loads the page
into a new browser window, "_self" loads the page into the frame in which the anchor
element appears and "_top" loads the page into the full browser window (i.e., removes
the frameset).

5.10 Nested framesets
You can use the frameset element to create more complex layouts in a Web page by
nesting framesets, as in Fig. 5.11. The nested frameset in this example displays the
XHTML documents in Fig. 5.7, Fig. 5.8 and Fig. 5.10.

14
15 <body>
16
17 <p>
18
19 <img src = "buttons/links.jpg" width = "65"
20 height = "50" alt = "Links Page" />
21

22
23
24 <img src = "buttons/list.jpg" width = "65"
25 height = "50" alt = "List Example Page" />
26

27
28
29 <img src = "buttons/contact.jpg" width = "65"
30 height = "50" alt = "Contact Page" />
31

32
33
34 <img src = "buttons/header.jpg" width = "65"
35 height = "50" alt = "Header Page" />
36

37
38
39 <img src = "buttons/table.jpg" width = "65"
40 height = "50" alt = "Table Page" />
41

42
43
44 <img src = "buttons/form.jpg" width = "65"
45 height = "50" alt = "Feedback Form" />
46

47 </p>
48
49 </body>
50 </html>

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 XHTML document displayed in the left frame of Fig. 5.9 (part 2 of 2).

iw3htp2.book Page 153 Wednesday, July 18, 2001 9:01 AM

154 Introduction to XHTML: Part 2 Chapter 5

The outer frameset element (lines 23–41) defines two columns. The left frame extends
over the first 110 pixels from the left edge of the browser and the right frame occupies the
rest of the window’s width. The frame element on line 24 specifies that the document
nav.html (Fig. 5.10) will be displayed in the left column.

Lines 28–31 define a nested frameset element for the second column of the outer
frameset. This frameset defines two rows. The first row extends 175 pixels from the top
of the browser window, as indicated by rows = "175,*". The second row occupies the
remainder of the browser window’s height. The frame element at line 29 specifies that the
first row of the nested frameset will display picture.html (Fig. 5.7). The frame
element at line 30 specifies that the second row of the nested frameset will display
main.html (Fig. 5.9).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
4
5 <!-- Fig. 5.11: index2.html -->
6 <!-- XHTML Frames II -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Internet and WWW How to Program - Main</title>
11
12 <meta name = "keywords" content = "Webpage, design,
13 XHTML, tutorial, personal, help, index, form,
14 contact, feedback, list, links, frame, deitel" />
15
16 <meta name = "description" content = "This Web site will
17 help you learn the basics of XHTML and Web page design
18 through the use of interactive examples
19 and instruction." />
20
21 </head>
22
23 <frameset cols = "110,*">
24 <frame name = "leftframe" src = "nav.html" />
25
26 <!-- nested framesets are used to change the -->
27 <!-- formatting and layout of the frameset -->
28 <frameset rows = "175,*">
29 <frame name = "picture" src = "picture.html" />
30 <frame name = "main" src = "main.html" />
31 </frameset>
32
33 <noframes>
34 <p>This page uses frames, but your browser does not
35 support them.</p>
36
37 <p>Please, follow this link to
38 browse our site without frames.</p>
39 </noframes>

Fig. 5.11Fig. 5.11Fig. 5.11Fig. 5.11 Framed Web site with a nested frameset (part 1 of 2).

iw3htp2.book Page 154 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 155

Testing and Debugging Tip 5.2
When using nested frameset elements, indent every level of <frame> tag. This practice
makes the page clearer and easier to debug. 5.2

In this chapter, we presented XHTML for marking up information in tables, creating
forms for gathering user input, linking to sections within the same document, using <meta>
tags and creating frames. In Chapter 6, we build upon the XHTML introduced in this chapter
by discussing how to make Web pages more visually appealing with Cascading Style Sheets.

5.11 Internet and World Wide Web Resources
courses.e-survey.net.au/xhtml/index.html
The Web Page Design - XHTML site provides descriptions and examples for various XHTML fea-
tures, such as links, tables, frames, forms, etc. Users can e-mail questions or comments to the Web
Page Design support staff.

www.vbxml.com/xhtml/articles/xhtml_tables
The VBXML.com Web site contains a tutorial on creating XHTML tables.

www.webreference.com/xml/reference/xhtml.html
This Web page contains a list of the frequently used XHTML tags, such as header tags, table tags,
frame tags and form tags. It also provides a description of each tag.

40
41 </frameset>
42 </html>

Fig. 5.11Fig. 5.11Fig. 5.11Fig. 5.11 Framed Web site with a nested frameset (part 2 of 2).

Left frame
leftframe

Right frame
contains
these two
nested
frames

iw3htp2.book Page 155 Wednesday, July 18, 2001 9:01 AM

156 Introduction to XHTML: Part 2 Chapter 5

SUMMARY
• XHTML tables mark up tabular data and are one of the most frequently used features in XHTML.

• The table element defines an XHTML table. Attribute border specifies the table’s border
width, in pixels. Tables without borders set this attribute to "0".

• Element summary summarizes the table’s contents and is used by speech devices to make the ta-
ble more accessible to users with visual impairments.

• Element caption describe’s the table’s content. The text inside the <caption> tag is rendered
above the table in most browsers.

• A table can be split into three distinct sections: head (thead), body (tbody) and foot (tfoot).
The head section contains information such as table titles and column headers. The table body con-
tains the primary table data. The table foot contains information such as footnotes.

• Element tr, or table row, defines individual table rows. Element th defines a header cell. Text in
th elements usually is centered and displayed in bold by most browsers. This element can be
present in any section of the table.

• Data within a row are defined with td, or table data, elements.

• Element colgroup groups and formats columns. Each col element can format any number of
columns (specified with the span attribute).

• The document author has the ability to merge data cells with the rowspan and colspan at-
tributes. The values assigned to these attributes specify the number of rows or columns occupied
by the cell. These attributes can be placed inside any data-cell tag.

• XHTML provides forms for collecting information from users. Forms contain visual components
such as buttons that users click. Forms may also contain non-visual components, called hidden in-
puts, which are used to store any data, such as e-mail addresses and XHTML document file names
used for linking.

• A form begins with the form element. Attribute method specifies how the form’s data is sent to
the Web server.

• The "text" input inserts a text box into the form. Text boxes allow the user to input data.

• The input element’s size attribute specifies the number of characters visible in the input el-
ement. Optional attribute maxlength limits the number of characters input into a text box.

• The "submit" input submits the data entered in the form to the Web server for processing. Most
Web browsers create a button that submits the form data when clicked. The "reset" input al-
lows a user to reset all form elements to their default values.

• The textarea element inserts a multiline text box, called a text area, into a form. The number
of rows in the text area is specified with the rows attribute and the number of columns (i.e., char-
acters) is specified with the cols attribute.

• The "password" input inserts a password box into a form. A password box allows users to enter
sensitive information, such as credit card numbers and passwords, by “masking” the information
input with another character. Asterisks are the masking character used for password boxes. The
actual value input is sent to the Web server, not the asterisks that mask the input.

• The checkbox input allows the user to make a selection. When the checkbox is selected, a check
mark appears in the check box. Otherwise, the checkbox is empty. Checkboxes can be used indi-
vidually and in groups. Checkboxes that are part of the same group have the same name.

• A radio button is similar in function and use to a checkbox, except that only one radio button in a
group can be selected at any time. All radio buttons in a group have the same name attribute value
and have different attribute values.

iw3htp2.book Page 156 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 157

• The select input provides a drop-down list of items. The name attribute identifies the drop-down
list. The option element adds items to the drop-down list. The selected attribute, like the
checked attribute for radio buttons and checkboxes, specifies which list item is displayed initially.

• Image maps designate certain sections of an image as links. These links are more properly called
hotspots.

• Image maps are defined with map elements. Attribute id identifies the image map. Hotspots are de-
fined with the area element. Attribute href specifies the link’s target. Attributes shape and co-
ords specify the hotspot’s shape and coordinates, respectively, and alt provides alternate text.

• One way that search engines catalog pages is by reading the meta elements’s contents. Two im-
portant attributes of the meta element are name, which identifies the type of meta element and
content, which provides information a search engine uses to catalog a page.

• Frames allow the browser to display more than one XHTML document simultaneously. The
frameset element informs the browser that the page contains frames. Not all browsers support
frames. XHTML provides the noframes element to specify alternate content for browsers that
do not support frames.

• You can use the frameset element to create more complex layouts in a Web page by nesting
framesets.

TERMINOLOGY
action attribute name attribute
area element navigational frame
border attribute nested frameset element
browser request nested tag
<caption> tag noframes element
checkbox password box
checked attribute "radio" (attribute value)
col element rows attribute (textarea)
colgroup element rowspan attribute (tr)
cols attribute selected attribute
colspan attribute size attribute (input)
coords element table element
form target = "_blank"
form element target = "_self"
frame element target = "_top"
frameset element tbody element
header cell td element
hidden input element textarea
hotspot textarea element
href attribute tfoot (table foot) element
image map <thead>...</thead>
img element tr (table row) element
input element type attribute
internal hyperlink usemap attribute
internal linking valign attribute (th)
map element value attribute
maxlength attribute Web server
meta element XHTML form
method attribute x-y-coordinate

iw3htp2.book Page 157 Wednesday, July 18, 2001 9:01 AM

158 Introduction to XHTML: Part 2 Chapter 5

SELF-REVIEW EXERCISES
5.1 State whether the following statements are true or false. If false, explain why.

a) The width of all data cells in a table must be the same.
b) Framesets can be nested.
c) You are limited to a maximum of 100 internal links per page.
d) All browsers can render framesets.

5.2 Fill in the blanks in each of the following statements:
a) Assigning attribute type in an input element inserts a button that, when

clicked, clears the contents of the form.
b) The layout of a frameset is set by including the attribute or the

 attribute inside the <frameset> tag.
c) The element marks up a table row.
d) are used as masking characters in a password box.
e) The common shapes used in image maps are , and .

5.3 Write XHTML markup to accomplish each of the following:
a) Insert a framed Web page, with the first frame extending 300 pixels across the page from

the left side.
b) Insert a table with a border of 8.
c) Indicate alternate content to a frameset.
d) Insert an image map in a page using deitel.gif as an image and map with name =

"hello" as the image map, and set the alt text to “hello”.

ANSWERS TO SELF-REVIEW EXERCISES
5.1 a) False. You can specify the width of any column, either in pixels or as a percentage of the
table width. b) True. c) False. You can have an unlimited number of internal links. d) False. Some
browsers are unable to render a frameset and must therefore rely on the information that you in-
clude inside the <noframes>…</noframes> tags.

5.2 a) "reset". b) cols, rows. c) tr. d) asterisks. e) poly (polygons), circles, rect
(rectangles).

5.3 a) <frameset cols = "300,*">…</frameset>
b) <table border = "8">…</table>
c) <noframes>…</noframes>
d)

EXERCISES
5.4 Categorize each of the following as an element or an attribute:

a) width
b) td
c) th
d) frame
e) name
f) select
g) type

5.5 What will the frameset produced by the following code look like? Assume that the pages
referenced are blank with white backgrounds and that the dimensions of the screen are 800 by 600.
Sketch the layout, approximating the dimensions.

iw3htp2.book Page 158 Wednesday, July 18, 2001 9:01 AM

Chapter 5 Introduction to XHTML: Part 2 159

<frameset rows = "20%,*">
 <frame src = "hello.html" name = "hello" />
 <frameset cols = "150,*">
 <frame src = "nav.html" name = "nav" />
 <frame src = "deitel.html" name = "deitel" />
 </frameset>
</frameset>

5.6 Write the XHTML markup to create a frame with a table of contents on the left side of the
window, and have each entry in the table of contents use internal linking to scroll down the document
frame to the appropriate subsection.

5.7 Create XHTML markup that produces the table shown in Fig. 5.12. Use and
 tags as necessary. The image (camel.gif) is included in the Chapter 5 examples di-
rectory on the CD-ROM that accompanies this book.

5.8 Write an XHTML document that produces the table shown in Fig. 5.13.

Fig. 5.12Fig. 5.12Fig. 5.12Fig. 5.12 XHTML table for Exercise 5.7.

Fig. 5.13Fig. 5.13Fig. 5.13Fig. 5.13 XHTML table for Exercise 5.8.

iw3htp2.book Page 159 Wednesday, July 18, 2001 9:01 AM

160 Introduction to XHTML: Part 2 Chapter 5

5.9 A local university has asked you to create an XHTML document that allows potential stu-
dents to provide feedback about their campus visit. Your XHTML document should contain a form
with text boxes for a name, address and e-mail. Provide check boxes that allow prospective students
to indicate what they liked most about the campus. These check boxes should include: students, lo-
cation, campus, atmosphere, dorm rooms and sports. Also, provide radio buttons that ask the prospec-
tive student how they became interested in the university. Options should include: friends, television,
Internet and other. In addition, provide a text area for additional comments, a submit button and a re-
set button.

5.10 Create an XHTML document titled “How to Get Good Grades.” Use <meta> tags to include
a series of keywords that describe your document.

5.11 Create an XHTML document that displays a tic-tac-toe table with player X winning. Use
<h2> to mark up both Xs and Os. Center the letters in each cell horizontally. Title the game using an
<h1> tag. This title should span all three columns. Set the table border to one.

iw3htp2.book Page 160 Wednesday, July 18, 2001 9:01 AM

6
 Cascading Style Sheets™

(CSS)

Objectives
• To take control of the appearance of a Web site by

creating style sheets.
• To use a style sheet to give all the pages of a Web site

the same look and feel.
• To use the class attribute to apply styles.
• To specify the precise font, size, color and other

properties of displayed text.
• To specify element backgrounds and colors.
• To understand the box model and how to control the

margins, borders and padding.
• To use style sheets to separate presentation from

content.
Fashions fade, style is eternal.
Yves Saint Laurent

A style does not go out of style as long as it adapts itself to
its period. When there is an incompatibility between the style
and a certain state of mind, it is never the style that triumphs.
Coco Chanel

How liberating to work in the margins, outside a central
perception.
Don DeLillo

I’ve gradually risen from lower-class background to lower-
class foreground.
Marvin Cohen

iw3htp2.book Page 161 Wednesday, July 18, 2001 9:01 AM

162 Cascading Style Sheets™ (CSS) Chapter 6

6.1 Introduction
In Chapters 4 and 5, we introduced the Extensible Markup Language (XHTML) for mark-
ing up information. In this chapter, we shift our focus from marking up information to for-
matting and presenting information using a W3C technology called Cascading Style Sheets
(CSS) that allows document authors to specify the presentation of elements on a Web page
(spacing, margins, etc.) separately from the structure of the document (section headers,
body text, links, etc.). This separation of structure from presentation simplifies maintain-
ing and modifying a document’s layout.

6.2 Inline Styles
A Web developer can declare document styles in many ways. In this section, we present
inline styles that declare an individual element’s format using attribute style. Figure 6.1
applies inline styles to p elements to alter their font size and color.

Outline

6.1 Introduction
6.2 Inline Styles
6.3 Embedded Style Sheets
6.4 Conflicting Styles
6.5 Linking External Style Sheets
6.7 Positioning Elements
6.8 Backgrounds
6.9 Element Dimensions
6.10 Text Flow and the Box Model
6.11 User Style Sheets
6.12 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 6.1: inline.html -->
6 <!-- Using inline styles -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Inline Styles</title>
11 </head>
12

Fig. 6.1Fig. 6.1Fig. 6.1Fig. 6.1 Inline styles (part 1 of 2).

iw3htp2.book Page 162 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 163

The first inline style declaration appears in line 20. Attribute style specifies the style
for an element. Each CSS property (the font-size property in this case) is followed by
a colon and a value. On line 20, we declare the p element to have 20-point text size. Line
21 uses element em to “emphasize” text, which most browsers do by making the font italic.

Line 24 specifies the two properties, font-size and color, separated by a semi-
colon. In this line, we set the text’s color to blue, using the hexadecimal code #0000ff.
Color names may be used in place of hexadecimal codes, as we demonstrate in the next
example. We provide a list of hexadecimal color codes and color names in Appendix E.
[Note: Inline styles override any other styles applied using the techniques we discuss later
in this chapter.]

6.3 Embedded Style Sheets
In this section, we present a second technique for using style sheets called embedded style
sheets. Embedded style sheets enable a Web-page author to embed an entire CSS docu-

13 <body>
14
15 <p>This text does not have any style applied to it.</p>
16
17 <!-- The style attribute allows you to declare -->
18 <!-- inline styles. Separate multiple styles -->
19 <!-- with a semicolon. -->
20 <p style = "font-size: 20pt">This text has the
21 font-size style applied to it, making it 20pt.
22 </p>
23
24 <p style = "font-size: 20pt; color: #0000ff">
25 This text has the font-size and
26 color styles applied to it, making it
27 20pt. and blue.</p>
28
29 </body>
30 </html>

Fig. 6.1Fig. 6.1Fig. 6.1Fig. 6.1 Inline styles (part 2 of 2).

iw3htp2.book Page 163 Wednesday, July 18, 2001 9:01 AM

164 Cascading Style Sheets™ (CSS) Chapter 6

ment in an XHTML document’s head section. Figure 6.2 creates an embedded style
sheet containing four styles.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 6.2: declared.html -->
6 <!-- Declaring a style sheet in the header section. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Style Sheets</title>
11
12 <!-- this begins the style sheet section -->
13 <style type = "text/css">
14
15 em { background-color: #8000ff;
16 color: white }
17
18 h1 { font-family: arial, sans-serif }
19
20 p { font-size: 14pt }
21
22 .special { color: blue }
23
24 </style>
25 </head>
26
27 <body>
28
29 <!-- this class attribute applies the .blue style -->
30 <h1 class = "special">Deitel & Associates, Inc.</h1>
31
32 <p>Deitel & Associates, Inc. is an internationally
33 recognized corporate training and publishing organization
34 specializing in programming languages, Internet/World
35 Wide Web technology and object technology education.
36 Deitel & Associates, Inc. is a member of the World Wide
37 Web Consortium. The company provides courses on Java,
38 C++, Visual Basic, C, Internet and World Wide Web
39 programming, and Object Technology.</p>
40
41 <h1>Clients</h1>
42 <p class = "special"> The company's clients include many
43 Fortune 1000 companies, government agencies,
44 branches of the military and business organizations.
45 Through its publishing partnership with Prentice Hall,
46 Deitel & Associates, Inc. publishes leading-edge
47 programming textbooks, professional books, interactive
48 CD-ROM-based multimedia Cyber Classrooms, satellite
49 courses and World Wide Web courses.</p>

Fig. 6.2Fig. 6.2Fig. 6.2Fig. 6.2 Declaring styles in the head of a document (part 1 of 2).

iw3htp2.book Page 164 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 165

The style element (lines 13–24) defines the embedded style sheet. Styles placed in
the head apply to matching elements in the entire document, not just to a single element.
The type attribute specifies the Multipurpose Internet Mail Extension (MIME) type that
describes a file’s content. CSS documents use the MIME type text/css. Other MIME
types include image/gif (for GIF images) and text/javascript (for the JavaScript
scripting language, which we discuss in Chapters 7–12).

The body of the style sheet (lines 15–22) declares the CSS rules for the style sheet. We
declare rules for em (lines 15–16), h1 (line 18) and p (line 20) elements. When the browser
renders this document, it applies the properties defined in these rules to each element to
which the rule applies. For example, the rule on lines 15–16 will be applied to all em ele-
ments. The body of each rule is enclosed in curly braces ({ and }). We declare a style class
named special in line 22. Class declarations are preceded with a period and are applied
to elements only of that class. We discuss how to apply a style class momentarily.

CSS rules in embedded style sheets use the same syntax as inline styles; the property
name is followed by a colon (:) and the value of that property. Multiple properties are sep-
arated by semicolons (;). In this example, the color property specifies the color of text
in an element line and property background-color specifies the background color of
the element.

50
51 </body>
52 </html>

Fig. 6.2Fig. 6.2Fig. 6.2Fig. 6.2 Declaring styles in the head of a document (part 2 of 2).

iw3htp2.book Page 165 Wednesday, July 18, 2001 9:01 AM

166 Cascading Style Sheets™ (CSS) Chapter 6

The font-family property (line 18) specifies the name of the font to use. In this
case, we use the arial font. The second value, sans-serif, is a generic font family.
Not all users have the same fonts installed on their computers, so Web-page authors often
specify a comma-separated list of fonts to use for a particular style. The browser attempts
to use the fonts in the order they appear in the list. Many Web-page authors end a font list
with a generic font family name in case the other fonts are not installed on the user’s com-
puter. In this example, if the arial font is not found on the system, the browser instead
will display a generic sans-serif font such as helvetica or verdana. Other
generic font families include serif (e.g., times new roman, Georgia), cursive
(e.g., script), fantasy (e.g., critter) and monospace (e.g., courier,
fixedsys).

The font-size property (line 20) specifies a 14-point font. Other possible measure-
ments in addition to pt (point) are introduced later in the chapter. Relative values— xx-
small, x-small, small, smaller, medium, large, larger, x-large and xx-
large also can be used. Generally, relative values for font-size are preferred over
point sizes because an author does not know the specific measurements of the display for
each client. For example, a user may wish to view a Web page on a handheld device with a
small screen. Specifying an 18-point font size in a style sheet will prevent such a user from
seeing more than one or two characters at a time. However, if a relative font size is speci-
fied, such as large or larger, the actual size will be determined by the browser that dis-
plays the font.

Line 30 uses attribute class in an h1 element to apply a style class—in this case class
special (declared as .special in the style sheet). When the browser renders the h1
element, notice that the text appears on screen with both the properties of an h1 element
(arial or sans-serif font defined at line 18) and the properties of the.special
style class applied (the color blue defined on line 22).

The p element and the .special class style are applied to the text in lines 42–49. All
styles applied to an element (the parent, or ancestor, element) also apply to that element’s
nested elements (descendant elements). The em element inherits the style from the p element
(namely, the 14-point font size in line 20), but retains its italic style. However, this property
overrides the color property of the special class because the em element has its own
color property. We discuss the rules for resolving these conflicts in the next section.

6.4 Conflicting Styles
Cascading style sheets are “cascading” because styles may be defined by a user, an author
or a user agent (e.g., a Web browser). Styles defined by authors take precedence over styles
defined by the user and styles defined by the user take precedence over styles defined by
the user agent. Styles defined for parent and ancestor elements are also inherited by child
and descendant elements. In this section, we discuss the rules for resolving conflicts be-
tween styles defined for elements and styles inherited from parent and ancestor elements.

Figure 6.2 presented an example of inheritance in which a child em element inherited
the font-size property from its parent p element. However, in Fig. 6.2, the child em ele-
ment had a color property that conflicted with (i.e., had a different value than) the color
property of its parent p element. Properties defined for child and descendant elements have
a greater specificity than properties defined for parent and ancestor elements. According to
the W3C CSS Recommendation, conflicts are resolved in favor of properties with a higher

iw3htp2.book Page 166 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 167

specificity. In other words, the styles defined for the child (or descendant) are more specific
than the styles for that child’s parent (or ancestor) element; therefore, the child’s styles take
precedence. Figure 6.3 illustrates examples of inheritance and specificity.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 6.3: advanced.html -->
6 <!-- More advanced style sheets -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>More Styles</title>
11
12 <style type = "text/css">
13
14 a.nodec { text-decoration: none }
15
16 a:hover { text-decoration: underline;
17 color: red;
18 background-color: #ccffcc }
19
20 li em { color: red;
21 font-weight: bold }
22
23 ul { margin-left: 75px }
24
25 ul ul { text-decoration: underline;
26 margin-left: 15px }
27
28 </style>
29 </head>
30
31 <body>
32
33 <h1>Shopping list for Monday:</h1>
34
35
36 Milk
37 Bread
38
39 White bread
40 Rye bread
41 Whole wheat bread
42
43
44 Rice
45 Potatoes
46 Pizza with mushrooms
47
48

Fig. 6.3Fig. 6.3Fig. 6.3Fig. 6.3 Inheritance in style sheets (part 1 of 2).

iw3htp2.book Page 167 Wednesday, July 18, 2001 9:01 AM

168 Cascading Style Sheets™ (CSS) Chapter 6

Line 14 applies property text-decoration to all a elements whose class attribute
is set to nodec. The text-decoration property applies decorations to text within an
element. By default, browsers underline the text marked up with an a element. Here, we set
the text-decoration property to none to indicate that the browser should not underline
hyperlinks. Other possible values for text-decoration include blink, overline,

49 <p>
50 Go to the Grocery store</p>
51
52 </body>
53 </html>

Fig. 6.3Fig. 6.3Fig. 6.3Fig. 6.3 Inheritance in style sheets (part 2 of 2).

iw3htp2.book Page 168 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 169

line-through and underline. The .nodec appended to a is an extension of class
styles; this style will apply only to a elements that specify nodec as their class.

Lines 16–18 specify a style for hover, which is a pseudoclass. Pseudoclasses give the
author access to content not specifically declared in the document. The hover pseudoclass
is activated dynamically when the user moves the mouse cursor over an element.

Portability Tip 6.1
To ensure that your style sheets work in various Web browsers, test your style sheets on all
client Web browsers that will render documents using your styles. 6.1

Lines 20–21 declare a style for all em elements that are descendants of li elements.
In the screen output of Fig. 6.3, notice that Monday (which line 33 contains in an em ele-
ment) does not appear in bold red, because the em element is not in an li element. How-
ever, the em element containing with mushrooms (line 46) is in an li element;
therefore, it is formatted in bold red.

The syntax for applying rules to multiple elements is similar. For example, to apply the
rule in lines 20–21 to all li and em elements, you would separate the elements with
commas, as follows:

li, em { color: red;
 font-weight: bold }

Lines 25–26 specify that all nested lists (ul elements that are descendants of ul ele-
ments) be underlined and have a left-hand margin of 15 pixels. A pixel is a relative-length
measurement—it varies in size, based on screen resolution. Other relative lengths are em
(the so-called “M-height” of the font, which is usually set to the height of an uppercase M),
ex (the so-called “x-height” of the font, which is usually set to the height of a lowercase x)
and percentages (e.g., margin-left: 10%). To set an element to display text at 150%
of its default text size, the author could use the syntax

font-size: 1.5em

Other units of measurement available in CSS are absolute-length measurements—i.e., units
that do not vary in size based on the system. These units are in (inches), cm (centimeters),
mm (millimeters), pt (points; 1 pt=1/72 in) and pc (picas—1 pc = 12 pt).

Good Programming Practice 6.1
Whenever possible, use relative-length measurements. If you use absolute-length measure-
ments, your document may not be readable on some client browsers (e.g., wireless phones). 6.1

In Fig. 6.3, the entire list is indented because of the 75-pixel left-hand margin for top-
level ul elements. However, the nested list is indented only 15 pixels more (not another 75
pixels) because the child ul element’s margin-left property overrides the parent ul
element’s margin-left property.

6.5 Linking External Style Sheets
Style sheets are a convenient way to create a document with a uniform theme. With external
style sheets (i.e., separate documents that contain only CSS rules), Web-page authors can
provide a uniform look and feel to an entire Web site. Different pages on a site can all use
the same style sheet. Then, when changes to the style are required, the Web-page author
needs to modify only a single CSS file to make style changes across the entire Web site.

iw3htp2.book Page 169 Wednesday, July 18, 2001 9:01 AM

170 Cascading Style Sheets™ (CSS) Chapter 6

Figure 6.4 presents an external style sheet and Fig. 6.5 contains an XHTML document that
references the style sheet.

1 /* Fig. 6.4: styles.css */
2 /* An external stylesheet */
3
4 a { text-decoration: none }
5
6 a:hover { text-decoration: underline;
7 color: red;
8 background-color: #ccffcc }
9

10 li em { color: red;
11 font-weight: bold;
12 background-color: #ffffff }
13
14 ul { margin-left: 2cm }
15
16 ul ul { text-decoration: underline;
17 margin-left: .5cm }

Fig. 6.4Fig. 6.4Fig. 6.4Fig. 6.4 External style sheet (styles.css).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 6.5: external.html -->
6 <!-- Linking external style sheets -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Linking External Style Sheets</title>
11 <link rel = "stylesheet" type = "text/css"
12 href = "styles.css" />
13 </head>
14
15 <body>
16
17 <h1>Shopping list for Monday:</h1>
18
19 Milk
20 Bread
21
22 White bread
23 Rye bread
24 Whole wheat bread
25
26
27 Rice
28 Potatoes

Fig. 6.5Fig. 6.5Fig. 6.5Fig. 6.5 Linking an external style sheet (part 1 of 2).

iw3htp2.book Page 170 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 171

Lines 11–12 (Fig. 6.5) show a link element, which uses the rel attribute to specify
a relationship between the current document and another document. In this case, we declare
the linked document to be a stylesheet for this document. The type attribute specifies

29 Pizza with mushrooms
30
31
32 <p>
33 Go to the Grocery store
34 </p>
35
36 </body>
37 </html>

Fig. 6.5Fig. 6.5Fig. 6.5Fig. 6.5 Linking an external style sheet (part 2 of 2).

iw3htp2.book Page 171 Wednesday, July 18, 2001 9:01 AM

172 Cascading Style Sheets™ (CSS) Chapter 6

the MIME type as text/css. The href attribute provides the URL for the document
containing the style sheet .

Software Engineering Observation 6.1
Style sheets are reusable. Creating them once and reusing them reduces programming effort.6.1

Software Engineering Observation 6.2
The link element can be placed only in the head element. The user can specify next and
previous, which allow the user to link a whole series of documents. This feature allows
browsers to print a large collection of related documents at once. (In Internet Explorer, se-
lect Print all linked documents in the Print... submenu of the File menu.) 6.2

6.6 W3C CSS Validation Service
The W3C provides a validation service (jigsaw.w3.org/css-validator) that val-
idates external CSS documents to ensure that they conform to the W3C CSS Recommen-
dation. Like XHTML validation, CSS validation ensures that style sheets are syntactically
correct. The validator provides the option of either entering the CSS document’s URL,
pasting the CSS document’s contents into a text area or uploading a CSS document from
disk. Figure 6.6 illustrates uploading a CSS document from a disk.

Fig. 6.6Fig. 6.6Fig. 6.6Fig. 6.6 Validating a CSS document. (Courtesy of World Wide Web Consortium
(W3C).)

iw3htp2.book Page 172 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 173

Figure 6.7 shows the results of validating styles.css (Fig. 6.4), using the file
upload feature available at

jigsaw.w3.org/css-validator/validator-upload.html

To validate the document, click the Browse button to locate the file on your computer. Af-
ter locating the file, click Submit this CSS file for validation to upload the file for val-
idation. [Note: Like many W3C technologies, CSS is being developed in stages (or
versions). The current version under development is Version 3.]

6.7 Positioning Elements
Prior to CSS, controlling the positioning of elements in an XHTML document was diffi-
cult—the browser determined positioning. CSS introduces the position property and a
capability called absolute positioning, which provides authors greater control over how
document elements are displayed. Figure 6.8 demonstrates absolute positioning.

Fig. 6.7Fig. 6.7Fig. 6.7Fig. 6.7 CSS validation results. (Courtesy of World Wide Web Consortium (W3C).)

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 6.8: positioning.html -->
6 <!-- Absolute positioning of elements -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">

Fig. 6.8Fig. 6.8Fig. 6.8Fig. 6.8 Positioning elements with CSS (part 1 of 2).

iw3htp2.book Page 173 Wednesday, July 18, 2001 9:01 AM

174 Cascading Style Sheets™ (CSS) Chapter 6

Lines 15–17 position the first img element (i.gif) on the page. Specifying an ele-
ment’s position as absolute removes the element from the normal flow of elements
on the page, instead positioning the element according to the distance from the top, left,
right or bottom margins of its containing block (i.e., an element such as body or p).
Here, we position the element to be 0 pixels away from both the top and left margins
of the body element.

The z-index attribute allows you to layer overlapping elements properly. Elements
that have higher z-index values are displayed in front of elements with lower z-index
values. In this example, i.gif has the lowest z-index (1), so it displays in the back-
ground. The img element at lines 20–22 (circle.gif) has a z-index of 2, so it dis-
plays in front of i.gif. The p element at lines 18–19 (Positioned Text) has a z-
index of 3, so it displays in front of the other two. If you do not specify a z-index or if
elements have the same z-index value, the elements are placed from background to fore-
ground in the order they are encountered in the document.

Absolute positioning is not the only way to specify page layout. Figure 6.9 demon-
strates relative positioning in which elements are positioned relative to other elements.

9 <head>
10 <title>Absolute Positioning</title>
11 </head>
12
13 <body>
14
15 <p><img src = "i.gif" style = "position: absolute;
16 top: 0px; left: 0px; z-index: 1"
17 alt = "First positioned image" /></p>
18 <p style = "position: absolute; top: 50px; left: 50px;
19 z-index: 3; font-size: 20pt;">Positioned Text</p>
20 <p><img src = "circle.gif" style = "position: absolute;
21 top: 25px; left: 100px; z-index: 2" alt =
22 "Second positioned image" /></p>
23
24 </body>
25 </html>

Fig. 6.8Fig. 6.8Fig. 6.8Fig. 6.8 Positioning elements with CSS (part 2 of 2).

iw3htp2.book Page 174 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 175

Setting the position property to relative, as in class super (lines 21–22), lays
out the element on the page and offsets the element by the specified top, bottom, left or
right values. Unlike absolute positioning, relative positioning keeps elements in the gen-
eral flow of elements on the page, so positioning is relative to other elements in the flow.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 6.9: positioning2.html -->
6 <!-- Relative positioning of elements -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Relative Positioning</title>
11
12 <style type = "text/css">
13
14 p { font-size: 1.3em;
15 font-family: verdana, arial, sans-serif }
16
17 span { color: red;
18 font-size: .6em;
19 height: 1em }
20
21 .super { position: relative;
22 top: -1ex }
23
24 .sub { position: relative;
25 bottom: -1ex }
26
27 .shiftleft { position: relative;
28 left: -1ex }
29
30 .shiftright { position: relative;
31 right: -1ex }
32
33 </style>
34 </head>
35
36 <body>
37
38 <p>The text at the end of this sentence
39 is in superscript.</p>
40
41 <p>The text at the end of this sentence
42 is in subscript.</p>
43
44 <p>The text at the end of this sentence
45 is shifted left.</p>
46

Fig. 6.9Fig. 6.9Fig. 6.9Fig. 6.9 Relative positioning of elements (part 1 of 2).

iw3htp2.book Page 175 Wednesday, July 18, 2001 9:01 AM

176 Cascading Style Sheets™ (CSS) Chapter 6

We introduce the span element in line 39. Element span is a grouping element—it
does not apply any inherent formatting to its contents. Its primary purpose is to apply CSS
rules or id attributes to a block of text. Element span is an inline-level element—it is dis-
played inline with other text and with no line breaks. Lines 17–19 define the CSS rule for
span. A similar element is the div element, which also applies no inherent styles but is
displayed on its own line, with margins above and below (a block-level element).

Common Programming Error 6.1
Because relative positioning keeps elements in the flow of text in your documents, be careful
to avoid unintentionally overlapping text. 6.1

6.8 Backgrounds
CSS also provides control over the element backgrounds. In previous examples, we intro-
duced the background-color property. CSS also can add background images to doc-
uments. Figure 6.10 add a corporate logo to the bottom-right corner of the document. This
logo stays fixed in the corner, even when the user scrolls up or down the screen.

47 <p>The text at the end of this sentence
48 is shifted right.</p>
49
50 </body>
51 </html>

Fig. 6.9Fig. 6.9Fig. 6.9Fig. 6.9 Relative positioning of elements (part 2 of 2).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 6.10: background.html -->
6 <!-- Adding background images and indentation -->
7
8 <html xmlns = "http://www.w3 .org/1999/xhtml">

Fig. 6.10Fig. 6.10Fig. 6.10Fig. 6.10 Adding a background image with CSS (part 1 of 2).

iw3htp2.book Page 176 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 177

9 <head>
10 <title>Background Images</title>
11
12 <style type = "text/css">
13
14 body { background-image: url(logo.gif);
15 background-position: bottom right;
16 background-repeat: no-repeat;
17 background-attachment: fixed; }
18
19 p { font-size: 18pt;
20 color: #aa5588;
21 text-indent: 1em;
22 font-family: arial, sans-serif; }
23
24 .dark { font-weight: bold; }
25
26 </style>
27 </head>
28
29 <body>
30
31 <p>
32 This example uses the background-image,
33 background-position and background-attachment
34 styles to place the Deitel
35 & Associates, Inc. logo in the bottom,
36 right corner of the page. Notice how the logo
37 stays in the proper position when you resize the
38 browser window.
39 </p>
40
41 </body>
42 </html>

Fig. 6.10Fig. 6.10Fig. 6.10Fig. 6.10 Adding a background image with CSS (part 2 of 2).

iw3htp2.book Page 177 Wednesday, July 18, 2001 9:01 AM

178 Cascading Style Sheets™ (CSS) Chapter 6

The background-image property (line 14) specifies the image URL for the image
logo.gif in the format url(fileLocation). The Web-page author can set the back-
ground-color in case the image is not found.

The background-position property (line 15) places the image on the page. The
keywords top, bottom, center, left and right are used individually or in combi-
nation for vertical and horizontal positioning. Image can be positioned using lengths by
specifying the horizontal length followed by the vertical length. For example, to position
the image as vertically centered (positioned at 50% of the distance across the screen) and
30 pixels from the top, use

background-position: 50% 30px;

The background-repeat property (line 16) controls the tiling of the background
image. Tiling places multiple copies of the image next to each other to fill the background.
Here, we set the tiling to no-repeat to display only one copy of the background image.
The background-repeat property can be set to repeat (the default) to tile the image
vertically and horizontally, repeat-x to tile the image only horizontally or repeat-y
to tile the image only vertically.

The final property setting, background-attachment: fixed (line 17), fixes the
image in the position specified by background-position. Scrolling the browser
window will not move the image from its position. The default value, scroll, moves the
image as the user scrolls through the document.

Line 21 indents the first line of text in the element by the specified amount, in this case
1em. An author might use this property to create a Web page that reads more like a novel,
in which the first line of every paragraph is indented.

Line 24 uses the font-weight property to specify the “boldness” of text. Possible
values are bold, normal (the default), bolder (bolder than bold text) and lighter
(lighter than normal text). Boldness also can be specified with multiples of 100, from 100
to 900 (e.g., 100, 200, …, 900). Text specified as normal is equivalent to 400, and
bold text is equivalent to 700. However, many systems do not have fonts can scale this
finely, so using the values from 100 to 900 might not display the desired effect.

Another CSS property that formats text is the font-style property, which allows
the developer to set text to none, italic or oblique (oblique will default to
italic if the system does not support oblique text).

6.9 Element Dimensions
In addition to positioning elements, CSS rules can specify the actual dimensions of each
page element. Figure 6.11 demonstrates how to set the dimensions of elements.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 6.11: width.html -->
6 <!-- Setting box dimensions and aligning text -->
7

Fig. 6.11Fig. 6.11Fig. 6.11Fig. 6.11 Setting box dimensions and aligning text (part 1 of 2).

iw3htp2.book Page 178 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 179

8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Box Dimensions</title>
11
12 <style type = "text/css">
13
14 div { background-color: #ffccff;
15 margin-bottom: .5em }
16 </style>
17
18 </head>
19
20 <body>
21
22 <div style = "width: 20%">Here is some
23 text that goes in a box which is
24 set to stretch across twenty percent
25 of the width of the screen.</div>
26
27 <div style = "width: 80%; text-align: center">
28 Here is some CENTERED text that goes in a box
29 which is set to stretch across eighty percent of
30 the width of the screen.</div>
31
32 <div style = "width: 20%; height: 30%; overflow: scroll">
33 This box is only twenty percent of
34 the width and thirty percent of the height.
35 What do we do if it overflows? Set the
36 overflow property to scroll!</div>
37
38 </body>
39 </html>

Fig. 6.11Fig. 6.11Fig. 6.11Fig. 6.11 Setting box dimensions and aligning text (part 2 of 2).

iw3htp2.book Page 179 Wednesday, July 18, 2001 9:01 AM

180 Cascading Style Sheets™ (CSS) Chapter 6

The inline style in line 22 illustrates how to set the width of an element on screen;
here, we indicate that the div element should occupy 20% of the screen width. Most ele-
ments are left-aligned by default; however, this alignment can be altered to position the ele-
ment elsewhere. The height of an element can be set similarly, using the height property.
The height and width values also can be specified relative and absolute lengths. For
example

width: 10em

sets the element’s width to be equal to 10 times the font size. Line 27 sets text in the element
to be center aligned; some other values for the text-align property are left and
right.

One problem with setting both dimensions of an element is that the content inside the
element can exceed the set boundaries, in which case the element is simply made large
enough for all the content to fit. However, in line 32, we set the overflow property to
scroll, a setting that adds scrollbars if the text overflows the boundaries.

6.10 Text Flow and the Box Model
A browser normally places text and elements on screen in the order in which they appear
in the XHTML document. However, as we have seen with absolute positioning, it is possi-
ble to remove elements from the normal flow of text. Floating allows you to move an ele-
ment to one side of the screen; other content in the document then flows around the floated
element. In addition, each block-level element has a box drawn around it, known as the box
model. The properties of this box can be adjusted to control the amount of padding inside
the element and the margins outside the element (Fig. 6.12).

In addition to text, whole elements can be floated to the left or right of content. This
means that any nearby text will wrap around the floated element. For example, in lines 30–
32 we float a div element to the right side of the screen. As you can see from the sample
screen capture, the text from lines 34–41 flows cleanly to the left and underneath the div
element.

The second property on line 30, margin, specifies the distance between the edge of
the element and any other element on the page. When the browser renders elements using
the box model, the content of each element is surrounded by padding, a border and a
margin (Fig. 6.13).

 Margins for individual sides of an element can be specified by using margin-top,
margin-right, margin-left and margin-bottom.

Lines 43–45 specify a div element that floats at the right side of the content. Property
padding for the div element is set to .5em. Padding is the distance between the content
inside an element and the element’s border. Like the margin, the padding can be set for
each side of the box, with padding-top, padding-right, padding-left and
padding-bottom.

A portion of lines 54–55 show that you can interrupt the flow of text around a
floated element by setting the clear property to the same direction as that in which the
element is floated—right or left. Setting the clear property to all interrupts the
flow on both sides of the document.

iw3htp2.book Page 180 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 181

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 6.12: floating.html -->
6 <!-- Floating elements and element boxes -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Flowing Text Around Floating Elements</title>
11
12 <style type = "text/css">
13
14 div { background-color: #ffccff;
15 margin-bottom: .5em;
16 font-size: 1.5em;
17 width: 50% }
18
19 p { text-align: justify; }
20
21 </style>
22
23 </head>
24
25 <body>
26
27 <div style = "text-align: center">
28 Deitel & Associates, Inc.</div>
29
30 <div style = "float: right; margin: .5em;
31 text-align: right">
32 Corporate Training and Publishing</div>
33
34 <p>Deitel & Associates, Inc. is an internationally
35 recognized corporate training and publishing organization
36 specializing in programming languages, Internet/World
37 Wide Web technology and object technology education.
38 Deitel & Associates, Inc. is a member of the World Wide
39 Web Consortium. The company provides courses on Java,
40 C++, Visual Basic, C, Internet and World Wide Web
41 programming, and Object Technology.</p>
42
43 <div style = "float: right; padding: .5em;
44 text-align: right">
45 Leading-edge Programming Textbooks</div>
46
47 <p>The company's clients include many Fortune 1000
48 companies, government agencies, branches of the military
49 and business organizations. Through its publishing
50 partnership with Prentice Hall, Deitel & Associates,
51 Inc. publishes leading-edge programming textbooks,
52 professional books, interactive CD-ROM-based multimedia
53 Cyber Classrooms, satellite courses and World Wide Web

Fig. 6.12Fig. 6.12Fig. 6.12Fig. 6.12 Floating elements, aligning text and setting box dimensions (part 1 of 2).

iw3htp2.book Page 181 Wednesday, July 18, 2001 9:01 AM

182 Cascading Style Sheets™ (CSS) Chapter 6

Another property of every block-level element on screen is the border, which lies
between the padding space and the margin space and has numerous properties for adjusting
its appearance as shown in Fig. 6.14.

54 courses. Here is some
55 unflowing text. Here is some unflowing text.</p>
56
57 </body>
58 </html>

Fig. 6.13Fig. 6.13Fig. 6.13Fig. 6.13 Box model for block-level elements.

Fig. 6.12Fig. 6.12Fig. 6.12Fig. 6.12 Floating elements, aligning text and setting box dimensions (part 2 of 2).

Content

Margin

Border

Padding

iw3htp2.book Page 182 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 183

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 6.14: borders.html -->
6 <!-- Setting borders of an element -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Borders</title>
11
12 <style type = "text/css">
13
14 body { background-color: #ccffcc }
15
16 div { text-align: center;
17 margin-bottom: 1em;
18 padding: .5em }
19
20 .thick { border-width: thick }
21
22 .medium { border-width: medium }
23
24 .thin { border-width: thin }
25
26 .groove { border-style: groove }
27
28 .inset { border-style: inset }
29
30 .outset { border-style: outset }
31
32 .red { border-color: red }
33
34 .blue { border-color: blue }
35
36 </style>
37 </head>
38
39 <body>
40
41 <div class = "thick groove">This text has a border</div>
42 <div class = "medium groove">This text has a border</div>
43 <div class = "thin groove">This text has a border</div>
44
45 <p class = "thin red inset">A thin red line...</p>
46 <p class = "medium blue outset">
47 And a thicker blue line</p>
48
49 </body>
50 </html>

Fig. 6.14Fig. 6.14Fig. 6.14Fig. 6.14 Applying borders to elements (part 1 of 2).

iw3htp2.book Page 183 Wednesday, July 18, 2001 9:01 AM

184 Cascading Style Sheets™ (CSS) Chapter 6

In this example, we set three properties—border-width, border-color and
border-style. The border-width property may be set to any of the CSS lengths or
to the predefined values of thin, medium or thick. The border-color property sets
the color. (This property has different meanings for different borders.)

As with padding and margins, each of the border properties may be set for indi-
vidual sides of the box (e.g., border-top-style or border-left-color). A
developer can assign more than one class to an XHTML element by using the class
attribute as shown in line 41.

The border-styles are none, hidden, dotted, dashed, solid, double,
groove, ridge, inset and outset. Borders groove and ridge have opposite
effects, as do inset and outset. Figure 6.15 illustrates these border styles.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 6.15: borders2.html -->
6 <!-- Various border-styles -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Borders</title>
11
12 <style type = "text/css">
13
14 body { background-color: #ccffcc }

Fig. 6.15Fig. 6.15Fig. 6.15Fig. 6.15 Various border-styles (part 1 of 2).

Fig. 6.14Fig. 6.14Fig. 6.14Fig. 6.14 Applying borders to elements (part 2 of 2).

iw3htp2.book Page 184 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 185

6.11 User Style Sheets
Users can define their own user style sheets to format pages based on their preferences. For
example, people with visual impairments may want to increase the page’s text size. A Web-
page author needs to be careful because they may inadvertently override user preferences
with defined styles. This section discusses possible conflicts between author styles and user
styles.

15
16 div { text-align: center;
17 margin-bottom: .3em;
18 width: 50%;
19 position: relative;
20 left: 25%;
21 padding: .3em }
22 </style>
23 </head>
24
25 <body>
26
27 <div style = "border-style: solid">Solid border</div>
28 <div style = "border-style: double">Double border</div>
29 <div style = "border-style: groove">Groove border</div>
30 <div style = "border-style: ridge">Ridge border</div>
31 <div style = "border-style: inset">Inset border</div>
32 <div style = "border-style: outset">Outset border</div>
33
34 </body>
35 </html>

Fig. 6.15Fig. 6.15Fig. 6.15Fig. 6.15 Various border-styles (part 2 of 2).

iw3htp2.book Page 185 Wednesday, July 18, 2001 9:01 AM

186 Cascading Style Sheets™ (CSS) Chapter 6

Figure 6.16 contains an author style. The font-size is set to 9pt for all <p> tags
that have class note applied to them.

 User style sheets are external style sheets. Figure 6.17 shows a user style sheet that
sets the body’s font-size to 20pt, color to yellow and background-color
to #000080.

User style sheets are not linked to a document; rather, they are set in the browser’s
options. To add a user style sheet in Internet Explorer 5.5, select Internet Options...,
located in the Tools menu. In the Internet Options dialog (Fig. 6.18) that appears, click
Accessibility..., Check the Format documents using my style sheet check box
and type the location of the user style sheet. Internet Explorer 5.5 applies the user style
sheet to any document it loads.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 6.16: user_absolute.html -->
6 <!-- User styles -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>User Styles</title>
11
12 <style type = "text/css">
13
14 .note { font-size: 9pt }
15
16 </style>
17 </head>
18
19 <body>
20
21 <p>Thanks for visiting my Web site. I hope you enjoy it.
22 </p><p class = "note">Please Note: This site will be
23 moving soon. Please check periodically for updates.</p>
24
25 </body>
26 </html>

Fig. 6.16Fig. 6.16Fig. 6.16Fig. 6.16 Modifying text size with the pt measurement.

iw3htp2.book Page 186 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 187

The Web page from Fig. 6.16 is displayed in Fig. 6.19, with the user style sheet from
Fig. 6.17 applied.

1 /* Fig. 6.17: userstyles.css */
2 /* A user stylesheet */
3
4 body { font-size: 20pt;
5 color: yellow;
6 background-color: #000080 }

Fig. 6.17Fig. 6.17Fig. 6.17Fig. 6.17 User style sheet.

Fig. 6.18Fig. 6.18Fig. 6.18Fig. 6.18 Adding a user style sheet in Internet Explorer 5.5.

Fig. 6.19Fig. 6.19Fig. 6.19Fig. 6.19 Web page with user styles applied.

iw3htp2.book Page 187 Wednesday, July 18, 2001 9:01 AM

188 Cascading Style Sheets™ (CSS) Chapter 6

In this example if users define their own font-size in a user style sheet, the author
style has a higher precedence and overrides the user style. The 9pt font specified in the
author style sheet overrides the 20pt font specified in the user style sheet. This small font
may make pages difficult to read, especially for individuals with visual impairments. A
developer can avoid this problem by using relative measurements (such as em or ex)
instead of absolute measurements such as pt. Figure 6.20 changes the font-size prop-
erty to use a relative measurement (line 14), which does not override the user style set in
Fig. 6.17. Instead, the font size displayed is relative to that specified in the user style sheet.
In this case, text enclosed in the <p> tag displays as 20pt and <p> tags that have class
note applied to them are displayed in 15pt (.75 times 20pt).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 6.20: user_relative.html -->
6 <!-- User styles -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>User Styles</title>
11
12 <style type = "text/css">
13
14 .note { font-size: .75em }
15
16 </style>
17 </head>
18
19 <body>
20
21 <p>Thanks for visiting my Web site. I hope you enjoy it.
22 </p><p class = "note">Please Note: This site will be
23 moving soon. Please check periodically for updates.</p>
24
25 </body>
26 </html>

Fig. 6.20Fig. 6.20Fig. 6.20Fig. 6.20 Modifying text size with the em measurement.

iw3htp2.book Page 188 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 189

Fig. 6.21 displays the Web page from Fig. 6.20 with the user style sheet from Fig. 6.16
applied. Notice that the second line of text displayed is larger than the same line of text in
Fig. 6.19.

6.12 Internet and World Wide Web Resources
www.w3.org/TR/REC-CSS2
The W3C Cascading Style Sheets, Level 2 specification contains a list of all the CSS properties. The
specification also provides helpful examples detailing the use of many of the properties.

www.webreview.com/style
This site has several charts of CSS properties, including a list containing which browsers support what
attributes and to what extent.

tech.irt.org/articles/css.htm
This site contains articles dealing with CSS.

msdn.microsoft.com/workshop/author/css/site1014.asp
This site contains samples of some CSS features.

www.web-weaving.net
This site contains many CSS articles.

SUMMARY
• The inline style allows a developer to declare a style for an individual element by using the style

attribute in that element’s opening XHTML tag.

• Each CSS property is followed by a colon and the value of the attribute.

• The color property sets text color. Color names and hexadecimal codes may be used as the value.

• Styles that are placed in the <style> tag apply to the entire document.

• style element attribute type specifies the MIME type (the specific encoding format) of the
style sheet. Style sheets use text/css.

• Each rule body begins and ends with a curly brace ({ and }).

• Style class declarations are preceded by a period and are applied to elements of that specific class.

• The CSS rules in a style sheet use the same format as inline styles: The property is followed by a
colon (:) and the value of that property. Multiple properties are separated by semicolons (;).

• The background-color attribute specifies the background color of the element.

Fig. 6.21Fig. 6.21Fig. 6.21Fig. 6.21 Using relative measurements in author styles.

iw3htp2.book Page 189 Wednesday, July 18, 2001 9:01 AM

190 Cascading Style Sheets™ (CSS) Chapter 6

• The font-family attribute names a specific font that should be displayed. Generic font fami-
lies allow authors to specify a type of font instead of a specific font, in case a browser does not
support a specific font. The font-size property specifies the size used to render the font.

• The class attribute applies a style class to an element.

• Pseudoclasses provide the author access to content not specifically declared in the document. The
hover pseudoclass is activated when the user moves the mouse cursor over an element.

• The text-decoration property applies decorations to text within an element, such as
underline, overline, line-through and blink.

• To apply rules to multiple elements, separate the elements with commas in the style sheet.

• A pixel is a relative-length measurement: It varies in size based on screen resolution. Other relative
lengths are em, ex and percentages.

• The other units of measurement available in CSS are absolute-length measurements—i.e., units
that do not vary in size. These units can be in (inches), cm (centimeters), mm (millimeters), pt
(points; 1 pt=1/72 in) and pc (picas; 1 pc = 12 pt).

• External linking can create a uniform look for a Web site; separate pages can all use the same
styles. Modifying a single file makes changes to styles across an entire Web site.

• link’s rel attribute specifies a relationship between two documents.

• The CSS position property allows absolute positioning, which provides greater control over
where on a page elements reside. Specifying an element’s position as absolute removes it
from the normal flow of elements on the page and positions it according to distance from the top,
left, right or bottom margins of its parent element.

• The z-index property allows a developer to layer overlapping elements. Elements that have
higher z-index values are displayed in front of elements with lower z-index values.

• Unlike absolute positioning, relative positioning keeps elements in the general flow on the page
and offsets them by the specified top, left, right or bottom values.

• Property background-image specifies the URL of the image, in the format url(fileLoca-
tion). The property background-position places the image on the page using the values
top, bottom, center, left and right individually or in combination for vertical and hori-
zontal positioning. You can also position by using lengths.

• The background-repeat property controls the tiling of the background image. Setting the tiling
to no-repeat displays one copy of the background image on screen. The background-re-
peat property can be set to repeat (the default) to tile the image vertically and horizontally, to
repeat-x to tile the image only horizontally or to repeat-y to tile the image only vertically.

• The property setting background-attachment: fixed fixes the image in the position spec-
ified by background-position. Scrolling the browser window will not move the image from
its set position. The default value, scroll, moves the image as the user scrolls the window.

• The text-indent property indents the first line of text in the element by the specified amount.

• The font-weight property specifies the “boldness” of text. Values besides bold and normal
(the default) are bolder (bolder than bold text) and lighter (lighter than normal text). The
value also may be justified using multiples of 100, from 100 to 900 (i.e., 100, 200, …, 900). Text
specified as normal is equivalent to 400, and bold text is equivalent to 700.

• The font-style property allows the developer to set text to none, italic or oblique
(oblique will default to italic if the system does not have a separate font file for oblique text,
which is normally the case).

• span is a generic grouping element; it does not apply any inherent formatting to its contents. Its
main use is to apply styles or id attributes to a block of text. Element span is displayed inline

iw3htp2.book Page 190 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 191

(an inline element) with other text and with no line breaks. A similar element is the div element,
which also applies no inherent styles, but is displayed on a separate line, with margins above and
below (a block-level element).

• The dimensions of elements on a page can be set with CSS by using the height and width prop-
erties.

• Text within an element can be centered using text-align; other values for the text-
align property are left and right.

• One problem with setting both dimensions of an element is that the content inside the element
might sometimes exceed the set boundaries, in which case the element must be made large enough
for all the content to fit. However, a developer can set the overflow property to scroll; this
setting adds scroll bars if the text overflows the boundaries set for it.

• Browsers normally place text and elements on screen in the order in which they appear in the
XHTML file. Elements can be removed from the normal flow of text. Floating allows you to move
an element to one side of the screen; other content in the document will then flow around the float-
ed element.

• Each block-level element has a box drawn around it, known as the box model. The properties of
this box are easily adjusted.

• The margin property determines the distance between the element’s edge and any outside text.

• CSS uses a box model to render elements on screen. The content of each element is surrounded by
padding, a border and margins.

• Margins for individual sides of an element can be specified by using margin-top, margin-
right, margin-left and margin-bottom.

• The padding is the distance between the content inside an element and the edge of the element.
Padding can be set for each side of the box by using padding-top, padding-right, pad-
ding-left and padding-bottom.

• A developer can interrupt the flow of text around a floated element by setting the clear prop-
erty to the same direction in which the element is floated—right or left. Setting the clear
property to all interrupts the flow on both sides of the document.

• A property of every block-level element on screen is its border. The border lies between the pad-
ding space and the margin space and has numerous properties with which to adjust its appearance.

• The border-width property may be set to any of the CSS lengths or to the predefined values
of thin, medium or thick.

• The border-styles available are none, hidden, dotted, dashed, solid, double,
groove, ridge, inset and outset.

• The border-color property sets the color used for the border.

• The class attribute allows more than one class to be assigned to an XHTML element.

TERMINOLOGY
absolute positioning background-repeat
absolute-length measurement blink
arial font block-level element
background border
background-attachment border-color
background-color border-style
background-image border-width
background-position box model

iw3htp2.book Page 191 Wednesday, July 18, 2001 9:01 AM

192 Cascading Style Sheets™ (CSS) Chapter 6

SELF-REVIEW EXERCISES
6.1 Assume that the size of the base font on a system is 12 points.

a) How big is 36-point font in ems?
b) How big is 8-point font in ems?
c) How big is 24-point font in picas?
d) How big is 12-point font in inches?
e) How big is 1-inch font in picas?

6.2 Fill in the blanks in the following statements:
a) Using the element allows authors to use external style sheets in their pages.

Cascading Style Sheets (CSS) outset border-style
class attribute overflow property
clear property value overline text decoration
cm (centimeter) padding
colon (:) parent element
color pc (pica)
CSS rule pseudoclass
cursive generic font family pt (point)
dashed border-style rel attribute (link)
dotted border-style relative positioning
double border-style relative-length measurement
em (size of font) repeat
embedded style sheet ridge border-style
ex (x-height of font) right
floated element sans-serif generic font family
font-style property scroll
generic font family separation of structure from content
groove border style serif generic font family
hidden border style small relative font size
href attribute smaller relative font size
in (inch) solid border-style
inline style span element
inline-level element style
inset border-style style attribute
large relative font size style class
larger relative font size style in header section of the document
left text flow
line-through text decoration text/css MIME type
link element text-align
linking to an external style sheet text-decoration property
margin text-indent
margin-bottom property thick border width
margin-left property thin border width
margin-right property user style sheet
margin-top property x-large relative font size
medium relative border width x-small relative font size
medium relative font size xx-large relative font size
mm (millimeter) xx-small relative font size
monospace z-index
none border-style

iw3htp2.book Page 192 Wednesday, July 18, 2001 9:01 AM

Chapter 6 Cascading Style Sheets™ (CSS) 193

b) To apply a CSS rule to more than one element at a time, separate the element names with
a .

c) Pixels are a(n) -length measurement unit.
d) The hover is activated when the user moves the mouse cursor

over the specified element.
e) Setting the overflow property to provides a mechanism for containing in-

ner content without compromising specified box dimensions.
f) While is a generic inline element that applies no inherent formatting,

 is a generic block-level element that applies no inherent formatting.
g) Setting the background-repeat property to tiles the specified

background-image only vertically.
h) If you float an element, you can stop the flowing text by using property .
i) The property allows you to indent the first line of text in an element.
j) Three components of the box model are the , and .

ANSWERS TO SELF-REVIEW EXERCISES
6.1 a) 3 ems. b) 0.75 ems. c) 2 picas. d) 1/6 inch. e) 6 picas.

6.2 a) link. b) comma. c) relative. d) pseudoclass. e) scroll. f) span, div. g) y-repeat.
h) clear. i) text-indent. j) padding, border, margin.

EXERCISES
6.3 Write a CSS rule that makes all text 1.5 times larger than the base font of the system and col-
ors the text red.

6.4 Write a CSS rule that removes the underline from all links inside list items (li) and shifts
them left by 3 ems.

6.5 Write a CSS rule that places a background image halfway down the page, tiling it horizon-
tally. The image should remain in place when the user scrolls up or down.

6.6 Write a CSS rule that gives all h1 and h2 elements a padding of 0.5 ems, a grooved border
style and a margin of 0.5 ems.

6.7 Write a CSS rule that changes the color of all elements containing attribute class =
"greenMove" to green and shifts them down 25 pixels and right 15 pixels.

6.8 Write an XHTML document that shows the results of a color survey. The document should
contain a form with radio buttons that allows users to vote for their favorite color. One of the colors
should be selected as a default. The document should also contain a table showing various colors and
the corresponding percentage of votes for each color. (Each row should be displayed in the color to
which it is referring.) Use attributes to format width, border and cell spacing for the table.

6.9 Add an embedded style sheet to the XHTML document of Fig. 4.5. This style sheet should
contain a rule that displays h1 elements in blue. In addition, create a rule that displays all links in blue
without underlining them. When the mouse hovers over a link, change the link’s background color to
yellow.

6.10 Modify the style sheet of Fig. 6.4 by changing a:hover to a:hver and margin-left
to margin left. Validate the style sheet using the CSS Validator. What happens?

iw3htp2.book Page 193 Wednesday, July 18, 2001 9:01 AM

7
JavaScript: Introduction

to Scripting

Objectives
• To be able to write simple JavaScript programs.
• To be able to use input and output statements.
• To understand basic memory concepts.
• To be able to use arithmetic operators.
• To understand the precedence of arithmetic operators.
• To be able to write decision-making statements.
• To be able to use relational and equality operators.
Comment is free, but facts are sacred.
C. P. Scott

The creditor hath a better memory than the debtor.
James Howell

When faced with a decision, I always ask, “What would be
the most fun?”
Peggy Walker

Equality, in a social sense, may be divided into that of
condition and that of rights.
James Fenimore Cooper

iw3htp2.book Page 194 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 195

7.1 Introduction
In the first six chapters, we introduced the Internet and World Wide Web, Internet Explorer
5.5, Adobe Photoshop Elements, XHTML and Cascading Style Sheets (CSS). In this chap-
ter, we begin our introduction to the JavaScript1 scripting language, which facilitates a dis-
ciplined approach to designing computer programs that enhance the functionality and
appearance of Web pages.

In Chapters 7–12, we present a detailed discussion of JavaScript—the de facto client-
side scripting language for Web-based applications. These chapters provide the program-
ming foundation for both client-side scripting (Chapters 7–20) and server-side scripting
(Chapters 25–31). Our treatment of JavaScript (Chapters 7–12) serves two purposes—it
introduces client-side scripting, which makes Web pages more dynamic and interactive,
and it provides the foundation for the more complex server-side scripting presented in
Chapters 25–31.

We now introduce JavaScript programming and present examples that illustrate sev-
eral important features of JavaScript. Each example is carefully analyzed one line at a time.
In Chapters 8–9, we present a detailed treatment of program development and program
control in JavaScript.

7.2 Simple Program: Printing a Line of Text in a Web Page
JavaScript uses notations that may appear strange to nonprogrammers. We begin by con-
sidering a simple script (or program) that displays the text “Welcome to JavaScript
Programming!” in the body of an XHTML document. The Internet Explorer Web
browser contains a JavaScript interpreter, which processes the commands written in Java-
Script. The JavaScript code and its output are shown in Fig. 7.1.

Outline

7.1 Introduction
7.2 Simple Program: Printing a Line of Text in a Web Page
7.3 Another JavaScript Program: Adding Integers
7.4 Memory Concepts
7.5 Arithmetic
7.6 Decision Making: Equality and Relational Operators
7.7 JavaScript Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. Microsoft’s version of JavaScript is called JScript. JavaScript was originally created by Netscape.
Both Netscape and Microsoft have been instrumental in the standardization of JavaScript/JScript
by the ECMA (European Computer Manufacturer’s Association) as ECMAScript. For information
on the current ECMAScript standard, visit www.ecma.ch/stand/ecma-262.htm.
Throughout this book, we refer to JavaScript and JScript generically as JavaScript.

iw3htp2.book Page 195 Wednesday, July 18, 2001 9:01 AM

196 JavaScript: Introduction to Scripting Chapter 7

This program illustrates several important JavaScript features. We consider each line
of the XHTML document and script in detail. We have given each XHTML document line
numbers for the reader’s convenience; those line numbers are not part of the XHTML doc-
ument or of the JavaScript programs. Lines 14–15 do the “real work” of the script, namely
displaying the phrase Welcome to JavaScript Programming! in the Web page.
However, let us consider each line in order.

Line 9 indicates the beginning of the <head> section of the XHTML document. For
the moment, the JavaScript code we write will appear in the <head> section. The browser
interprets the contents of the <head> section first, so the JavaScript programs we write
there will execute before the <body> of the XHTML document displays. In later chapters
on JavaScript and in the chapters on dynamic HTML, we illustrate inline scripting, in
which JavaScript code is written in the <body> of an XHTML document.

Line 11 is simply a blank line to separate the <script> tag at line 12 from the other
XHTML elements. This effect helps the script stand out in the XHTML document and
makes the document easier to read.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 7.1: welcome.html -->
6 <!-- Displaying a line of text -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>A First Program in JavaScript</title>
11
12 <script type = "text/javascript">
13 <!--
14 document.writeln(
15 "<h1>Welcome to JavaScript Programming!</h1>");
16 // -->
17 </script>
18
19 </head><body></body>
20 </html>

Fig. 7.1Fig. 7.1Fig. 7.1Fig. 7.1 First program in JavaScript.

Title of the
XHTML
document

Location and name of the
loaded XHTML document

Script result

iw3htp2.book Page 196 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 197

Good Programming Practice 7.1
Place a blank line before <script> and after </script> to separate the script from the
surrounding XHTML elements and to make the script stand out in the document. 7.1

Line 12 uses the <script> tag to indicate to the browser that the text which follows
is part of a script. The type attribute specifies the type of file as well as the scripting lan-
guage used in the script—in this case, a text file written in javascript. Both
Microsoft Internet Explorer and Netscape Communicator use JavaScript as the default
scripting language. [Note: Even though Microsoft calls the language JScript, the type
attribute specifies javascript, to adhere to the ECMAScript standard.]

Lines 14–15 instruct the browser’s JavaScript interpreter to perform an action, namely
to display in the Web page the string of characters contained between the double quotation
(") marks. A string is sometimes called a character string, a message or a string literal. We
refer to characters between double quotation marks generically as strings. Individual
whitespace characters between words in a string are not ignored by the browser. However,
if consecutive spaces appear in a string, browsers condense those spaces to a single space.
Also, in most cases, browsers ignore leading whitespace characters (i.e., whitespace at the
beginning of a string).

Software Engineering Observation 7.1
Strings in JavaScript can also be enclosed in single quotation marks (’). 7.1

Lines 14–15 use the browser’s document object, which represents the XHTML doc-
ument the browser is currently displaying. The document object allows a script pro-
grammer to specify text to display in the XHTML document. The browser contains a
complete set of objects that allow script programmers to access and manipulate every ele-
ment of an XHTML document. In the next several chapters, we overview some of these
objects. Chapters 13 through 18 provide in-depth coverage of many more objects that a
script programmer can manipulate.

An object resides in the computer’s memory and contains information used by the
script. The term object normally implies that attributes (data) and behaviors (methods) are
associated with the object. The object’s methods use the attributes to provide useful ser-
vices to the client of the object (i.e., the script that calls the methods). In lines 14–15, we
call the document object’s writeln method to write a line of XHTML markup in the
XHTML document. The parentheses following the method name writeln contain the
arguments that the method requires to perform its task (or its action). Method writeln
instructs the browser to display the argument string. If the string contains XHTML ele-
ments, the browser interprets these elements and renders them on the screen. In this
example, the browser displays the phrase Welcome to JavaScript Programming!
as an h1-level XHTML head, because the phrase is enclosed in an h1 element.

The code elements in lines 14–15, including document.writeln, its argument in
the parentheses (the string) and the semicolon (;), together are called a statement. Every
statement should end with a semicolon (also known as the statement terminator), although
this practice is not required by JavaScript. Line 17 indicates the end of the script.

Good Programming Practice 7.2
Always include the semicolon at the end of a statement to terminate the statement. This no-
tation clarifies where one statement ends and the next statement begins. 7.2

iw3htp2.book Page 197 Wednesday, July 18, 2001 9:01 AM

198 JavaScript: Introduction to Scripting Chapter 7

Common Programming Error 7.1
Forgetting the ending </script> tag for a script may prevent the browser from interpret-
ing the script properly and may prevent the XHTML document from loading properly. 7.1

The </head> tag at line 19 indicates the end of the <head> section. Also on line 19,
the tags <body> and </body> specify that this XHTML document has an empty body—
no XHTML appears in the body element. Line 20 indicates the end of this XHTML doc-
ument.

We are now ready to view our XHTML document in Internet Explorer. Open the
XHTML document in Internet Explorer by double-clicking it. If the script contains no
syntax errors, it should produce the output shown in Fig. 7.1.

Common Programming Error 7.2
JavaScript is case sensitive. Not using the proper uppercase and lowercase letters is a syntax
error. A syntax error occurs when the script interpreter cannot recognize a statement. The
interpreter normally issues an error message to help the programmer locate and fix the in-
correct statement. Syntax errors are violations of the rules of the programming language.
The interpreter notifies you of a syntax error it attempts to execute the statement containing
the error. The JavaScript interpreter in Internet Explorer reports all syntax errors by indi-
cating in a separate popup window that a “runtime error” occurred (i.e., a problem occurred
while the interpreter was running the script). 7.2

Testing and Debugging Tip 7.1
When the interpreter reports a syntax error, the error may not be on the line indicated by the
error message. First, check the line for which the error was reported. If that line does not
contain errors, check the preceding several lines in the script. 7.1

Some older Web browsers do not support scripting. In such browsers, the actual text
of a script often will display in the Web page. To prevent this from happening, many script
programmers enclose the script code in an XHTML comment, so that browsers which do
not support scripts ignore the script. The syntax used is as follows:

<script type = "text/javascript">
 <!--
 script code here
 // -->
</script>

When a browser that does not support scripts encounters the preceding code, it ignores the
<script> and </script> tags and the script code in the XHTML comment. Browsers
that do support scripting will interpret the JavaScript code as expected. [Note: Some brows-
ers require the JavaScript single-line comment // (see Section 7.3 for an explanation) be-
fore the ending XHTML comment delimiter (-->) to interpret the script properly.]

Portability Tip 7.1
Some browsers do not support the <script>…</script> tags. If your document is to
be rendered with such browsers, the script code between these tags should be enclosed in an
XHTML comment, so that the script text does not get displayed as part of the Web page. 7.1

A script can display Welcome to JavaScript Programming! several ways.
Figure 7.2 uses two JavaScript statements to produce one line of text in the XHTML docu-
ment. This example also displays the text in a different color using the CSS color property.

iw3htp2.book Page 198 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 199

Most of this XHTML document is identical to Fig. 7.1, so we concentrate only on
lines 14–16 of Fig. 7.2, which display one line of text in the XHTML document. The first
statement uses document method write to display a string. Unlike writeln, write
does not position the output cursor in the XHTML document at the beginning of the next
line after writing its argument. [Note: The output cursor keeps track of where the next
character appears in the XHTML document.] The next character written in the XHTML
document appears immediately after the last character written with write. Thus, when
line 16 executes, the first character written, “J,” appears immediately after the last char-
acter displayed with write (the space character inside the right double quote on line 15).
Each write or writeln statement resumes writing characters where the last write
or writeln statement stopped writing characters. So, after a writeln statement, the
next output appears on the next line. In effect, the two statements in lines 14–16 result in
one line of XHTML text. Remember that statements in JavaScript are separated by semi-
colons (;). Therefore, lines 15–16 represent one statement. JavaScript allows large state-
ments to be split over many lines. However, you cannot split a statement in the middle of
a string.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 7.2: welcome2.html -->
6 <!-- Printing a Line with Multiple Statements -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Printing a Line with Multiple Statements</title>
11
12 <script type = "text/javascript">
13 <!--
14 document.write("<h1 style = \"color: magenta\">");
15 document.write("Welcome to JavaScript " +
16 "Programming!</h1>");
17 // -->
18 </script>
19
20 </head><body></body>
21 </html>

Fig. 7.2Fig. 7.2Fig. 7.2Fig. 7.2 Printing on one line with separate statements.

iw3htp2.book Page 199 Wednesday, July 18, 2001 9:01 AM

200 JavaScript: Introduction to Scripting Chapter 7

Common Programming Error 7.3
Splitting a statement in the middle of a string is a syntax error. 7.3

Notice, however, that the two characters “\” and “"” are not displayed in the
browser. The backslash (\) in a string is an escape character. It indicates that a “special”
character is to be used in the string. When a backslash is encountered in a string of char-
acters, the next character is combined with the backslash to form an escape sequence.
The escape sequence \" is the double-quote character, which causes a double-quote
character to be inserted into the string. We use this escape sequence to insert double-
quotes around the attribute value for style. We discuss escape sequences in greater
detail momentarily.

It is important to note that the preceding discussion has nothing to do with the actual
rendering of the XHTML text. Remember that the browser does not create a new line of
text unless the browser window is too narrow for the text being rendered, or unless the
browser encounters an XHTML element that explicitly starts a new line—e.g.,
 to
start a new line, <p> to start a new paragraph, etc.

Common Programming Error 7.4
Many people confuse the writing of XHTML text with the rendering of XHTML text. Writing
XHTML text creates the XHTML that will be rendered by the browser for presentation to the
user. 7.1

In the next example, we demonstrate that a single statement can cause the browser to
display multiple lines through the use of line-break XHTML tags (
) throughout the
string of XHTML text in a write or writeln method call. Figure 7.3 demonstrates the
use of line-break XHTML tags. Lines 13–14 produce three separate lines of text when the
browser renders the XHTML document.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 7.3: welcome3.html -->
6 <!-- Printing Multiple Lines -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head><title>Printing Multiple Lines</title>

10
11 <script type = "text/javascript">
12 <!--
13 document.writeln("<h1>Welcome to
JavaScript" +
14 "
Programming!</h1>");
15 // -->
16 </script>
17
18 </head><body></body>
19 </html>

Fig. 7.3Fig. 7.3Fig. 7.3Fig. 7.3 Printing on multiple lines with a single statement (part 1 of 2).

iw3htp2.book Page 200 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 201

The first several programs in this chapter display text in the XHTML document. Some-
times it is useful to display information in windows called dialogs (or dialog boxes) that
“pop up” on the screen to grab the user’s attention. Dialogs typically display important
messages to users browsing the Web page. JavaScript allows you easily to display a dialog
box containing a message. The program in Fig. 7.4 displays Welcome to JavaScript
Programming! as three lines in a predefined dialog called an alert dialog.

Line 13 in the script uses the browser’s window object to display an alert dialog. The
argument to the window object’s alert method is the string to display. Executing the pre-
ceding statement displays the dialog shown in the first window of Fig. 7.4. The title bar of the
dialog contains the string Microsoft Internet Explorer, to indicate that the browser is pre-
senting a message to the user. The dialog provides an OK button that allows the user to dis-
miss (i.e., hide) the dialog by clicking the button. To dismiss the dialog position the mouse
cursor (also called the mouse pointer) over the OK button and click the mouse.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 7.4: welcome4.html -->
6 <!-- Printing multiple lines in a dialog box -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head><title>Printing Multiple Lines in a Dialog Box</title>

10
11 <script type = "text/javascript">
12 <!--
13 window.alert("Welcome to\nJavaScript\nProgramming!");
14 // -->
15 </script>
16
17 </head>
18
19 <body>
20 <p>Click Refresh (or Reload) to run this script again.</p>
21 </body>
22 </html>

Fig. 7.4Fig. 7.4Fig. 7.4Fig. 7.4 Displaying multiple lines in a dialog (part 1 of 2).

Fig. 7.3Fig. 7.3Fig. 7.3Fig. 7.3 Printing on multiple lines with a single statement (part 2 of 2).

iw3htp2.book Page 201 Wednesday, July 18, 2001 9:01 AM

202 JavaScript: Introduction to Scripting Chapter 7

Common Programming Error 7.5
Dialogs display plain text; they do not render XHTML. Therefore, specifying XHTML ele-
ments as part of a string to be displayed in a dialog results in the actual characters of the
tags being displayed. 7.5

Note that the alert dialog contains three lines of plain text. Normally, a diaolg dis-
plays the characters in a string exactly as they appear between the double quotes. Notice,
however, that the dialog does not display the two characters “\” and “n.” The escape
sequence \n is the newline character. In a dialog, the newline character causes the cursor
(the current screen position indicator) to move to the beginning of the next line in the
dialog. Some other common escape sequences are listed in Fig. 7.5. The \n, \t and \r
escape sequences in the table do not affect XHTML rendering unless they are in a pre ele-
ment (this element displays the text between its tags in a fixed-width font exactly as it is
formatted between the tags, including leading whitespace characters and consecutive
whitespace characters). The other escape sequences result in characters that will be dis-
played in plain text dialogs and in XHTML.

Fig. 7.4Fig. 7.4Fig. 7.4Fig. 7.4 Displaying multiple lines in a dialog (part 2 of 2).

The OK button
allows the user to
dismiss (or hide)
the dialog.

The dialog is
automatically sized
to accommodate
the string.

Title bar

Mouse cursor

Escape sequence Description

\n Newline. Position the screen cursor at the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor to the beginning of the cur-
rent line; do not advance to the next line. Any characters output after
the carriage return overwrite the characters previously output on that
line.

\\ Backslash. Used to represent a backslash character in a string.

Fig. 7.5Fig. 7.5Fig. 7.5Fig. 7.5 Some common escape sequences (part 1 of 2).

iw3htp2.book Page 202 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 203

7.3 Another JavaScript Program: Adding Integers
Our next script inputs two integers (whole numbers, such as 7, –11, 0 and 31,914) typed by
a user at the keyboard, computes the sum of the values and displays the result.

The script uses another predefined dialog box from the window object, one called a
prompt dialog, that allows the user to input a value for use in the script. The program dis-
plays the results of the addition operation in the XHTML document. Figure 7.6 shows the
script and some sample screen captures. [Note: In later JavaScript chapters, we will obtain
input via GUI components in XHTML forms, as introduced in Chapter 5.]

\" Double quote. Used to represent a double quote character in a string
contained in double quotes. For example,

 window.alert("\"in quotes\"");

displays "in quotes" in an alert dialog.

\' Single quote. Used to represent a single quote character in a string. For
example,

 window.alert('\'in quotes\'');

displays 'in quotes' in an alert dialog.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 7.6: Addition.html -->
6 <!-- Addition Program -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>An Addition Program</title>
11
12 <script type = "text/javascript">
13 <!--
14 var firstNumber, // first string entered by user
15 secondNumber, // second string entered by user
16 number1, // first number to add
17 number2, // second number to add
18 sum; // sum of number1 and number2
19
20 // read in first number from user as a string
21 firstNumber =
22 window.prompt("Enter first integer", "0");

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 Addition script “in action” (part 1 of 2).

Escape sequence Description

Fig. 7.5Fig. 7.5Fig. 7.5Fig. 7.5 Some common escape sequences (part 2 of 2).

iw3htp2.book Page 203 Wednesday, July 18, 2001 9:01 AM

204 JavaScript: Introduction to Scripting Chapter 7

Lines 14–18 are declarations. The keyword var at the beginning of the statement indi-
cates that the words firstNumber, secondNumber, number1, number2 and sum
are the names of variables. A variable is a location in the computer’s memory where a value

23
24 // read in second number from user as a string
25 secondNumber =
26 window.prompt("Enter second integer", "0");
27
28 // convert numbers from strings to integers
29 number1 = parseInt(firstNumber);
30 number2 = parseInt(secondNumber);
31
32 // add the numbers
33 sum = number1 + number2;
34
35 // display the results
36 document.writeln("<h1>The sum is " + sum + "</h1>");
37 // -->
38 </script>
39
40 </head>
41 <body>
42 <p>Click Refresh (or Reload) to run the script again</p>
43 </body>
44 </html>

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 Addition script “in action” (part 2 of 2).

iw3htp2.book Page 204 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 205

can be stored for use by a program. All variables should be declared with a name in a var
statement before they are used in a program. Although using var to declare variables is not
required, we will see in Chapter 10, “JavaScript/JScript: Functions,” that var sometimes
ensures proper behavior of a script.

The name of a variable can be any valid identifier. An identifier is a series of characters
consisting of letters, digits, underscores (_) and dollar signs ($) that does not begin with a
digit and does not contain any spaces. Some valid identifiers are Welcome, $value,
_value, m_inputField1 and button7. The name 7button is not a valid identifier,
because it begins with a digit, and the name input field is not a valid identifier, because
it contains a space. Remember that JavaScript is case sensitive—uppercase and lowercase
letters are considered to be different characters, so firstNumber, FiRsTnUmBeR and
FIRSTNUMBER are different identifiers.

Good Programming Practice 7.3
Choosing meaningful variable names helps a script to be “self-documenting” (i.e., easy to
understand by simply reading the script, rather than having to read manuals or excessive
comments). 7.3

Good Programming Practice 7.4
By convention, variable-name identifiers begin with a lowercase first letter. Every word in
the name after the first word should begin with a capital first letter. For example, identifier
firstNumber has a capital N in its second word, Number. 7.4

Common Programming Error 7.6
Splitting a statement in the middle of an identifier is normally a syntax error. 7.6

Declarations, like statements, end with a semicolon (;) and can be split over several lines
(as shown in Fig. 7.6) with each variable in the declaration separated by a comma—known
as a comma-separated list of variable names. Several variables may be declared either in one
declaration or in multiple declarations. We could have written five declarations, one for each
variable, but the single declaration we used in the program is more concise.

Programmers often indicate the purpose of each variable in the program by placing a Jav-
aScript comment at the end of each line in the declaration. In lines 14–18, single-line com-
ments that begin with the characters // state the purpose of each variable in the script. This
form of comment is called a single-line comment because the comment terminates at the end
of the line. A // comment can begin at any position in a line of JavaScript code and continues
until the end of that line. Comments do not cause the browser to perform any action when the
script is interpreted; rather, comments are ignored by the JavaScript interpreter.

Good Programming Practice 7.5
Some programmers prefer to declare each variable on a separate line. This format allows for
easy insertion of a descriptive comment next to each declaration. 7.5

Another comment notation facilitates the writing of multiple-line comments. For
example,

/* This is a multiple-line
 comment. It can be
 split over many lines. */

iw3htp2.book Page 205 Wednesday, July 18, 2001 9:01 AM

206 JavaScript: Introduction to Scripting Chapter 7

comments can be spread over several lines. Such comments begin with delimiter /* and end
with delimiter */. All text between the delimiters of the comment is ignored by the compiler.

Common Programming Error 7.7
Forgetting one of the delimiters of a multiple-line comment is a syntax error. 7.7

Common Programming Error 7.8
Nesting multiple-line comments (i.e., placing a multiple-line comment between the delimiters
of another multiple-line comment) is a syntax error. 7.8

JavaScript adopted comments delimited with /* and */ from the C programming lan-
guage and single-line comments delimited with // from the C++ programming language.
JavaScript programmers generally prefer C++-style single-line comments over C-style
comments. Throughout this book, we use C++-style single-line comments.

Line 20 is a single-line comment indicating the purpose of the statement in the next two
lines. Lines 21–22 allow the user to enter a string representing the first of the two integers that
will be added. The window object’s prompt method displays the dialog in Fig. 7.7.

The first argument to prompt indicates to the user what to type in the text field. This
message is called a prompt because it directs the user to take a specific action. The optional
second argument is the default string to display in the text field; if the second argument is
not supplied, the text field does not display a default value. The user types characters in the
text field, then clicks the OK button to return the string to the program. [If you type, but
nothing appears in the text field, position the mouse pointer in the text field and click the
left mouse button to activate the text field.] Unfortunately, JavaScript does not provide a
simple form of input that is analogous to writing a line of text with document.write
and document.writeln. For this reason, we normally receive input from a user
through a GUI component such as the prompt dialog, as in this program, or through an
XHTML form GUI component, as we will see in later chapters.

Technically, the user can type anything in the text field of the prompt dialog. For this
program, if the user either types a noninteger value or clicks the Cancel button, a runtime
logic error will occur, and the sum of the two values will appear in the XHTML document
as NaN (not a number). In Chapter 12, JavaScript: Objects, we discuss the Number object
and its methods that can determine whether a value is not a number.

Fig. 7.7Fig. 7.7Fig. 7.7Fig. 7.7 Prompt dialog displayed by the window object’s prompt method.

When the user
clicks OK, the
value typed
by the user is
returned to
the program
as a string.
The program
must convert
the string to a
number.

This is the text
field in which
the user types
the value.

This is the prompt to the user.

This is the default value if the
user does not enter a number.

iw3htp2.book Page 206 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 207

The statement at lines 21–22 gives the result of the call to the window object’s
prompt method (a string containing the characters typed by the user) to variable first-
Number by using the assignment operator, =. The statement is read as, firstNumber
gets the value of window.prompt("Enter first integer", "0"). The = oper-
ator is called a binary operator, because it has two operands—firstNumber and the
result of the expression window.prompt("Enter first integer", "0"). This
entire statement is called an assignment statement, because it assigns a value to a variable.
The expression to the right of the assignment operator always is evaluated first.

Lines 24 is a single-line comment that indicates the purpose of the statement in lines
25 and 26. The statement displays a prompt dialog in which the user types a string repre-
senting the second of the two integers to add.

Lines 29–30 convert the two strings input by the user to integer values that can be used
in a calculation. Function parseInt converts its string argument to an integer. Line 29
assigns the integer that function parseInt returns to the variable number1. Any subse-
quent references to number1 in the program use this same integer value. Line 30 assigns
the integer that function parseInt returns to variable number2. Any subsequent refer-
ences to number2 in the program use this same integer value. [Note: We refer to
parseInt as a function rather than a method because we do not precede the function call
with an object name (such as document or window) and a dot operator (.). The term
method implies that the function belongs to a particular object. For example, method
writeln belongs to the document object and method prompt belongs to the window
object.]

The assignment statement on line 33 calculates the sum of the variables number1 and
number2 and assigns the result to variable sum by using the assignment operator, =. The
statement is read as “sum gets the value of number1 + number2.” Most calculations
occur in assignment statements.

Good Programming Practice 7.6
Place spaces on either side of a binary operator. This format makes the operator stand out
and makes the program more readable. 7.6

After line 33 performs the calculation, line 36 uses document.writeln to display
the result of the addition. The expression from the preceding statement uses the operator +
to “add” a string (the literal "<h1>The sum is ") and sum (the variable containing the
integer result of the addition on line 33). JavaScript has a version of the + operator for string
concatenation that enables a string and a value of another data type (including another
string) to be concatenated. The result of this operation is a new (and normally longer)
string. If we assume that sum contains the value 117, the expression evaluates as follows:
JavaScript determines that the two operands of the + operator (the string "<h1>The sum
is " and the integer sum) are different types and that one of them is a string. Next, the
statement converts the value of variable sum to a string and concatenates it with
"<h1>The sum is ", which results in the string "<h1>The sum is 117". Then, the
statement concatenates the string "</h1>" to produce the string "<h1>The sum is
117</h1>". The browser renders this string as part of the XHTML document. Note that
the automatic conversion of integer sum occurs because it is concatenated with the string
literal "<h1>The sum is ". Also note that the space between is and 117 is part of the
string "<h1>The sum is ".

iw3htp2.book Page 207 Wednesday, July 18, 2001 9:01 AM

208 JavaScript: Introduction to Scripting Chapter 7

Common Programming Error 7.9
Confusing the + operator used for string concatenation with the + operator used for addition
can lead to strange results. For example, assuming that integer variable y has the value 5,
the expression "y + 2 = " + y + 2 results in the string "y + 2 = 52", not "y + 2 = 7",
because first the value of y is concatenated with the string "y + 2 = ", then the value 2 is
concatenated with the new, larger string "y + 2 = 5". The expression "y + 2 = " + (y +
2) produces the desired result. 7.9

After the browser interprets the <head> section of the XHTML document (which
contains the JavaScript), it then interprets the <body> of the XHTML document (lines 41–
43) and renders the XHTML. If you click your browser’s Refresh (or Reload) button, the
browser will reload the XHTML document, so that you can execute the script again and add
two new integers. [Note: In some cases, it may be necessary to hold down the Shift key
while clicking your browser’s Refresh (or Reload) button, to ensure that the XHTML
document reloads properly.]

7.4 Memory Concepts
Variable names such as number1, number2 and sum actually correspond to locations in
the computer's memory. Every variable has a name, a type and a value.

In the addition program in Fig. 7.6, when line 22 executes, the string firstNumber
(previously entered by the user in a prompt dialog) is converted to an integer and placed
into a memory location to which the name number1 has been assigned by the interpreter.
Suppose the user entered the string 45 as the value for firstNumber. The program con-
verts firstNumber to an integer, and the computer places the integer value 45 into loca-
tion number1, as shown in Fig. 7.8.

Whenever a value is placed in a memory location, the value replaces the previous value
in that location. The previous value is lost.

When line 26 executes, suppose the user enters the string 72 as the value for second-
Number. The program converts secondNumber to an integer, the computer places that
integer value, 72, into location number2 and the memory appears as shown in Fig. 7.9.

Fig. 7.8Fig. 7.8Fig. 7.8Fig. 7.8 Memory location showing the name and value of variable number1.

Fig. 7.9Fig. 7.9Fig. 7.9Fig. 7.9 Memory locations after values for variables number1 and number2
have been input.

number1 45

number1 45

number2 72

iw3htp2.book Page 208 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 209

Once the program has obtained values for number1 and number2, it adds the values
and places the sum into variable sum. The statement

sum = number1 + number2;

performs the addition and also replaces sum’s previous value. After sum is calculated, the
memory appears as shown in Fig. 7.10. Note that the values of number1 and number2
appear exactly as they did before they were used in the calculation of sum. These values
were used, but not destroyed, as the computer performed the calculation. When a value is
read from a memory location, the process is nondestructive.

7.5 Arithmetic
Many scripts perform arithmetic calculations. Figure 7.11 summarizes the arithmetic oper-
ators. Note the use of various special symbols not used in algebra. The asterisk (*) indi-
cates multiplication; the percent sign (%) is the modulus operator, which is discussed
shortly. The arithmetic operators in Fig. 7.11 are binary operators, because each operates
on two operands. For example, the expression sum + value contains the binary operator
+ and the two operands sum and value.

Fig. 7.10Fig. 7.10Fig. 7.10Fig. 7.10 Memory locations after calculating the sum of number1 and
number2.

JavaScript
operation

Arithmetic
operator

Algebraic
expression

JavaScript
expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm b * m

Division /
x / y or or x ÷ y

x / y

Modulus % r mod s r % s

Fig. 7.11Fig. 7.11Fig. 7.11Fig. 7.11 Arithmetic operators.

number1 45

number2 72

sum 117

x
y
--

iw3htp2.book Page 209 Wednesday, July 18, 2001 9:01 AM

210 JavaScript: Introduction to Scripting Chapter 7

JavaScript provides the modulus operator, %, which yields the remainder after division.
The expression x % y yields the remainder after x is divided by y. Thus, 7.4 % 3.1 yields
1.2, and 17 % 5 yields 2. In later chapters, we consider many interesting applications of
the modulus operator, such as determining whether one number is a multiple of another.
There is no arithmetic operator for exponentiation in JavaScript. (Chapter 9 shows how to
perform exponentiation in JavaScript.)

Arithmetic expressions in JavaScript must be written in straight-line form to facilitate
entering programs into the computer. Thus, expressions such as “a divided by b” must be
written as a / b, so that all constants, variables and operators appear in a straight line. The
following algebraic notation is generally not acceptable to computers:

Parentheses are used in JavaScript expressions in the same manner as in algebraic
expressions. For example, to multiply a times the quantity b + c we write:

a * (b + c)

JavaScript applies the operators in arithmetic expressions in a precise sequence deter-
mined by the following rules of operator precedence, which are generally the same as those
followed in algebra:

1. Operators in expressions contained between a left parenthesis and its corresponding
right parenthesis are evaluated first. Thus, parentheses may be used to force the or-
der of evaluation to occur in any sequence desired by the programmer. Parentheses
are said to be at the highest level of precedence.” In cases of nested, or embedded,
parentheses, the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and modulus operations are applied next. If an expression
contains several multiplication, division and modulus operations, operators are
applied from left to right. Multiplication, division and modulus operations are said
to have the same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains sev-
eral addition and subtraction operations, operators are applied from left to right.
Addition and subtraction operations have the same level of precedence.

The rules of operator precedence enable JavaScript to apply operators in the correct or-
der. When we say that operators are applied from left to right, we are referring to the as-
sociativity of the operators—the order in which operators of equal priority are evaluated.
We will see that some operators associate from right to left. Figure 7.12 summarizes
these rules of operator precedence. The table in Fig. 7.12 will be expanded as additional
JavaScript operators are introduced. A complete precedence chart is included in Appen-
dix B.

Now, in light of the rules of operator precedence, let us consider several algebraic
expressions. Each example lists an algebraic expression and the equivalent JavaScript
expression.

a
b

iw3htp2.book Page 210 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 211

The following is an example of an arithmetic mean (average) of five terms:

Algebra:

JavaScript: m = (a + b + c + d + e) / 5;

The parentheses are required, because division has higher precedence than that of addition.
The entire quantity (a + b + c + d + e) is to be divided by 5. If the parentheses are er-
roneously omitted, we obtain a + b + c + d + e / 5, which evaluates as

The following is an example of the equation of a straight line:

Algebra:

JavaScript: y = m * x + b;

No parentheses are required. The multiplication operator is applied first, because multipli-
cation has a higher precedence than that of addition. The assignment occurs last, because it
has a lower precedence than that of multiplication and division.

The following example contains modulus (%), multiplication, division, addition and
subtraction operations:

Algebra:

JavaScript: z = p * r % q + w / x - y;

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses on the same
level (i.e., not nested), they are evaluated from left to
right.

*, / or % Multiplication
Division
Modulus

Evaluated second. If there are several such operations,
they are evaluated from left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several such operations,
they are evaluated from left to right.

Fig. 7.12Fig. 7.12Fig. 7.12Fig. 7.12 Precedence of arithmetic operators.

m a b c d e+ + + +
5

---------------------------------------=

a b c d e
5
---+ + + +

y mx b+=

z pr%q w/x y–+=

1 2 4 3 56

iw3htp2.book Page 211 Wednesday, July 18, 2001 9:01 AM

212 JavaScript: Introduction to Scripting Chapter 7

The circled numbers under the statement indicate the order in which JavaScript applies the
operators. The multiplication, modulus and division operations are evaluated first in left-
to-right order (i.e., they associate from left to right), because they have higher precedence
than that of addition and subtraction. The addition and subtraction operations are evaluated
next. These operations are also applied from left to right.

Not all expressions with several pairs of parentheses contain nested parentheses. For
example, the expression

a * (b + c) + c * (d + e)

does not contain nested parentheses. Rather, these parentheses are on the same level.
To develop a better understanding of the rules of operator precedence, consider the

evaluation of a second-degree polynomial (y = ax2 + bx + c):

y = a * x * x + b * x + c;

The circled numbers under the preceding statement indicate the order in which JavaScript
applies the operators. There is no arithmetic operator for exponentiation in JavaScript; x2

is represented as x * x.
Suppose that a, b, c and x are initialized as follows: a = 2, b = 3, c = 7 and x = 5.

Figure 7.13 illustrates the order in which the operators are applied in the preceding second-
degree polynomial.

As in algebra, it is acceptable to place unnecessary parentheses in an expression to
make the expression clearer. Such unnecessary parentheses are also called redundant
parentheses. For example, the preceding assignment statement might be parenthesized as
follows:

 y = (a * x * x) + (b * x) + c;

Good Programming Practice 7.7
Using parentheses for complex arithmetic expressions, even when the parentheses are not
necessary, can make the arithmetic expressions easier to read. 7.7

7.6 Decision Making: Equality and Relational Operators
This section introduces a version of JavaScript’s if structure that allows a program to
make a decision based on the truth or falsity of a condition. If the condition is met (i.e., the
condition is true), the statement in the body of the if structure is executed. If the condition
is not met (i.e., the condition is false), the statement in the body of the if structure is not
executed. We will see an example shortly.

Conditions in if structures can be formed by using the equality operators and rela-
tional operators summarized in Fig. 7.14. The relational operators all have the same level
of precedence and associate from left to right. The equality operators both have the same
level of precedence, which is lower than the precedence of the relational operators. The
equality operators also associate from left to right.

16 2 4 3 5

iw3htp2.book Page 212 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 213

Fig. 7.13Fig. 7.13Fig. 7.13Fig. 7.13 Order in which a second-degree polynomial is evaluated.

Standard algebraic
equality operator or
relational operator

JavaScript
equality or relational
operator

Sample
JavaScript
condition

Meaning of
JavaScript condition

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 7.14Fig. 7.14Fig. 7.14Fig. 7.14 Equality and relational operators.

y = 2 * 5 * 5 + 3 * 5 + 7;

 2 * 5 is 10 (Leftmost multiplication)

y = 10 * 5 + 3 * 5 + 7;

 10 * 5 is 50 (Leftmost multiplication)

y = 50 + 3 * 5 + 7;

 3 * 5 is 15 (Multiplication before addition)

y = 50 + 15 + 7;

 50 + 15 is 65 (Leftmost addition)

y = 65 + 7;

 65 + 7 is 72 (Last addition)

y = 72; (Last operation—place 72 into y)

Step 1.

Step 2.

Step 5.

Step 3.

Step 4.

Step 6.

iw3htp2.book Page 213 Wednesday, July 18, 2001 9:01 AM

214 JavaScript: Introduction to Scripting Chapter 7

Common Programming Error 7.10
It is a syntax error if the operators ==, !=, >= and <= contain spaces between their symbols,
as in = =, ! =, > = and < =, respectively. 7.10

Common Programming Error 7.11
Reversing the operators !=, >= and <=, as in =!, => and =<, respectively, is a syntax error. 7.11

Common Programming Error 7.12
Confusing the equality operator, ==, with the assignment operator, =, is a logic error. The
equality operator should be read as “is equal to,” and the assignment operator should be
read as“gets” or “gets the value of.” Some people prefer to read the equality operator as
“double equals” or “equals equals.” 7.12

The script in Fig. 7.15 uses six if statements to compare two values input into
prompt dialogs by the user. If the condition in any of the if statements is satisfied, the
assignment statement associated with that if statement is executed. The user inputs two
values through input dialogs. The program stores the values in the variables first and
second, then converts the values to integers and stores them in variables number1 and
number2. Finally, the program compares the values and displays the results of the com-
parison in an information dialog. The script and sample outputs are shown in Fig. 7.15.

Lines 15–18 declare the variables used in the script. Remember that variables may be
declared in one declaration or in multiple declarations. If more than one name is declared
in a declaration (as in this example), the names are separated by commas (,). This list of
names is referred to as a comma-separated list. Once again, notice the comment at the end
of each line, indicating the purpose of each variable in the program. Line 21 uses
window.prompt to allow the user to input the first value and to store the value in
first.

Line 24 uses window.prompt to allow the user to input the second value and to
store the value in second. Lines 27–28 conver the strings to integers and stores them in
variables number1 and number2. Line 30 outputs a line of XHTML text containing the
<h1> head Comparison Results. Lines 31–32 output a line of XHTML text that indi-
cates the start of a <table> that has a one-pixel border and is 100% of the browser
window’s width.

The if structure (lines 34–36) compares the values of variables first and second
to test them for equality. If the values are equal, the statement on lines 35–36 outputs a line
of XHTML text representing one row of an XHTML table (as indicated by the <tr> and
</tr> tags). The text in the row contains the result of first + " == " + second. As in
Fig. 7.6, the + operator is used in this expression to perform string concatenation. If the
conditions are true in one or more of the if structures starting at lines 38, 42, 46, 50 and
54, the corresponding document.writeln statement(s) output(s) a line of XHTML text
representing a row in the XHTML table.

Notice the indentation in the if statements throughout the program. Such indentation
enhances program readability.

Good Programming Practice 7.8
Indent the statement in the body of an if structure to make the body of the structure stand
out and to enhance program readability. 7.8

iw3htp2.book Page 214 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 215

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 7.14: comparison.html -->
6 <!-- Using if statements, relational operators -->
7 <!-- and equality operators -->
8
9 <html xmlns = "http://www.w3.org/1999/xhtml">

10 <head>
11 <title>Performing Comparisons</title>
12
13 <script type = "text/javascript">
14 <!--
15 var first, // first string entered by user
16 second, // second string entered by user
17 number1, // first number to compare
18 number2; // second number to compare
19
20 // read first number from user as a string
21 first = window.prompt("Enter first integer:", "0");
22
23 // read second number from user as a string
24 second = window.prompt("Enter second integer:", "0");
25
26 // convert numbers from strings to integers
27 number1 = parseInt(first);
28 number2 = parseInt(second);
29
30 document.writeln("<h1>Comparison Results</h1>");
31 document.writeln(
32 "<table border = \"1\" width = \"100%\">");
33
34 if (number1 == number2)
35 document.writeln("<tr><td>" + number1 + " == " +
36 number2 + "</td></tr>");
37
38 if (number1 != number2)
39 document.writeln("<tr><td>" + number1 + " != " +
40 number2 + "</td></TR>");
41
42 if (number1 < number2)
43 document.writeln("<tr><td>" + number1 + " < " +
44 number2 + "</td></tr>");
45
46 if (number1 > number2)
47 document.writeln("<tr><td>" + number1 + " > " +
48 number2 + "</td></tr>");
49
50 if (number1 <= number2)
51 document.writeln("<tr><td>" + number1 + " <= " +
52 number2 + "</td></tr>");
53

Fig. 7.15Fig. 7.15Fig. 7.15Fig. 7.15 Using equality and relational operators (part 1 of 3).

iw3htp2.book Page 215 Wednesday, July 18, 2001 9:01 AM

216 JavaScript: Introduction to Scripting Chapter 7

54 if (number1 >= number2)
55 document.writeln("<tr><td>" + number1 + " >= " +
56 number2 + "</td></tr>");
57
58 // Display results
59 document.writeln("</table>");
60 // -->
61 </script>
62
63 </head>
64 <body>
65 <p>Click Refresh (or Reload) to run the script again</p>
66 </body>
67 </html>

Fig. 7.15Fig. 7.15Fig. 7.15Fig. 7.15 Using equality and relational operators (part 2 of 3).

iw3htp2.book Page 216 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 217

Fig. 7.15Fig. 7.15Fig. 7.15Fig. 7.15 Using equality and relational operators (part 3 of 3).

iw3htp2.book Page 217 Wednesday, July 18, 2001 9:01 AM

218 JavaScript: Introduction to Scripting Chapter 7

Good Programming Practice 7.9
Place only one statement per line in a program. This format enhances program readability. 7.9

Common Programming Error 7.13
Forgetting the left and right parentheses for the condition in an if structure is a syntax er-
ror. The parentheses are required. 7.13

Notice that there is no semicolon (;) at the end of the first line of each if structure.
Such a semicolon would result in a logic error at execution time. For example,

if (number1 == number2) ;
 document.writeln("<tr><td>" + number1 + " == " +
 number2 + "</td></tr>");

would actually be interpreted by JavaScript as

if (number1 == number2)
 ;

document.writeln("<tr><td>" + number1 + " == " +
 number2 + "</td></tr>");

where the semicolon on the line by itself—called the empty statement—is the statement to
execute if the condition in the if structure is true. When the empty statement executes, no
task is performed in the program. The program then continues with the assignment state-
ment, which executes regardless of whether the condition is true or false.

Common Programming Error 7.14
Placing a semicolon immediately after the right parenthesis of the condition in an if struc-
ture is normally a logic error. The semicolon would cause the body of the if structure to be
empty, so the if structure itself would perform no action, regardless of whether its condition
is true. Worse yet, the intended body statement of the if structure would now become a state-
ment in sequence after the if structure and would always be executed. 7.14

Notice the use of spacing in Fig. 7.15. Remember that whitespace characters, such as
tabs, newlines and spaces, are normally ignored by the compiler. So, statements may be
split over several lines and may be spaced according to the programmer’s preferences
without affecting the meaning of a program. However, it is incorrect to split identifiers and
string literals. Ideally, statements should be kept small, but it is not always possible to do so.

Good Programming Practice 7.10
A lengthy statement may be spread over several lines. If a single statement must be split
across lines, choose breaking points that make sense, such as after a comma in a comma-
separated list or after an operator in a lengthy expression. If a statement is split across two
or more lines, indent all subsequent lines. 7.10

The chart in Fig. 7.16 shows the precedence of the operators introduced in this chapter.
The operators are shown from top to bottom in decreasing order of precedence. Notice that
all of these operators, with the exception of the assignment operator, =, associate from left
to right. Addition is left associative, so an expression like x + y + z is evaluated as if it had
been written as (x + y) + z. The assignment operator, =, associates from right to left, so

iw3htp2.book Page 218 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 219

an expression like x = y = 0 is evaluated as if it had been written as x = (y = 0), which,
as we will soon see, first assigns the value 0 to variable y and then assigns the result of that
assignment, 0, to x.

Good Programming Practice 7.11
Refer to the operator precedence chart when writing expressions containing many operators.
Confirm that the operators in the expression are performed in the order in which you expect
them to be performed. If you are uncertain about the order of evaluation in a complex expres-
sion, use parentheses to force the order, exactly as you would do in algebraic expressions.
Be sure to observe that some operators, such as assignment (=), associate from right to left
rather than from left to right. 7.11

We have introduced many important features of JavaScript, including how to display
data, how to input data from the keyboard, how to perform calculations and how to make
decisions. In Chapter 8, we build on the techniques of Chapter 7 as we introduce structured
programming. You will become more familiar with indentation techniques. We will study
how to specify and vary the order in which statements are executed; this order is called the -
flow of control.

7.7 JavaScript Internet and World Wide Web Resources
There are a tremendous number of resources for JavaScript programmers on the Internet
and World Wide Web. This section lists a variety of JScript, JavaScript and ECMAScript
resources available on the Internet and provides a brief description of each. Additional re-
sources for these topics are presented in the subsequent chapters on JavaScript and in other
chapters as necessary.

www.ecma.ch/ecma1/stand/ecma-262.htm
JScript is Microsoft’s version of JavaScript—a scripting language that is standardized by the ECMA
(European Computer Manufacturer’s Association) as ECMAScript. This site is the home of the stan-
dard document for ECMAScript.

msdn.microsoft.com/scripting/default.htm
The Microsoft Windows Script Technologies page includes an overview of JScript, complete with tu-
torials, FAQs, demos, tools for downloading and newsgroups.

www.webteacher.com/javascript
Webteacher.com is an excellent source for tutorials that focus on teaching with detailed explanations
and examples. This site is particularly useful for nonprogrammers.

Operators Associativity Type

() left to right parentheses

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= right to left assignment

Fig. 7.16Fig. 7.16Fig. 7.16Fig. 7.16 Precedence and associativity of the operators discussed so far.

iw3htp2.book Page 219 Wednesday, July 18, 2001 9:01 AM

220 JavaScript: Introduction to Scripting Chapter 7

wsabstract.com
Website Abstraction is devoted to JavaScript and provides specialized tutorials and many free scripts.
This site is good for beginners, as well as people with prior experience who are looking for help in a
specific area of JavaScript.

www.webdeveloper.com/javascript
WebDeveloper.com provides tutorials, tools, and links to many free scripts.

SUMMARY
• The JavaScript language facilitates a disciplined approach to the design of computer programs that

enhance Web pages.

• JScript is Microsoft’s version of JavaScript—a scripting language that is standardized by the
ECMA (European Computer Manufacturer’s Association) as ECMAScript.

• The spacing displayed by a browser in a Web page is determined by the XHTML elements used
to format the page.

• Often, JavaScripts appear in the <head> section of the XHTML document.

• The browser interprets the contents of the <head> section first.

• The <script> tag indicates to the browser that the text that follows is part of a script. Attribute
type specifies the scripting language used in the script—such as JavaScript.

• A string of characters can be contained between double (") or single (’) quotation marks.

• A string is sometimes called a character string, a message or a string literal.

• The browser’s document object represents the XHTML document currently being displayed in
the browser. The document object allows a script programmer to specify XHTML text to be dis-
played in the XHTML document.

• The browser contains a complete set of objects that allow script programmers to access and ma-
nipulate every element of an XHTML document.

• An object resides in the computer’s memory and contains information used by the script. The term
object normally implies that attributes (data) and behaviors (methods) are associated with the ob-
ject. The object’s methods use the attributes to provide useful services to the client of the object—
the script that calls the methods.

• The document object’s writeln method writes a line of XHTML text in the XHTML document.

• The parentheses following the name of a method contain the arguments that the method requires
to perform its task (or its action).

• Using writeln to write a line of XHTML text into a document does not guarantee that a cor-
responding line of text will appear in the XHTML document. The text displayed is dependent on
the contents of the string written, which is subsequently rendered by the browser. The browser will
interpret the XHTML elements as it normally does to render the final text in the document.

• Every statement should end with a semicolon (also known as the statement terminator), although
none is required by JavaScript.

• JavaScript is case sensitive. Not using the proper uppercase and lowercase letters is a syntax error.

• Sometimes it is useful to display information in windows called dialogs that “pop up” on the screen
to grab the user’s attention. Dialogs are typically used to display important messages to the user
browsing the Web page. The browser’s window object uses method alert to display an alert
dialog. Method alert requires as its argument the string to be displayed.

• When a backslash is encountered in a string of characters, the next character is combined with the
backslash to form an escape sequence. The escape sequence \n is the newline character. It causes
the cursor in the XHTML document to move to the beginning of the next line in the dialog.

iw3htp2.book Page 220 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 221

• The keyword var is used to declare the names of variables. A variable is a location in the com-
puter’s memory where a value can be stored for use by a program. Though you are not required to
do so, you should declare all variables with a name in a var statement before they are used in a
program.

• A variable name can be any valid identifier consisting of letters, digits, underscores (_) and dollar
signs ($) that does not begin with a digit and does not contain any spaces.

• Declarations end with a semicolon (;) and can be split over several lines, with each variable in the
declaration separated by a comma (forming a comma-separated list of variable names). Several
variables may be declared in one declaration or in multiple declarations.

• Programmers often indicate the purpose of each variable in the program by placing a JavaScript
comment at the end of each line in the declaration. A single-line comment begins with the charac-
ters // and terminates at the end of the line. Comments do not cause the browser to perform any
action when the script is interpreted; rather, comments are ignored by the JavaScript interpreter.

• Multiple-line comments begin with delimiter /* and end with delimiter */. All text between the
delimiters of the comment is ignored by the compiler.

• The window object’s prompt method displays a dialog into which the user can type a value. The
first argument is a message (called a prompt) that directs the user to take a specific action. The
optional second argument is the default string to display in the text field.

• A variable is assigned a value with an assignment statement, using the assignment operator, =. The
= operator is called a binary operator, because it has two operands.

• Function parseInt converts its string argument to an integer.

• JavaScript has a version of the + operator for string concatenation that enables a string and a value
of another data type (including another string) to be concatenated.

• Variable names correspond to locations in the computer’s memory. Every variable has a name, a
type, a size and a value.

• When a value is placed in a memory location, the value replaces the previous value in that location.
When a value is read out of a memory location, the process is nondestructive.

• The arithmetic operators are binary operators, because they each operate on two operands.

• Operators in arithmetic expressions are applied in a precise sequence determined by the rules of
operator precedence.

• Parentheses may be used to force the order of evaluation of operators to occur in any sequence de-
sired by the programmer.

• When we say that operators are applied from left to right, we are referring to the associativity of
the operators. Some operators associate from right to left.

• Java’s if structure allows a program to make a decision based on the truth or falsity of a condition.
If the condition is met (i.e., the condition is true), the statement in the body of the if structure is
executed. If the condition is not met (i.e., the condition is false), the statement in the body of the
if structure is not executed.

• Conditions in if structures can be formed by using the equality operators and relational operators.

TERMINOLOGY
\" double-quote escape sequence alert dialog
\n newline escape sequence alert method of the window object
<head> section of the XHTML document argument to a method
<script></script> arithmetic expressions in straight-line form
addition operator (+) arithmetic operator

iw3htp2.book Page 221 Wednesday, July 18, 2001 9:01 AM

222 JavaScript: Introduction to Scripting Chapter 7

SELF-REVIEW EXERCISES
7.1 Fill in the blanks in each of the following statements:

a) begins a single-line comment.
b) Every statement should end with a .

assignment operator (=) name of a variable
assignment statement object
attribute operand
automatic conversion operator associativity
backslash (\) escape character operator precedence
behavior parentheses
binary operator parseInt function
blank line perform an action
case sensitive program
character string prompt
client of an object prompt dialog
comma-separated list prompt method of the window object
comment redundant parentheses
condition relational operators
data remainder after division
decision making rules of operator precedence
declaration runtime error
dialog script
division operator (/) scripting language
document object self-documenting
double quotation (") marks semicolon (;) statement terminator
ECMA single quotation (’) marks
ECMAScript single-line comment (//)
empty statement statement
equality operators string concatenation
error message string concatenation operator (+)
escape sequence string literal
European Computer Manufacturer’s Association

(ECMA)
string of characters

false subtraction operator (-)
identifier syntax error
if structure text field
inline scripting true
integer type attribute of the <script> tag
interpreter type of a variable
JavaScript value of a variable
JavaScript interpreter var keyword
JScript variable
location in the computer's memory violation of the language rules
logic error whitespace characters
meaningful variable names whole number
method window object
modulus operator (%) write method of the document object
multiple-line comment (/* and */) writeln method of the document object
multiplication operator (*)

iw3htp2.book Page 222 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 223

c) The structure is used to make decisions.
d) , , and are known as whitespace.
e) The object displays alert dialogs and prompt dialogs.
f) are reserved for use by JavaScript.
g) Methods and of the object write XHTML text into

an XHTML document.

7.2 State whether each of the following is true or false. If false, explain why.
a) Comments cause the computer to print the text after the // on the screen when the pro-

gram is executed.
b) JavaScript considers the variables number and NuMbEr to be identical.
c) The modulus operator (%) can be used only with any numeric operands.
d) The arithmetic operators *, /, %, + and - all have the same level of precedence.
e) Method parseInt converts an integer to a string.

7.3 Write JavaScript statements to accomplish each of the following tasks:
a) Declare variables c, thisIsAVariable, q76354 and number.
b) Display a dialog asking the user to enter an integer. Show a default value of 0 in the text

field.
c) Convert a string to an integer, and store the converted value in variable age. Assume that

the string is stored in stringValue.
d) If the variable number is not equal to 7, display "The variable number is not

equal to 7" in a message dialog.
e) Output a line of XHTML text that will display the message "This is a JavaScript

program" on one line in the XHTML document.
f) Output a line of XHTML text that will display the message "This is a JavaScript

program" on two lines in the XHTML document. Use only one statement.

7.4 Identify and correct the errors in each of the following statements:
a) if (c < 7);

 window.alert("c is less than 7");
b) if (c => 7)

 window.alert("c is equal to or greater than 7");

7.5 Write a statement (or comment) to accomplish each of the following tasks:
a) State that a program will calculate the product of three integers.
b) Declare the variables x, y, z and result.
c) Declare the variables xVal, yVal and zVal.
d) Prompt the user to enter the first value, read the value from the user and store it in the

variable xVal.
e) Prompt the user to enter the second value, read the value from the user and store it in the

variable yVal.
f) Prompt the user to enter the third value, read the value from the user and store it in the

variable zVal.
g) Convert xVal to an integer, and store the result in the variable x.
h) Convert yVal to an integer, and store the result in the variable y.
i) Convert zVal to an integer, and store the result in the variable z.
j) Compute the product of the three integers contained in variables x, y and z, and assign

the result to the variable result.
k) Write a line of XHTML text containing the string "The product is " followed by the

value of the variable result.

7.6 Using the statements you wrote in Exercise 7.5, write a complete program that calculates and
prints the product of three integers.

iw3htp2.book Page 223 Wednesday, July 18, 2001 9:01 AM

224 JavaScript: Introduction to Scripting Chapter 7

ANSWERS TO SELF-REVIEW EXERCISES
7.1 a) //. b) Semicolon (;). c) if. d) Blank lines, space characters, newline characters and
tab characters. e) window. f) Keywords. g) write, writeln, document.

7.2 a) False. Comments do not cause any action to be performed when the program is executed.
They are used to document programs and improve their readability. b) False. JavaScript is case sen-
sitive, so these variables are distinct. c) True. d) False. The operators *, / and % are on the same
level of precedence, and the operators + and - are on a lower level of precedence. e) False. Function
parseInt converts a string to an integer value.

7.3 a) var c, thisIsAVariable, q76354, number;
b) value = window.prompt("Enter an integer", "0");
c) var age = parseInt(stringValue);
d) if (number != 7)

 window.alert("The variable number is not equal to 7");
e) document.writeln("This is a JavaScript program");
f) document.writeln("This is a
JavaScript program");

7.4 a) Error: There should not be a semicolon after the right parenthesis of the condition in the if
statement. Correction: Remove the semicolon after the right parenthesis. [Note: The result of this error
is that the output statement is executed whether or not the condition in the if statement is true. The
semicolon after the right parenthesis is considered an empty statement—a statement that does nothing.]

b) Error: The relational operator => is incorrect.
Correction: Change => to >=.

7.5 a) // Calculate the product of three integers
b) var x, y, z, result;
c) var xVal, yVal, zVal;
d) xVal = window.prompt("Enter first integer:", "0");
e) yVal = window.prompt("Enter second integer:", "0");
f) zVal = window.prompt("Enter third integer:", "0");
g) x = parseInt(xVal);
h) y = parseInt(yVal);
i) z = parseInt(zVal);
j) result = x * y * z;
k) document.writeln(

 "<h1>The product is " + result + "</h1>");

7.6 The program is as follows:

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Exercise 7.6: product.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Product of Three Integers</title>

10
11 <script type = "text/javascript">
12 <!--
13 // Calculate the product of three integers

iw3htp2.book Page 224 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 225

EXERCISES
7.7 Fill in the blanks in each of the following statements:

a) are used to document a program and improve its readability.
b) A dialog capable of receiving input from the user is displayed with method

of object .
c) A JavaScript statement that makes a decision is .
d) Calculations are normally performed by statements.
e) A dialog capable of showing a message to the user is displayed with method

of object .

7.8 Write JavaScript statements that accomplish each of the following tasks:
a) Display the message "Enter two numbers" using the window object.
b) Assign the product of variables b and c to variable a.
c) State that a program performs a sample payroll calculation [Hint: Use text that helps to

document a program].

7.9 State whether each of the following is true or false. If false, explain why.
a) JavaScript operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7,

her_sales$, his_$account_total, a, b$, c, z, z2.
c) A valid JavaScript arithmetic expression with no parentheses is evaluated from left to

right.
d) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

7.10 Fill in the blanks in each of the following statements:
a) What arithmetic operations have the same precedence as multiplication? .
b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic

expression? .
c) A location in the computer's memory that may contain different values at various times

throughout the execution of a program is called a .

7.11 What displays in the message dialog when each of the given JavaScript statements is per-
formed? Assume that x = 2 and y = 3.

14 var x, y, z, result;
15 var xVal, yVal, zVal;
16
17 xVal = window.prompt("Enter first integer:", "0");
18 yVal = window.prompt("Enter second integer:", "0");
19 zVal = window.prompt("Enter third integer:", "0");
20
21 x = parseInt(xVal);
22 y = parseInt(yVal);
23 z = parseInt(zVal);
24
25 result = x * y * z;
26 document.writeln("<h1>The product is " +
27 result + "<h1>");
28 // -->
29 </script>
30
31 </head><body></body>
32 </html>

iw3htp2.book Page 225 Wednesday, July 18, 2001 9:01 AM

226 JavaScript: Introduction to Scripting Chapter 7

a) window.alert("x = " + x);
b) window.alert("The value of x + x is " + (x + x));
c) window.alert("x =");
d) window.alert((x + y) + " = " + (y + x));

7.12 Which of the following JavaScript statements contain variables whose values are destroyed
(i.e., changed or replaced)?

a) p = i + j + k + 7;
b) window.alert("variables whose values are destroyed");
c) window.alert("a = 5");
d) stringVal = window.prompt("Enter string:");

7.13 Given y = ax3 + 7, which of the following are correct statements for this equation?
a) y = a * x * x * x + 7;
b) y = a * x * x * (x + 7);
c) y = (a * x) * x * (x + 7);
d) y = (a * x) * x * x + 7;
e) y = a * (x * x * x) + 7;
f) y = a * x * (x * x + 7);

7.14 State the order of evaluation of the operators in each of the following JavaScript statements,
and show the value of x after each statement is performed.

a) x = 7 + 3 * 6 / 2 - 1;
b) x = 2 % 2 + 2 * 2 - 2 / 2;
c) x = (3 * 9 * (3 + (9 * 3 / (3))));

7.15 Write a script that displays the numbers 1 to 4 on the same line, with each pair of adjacent
numbers separated by one space. Write the program using the following methods:

a) Using one document.writeln statement.
b) Using four document.write statements.

7.16 Write a script that asks the user to enter two numbers, obtains the two numbers from the user
and outputs XHTML text that displays the sum, product, difference and quotient of the two numbers.
Use the techniques shown in Fig. 7.6.

7.17 Write a script that asks the user to enter two integers, obtains the numbers from the user and
outputs XHTML text that displays the larger number followed by the words “is larger” in an in-
formation message dialog. If the numbers are equal, output XHTML text that displays the message
“These numbers are equal.” Use the techniques shown in Fig. 7.15.

7.18 Write a script that inputs three integers from the user and displays the sum, average, product,
smallest and largest of the numbers in an alert dialog.

7.19 Write a script that inputs from the user the radius of a circle and outputs XHTML text that

displays the circle’s diameter, circumference and area. Use the constant value 3.14159 for π. Use the
GUI techniques shown in Fig. 7.6. [Note: You may also use the predefined constant Math.PI for

the value of π. This constant is more precise than the value 3.14159. The Math object is defined by
JavaScript and provides many common mathematical capabilities.] Use the following formulas (r is

the radius): diameter = 2r, circumference = 2πr, area = πr2.

7.20 Write a script that outputs XHTML text that displays in the XHTML document an oval, an
arrow and a diamond using asterisks (*), as follows [Note: Use the <pre> and </pre> tags to spec-
ify that the asterisks should be displayed using a fixed-width font]:

iw3htp2.book Page 226 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 227

********* *** * *
* * * * *** * *
* * * * ***** * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
********* *** * *

7.21 Modify the program you created in Exercise 7.20 to display the shapes without using the
<pre> and </pre> tags. Does the program display the shapes exactly as in Exercise 7.20?

7.22 What does the following code print?

document.writeln("*\n**\n***\n****\n*****");

7.23 What does the following code print?

document.writeln("*");
document.writeln("***");
document.writeln("*****");
document.writeln("****");
document.writeln("**");

7.24 What does the following code print?

document.write("*
");
document.write("***
");
document.write("*****
");
document.write("****
");
document.writeln("**");

7.25 What does the following code print?

document.write("*
");
document.writeln("***");
document.writeln("*****");
document.write("****
");
document.writeln("**");

7.26 Write a script that reads five integers and determines and outputs XHTML text that displays
the largest integer and the smallest integer in the group. Use only the programming techniques you
learned in this chapter.

7.27 Write a script that reads an integer and determines and outputs XHTML text that displays
whether it is odd or even. [Hint: Use the modulus operator. An even number is a multiple of 2. Any
multiple of 2 leaves a remainder of zero when divided by 2.]

7.28 Write a script that reads in two integers and determines and outputs XHTML text that dis-
plays whether the first is a multiple of the second. [Hint: Use the modulus operator.]

7.29 Write a script that outputs XHTML text that displays in the XHTML document a checker-
board pattern, as follows:

iw3htp2.book Page 227 Wednesday, July 18, 2001 9:01 AM

228 JavaScript: Introduction to Scripting Chapter 7

* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *

7.30 Write a script that inputs five numbers and determines and outputs XHTML text that displays
the number of negative numbers input, the number of positive numbers input and the number of zeros
input.

7.31 Using only the programming techniques you learned in this chapter, write a script that calcu-
lates the squares and cubes of the numbers from 0 to 10 and outputs XHTML text that displays the
resulting values in an XHTML table format, as follows:

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

[Note: This program does not require any input from the user.]

iw3htp2.book Page 228 Wednesday, July 18, 2001 9:01 AM

8
JavaScript: Control

Structures 1

Objectives
• To understand basic problem-solving techniques.
• To be able to develop algorithms through the process

of top-down, stepwise refinement.
• To be able to use the if and if/else selection

structures to choose among alternative actions.
• To be able to use the while repetition structure to

execute statements in a script repeatedly.
• To understand counter-controlled repetition and

sentinel-controlled repetition.
• To be able to use the increment, decrement and

assignment operators.
Let’s all move one place on.
Lewis Carroll

The wheel is come full circle.
William Shakespeare, King Lear

How many apples fell on Newton’s head before he took the
hint!
Robert Frost, Comment

iw3htp2.book Page 229 Wednesday, July 18, 2001 9:01 AM

230 JavaScript: Control Structures 1 Chapter 8

8.1 Introduction
Before writing a script to solve a problem, it is essential to have a thorough understanding
of the problem and a carefully planned approach to solving the problem. When writing a
script, it is equally essential to understand the types of building blocks that are available
and to employ proven program-construction principles. In this chapter and in Chapter 9, we
discuss these issues in our presentation of the theory and principles of structured program-
ming. The techniques you learn here are applicable to most high-level languages, including
JavaScript.

8.2 Algorithms
Any computing problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem in terms of

1. the actions to be executed and

2. the order in which the actions are to be executed

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions are to execute is important.

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) Get out of bed, (2) take off pajamas, (3) take a shower,
(4) get dressed, (5) eat breakfast, (6) carpool to work. This routine gets the executive to

Outline

8.1 Introduction
8.2 Algorithms
8.3 Pseudocode
8.4 Control Structures
8.5 if Selection Structure
8.6 if/else Selection Structure
8.7 while Repetition Structure
8.8 Formulating Algorithms: Case Study 1 (Counter-Controlled

Repetition)
8.9 Formulating Algorithms with Top-Down, Stepwise Refinement: Case

Study 2 (Sentinel-Controlled Repetition)
8.10 Formulating Algorithms with Top-Down, Stepwise Refinement: Case

Study 3 (Nested Control Structures)
8.11 Assignment Operators
8.12 Increment and Decrement Operators
8.13 Note on Data Types
8.14 JavaScript Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2.book Page 230 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 231

work well prepared to make critical decisions. Suppose, however, that the same steps are
performed in a slightly different order: (1) Get out of bed, (2) take off pajamas, (3) get
dressed, (4) take a shower, (5) eat breakfast, (6) carpool to work. In this case, our junior
executive shows up for work soaking wet. Specifying the order in which statements are to
be executed in a computer program is called program control. In this chapter and Chapter
9, we investigate the program-control capabilities of JavaScript.

8.3 Pseudocode
Pseudocode is an artificial and informal language that helps programmers develop algo-
rithms. The pseudocode we present here is useful for developing algorithms that will be
converted to structured portions of JavaScript programs. Pseudocode is similar to everyday
English; it is convenient and user friendly, although it is not an actual computer program-
ming language.

Software Engineering Observation 8.1
Pseudocode is often used to “think out” a program during the program design process. Then
the pseudocode program is converted to a programming language such as JavaScript. 8.1

The style of pseudocode we present consists purely of characters, so programmers may
conveniently type pseudocode in an editor program. The computer can produce a fresh
printed copy of a pseudocode program on demand. Carefully prepared pseudocode may be
converted easily to a corresponding JavaScript program. This process is done in many cases
simply by replacing pseudocode statements with their JavaScript equivalents. In this
chapter, we give several examples of pseudocode.

Pseudocode normally describes only executable statements—the actions that are per-
formed when the program is converted from pseudocode to JavaScript and is run. Declara-
tions are not executable statements. For example, the declaration

var value1;

instructs the JavaScript interpreter to reserve space in memory for the variable value1.
This declaration does not cause any action—such as input, output or a calculation—to oc-
cur when the script executes. Some programmers choose to list variables and mention the
purpose of each variable at the beginning of a pseudocode program.

8.4 Control Structures
Normally, statements in a program execute one after the other in the order in which they
are written. This process is called sequential execution. Various JavaScript statements we
will soon discuss enable the programmer to specify that the next statement to execute may
be one other than the next one in sequence. This process is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control was
the root of much difficulty experienced by software development groups. The finger of
blame was pointed at the goto statement, which allows the programmer to specify a
transfer of control to one of a wide range of possible destinations in a program. The notion
of so-called structured programming became almost synonymous with “goto elimina-
tion.” JavaScript does not have a goto statement.

The research of Bohm and Jacopini1 demonstrated that programs could be written
without any goto statements. The challenge of the era for programmers was to shift their

iw3htp2.book Page 231 Wednesday, July 18, 2001 9:01 AM

232 JavaScript: Control Structures 1 Chapter 8

styles to “goto-less programming.” It was not until the 1970s that programmers started
taking structured programming seriously. The were been impressive, as software develop-
ment groups reported reduced development times, more frequent on-time delivery of sys-
tems and more frequent within-budget completion of software projects. The key to these
successes is that structured programs are clearer, easier to debug and modify and more
likely to be bug free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms of
only three control structures, namely the sequence structure, the selection structure and the
repetition structure. The sequence structure is built into JavaScript. Unless directed other-
wise, the computer executes JavaScript statements one after the other in the order in which
they are written (i.e., in sequence). The flowchart segment of Fig. 8.1 illustrates a typical
sequence structure in which two calculations are performed in order.

A flowchart is a graphical representation of an algorithm or of a portion of an algo-
rithm. Flowcharts are drawn using certain special-purpose symbols such as rectangles, dia-
monds, ovals and small circles; these symbols are connected by arrows called flowlines,
which indicate the order in which the actions of the algorithm execute.

Like pseudocode, flowcharts often are useful for developing and representing algo-
rithms, although pseudocode is strongly preferred by many programmers. Flowcharts show
clearly how control structures operate; that is all we use them for in this text. The reader
should carefully compare the pseudocode and flowchart representations of each control
structure.

Consider the flowchart segment for the sequence structure on the left side of Fig. 8.1.
We use the rectangle symbol (or action symbol) to indicate any type of action, including a
calculation or an input/output operation. The flowlines in the figure indicate the order in
which the actions are performed—the first action adds grade to total, then the second
action adds 1 to counter. JavaScript allows us to have as many actions as we want in a
sequence structure. As we will soon see, anywhere a single action may be placed, we may
place several actions in sequence.

1. Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two
Formation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

Fig. 8.1Fig. 8.1Fig. 8.1Fig. 8.1 Flowcharting JavaScript’s sequence structure.

add grade to total total = total + grade;

add 1 to counter counter = counter + 1;

iw3htp2.book Page 232 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 233

In a flowchart that represents a complete algorithm, an oval symbol containing the
word “Begin” is the first symbol used; an oval symbol containing the word “End” indicates
where the algorithm ends. In a flowchart that shows only a portion of an algorithm, as in
Fig. 8.1, the oval symbols are omitted in favor of using small circle symbols, also called
connector symbols.

Perhaps the most important flowcharting symbol is the diamond symbol, also called
the decision symbol, which indicates that a decision is to be made. We discuss the diamond
symbol in the next section.

JavaScript provides three types of selection structures; we discuss each in this chapter
and in Chapter 9. The if selection structure performs (selects) an action if a condition is
true or skips the action if the condition is false. The if/else selection structure performs
an action if a condition is true and performs a different action if the condition is false. The
switch selection structure (Chapter 9) performs one of many different actions, depending
on the value of an expression.

The if structure is called a single-selection structure, because it selects or ignores a
single action (or, as we will soon see, a single group of actions). The if/else structure is
called a double-selection structure, because it selects between two different actions (or
groups of actions). The switch structure is called a multiple-selection structure, because
it selects among many different actions (or groups of actions).

JavaScript provides four repetition structure types, namely while, do/while, for
and for/in. (do/while and for are covered in Chapter 9; for/in is covered in Chapter
11.) Each of the words if, else, switch, while, do, for and in is a JavaScript key-
word. These words are reserved by the language to implement various features, such as Jav-
aScript’s control structures. Keywords cannot be used as identifiers (such as for variable
names). A complete list of JavaScript keywords is shown in Fig. 8.2.

Common Programming Error 8.1
Using a keyword as an identifier is a syntax error. 8.1

JavaScript Keywords

break case continue delete do

else false for function if

in new null return switch

this true typeof var void

while with

Keywords that are reserved, but not used by JavaScript

catch class const debugger default

enum export extends finally import

super try

Fig. 8.2Fig. 8.2Fig. 8.2Fig. 8.2 JavaScript keywords.

iw3htp2.book Page 233 Wednesday, July 18, 2001 9:01 AM

234 JavaScript: Control Structures 1 Chapter 8

As we have shown, JavaScript has only eight control structures: sequence, three types
of selection and four types of repetition. Each program is formed by combining as many of
each type of control structure as is appropriate for the algorithm the program implements.
As with the sequence structure in Fig. 8.1, we will see that each control structure is flow-
charted with two small circle symbols, one at the entry point to the control structure and
one at the exit point.

Single-entry/single-exit control structures make it easy to build programs; the control
structures are attached to one another by connecting the exit point of one control structure
to the entry point of the next. This process is similar to the way in which a child stacks
building blocks, so we call it control-structure stacking. We will learn that there is only one
other way in which control structures may be connected—control-structure nesting. Thus,
algorithms in JavaScript programs are constructed from only eight different types of con-
trol structures combined in only two ways.

8.5 if Selection Structure
A selection structure is used to choose among alternative courses of action in a program.
For example, suppose that the passing grade on an examination is 60 (out of 100). Then the
pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

determines if the condition “student’s grade is greater than or equal to 60” is true or false.
If the condition is true, then “Passed” is printed, and the next pseudocode statement in order
is “performed” (remember that pseudocode is not a real programming language). If the con-
dition is false, the print statement is ignored, and the next pseudocode statement in order is
performed. Note that the second line of this selection structure is indented. Such indentation
is optional, but it is highly recommended, because it emphasizes the inherent structure of
structured programs. The JavaScript interpreter ignores whitespace characters—blanks,
tabs and newlines used for indentation and vertical spacing. Programmers insert these
whitespace characters to enhance program clarity.
 Good Programming Practice 8.1

Consistently applying reasonable indentation conventions throughout your programs im-
proves program readability. We suggest a fixed-size tab of about 1/4 inch or three spaces per
indent. 8.1

The preceding pseudocode If statement can be written in JavaScript as

if (studentGrade >= 60)
 document.writeln("Passed");

Notice that the JavaScript code corresponds closely to the pseudocode. This similarity is
the reason that pseudocode is a useful program development tool. The statement in the body
of the if structure outputs the character string "Passed" in the XHTML document.

The flowchart in Fig. 8.3 illustrates the single-selection if structure. This flowchart con-
tains what is perhaps the most important flowcharting symbol—the diamond symbol (or deci-
sion symbol), which indicates that a decision is to be made. The decision symbol contains an
expression, such as a condition, that can be either true or false. The decision symbol has

iw3htp2.book Page 234 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 235

two flowlines emerging from it. One indicates the path to follow in the program when the
expression in the symbol is true; the other indicates the path to follow in the program when
the expression is false. A decision can be made on any expression that evaluates to a value of
JavaScript’s boolean type (i.e., any expression that evaluates to true or false).

Software Engineering Observation 8.2
In JavaScript, any nonzero numeric value in a condition evaluates to true and 0 evaluates
to false. For strings, any string containing one or more characters evaluates to true and
the empty string (the string containing no characters) evaluates to false. Also, a variable
that has been declared with var but has not been assigned a value evaluates to false. 8.2

Note that the if structure is a single-entry/single-exit structure. We will soon learn
that the flowcharts for the remaining control structures also contain (besides small circle
symbols and flowlines) only rectangle symbols, to indicate the actions to be performed, and
diamond symbols, to indicate decisions to be made. This type of flowchart represents the
action/decision model of programming.

We can envision eight bins, each containing only control structures of one of the eight
types. These control structures are empty. Nothing is written in the rectangles or in the dia-
monds. The programmer’s task, then, is to assemble a program from as many of each type
of control structure as the algorithm demands, combining the control structures in only two
possible ways (stacking or nesting), then filling in the actions and decisions in a manner
appropriate for the algorithm. We will discuss the variety of ways in which actions and
decisions may be written.

8.6 if/else Selection Structure
The if selection structure performs an indicated action only when the condition evaluates
to true; otherwise, the action is skipped. The if/else selection structure allows the pro-
grammer to specify that a different action is to be performed when the condition is true than
when the condition is false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

Else
Print “Failed”

Fig. 8.3Fig. 8.3Fig. 8.3Fig. 8.3 Flowcharting the single-selection if structure.

grade >= 60 true

false

print “Passed”

iw3htp2.book Page 235 Wednesday, July 18, 2001 9:01 AM

236 JavaScript: Control Structures 1 Chapter 8

prints Passed if the student’s grade is greater than or equal to 60 and prints Failed if the
student’s grade is less than 60. In either case, after printing occurs, the next pseudocode
statement in sequence (i.e., the next statement after the whole if/else structure) is per-
formed. Note that the body of the Else part of the structure is also indented.

Good Programming Practice 8.2
Indent both body statements of an if/else structure. 8.2

The indentation convention you choose should be applied carefully throughout your
programs (both in pseudocode and in JavaScript). It is difficult to read programs that do not
use uniform spacing conventions.

The preceding pseudocode If/Else structure may be written in JavaScript as

if (studentGrade >= 60)
 document.writeln("Passed");
else
 document.writeln("Failed");

The flowchart in Fig. 8.4 nicely illustrates the flow of control in the if/else structure.
Once again, note that the only symbols in the flowchart (besides small circles and arrows)
are rectangles (for actions) and a diamond (for a decision). We continue to emphasize this
action/decision model of computing. Imagine again a deep bin containing as many empty
double-selection structures as might be needed to build a JavaScript algorithm. The pro-
grammer’s job is to assemble the selection structures (by stacking and nesting) with other
control structures required by the algorithm and to fill in the empty rectangles and empty
diamonds with actions and decisions appropriate to the algorithm’s implementation.

JavaScript provides an operator, called the conditional operator (?:), that is closely
related to the if/else structure. The operator ?: is JavaScript’s only ternary operator—
it takes three operands. The operands together with the ?: form a conditional expression.
The first operand is a boolean expression, the second is the value for the conditional expres-
sion if the condition evaluates to true and the third is the value for the conditional expres-
sion if the condition evaluates to false. For example, the statement

document.writeln(
 studentGrade >= 60 ? "Passed" : "Failed");

Fig. 8.4Fig. 8.4Fig. 8.4Fig. 8.4 Flowcharting the double-selection if/else structure.

grade >= 60 true

print “Failed”

false

print “Passed”

iw3htp2.book Page 236 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 237

contains a conditional expression that evaluates to the string "Passed" if the condition
studentGrade >= 60 is true and evaluates to the string "Failed" if the condition is
false. Thus, this statement with the conditional operator performs essentially the same op-
eration as the preceding if/else structure. The precedence of the conditional operator is
low, so the entire conditional expression is normally placed in parentheses to ensure that it
evaluates correctly.

Nested if/else structures test for multiple cases by placing if/else structures
inside if/else structures. For example, the following pseudocode statement will print A
for exam grades greater than or equal to 90, B for grades in the range 80 to 89, C for grades
in the range 70 to 79, D for grades in the range 60 to 69 and F for all other grades:

If student’s grade is greater than or equal to 90
Print “A”

Else
If student’s grade is greater than or equal to 80

Print “B”
Else

If student’s grade is greater than or equal to 70
Print “C”

Else
If student’s grade is greater than or equal to 60

Print “D”
Else

Print “F”

This pseudocode may be written in JavaScript as

if (studentGrade >= 90)
 document.writeln("A");
else
 if (studentGrade >= 80)
 document.writeln("B");
 else
 if (studentGrade >= 70)
 document.writeln("C");
 else
 if (studentGrade >= 60)
 document.writeln("D");
 else
 document.writeln("F");

If studentGrade is greater than or equal to 90, the first four conditions will be true, but
only the document.writeln statement after the first test will execute. After that par-
ticular document.writeln executes, the else part of the outer if/else structure is
skipped.

Good Programming Practice 8.3
If there are several levels of indentation, each level should be indented the same additional
amount of space. 8.3

iw3htp2.book Page 237 Wednesday, July 18, 2001 9:01 AM

238 JavaScript: Control Structures 1 Chapter 8

Most JavaScript programmers prefer to write the preceding if structure as

if (grade >= 90)
 document.writeln("A");
else if (grade >= 80)
 document.writeln("B");
else if (grade >= 70)
 document.writeln("C");
else if (grade >= 60)
 document.writeln("D");
else
 document.writeln("F");

The two forms are equivalent. The latter form is popular because it avoids the deep inden-
tation of the code to the right. Such deep indentation often leaves little room on a line, forc-
ing lines to be split and decreasing program readability.

It is important to note that the JavaScript interpreter always associates an else with
the previous if, unless told to do otherwise by the placement of braces ({}). This situation
is referred to as the dangling-else problem. For example,

if (x > 5)
 if (y > 5)
 document.writeln("x and y are > 5");
else
 document.writeln("x is <= 5");

appears to indicate with its indentation that if x is greater than 5, the if structure in its
body determines whether y is also greater than 5. If so, the body of the nested if structure
outputs the string "x and y are > 5". Otherwise, it appears that if x is not greater than
5, the else part of the if/else structure outputs the string "x is <= 5".

Beware! The preceding nested if structure does not execute as it appears. The inter-
preter actually interprets the preceding structure as

if (x > 5)
 if (y > 5)
 document.writeln("x and y are > 5");
 else
 document.writeln("x is <= 5");

in which the body of the first if structure is a nested if/else structure. This structure
tests whether x is greater than 5. If so, execution continues by testing whether y is also
greater than 5. If the second condition is true, the proper string—"x and y are > 5"—is
displayed. However, if the second condition is false, the string "x is <= 5" is displayed,
even though we know that x is greater than 5.

To force the preceding nested if structure to execute as it was intended originally, the
structure must be written as follows:

if (x > 5) {
 if (y > 5)
 document.writeln("x and y are > 5");
}
else
 document.writeln("x is <= 5");

iw3htp2.book Page 238 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 239

The braces ({}) indicate to the interpreter that the second if structure is in the body of the
first if structure and that the else is matched with the first if structure. In Exercises 8.21
and 8.22, you will investigate the dangling-else problem further.

The if selection structure expects only one statement in its body. To include several
statements in the body of an if, enclose the statements in braces ({ and }). A set of state-
ments contained within a pair of braces is called a compound statement or a block.

Software Engineering Observation 8.3
A compound statement can be placed anywhere in a program that a single statement can be
placed. 8.3

Software Engineering Observation 8.4
Unlike individual statements, a compound statement does not end with a semicolon. Howev-
er, each statement within the braces of a compound statement should end with a semicolon. 8.4

The following example includes a compound statement in the else part of an if/
else structure:

if (grade >= 60)
 document.writeln("Passed");
else {
 document.writeln("Failed
");
 document.writeln("You must take this course again.");
}

In this case, if grade is less than 60, the program executes both statements in the body of
the else and prints

Failed.
You must take this course again.

Notice the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

document.writeln("You must take this course again.");

would be outside the body of the else part of the if and would execute regardless of
whether the grade is less than 60.

Common Programming Error 8.2
Forgetting one or both of the braces that delimit a compound statement can lead to syntax
errors or logic errors. 8.2

Syntax errors (such as when one brace in a compound statement is left out of the pro-
gram) are caught by the interpreter when it attempts to interpret the code containing the
syntax error. A logic error (such as the one caused when both braces in a compound state-
ment are left out of the program) also has its effect at execution time. A fatal logic error
causes a program to fail and terminate prematurely. A nonfatal logic error allows a pro-
gram to continue executing, but the program produces incorrect results.

iw3htp2.book Page 239 Wednesday, July 18, 2001 9:01 AM

240 JavaScript: Control Structures 1 Chapter 8

Software Engineering Observation 8.5
Just as a compound statement can be placed anywhere a single statement can be placed, it
is also possible to have no statement at all (the empty statement) in such places. The empty
statement is represented by placing a semicolon (;) where a statement would normally be. 8.5

Common Programming Error 8.3
Placing a semicolon after the condition in an if structure leads to a logic error in single-
selection if structures and a syntax error in double-selection if structures (if the if part
contains a nonempty body statement). 8.3

Good Programming Practice 8.4
Some programmers prefer to type the beginning and ending braces of compound statements
before typing the individual statements within the braces. This procedure helps the program-
mers avoid omitting one or both of the braces. 8.4

8.7 while Repetition Structure
A repetition structure allows the programmer to specify that a script should repeat an action
while some condition remains true. The pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the repetition that occurs during a shopping trip. The condition “there are more
items on my shopping list” may be true or false. If it is true, then the action “Purchase next
item and cross it off my list” is performed. This action will be performed repeatedly while
the condition remains true. The statement(s) contained in the While repetition structure con-
stitute the body of the While. The body of the While structure may be a single statement or
a compound statement. Eventually, the condition becomes false (i.e., when the last item on
the shopping list has been purchased and crossed off the list). At this point, the repetition
terminates, and the first pseudocode statement after the repetition structure executes.

Common Programming Error 8.4
Not providing in the body of a while structure an action that eventually causes the condi-
tion in the while structure to become false is a logic error. Normally, such a repetition
structure will never terminate—an error called an “infinite loop.” Browsers handle infinite
loops differently. For example, Internet Explorer allows the user to terminate the script con-
taining the infinite loop. 8.4

Common Programming Error 8.5
Remember that JavaScript is a case-sensitive language. Spelling the keyword while with
an uppercase W, as in While, is a syntax error. All of JavaScript’s reserved keywords, such
as while, if and else, contain only lowercase letters. 8.5

As an example of a while structure, consider a program segment designed to find the
first power of 2 larger than 1000. Variable product begins with the value 2. The structure
is as follows:

var product = 2;

while (product <= 1000)
 product = 2 * product;

iw3htp2.book Page 240 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 241

When the while structure finishes executing, product contains the result 1024. The
flowchart in Fig. 8.5 illustrates the flow of control of the preceding while repetition struc-
ture. Once again, note that (besides small circles and arrows) the flowchart contains only a
rectangle symbol and a diamond symbol.

When the script enters the while structure, product is 2. The script repeatedly mul-
tiplies variable product by 2, so product takes on the values 4, 8, 16, 32, 64, 128, 256,
512 and 1024 successively. When product becomes 1024, the condition product <=
1000 in the while structure becomes false. This terminates the repetition, with 1024
as product’s final value. Execution continues with the next statement after the while
structure. [Note: If a while structure’s condition is initially false, the body statement(s)
will never execute.]

The flowchart clearly shows the repetition. The flowline emerging from the rectangle
wraps back to the decision, which the script tests each time through the loop until the deci-
sion eventually becomes false. At this point, the while structure exits, and control passes
to the next statement in the program.

8.8 Formulating Algorithms:
Case Study 1 (Counter-Controlled Repetition)
To illustrate how to develop algorithms, we solve several variations of a class-averaging
problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100) for this quiz
are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students (10
in this case). The algorithm for solving this problem on a computer must input each of the
grades, perform the averaging calculation and display the result.

Let us use pseudocode to list the actions to execute and specify the order in which the
actions should execute. We use counter-controlled repetition to input the grades one at a
time. This technique uses a variable called a counter to control the number of times a set
of statements executes. In this example, repetition terminates when the counter exceeds 10.
In this section, we present a pseudocode algorithm (Figure 8.6) and the corresponding pro-
gram (Fig. 8.7). In the next section, we show how to develop pseudocode algorithms.
Counter-controlled repetition often is called definite repetition, because the number of rep-
etitions is known before the loop begins executing.

Fig. 8.5Fig. 8.5Fig. 8.5Fig. 8.5 Flowcharting the while repetition structure.

product <= 1000 product = 2 * product
true

false

iw3htp2.book Page 241 Wednesday, July 18, 2001 9:01 AM

242 JavaScript: Control Structures 1 Chapter 8

Note the references in the algorithm to a total and a counter. A total is a variable in
which a script accumulates the sum of a series of values. A counter is a variable a script
uses to count—in this case, to count the number of grades entered. Variables that store
totals normally should be initialized to zero before they are used in a program.

Good Programming Practice 8.5
Variables to be used in calculations should be initialized before their use. 8.5

Lines 14–18 declare variables total, gradeCounter, gradeValue, average
and grade. The variable grade will store the string the user types into the prompt
dialog. The variable gradeValue will store the integer value of the grade the user
enters in a prompt dialog.

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

Fig. 8.6Fig. 8.6Fig. 8.6Fig. 8.6 Pseudocode algorithm that uses counter-controlled repetition to solve
the class-average problem.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 8.7: average.html -->
6 <!-- Class Average Program -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Class Average Program</title>
11
12 <script type = "text/javascript">
13 <!--
14 var total, // sum of grades
15 gradeCounter, // number of grades entered
16 gradeValue, // grade value
17 average, // average of all grades
18 grade; // grade typed by user
19

Fig. 8.7Fig. 8.7Fig. 8.7Fig. 8.7 Class-average program with counter-controlled repetition (part 1 of 2).

iw3htp2.book Page 242 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 243

20 // Initialization Phase
21 total = 0; // clear total
22 gradeCounter = 1; // prepare to loop
23
24 // Processing Phase
25 while (gradeCounter <= 10) { // loop 10 times
26
27 // prompt for input and read grade from user
28 grade = window.prompt("Enter integer grade:", "0");
29
30 // convert grade from a string to an integer
31 gradeValue = parseInt(grade);
32
33 // add gradeValue to total
34 total = total + gradeValue;
35
36 // add 1 to gradeCounter
37 gradeCounter = gradeCounter + 1;
38 }
39
40 // Termination Phase
41 average = total / 10; // calculate the average
42
43 // display average of exam grades
44 document.writeln(
45 "<h1>Class average is " + average + "</h1>");
46 // -->
47 </script>
48
49 </head>
50 <body>
51 <p>Click Refresh (or Reload) to run the script again<p>
52 </body>
53 </html>

Fig. 8.7Fig. 8.7Fig. 8.7Fig. 8.7 Class-average program with counter-controlled repetition (part 2 of 2).

This dialog is displayed 10 times.
User input is 100, 88, 93, 55, 68, 77,
83, 95, 73 and 62.

iw3htp2.book Page 243 Wednesday, July 18, 2001 9:01 AM

244 JavaScript: Control Structures 1 Chapter 8

Lines 21–22 are assignment statements that initialize total to 0 and grade-
Counter to 1. Note that variables total and gradeCounter are initialized before
they are used in a calculation. Uninitialized variables used in calculations result in logic
errors and produce the value NaN (not a number).

Common Programming Error 8.6
Not initializing a variable that will be used in a calculation, results in a logic error. You must
initialize the variable before it is used in a calculation. 8.6

Testing and Debugging Tip 8.1
Initialize variables that will be used in calculations to avoid subtle errors. 8.6

Line 25 indicates that the while structure continues iterating while the value of
gradeCounter is less than or equal to 10. Line 28 corresponds to the pseudocode state-
ment “Input the next grade.” The statement displays a prompt dialog with the prompt
“Enter integer grade:” on the screen.

After the user enters the grade, line 31 converts it from a string to an integer. We
must convert the string to an integer in this example; otherwise, the addition statement in
line 34 will be a string concatenation statement rather than a numeric sum.

Next, the program updates the total with the new gradeValue entered by the user.
Line 34 adds gradeValue to the previous value of total and assigns the result to total.
This statement seems a bit strange, because it does not follow the rules of algebra. Keep in
mind that JavaScript operator precedence evaluates the addition (+) operation before the
assignment (=) operation. The value of the expression on the right side of the assignment
operator always replaces the value of the variable on the left side of the assignment operator.

The program now is ready to increment the variable gradeCounter to indicate that
a grade has been processed and to read the next grade from the user. Line 37 adds 1 to
gradeCounter, so the condition in the while structure will eventually become false
and terminate the loop. After this statement executes, the program continues by testing the
condition in the while structure on line 25. If the condition is still true, the statements in
lines 28–37 repeat. Otherwise the program continues execution with the first statement in
sequence after the body of the loop (i.e., line 41).

Line 41 assigns the results of the average calculation to variable average. Lines 44–
45 write a line of XHTML text in the document that displays the string "Class average
is " followed by the value of variable average as an <h1> head in the browser.

After saving the XHTML document, execute the script in Internet Explorer by double
clicking the XHTML document (from Windows Explorer). This script reads only integer
values from the user. In the sample program execution in Fig. 8.7, the sum of the values
entered (100, 88, 93, 55, 68, 77, 83, 95, 73 and 62) is 794. Although the script reads only
integers, the averaging calculation in the program does not produce an integer. Rather, the
calculation produces a floating-point number (i.e., a number containing a decimal point).
The average of the 10 integers input by the user in this example is 79.4.

Software Engineering Observation 8.6
If the string passed to parseInt contains a floating-point numeric value, parseInt sim-
ply truncates the floating-point part. For example, the string “27.95” results in the integer
27, and the string –123.45 results in the integer –123. If the string passed to parseInt is
not a numeric value, parseInt returns NaN (not a number). 8.6

iw3htp2.book Page 244 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 245

JavaScript actually represents all numbers as floating-point numbers in memory.
Floating-point numbers often develop through division, as shown in this example. When we
divide 10 by 3, the result is 3.3333333…, with the sequence of 3s repeating infinitely. The
computer allocates only a fixed amount of space to hold such a value, so the stored floating-
point value can be only an approximation. Despite the fact that floating-point numbers are not
always 100% precise, they have numerous applications. For example, when we speak of a
“normal” body temperature of 98.6, we do not need to be precise to a large number of digits.
When we view the temperature on a thermometer and read it as 98.6, it may actually be
98.5999473210643. The point here is that few applications require high-precision floating-
point values, so calling this number simply 98.6 is fine for most applications.

Common Programming Error 8.7
Using floating-point numbers in a manner that assumes they are represented precisely can
lead to incorrect results. Real numbers are represented only approximately by computers.
For example, no fixed-size floating-point representation of π can ever be precise, because π
is a transcendental number whose value cannot be expressed in a finite amount of space. 8.7

8.9 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 2 (Sentinel-Controlled Repetition)
Let us generalize the class-average problem. Consider the following problem:

Develop a class-averaging program that will process an arbitrary number of grades each
time the program is run.

In the first class-average example, the number of grades (10) was known in advance. In this
example, no indication is given of how many grades the user will enter. The program must
process an arbitrary number of grades. How can the program determine when to stop the
input of grades? How will it know when to calculate and display the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate the end of data entry. The
user types in grades until all legitimate grades have been entered. Then the user types the
sentinel value to indicate that the last grade has been entered. Sentinel-controlled repetition
is often called indefinite repetition, because the number of repetitions is not known before
the loop begins executing.

Clearly, the sentinel value must be chosen so that it cannot be confused with an accept-
able input value. Because grades on a quiz are normally nonnegative integers from 0 to 100,
–1 is an acceptable sentinel value for this problem. Thus, an execution of the class-average
program might process a stream of inputs such as 95, 96, 75, 74, 89 and –1. The program
would compute and print the class average for the grades 95, 96, 75, 74 and 89 (–1 is the
sentinel value, so it should not enter into the average calculation).

Common Programming Error 8.8
Choosing a sentinel value that is also a legitimate data value results in a logic error and may
prevent a sentinel-controlled loop from terminating properly. 8.8

We approach the class-average program with a technique called top-down, stepwise
refinement, a technique that is essential to the development of well-structured algorithms.
We begin with a pseudocode representation of the top:

Determine the class average for the quiz

iw3htp2.book Page 245 Wednesday, July 18, 2001 9:01 AM

246 JavaScript: Control Structures 1 Chapter 8

The top is a single statement that conveys the overall purpose of the program. As such, the
top is, in effect, a complete representation of a program. Unfortunately, the top rarely con-
veys a sufficient amount of detail from which to write the JavaScript algorithm. So, we
now begin the refinement process. We divide the top into a series of smaller tasks and list
these tasks in the order in which they need to be performed, creating the following first
refinement:

Initialize variables
Input, sum up and count the quiz grades
Calculate and print the class average

Here, only the sequence structure is used; the steps listed are to be executed in order, one
after the other.

Software Engineering Observation 8.7
Each refinement, as well as the top itself, is a complete specification of the algorithm; only
the level of detail varies. 8.7

To proceed to the next level of refinement (the second refinement), we commit to spe-
cific variables. We need a running total of the numbers, a count of how many numbers have
been processed, a variable to receive the string representation of each grade as it is input, a
variable to store the value of the grade after it is converted to an integer and a variable to
hold the calculated average. The pseudocode statement

Initialize variables

may be refined as follows:

Initialize total to zero
Initialize gradeCounter to zero

Notice that only the variables total and gradeCounter are initialized before they are used;
the variables average, grade and gradeValue (for the calculated average, the user input and
the integer representation of the grade, respectively) need not be initialized, because their
values are determined as they are calculated or input.

The pseudocode statement

Input, sum up and count the quiz grades

requires a repetition structure (a loop) that successively inputs each grade. We do not know
in advance how many grades are to be processed, so we will use sentinel-controlled repeti-
tion. The user at the keyboard will enter legitimate grades, one at a time. After entering the
last legitimate grade, the user will enter the sentinel value. The program will test for the sen-
tinel value after the user enters each grade and will terminate the loop when the sentinel
value is encountered. The second refinement of the preceding pseudocode statement is then

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

Notice that in pseudocode, we do not use braces around the pseudocode that forms the body
of the While structure. We simply indent the pseudocode under the While, to show that it

iw3htp2.book Page 246 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 247

belongs to the body of the While. Remember, pseudocode is only an informal program de-
velopment aid.

The pseudocode statement

Calculate and print the class average

may be refined as follows:

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

Notice that we are testing for the possibility of division by zero—a logic error that, if un-
detected, would cause the program to produce invalid output. The complete second refine-
ment of the pseudocode algorithm for the class-average problem is shown in Fig. 8.8.

Testing and Debugging Tip 8.2
When performing division by an expression whose value could be zero, explicitly test for this
case, and handle it appropriately in your program (such as by printing an error message)
rather than allowing the division by zero to occur. 8.2

Good Programming Practice 8.6
Include completely blank lines in pseudocode programs to make the pseudocode more read-
able. The blank lines separate pseudocode control structures and separate the phases of the
programs. 8.6

Software Engineering Observation 8.8
Many algorithms can be divided logically into three phases: an initialization phase that ini-
tializes the program variables, a processing phase that inputs data values and adjusts pro-
gram variables accordingly and a termination phase that calculates and prints the results. 8.8

Initialize total to zero
Initialize gradeCounter to zero

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

Fig. 8.8Fig. 8.8Fig. 8.8Fig. 8.8 Pseudocode algorithm that uses sentinel-controlled repetition to solve
the class-average problem.

iw3htp2.book Page 247 Wednesday, July 18, 2001 9:01 AM

248 JavaScript: Control Structures 1 Chapter 8

The pseudocode algorithm in Fig. 8.8 solves the more general class-averaging
problem. This algorithm was developed after only two refinements. Sometimes more
refinements are necessary.

Software Engineering Observation 8.9
The programmer terminates the top-down, stepwise refinement process after specifying the
pseudocode algorithm in sufficient detail for the programmer to convert the pseudocode to a
JavaScript program. Then, implementing the JavaScript program normally is straightfor-
ward. 8.9

Good Programming Practice 8.7
When converting a pseudocode program to JavaScript, keep the pseudocode in the Java-
Script program as comments. 8.7

Software Engineering Observation 8.10
Experience has shown that the most difficult part of solving a problem on a computer is de-
veloping the algorithm for the solution. After specifying a correct algorithm, the process of
producing a working JavaScript program from the algorithm normally is straightforward. 8.10

Software Engineering Observation 8.11
Many experienced programmers write programs without ever using program development
tools like pseudocode. These programmers feel that their ultimate goal is to solve the prob-
lem on a computer and that writing pseudocode merely delays the production of final outputs.
Although this approach may work for simple and familiar problems, it can lead to serious
errors in large, complex projects. 8.11

Figure 8.9 shows the JavaScript program and a sample execution. Although each grade
is an integer, the averaging calculation is likely to produce a number with a decimal point
(a real number).

In this example, we see that control structures may be stacked on top of one another
(in sequence) just as a child stacks building blocks. The while structure (lines 33–46) is
followed immediately by an if/else structure (lines 49–57) in sequence. Much of the
code in this program is identical to the code in Fig. 8.7, so we concentrate in this example
on the new features.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 8.9: Average2.html -->
6 <!-- Sentinel-controlled Repetition -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Class Average Program:
11 Sentinel-controlled Repetition</title>
12

Fig. 8.9Fig. 8.9Fig. 8.9Fig. 8.9 Class-average program with sentinel-controlled repetition (part 1 of 3).

iw3htp2.book Page 248 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 249

13 <script type = "text/javascript">
14 <!--
15 var gradeCounter, // number of grades entered
16 gradeValue, // grade value
17 total, // sum of grades
18 average, // average of all grades
19 grade; // grade typed by user
20
21 // Initialization phase
22 total = 0; // clear total
23 gradeCounter = 0; // prepare to loop
24
25 // Processing phase
26 // prompt for input and read grade from user
27 grade = window.prompt(
28 "Enter Integer Grade, -1 to Quit:", "0");
29
30 // convert grade from a string to an integer
31 gradeValue = parseInt(grade);
32
33 while (gradeValue != -1) {
34 // add gradeValue to total
35 total = total + gradeValue;
36
37 // add 1 to gradeCounter
38 gradeCounter = gradeCounter + 1;
39
40 // prompt for input and read grade from user
41 grade = window.prompt(
42 "Enter Integer Grade, -1 to Quit:", "0");
43
44 // convert grade from a string to an integer
45 gradeValue = parseInt(grade);
46 }
47
48 // Termination phase
49 if (gradeCounter != 0) {
50 average = total / gradeCounter;
51
52 // display average of exam grades
53 document.writeln(
54 "<h1>Class average is " + average + "</h1>");
55 }
56 else
57 document.writeln("<p>No grades were entered</p>");
58 // -->
59 </script>
60 </head>
61
62 <body>
63 <p>Click Refresh (or Reload) to run the script again</p>
64 </body>
65 </html>

Fig. 8.9Fig. 8.9Fig. 8.9Fig. 8.9 Class-average program with sentinel-controlled repetition (part 2 of 3).

iw3htp2.book Page 249 Wednesday, July 18, 2001 9:01 AM

250 JavaScript: Control Structures 1 Chapter 8

Line 23 initializes gradeCounter to 0, because no grades have been entered yet.
Remember that this program uses sentinel-controlled repetition. To keep an accurate record
of the number of grades entered, the script increments gradeCounter only after pro-
cessing a valid grade value.

Notice the difference in program logic for sentinel-controlled repetition as compared
with the counter-controlled repetition in Fig. 8.7. In counter-controlled repetition, we read
a value from the user during each iteration of the while structure’s body for the specified
number of iterations. In sentinel-controlled repetition, we read one value (lines 27–28) and
convert it to an integer (line 31) before the program reaches the while structure. The script
uses this value to determine whether the program’s flow of control should enter the body
of the while structure. If the while structure’s condition is false (i.e., the user typed
the sentinel as the first grade), the script ignores the body of the while structure (i.e., no
grades were entered). If, on the other hand, the condition is true, the body begins execu-
tion and processes the value entered by the user (i.e., adds the value to the total at line
35). After processing the value, the script increments gradeCounter by 1 (line 38),
inputs the next grade from the user (lines 41–42) and converts the grade to an integer
(line 45), before the end of the while structure’s body. When the script reaches the closing
right brace (}) of the body at line 46, execution continues with the next test of the condition
of the while structure (line 33), using the new value just entered by the user to determine
whether the while structure’s body should execute again. Notice that the next value
always is input from the user immediately before the script evaluates the condition of the
while structure. This order allows us to determine whether the value just entered by the
user is the sentinel value before processing that value (i.e., adding it to the total). If the
value entered is the sentinel value, the while structure terminates and the script does not
add the value to the total.

Good Programming Practice 8.8
In a sentinel-controlled loop, the prompts requesting data entry should explicitly remind the
user what the sentinel value is. 8.8

Fig. 8.9Fig. 8.9Fig. 8.9Fig. 8.9 Class-average program with sentinel-controlled repetition (part 3 of 3).

This dialog is displayed four times.
User input is 97, 88, 72 and –1.

iw3htp2.book Page 250 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 251

Notice the compound statement in the while loop in Fig 8.9. Without the braces, the
last four statements in the body of the loop would fall outside of the loop, causing the com-
puter to interpret the code incorrectly as follows:

while (gradeValue != -1)
 // add gradeValue to total
 total = total + gradeValue;

// add 1 to gradeCounter
gradeCounter = gradeCounter + 1;

// prompt for input and read grade from user
grade = window.prompt(
 "Enter Integer Grade, -1 to Quit:", "0");

// convert grade from a string to an integer
gradeValue = parseInt(grade);

This interpretation would cause an infinite loop in the program if the user does not input
the sentinel -1 as the input value at lines 27–28 (i.e., before the while structure).

Common Programming Error 8.9
Omitting the curly braces that delineate a compound statement can lead to logic errors such
as infinite loops. 8.9

8.10 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 3 (Nested Control Structures)
Let us work through another complete problem. We will once again formulate the algo-
rithm using pseudocode and top-down, stepwise refinement, and we will write a corre-
sponding JavaScript program.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real estate
brokers. Last year, several of the students who completed this course took the licensing
examination. Naturally, the college wants to know how well its students did on the exam. You
have been asked to write a program to summarize the results. You have been given a list of
these 10 students. Next to each name is written a 1 if the student passed the exam and a 2 if
the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the
screen each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed
and the number of students who failed.

4. If more than 8 students passed the exam, print the message “Raise tuition.”

After reading the problem statement carefully, we make the following observations
about the problem:

1. The program must process test results for 10 students. A counter-controlled loop
will be used.

iw3htp2.book Page 251 Wednesday, July 18, 2001 9:01 AM

252 JavaScript: Control Structures 1 Chapter 8

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test
result, the program must determine if the number is a 1 or a 2. We test for a 1 in
our algorithm. If the number is not a 1, we assume that it is a 2. (An exercise at the
end of the chapter considers the consequences of this assumption.)

3. Two counters are used to keep track of the exam results—one to count the number
of students who passed the exam and one to count the number of students who
failed the exam.

After the program processes all the results, it must decide if more than eight students
passed the exam. Let us proceed with top-down, stepwise refinement. We begin with a
pseudocode representation of the top:

Analyze exam results and decide if tuition should be raised

Once again, it is important to emphasize that the top is a complete representation of the pro-
gram, but that several refinements are necessary before the pseudocode can be evolved nat-
urally into a JavaScript program. Our first refinement is as follows:

Initialize variables
Input the ten exam grades and count passes and failures
Print a summary of the exam results and decide whether tuition should be raised

Here, too, even though we have a complete representation of the entire program, further re-
finement is necessary. We now commit to specific variables. Counters are needed to record
the passes and failures, a counter will be used to control the looping process and a variable
is needed to store the user input. The pseudocode statement

Initialize variables

may be refined as follows:

Initialize passes to zero
Initialize failures to zero
Initialize student to one

Notice that only the counters for the number of passes, the number of failures and the num-
ber of students are initialized. The pseudocode statement

Input the ten quiz grades and count passes and failures

requires a loop that successively inputs the result of each exam. Here, it is known in ad-
vance that there are precisely 10 exam results, so counter-controlled looping is appropriate.
Inside the loop (i.e., nested within the loop), a double-selection structure will determine
whether each exam result is a pass or a failure and will increment the appropriate counter
accordingly. The refinement of the preceding pseudocode statement is then

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

Else
Add one to failures

Add one to student counter

iw3htp2.book Page 252 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 253

Notice the use of blank lines to set off the If/Else control structure to improve program read-
ability. The pseudocode statement

Print a summary of the exam results and decide whether tuition should be raised

may be refined as follows:

Print the number of passes
Print the number of failures
If more than eight students passed

Print “Raise tuition”

The complete second refinement appears in Fig. 8.10. Notice that blank lines are also used
to set off the While structure for program readability.

This pseudocode now is refined sufficiently for conversion to JavaScript. The Java-
Script program and two sample executions are shown in Fig. 8.11.

Lines 15–18 declare the variables used to process the examination results. Note that
JavaScript allows variable initialization to be incorporated into declarations (passes is
assigned 0, failures is assigned 0 and student is assigned 1). Some programs may
require initialization at the beginning of each repetition; such initialization would normally
occur in assignment statements.

The processing of the exam results occurs in the while structure at lines 21–31.
Notice that the if/else structure at lines 25–28 in the loop tests only whether the exam
result was 1; it assumes that all other exam results are 2. Normally, you should validate the
values input by the user (i.e., determine whether the values are correct). In the exercises,
we ask you to modify this example to validate the input values to ensure that they are either
1 or 2.

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

Else
Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures
If more than eight students passed

Print “Raise tuition”

Fig. 8.10Fig. 8.10Fig. 8.10Fig. 8.10 Pseudocode for examination-results problem.

iw3htp2.book Page 253 Wednesday, July 18, 2001 9:01 AM

254 JavaScript: Control Structures 1 Chapter 8

Good Programming Practice 8.9
When inputting values from the user, validate the input to ensure that it is correct. If an input
value is incorrect, prompt the user to input the value again. 8.9

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 8.11: analysis.html -->
6 <!-- Analyzing Exam Results -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Analysis of Examination Results</title>
11
12 <script type = "text/javascript">
13 <!--
14 // initializing variables in declarations
15 var passes = 0, // number of passes
16 failures = 0, // number of failures
17 student = 1, // student counter
18 result; // one exam result
19
20 // process 10 students; counter-controlled loop
21 while (student <= 10) {
22 result = window.prompt(
23 "Enter result (1=pass,2=fail)", "0");
24
25 if (result == "1")
26 passes = passes + 1;
27 else
28 failures = failures + 1;
29
30 student = student + 1;
31 }
32
33 // termination phase
34 document.writeln("<h1>Examination Results</h1>");
35 document.writeln(
36 "Passed: " + passes + "
Failed: " + failures);
37
38 if (passes > 8)
39 document.writeln("
Raise Tuition");
40 // -->
41 </script>
42
43 </head>
44 <body>
45 <p>Click Refresh (or Reload) to run the script again</p>
46 </body>
47 </html>

Fig. 8.11Fig. 8.11Fig. 8.11Fig. 8.11 JavaScript program for examination-results problem (part 1 of 2).

iw3htp2.book Page 254 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 255

8.11 Assignment Operators
JavaScript provides several assignment operators for abbreviating assignment expressions.
For example, the statement

c = c + 3;

can be abbreviated with the addition assignment operator, +=, as

Fig. 8.11Fig. 8.11Fig. 8.11Fig. 8.11 JavaScript program for examination-results problem (part 2 of 2).

This dialog is displayed 10 times.
User input is 1, 2, 1, 1, 1, 1, 1, 1, 1
and 1.

This dialog is displayed 10 times.
User input is 1, 2, 1, 2, 2, 1, 2, 2, 1
and 1.

iw3htp2.book Page 255 Wednesday, July 18, 2001 9:01 AM

256 JavaScript: Control Structures 1 Chapter 8

c += 3;

The += operator adds the value of the expression on the right of the operator to the value
of the variable on the left of the operator and stores the result in the variable on the left of
the operator. Any statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % (or others we will discuss later
in the text), can be written in the form

variable operator= expression;

Thus, the assignment c += 3 adds 3 to c. Figure 8.12 shows the arithmetic assignment op-
erators, sample expressions using these operators and explanations of the meaning of the
operators.

Performance Tip 8.1
Programmers can write programs that execute a bit faster when the abbreviated assignment
operators are used, because the variable on the left side of the assignment does not have to
be evaluated twice. 8.1

Performance Tip 8.2
Many of the performance tips we mention in this text result in nominal improvements, so the
reader may be tempted to ignore them. Significant performance improvement often is real-
ized when a supposedly nominal improvement is placed in a loop that may repeat a large
number of times. 8.2

8.12 Increment and Decrement Operators
JavaScript provides the unary increment operator (++) and decrement operator (--),
(summarized in Fig. 8.13). If a variable c is incremented by 1, the increment operator, ++,
can be used rather than the expression c = c + 1 or c += 1. If an increment or decrement
operator is placed before a variable, it is referred to as the preincrement or predecrement
operator, respectively. If an increment or decrement operator is placed after a variable, it
is referred to as the postincrement or postdecrement operator, respectively.

Assignment
operator

Initial value of
variable

Sample
expression Explanation Assigns

+= c = 3 c += 7 c = c + 7 10 to c

-= d = 5 d -= 4 d = d - 4 1 to d

*= e = 4 e *= 5 e = e * 5 20 to e

/= f = 6 f /= 3 f = f / 3 2 to f

%= g = 12 g %= 9 g = g % 9 3 to g

Fig. 8.12Fig. 8.12Fig. 8.12Fig. 8.12 Arithmetic assignment operators.

iw3htp2.book Page 256 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 257

Preincrementing (or predecrementing) a variable causes the program to increment
(decrement) the variable by 1, then use the new value of the variable in the expression in
which it appears. Postincrementing (postdecrementing) the variable causes the program to
use the current value of the variable in the expression in which it appears, then increment
(decrement) the variable by 1.

The script in Fig. 8.14 demonstrates the difference between the preincrementing ver-
sion and the postincrementing version of the ++ increment operator. Postincrementing the
variable c causes it to be incremented after it is used in the document.writeln method
call (line 20). Preincrementing the variable c causes it to be incremented before it is used
in the document.writeln method call (line 27). The program displays the value of c
before and after the ++ operator is used. The decrement operator (--) works similarly.

Operator Called Sample expression Explanation

++ preincrement ++a Increment a by 1, then use the new value of
a in the expression in which a resides.

++ postincrement a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- predecrement --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- postdecrement b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 8.13Fig. 8.13Fig. 8.13Fig. 8.13 increment and decrement operators.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 8.14: increment.html -->
6 <!-- Preincrementing and Postincrementing -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Preincrementing and Postincrementing</title>
11
12 <script type = "text/javascript">
13 <!--
14 var c;
15
16 c = 5;
17 document.writeln("<h3>Postincrementing</h3>");
18 document.writeln(c); // print 5
19 // print 5 then increment
20 document.writeln("
" + c++);
21 document.writeln("
" + c); // print 6
22

Fig. 8.14Fig. 8.14Fig. 8.14Fig. 8.14 Differences between preincrementing and postincrementing (part 1 of 2).

iw3htp2.book Page 257 Wednesday, July 18, 2001 9:01 AM

258 JavaScript: Control Structures 1 Chapter 8

Good Programming Practice 8.10
For readability, unary operators should be placed next to their operands, with no intervening
spaces. 8.10

The three assignment statements in Fig 8.11 (lines 26, 28 and 30, respectively),

passes = passes + 1;
failures = failures + 1;
student = student + 1;

can be written more concisely with assignment operators as

passes += 1;
failures += 1;
student += 1;

with preincrement operators as

++passes;
++failures;
++student;

23 c = 5;
24 document.writeln("<h3>Preincrementing</h3>");
25 document.writeln(c); // print 5
26 // increment then print 6
27 document.writeln("
" + ++c);
28 document.writeln("
" + c); // print 6
29 // -->
30 </script>
31
32 </head><body></body>
33 </html>

Fig. 8.14Fig. 8.14Fig. 8.14Fig. 8.14 Differences between preincrementing and postincrementing (part 2 of 2).

iw3htp2.book Page 258 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 259

or with postincrement operators as

passes++;
failures++;
student++;

It is important to note here that when incrementing or decrementing a variable in a
statement by itself, the preincrement and postincrement forms have the same effect, and the
predecrement and postdecrement forms have the same effect. It is only when a variable
appears in the context of a larger expression that preincrementing the variable and post-
incrementing the variable have different effects. Predecrementing and postdecrementing
behave similarly.

Common Programming Error 8.10
Attempting to use the increment or decrement operator on an expression other than an lvalue
is a syntax error. An lvalue is a variable or expression that can appear on the left side of an
assignment operation. For example, writing ++(x + 1) is a syntax error, because (x + 1)
is not an lvalue. 8.10

Figure 8.15 lists the precedence and associativity of the operators introduced up to this
point. The operators are shown from top to bottom in decreasing order of precedence. The
second column describes the associativity of the operators at each level of precedence.
Notice that the conditional operator (?:), the unary operators increment (++) and decre-
ment (--) and the assignment operators =, +=, -=, *=, /= and %= associate from right to
left. All other operators in the operator precedence table (Fig. 8.15) associate from left to
right. The third column names the groups of operators.

8.13 Note on Data Types
Unlike its predecessor languages C, C++ and Java, JavaScript does not require variables to
have a type before they can be used in a program. A variable in JavaScript can contain a value
of any data type, and in many situations, JavaScript automatically converts between values of
different types for you. For this reason, JavaScript is referred to as a loosely typed language.
When a variable is declared in JavaScript, but is not given a value, the variable has an unde-
fined value. Attempting to use the value of such a variable is normally a logic error.

Operators Associativity Type

() left to right parentheses

++ -- right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 8.15Fig. 8.15Fig. 8.15Fig. 8.15 Precedence and associativity of the operators discussed so far.

iw3htp2.book Page 259 Wednesday, July 18, 2001 9:01 AM

260 JavaScript: Control Structures 1 Chapter 8

When variables are declared, they are not assigned default values, unless specified oth-
erwise by the programmer. To indicate that a variable does not contain a value, you can
assign the value null to the variable.

8.14 JavaScript Internet and World Wide Web Resources
There are a tremendous number of resources for JavaScript programmers on the Internet
and World Wide Web. This section lists a few JavaScript and ECMAScript resources avail-
able on the Internet and provides a brief description of each. Additional resources for these
topics are presented at the end of other JavaScript chapters as necessary.

www.javascriptmall.com
The JavaScript Mall provides free scripts, FAQs, tools for Web pages and a JavaScript tutorial.

developer.netscape.com/tech/javascript
This JavaScript Reference provides JavaScript documentation, FAQs, recommended books, news-
groups and much more.

SUMMARY
• Any computing problem can be solved by executing a series of actions in a specific order.

• A procedure for solving a problem in terms of the actions to execute and the order in which the
actions are to execute is called an algorithm.

• Specifying the order in which statements are to be executed in a computer program is called pro-
gram control.

• Pseudocode is an artificial and informal language that helps programmers develop algorithms.

• Carefully prepared pseudocode may be converted easily to a corresponding JavaScript program.

• Pseudocode normally describes only executable statements—the actions that are performed when
the program is converted from pseudocode to JavaScript and executed.

• Normally, statements in a program execute one after the other, in the order in which they are writ-
ten. This process is called sequential execution.

• Various JavaScript statements enable the programmer to specify that the next statement to be ex-
ecuted may be other than the next one in sequence. This process is called transfer of control.

• All programs can be written in terms of only three control structures, namely, the sequence struc-
ture, the selection structure and the repetition structure.

• A flowchart is a graphical representation of an algorithm or of a portion of an algorithm. Flow-
charts are drawn using certain special-purpose symbols, such as rectangles, diamonds, ovals and
small circles; these symbols are connected by arrows called flowlines, which indicate the order in
which the actions of the algorithm execute.

• JavaScript provides three selection structures. The if structure either performs (selects) an action
if a condition is true or skips the action if the condition is false. The if/else structure performs
an action if a condition is true and performs a different action if the condition is false. The switch
structure performs one of many different actions, depending on the value of an expression.

• JavaScript provides four repetition structures, namely, while, do/while, for and for/in.

• Keywords cannot be used as identifiers (such as for variable names).

• Single-entry/single-exit control structures make it easy to build programs. Control structures are
attached to one another by connecting the exit point of one control structure to the entry point of
the next. This procedure is called control-structure stacking. There is only one other way control
structures may be connected: control-structure nesting.

iw3htp2.book Page 260 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 261

• The JavaScript interpreter ignores whitespace characters: blanks, tabs and newlines used for inden-
tation and vertical spacing. Programmers insert whitespace characters to enhance program clarity.

• A decision can be made on any expression that evaluates to a value of JavaScript’s boolean type
(i.e., any expression that evaluates to true or false).

• The indentation convention you choose should be carefully applied throughout your programs. It
is difficult to read programs that do not use uniform spacing conventions.

• The conditional operator (?:) is closely related to the if/else structure. Operator ?: is JavaS-
cript’s only ternary operator—it takes three operands. The operands together with the ?: operator
form a conditional expression. The first operand is a boolean expression, the second is the value
for the conditional expression if the condition evaluates to true and the third is the value for the
conditional expression if the condition evaluates to false.

• Nested if/else structures test for multiple cases by placing if/else structures inside other if/
else structures.

• The JavaScript interpreter always associates an else with the previous if, unless told to do oth-
erwise by the placement of braces ({}).

• The if selection structure expects only one statement in its body. To include several statements
in the body of an if structure, enclose the statements in braces ({ and }). A set of statements con-
tained within a pair of braces is called a compound statement or a block.

• A logic error has its effect at execution time. A fatal logic error causes a program to fail and ter-
minate prematurely. A nonfatal logic error allows a program to continue executing, but the pro-
gram produces incorrect results.

• A repetition structure allows the programmer to specify that an action is to be repeated while some
condition remains true.

• Counter-controlled repetition is often called definite repetition, because the number of repetitions
is known before the loop begins executing.

• Uninitialized variables used in mathematical calculations result in logic errors and produce the val-
ue NaN (not a number).

• JavaScript represents all numbers as floating-point numbers in memory. Floating-point numbers
often develop through division. The computer allocates only a fixed amount of space to hold such
a value, so the stored floating-point value can only be an approximation.

• In sentinel-controlled repetition, a special value called a sentinel value (also called a signal value,
a dummy value or a flag value) indicates the end of data entry. Sentinel-controlled repetition often
is called indefinite repetition, because the number of repetitions is not known in advance.

• The sentinel value must be chosen so that it is not confused with an acceptable input value.

• Top-down, stepwise refinement is a technique that is essential to the development of well-struc-
tured algorithms. The top is a single statement that conveys the overall purpose of the program. As
such, the top is, in effect, a complete representation of a program. The stepwise refinement process
divides the top into a series of smaller tasks. The programmer terminates the top-down, stepwise
refinement process when the pseudocode algorithm is specified in sufficient detail for the pro-
grammer to be able to convert the pseudocode to a JavaScript program.

• JavaScript provides the arithmetic assignment operators +=, -=, *=, /= and %=, which abbreviate
certain common types of expressions.

• The increment operator, ++, and the decrement operator, --, increment or decrement a variable
by 1, respectively. If the operator is prefixed to the variable, the variable is incremented or decre-
mented by 1, then used in its expression. If the operator is postfixed to the variable, the variable is
used in its expression, then incremented or decremented by 1.

iw3htp2.book Page 261 Wednesday, July 18, 2001 9:01 AM

262 JavaScript: Control Structures 1 Chapter 8

• JavaScript does not require variables to have a type before they can be used in a program. A vari-
able in JavaScript can contain a value of any data type, and in many situations, JavaScript auto-
matically converts between values of different types for you. For this reason, JavaScript is referred
to as a loosely typed language.

• When a variable is declared in JavaScript, but is not given a value, that variable has an undefined
value. Attempting to use the value of such a variable is normally a logic error.

• When variables are declared, they are not assigned default values, unless specified otherwise by
the programmer. To indicate that a variable does not contain a value, you can assign the value
null to the variable.

TERMINOLOGY

SELF-REVIEW EXERCISES
8.1 State whether each of the following is true or false. If false, explain why.

a) All programs can be written in terms of three types of control structures: ,
 and .

b) The selection structure is used to execute one action when a condition is true
and another action when that condition is false.

c) Repetition of a set of instructions a specific number of times is called repe-
tition.

d) When it is not known in advance how many times a set of statements will be repeated, a
 value can be used to terminate the repetition.

8.2 Write four JavaScript statements that each add 1 to variable x, which contains a number.

-- operator initialization
?: operator logic error
++ operator loop counter
action loop-continuation condition
action/decision model nested control structures
algorithm postdecrement operator
arithmetic assignment operators: postincrement operator
 +=, -=, *=, /= and %= predecrement operator
block preincrement operator
body of a loop pseudocode
compound statement repetition
conditional operator (?:) repetition structure
control structure selection
counter-controlled repetition sentinel value
decision sequential execution
decrement operator (--) single-entry/single-exit control structure
definite repetition single-selection structure
double-selection structure stacked control structure
empty statement (;) structured programming
if selection structure syntax error
if/else selection structure top-down, stepwise refinement
increment operator (++) unary operator
indefinite repetition while repetition structure
infinite loop whitespace character

iw3htp2.book Page 262 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 263

8.3 Write JavaScript statements to accomplish each of the following tasks:
a) Assign the sum of x and y to z, and increment the value of x by 1 after the calculation.

Use only one statement.
b) Test whether the value of the variable count is greater than 10. If it is, print "Count

is greater than 10".
c) Decrement the variable x by 1, then subtract it from the variable total. Use only one

statement.
d) Calculate the remainder after q is divided by divisor, and assign the result to q. Write

this statement in two different ways.

8.4 Write a JavaScript statement to accomplish each of the following tasks:
a) Declare variables sum and x.
b) Assign 1 to variable x.
c) Assign 0 to variable sum.
d) Add variable x to variable sum, and assign the result to variable sum.
e) Print "The sum is: ", followed by the value of variable sum.

8.5 Combine the statements that you wrote in Exercise 8.4 into a JavaScript program that calcu-
lates and prints the sum of the integers from 1 to 10. Use the while structure to loop through the
calculation and increment statements. The loop should terminate when the value of x becomes 11.

8.6 Determine the value of each variable after the calculation is performed. Assume that, when
each statement begins executing, all variables have the integer value 5.

a) product *= x++;
b) quotient /= ++x;

8.7 Identify and correct the errors in each of the following segments of code:
a) while (c <= 5) {

 product *= c;
 ++c;

b) if (gender == 1)
 document.writeln("Woman");
else;
 document.writeln("Man");

8.8 What is wrong with the following while repetition structure?
while (z >= 0)
 sum += z;

ANSWERS TO SELF-REVIEW EXERCISES
8.1 a) Sequence, selection and repetition. b) if/else. c) Counter-controlled (or definite).
d) Sentinel, signal, flag or dummy.

8.2 x = x + 1;
x += 1;
++x;
x++;

8.3 a) z = x++ + y;
b) if (count > 10)

 document.writeln("Count is greater than 10");
c) total -= --x;
d) q %= divisor;

q = q % divisor;

iw3htp2.book Page 263 Wednesday, July 18, 2001 9:01 AM

264 JavaScript: Control Structures 1 Chapter 8

8.4 a) var sum, x;
b) x = 1;
c) sum = 0;
d) sum += x; or sum = sum + x;
e) document.writeln("The sum is: " + sum);

8.5 The solution is as follows:

8.6 a) product = 25, x = 6;
b) quotient = 0.833333..., x = 6;

8.7 a) Error: Missing the closing right brace of the while body.
Correction: Add closing right brace after the statement ++c;.

b) Error: The semicolon after else results in a logic error. The second output statement
will always be executed.
Correction: Remove the semicolon after else.

8.8 The value of the variable z is never changed in the body of the while structure. Therefore,
if the loop-continuation condition (z >= 0) is true, an infinite loop is created. To prevent the cre-
ation of the infinite loop, z must be decremented so that it eventually becomes less than 0.

EXERCISES
8.9 Identify and correct the errors in each of the following segments of code. [Note: There may
be more than one error in each piece of code]:

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Exercise 8.5: sum.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head><title>Sum the Integers from 1 to 10</title>
9

10 <script type = "text/javascript">
11 <!--
12 var sum, x;
13
14 x = 1;
15 sum = 0;
16
17 while (x <= 10) {
18 sum += x;
19 ++x;
20 }
21
22 document.writeln("The sum is: " + sum);
23 // -->
24 </script>
25
26 </head><body></body>
27 </html>

iw3htp2.book Page 264 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 265

a) if (age >= 65);
 document.writeln("Age greater than or equal to 65");
else
 document.writeln("Age is less than 65)";

b) var x = 1, total;
while (x <= 10) {
 total += x;
 ++x;
}

c) While (x <= 100)
 total += x;
 ++x;

d) while (y > 0) {
 document.writeln(y);
 ++y;

8.10 What does the following program print?

For Exercises 8.11–8.14, perform each of the following steps:
a) Read the problem statement.
b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.
c) Write a JavaScript program.
d) Test, debug and execute the JavaScript program.
e) Process three complete sets of data.

8.11 Drivers are concerned with the mileage obtained by their automobiles. One driver has kept
track of several tankfuls of gasoline by recording the number of miles driven and the number of gal-

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <html xmlns="http://www.w3.org/1999/xhtml">
6 <head><title>Mystery Script</title>
7
8 <script type = "text/javascript">
9 <!--

10 var y, x = 1, total = 0;
11
12 while (x <= 10) {
13 y = x * x;
14 document.writeln(y + "
");
15 total += y;
16 ++x;
17 }
18
19 document.writeln("
Total is " + total);
20 // -->
21 </script>
22
23 </head><body></body>
24 </html>

iw3htp2.book Page 265 Wednesday, July 18, 2001 9:01 AM

266 JavaScript: Control Structures 1 Chapter 8

lons used for each tankful. Develop a JavaScript program that will input the miles driven and gallons
used (both as integers) for each tankful. The program should calculate and output XHTML text that
displays the number of miles per gallon obtained for each tankful and prints the combined number of
miles per gallon obtained for all tankfuls up to this point. Use prompt dialogs to obtain the data from
the user.

8.12 Develop a JavaScript program that will determine whether a department-store customer has
exceeded the credit limit on a charge account. For each customer, the following facts are available:

a) Account number
b) Balance at the beginning of the month
c) Total of all items charged by this customer this month
d) Total of all credits applied to this customer's account this month
e) Allowed credit limit

The program should input each of these facts from prompt dialogs as integers, calculate the
new balance (= beginning balance + charges – credits), display the new balance and determine
whether the new balance exceeds the customer's credit limit. For customers whose credit limit is
exceeded, the program should output XHTML text that displays the message “Credit limit
exceeded.”

8.13 A large company pays its salespeople on a commission basis. The salespeople receive $200
per week, plus 9% of their gross sales for that week. For example, a salesperson who sells $5000
worth of merchandise in a week receives $200 plus 9% of $5000, or a total of $650. You have been
supplied with a list of items sold by each salesperson. The values of these items are as follows:

Item Value
1 239.99
2 129.75
3 99.95
4 350.89

Develop a program that inputs one salesperson's items sold for last week, calculates the salesperson's
earnings and outputs XHTML text that displays the salesperson's earnings.

8.14 Develop a JavaScript program that will determine the gross pay for each of three employees.
The company pays “straight time” for the first 40 hours worked by each employee and pays “time and
a half” for all hours worked in excess of 40 hours. You are given a list of the employees of the com-
pany, the number of hours each employee worked last week and the hourly rate of each employee.
Your program should input this information for each employee, determine the employee's gross pay
and output XHTML text that displays the employee's gross pay. Use prompt dialogs to input the
data.

8.15 The process of finding the largest value (i.e., the maximum of a group of values) is used fre-
quently in computer applications. For example, a program that determines the winner of a sales con-
test would input the number of units sold by each salesperson. The salesperson who sells the most
units wins the contest. Write a pseudocode program and then a JavaScript program that inputs a series
of 10 single-digit numbers as characters, determines the largest of the numbers and outputs XHTML
text that displays the largest number. Your program should use three variables as follows:

a) counter: A counter to count to 10 (i.e., to keep track of how many numbers have been
input and to determine when all 10 numbers have been processed);

b) number: The current digit input to the program;
c) largest: The largest number found so far.

8.16 Write a JavaScript program that uses looping to print the following table of values. Output
the results in an XHTML table.

iw3htp2.book Page 266 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 267

N 10*N 100*N 1000*N
1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

8.17 Using an approach similar to that in Exercise 8.15, find the two largest values among the 10
digits entered. [Note: You may input each number only once.]

8.18 Modify the program in Fig. 8.11 to validate its inputs. For every value input, if the value en-
tered is other than 1 or 2, keep looping until the user enters a correct value.

8.19 What does the following program print?

8.20 What does the following program print?

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <html xmlns = "http://www.w3.org/1999/xhtml">
6 <head><title>Mystery Script</title>
7
8 <script type = "text/javascript">
9 <!--

10 var count = 1;
11
12 while (count <= 10) {
13 document.writeln(
14 count % 2 == 1 ? "****
" : "++++++++
");
15 ++count;
16 }
17 // -->
18 </script>
19
20 </head><body></body>
21 </html>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <html xmlns = "http://www.w3.org/1999/xhtml">
6 <head><title>Mystery Script</title>
7
8 <script type = "text/javascript">
9 <!--

10 var row = 10, column;
11

iw3htp2.book Page 267 Wednesday, July 18, 2001 9:01 AM

268 JavaScript: Control Structures 1 Chapter 8

8.21 (Dangling-Else Problem) Determine the output for each of the given segments of code when
x is 9 and y is 11, and when x is 11 and y is 9. Note that the interpreter ignores the indentation in a
JavaScript program. Also, the JavaScript interpreter always associates an else with the previous if,
unless told to do otherwise by the placement of braces ({}). Because, on first glance, the programmer
may not be sure which if an else matches, this situation is referred to as the “dangling-else” prob-
lem. We have eliminated the indentation from the given code to make the problem more challenging.
[Hint: Apply indentation conventions you have learned.]

a) if (x < 10)
if (y > 10)
document.writeln("*****
");
else
document.writeln("#####
");
document.writeln("$$$$$
");

b) if (x < 10) {
if (y > 10)
document.writeln("*****
");
}
else {
document.writeln("#####
");
document.writeln("$$$$$
");
}

8.22 (Another Dangling-Else Problem) Modify the given code to produce the output shown in each
part of this problem. Use proper indentation techniques. You may not make any changes other than in-
serting braces and changing the indentation of the code. The interpreter ignores indentation in a JavaS-
cript program. We have eliminated the indentation from the given code to make the problem more
challenging. [Note: It is possible that no modification is necessary for some of the segments of code.]

if (y == 8)
if (x == 5)
document.writeln("@@@@@
");
else
document.writeln("#####
");
document.writeln("$$$$$
");
document.writeln("&&&&&
");

12 while (row >= 1) {
13 column = 1;
14
15 while (column <= 10) {
16 document.write(row % 2 == 1 ? "<" : ">");
17 ++column;
18 }
19
20 --row;
21 document.writeln("
");
22 }
23 // -->
24 </script>
25
26 </head><body></body>
27 </html>

iw3htp2.book Page 268 Wednesday, July 18, 2001 9:01 AM

Chapter 8 JavaScript: Control Structures 1 269

a) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@
$$$$$
&&&&&

b) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@

c) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@
&&&&&

d) Assuming that x = 5 and y = 7, the following output is produced [Note: The last three
output statements after the else statements are all part of a compound statement]:

#####
$$$$$
&&&&&

8.23 Write a script that reads in the size of the side of a square and outputs XHTML text that dis-
plays a hollow square of that size constructed of asterisks. Use a prompt dialog to read the size from
the user. Your program should work for squares of all side sizes between 1 and 20.

8.24 A palindrome is a number or a text phrase that reads the same backward as forward. For ex-
ample, each of the following five-digit integers is a palindrome: 12321, 55555, 45554 and 11611.
Write a script that reads in a five-digit integer and determines whether it is a palindrome. If the num-
ber is not five digits long, output XHTML text that displays an alert dialog indicating the problem
to the user. When the user dismisses the alert dialog, allow the user to enter a new value.

8.25 Write a script that outputs XHTML text that displays the following checkerboard pattern:

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

Your program may use only three output statements, one of the form

document.write("* ");

one of the form

document.write(" ");

and one of the form

document.writeln("
");

[Hint: Repetition structures are required in this exercise.]

iw3htp2.book Page 269 Wednesday, July 18, 2001 9:01 AM

270 JavaScript: Control Structures 1 Chapter 8

8.26 Write a script that outputs XHTML text that keeps displaying in the browser window the
multiples of the integer 2, namely 2, 4, 8, 16, 32, 64, etc. Your loop should not terminate (i.e., you
should create an infinite loop). What happens when you run this program?

8.27 A company wants to transmit data over the telephone, but it is concerned that its phones may
be tapped. All of its data are transmitted as four-digit integers. It has asked you to write a program
that will encrypt its data so that the data may be transmitted more securely. Your script should read a
four-digit integer entered by the user in a prompt dialog and encrypt it as follows: Replace each digit
by (the sum of that digit plus 7) modulus 10. Then swap the first digit with the third, and swap the
second digit with the fourth. Then output XHTML text that displays the encrypted integer.

8.28 Write a program that inputs an encrypted four-digit integer (from Exercise 8.27) and decrypts
it to form the original number.

iw3htp2.book Page 270 Wednesday, July 18, 2001 9:01 AM

9
JavaScript: Control

Structures II

Objectives
• To be able to use the for and do/while repetition

structures to execute statements in a program
repeatedly.

• To understand multiple selection using the switch
selection structure.

• To be able to use the break and continue
program control statements.

• To be able to use the logical operators.
Who can control his fate?
William Shakespeare, Othello

The used key is always bright.
Benjamin Franklin

iw3htp2.book Page 271 Wednesday, July 18, 2001 9:01 AM

272 JavaScript: Control Structures II Chapter 9

9.1 Introduction
Chapter 8 began our introduction to the types of building blocks that are available for prob-
lem solving and used those building blocks to employ proven program construction princi-
ples. In this chapter, we continue our presentation of the theory and principles of structured
programming by introducing JavaScripts’s remaining control structures (with the exception
of for/in, which is presented in Chapter 11). As in Chapter 8, the JavaScript techniques
you learn here are applicable to most high-level languages. In later chapters, we will see
that the control structures we study in this chapter and Chapter 8 are helpful in manipulating
objects.

9.2 Essentials of Counter-Controlled Repetition
Counter-controlled repetition requires:

1. The name of a control variable (or loop counter).

2. The initial value of the control variable.

3. The increment (or decrement) by which the control variable is modified each time
through the loop (also known as each iteration of the loop).

4. The condition that tests for the final value of the control variable to determine
whether looping should continue.

To see the four elements of counter-controlled repetition, consider the simple script
shown in Fig. 9.1, which displays lines of XHTML text that illustrate the seven different
font sizes supported by XHTML. The declaration in line 14 names the control variable
(counter), reserves space for it in memory and sets it to an initial value of 1. Declarations
that include initialization are, in effect, executable statements.

Outline

9.1 Introduction
9.2 Essentials of Counter-Controlled Repetition
9.3 for Repetition Structure
9.4 Examples Using the for Structure
9.5 switch Multiple-Selection Structure
9.6 do/while Repetition Structure
9.7 break and continue Statements
9.8 Labeled break and continue Statements
9.9 Logical Operators
9.10 Summary of Structured Programming

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2.book Page 272 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 273

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.1: WhileCounter.html -->
6 <!-- Counter-Controlled Repetition -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Counter-Controlled Repetition</title>
11
12 <script type = "text/javascript">
13 <!--
14 var counter = 1; // initialization
15
16 while (counter <= 7) { // repetition condition
17 document.writeln("<p style = \"font-size: " +
18 counter + "ex\">XHTML font size " + counter +
19 "ex</p>");
20 ++counter; // increment
21 }
22 // -->
23 </script>
24
25 </head><body></body>
26 </html>

Fig. 9.1Fig. 9.1Fig. 9.1Fig. 9.1 Counter-controlled repetition.

iw3htp2.book Page 273 Wednesday, July 18, 2001 9:01 AM

274 JavaScript: Control Structures II Chapter 9

The declaration and initialization of counter could also have been accomplished by
the following declaration and statement:

var counter; // declare counter
counter = 1; // initialize counter to 1

The declaration is not executable, but the assignment statement is. We use both methods of
initializing variables throughout the book.

Lines 17–19 in the while structure write a paragraph element consisting of the string
“XHTML font size” concatenated with the control variable counter’s value, which
represents the font size. An inline CSS style attribute sets the font-size property to
the value of counter concatenated to ex. Notice the use of the escape sequence \",
which is placed around attribute style’s value. Because the double-quote character
delimits the beginning and end of a string literal in JavaScript, it cannot be used in the con-
tents of the string unless it is preceded by a \ to create the escape sequence \". For
example, if counter is 5, the preceding statement produces the markup

<p style = "font-size: 5ex">XHTML font size 5ex</p>

XHTML allows either single quotes (') or double quotes (") to be placed around the value
specified for an attribute. JavaScript allows single quotes to be placed in a string literal, and
XHTML allows single quotes to delimit an attribute value.

Common Programming Error 9.1
Placing a double-quote (") character inside a string literal that is delimited by double quotes
causes a runtime error when the script is interpreted. To display a double-quote (") charac-
ter as part of a string literal, the double-quote (") character must be preceded by a \ to form
the escape sequence \". 9.1

Line 20 in the while structure increments the control variable by 1 for each iteration
of the loop (i.e., each time the body of the loop is performed). The loop-continuation con-
dition (line 16) in the while structure tests whether the value of the control variable is less
than or equal to 7 (the final value for which the condition is true). Note that the body of
this while structure executes even when the control variable is 7. The loop terminates
when the control variable exceeds 7 (i.e., counter becomes 8).

Good Programming Practice 9.1
Use integer values to control the counting of loops. 9.1

Good Programming Practice 9.2
Indent the statements in the body of each control structure. 9.2

Good Programming Practice 9.3
Put a blank line before and after each major control structure, to make it stand out in the
program. 9.3

Good Programming Practice 9.4
Too many levels of nesting can make a program difficult to understand. As a general rule, try
to avoid using more than three levels of nesting. 9.4

iw3htp2.book Page 274 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 275

Good Programming Practice 9.5
Vertical spacing above and below control structures and indentation of the bodies of control
structures within the headers of the control structure, give programs a two-dimensional ap-
pearance that enhances readability. 9.5

9.3 for Repetition Structure
The for repetition structure handles all the details of counter-controlled repetition.
Figure 9.2 illustrates the power of the for structure by reimplementing the script of
Fig. 9.1.

When the for structure begins executing (line 17), the control variable counter is
declared and is initialized to 1 (the first two elements of counter-controlled repetition are
declaring the control variable’s name and providing the control variable’s initial value).
Next, the loop-continuation condition, counter <= 7, is checked. The condition contains
the final value (7) of the control variable. Because the initial value of counter is 1, the
condition is satisfied (i.e., true), so the body statement (lines 18–20) writes a paragraph
element in the XHTML document. Then, variable counter is incremented in the expres-
sion ++counter and the loop continues execution with the loop-continuation test. The
control variable is now equal to 2, so the final value is not exceeded and the program per-
forms the body statement again (i.e., performs the next iteration of the loop). This process
continues until the control variable counter becomes 8, at which point the loop-contin-
uation test fails and the repetition terminates.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.2: ForCounter.html -->
6 <!-- Counter-Controlled Repetition with for structure -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Counter-Controlled Repetition</title>
11
12 <script type = "text/javascript">
13 <!--
14 // Initialization, repetition condition and
15 // incrementing are all included in the for
16 // structure header.
17 for (var counter = 1; counter <= 7; ++counter)
18 document.writeln("<p style = \"font-size: " +
19 counter + "ex\">XHTML font size " + counter +
20 "ex</p>");
21 // -->
22 </script>
23
24 </head><body></body>
25 </html>

Fig. 9.2Fig. 9.2Fig. 9.2Fig. 9.2 Counter-controlled repetition with the for structure (part 1 of 2).

iw3htp2.book Page 275 Wednesday, July 18, 2001 9:01 AM

276 JavaScript: Control Structures II Chapter 9

The program continues by performing the first statement after the for structure. (In
this case, the script terminates, because the interpreter reaches the end of the script.)

Note that counter is declared inside the for structure in this example, but this prac-
tice is not required. Variable counter could have been declared before the for structure
or not declared at all. Remember that JavaScript does not explicitly require variables to be
declared before they are used. If a variable is used without being declared, the JavaScript
interpreter creates the variable at the point of its first use in the script.

Figure 9.3 takes a closer look at the for structure of Fig. 9.2. The for structure’s first
line (including the keyword for and everything in parentheses after for) often is called
the for structure header. Notice that the for structure “does it all”—it specifies each of
the items needed for counter-controlled repetition with a control variable. If there is more
than one statement in the body of the for structure, braces ({ and }) are required to define
the body of the loop.

Notice that Fig. 9.3 uses the loop-continuation condition counter <= 7. If the pro-
grammer incorrectly wrote counter < 7, the loop would execute only six times. This is
an example of a common logic error called an off-by-one error.

Common Programming Error 9.2
Using an incorrect relational operator or using an incorrect final value of a loop counter in
the condition of a while, for or do/while structure can cause an off-by-one error or an
infinite loop. 9.2

Fig. 9.2Fig. 9.2Fig. 9.2Fig. 9.2 Counter-controlled repetition with the for structure (part 2 of 2).

iw3htp2.book Page 276 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 277

Good Programming Practice 9.6
Using the final value in the condition of a while or for structure and using the <= rela-
tional operator will help avoid off-by-one errors. For a loop used to print the values 1 to 10,
for example, the loop-continuation condition should be counter <= 10 rather than
counter < 10 (which is an off-by-one error) or counter < 11 (which is correct). Many
programmers prefer so-called zero-based counting, in which, to count 10 times through the
loop, counter would be initialized to zero and the loop-continuation test would be
counter < 10. 9.6

The general format of the for structure is

for (initialization; loopContinuationTest; increment)
 statement;

where the initialization expression names the loop’s control variable and provides its initial
value, loopContinuationTest is the expression that tests the loop-continuation condition
(containing the final value of the control variable for which the condition is true) and incre-
ment is an expression that increments the control variable. The for structure can be repre-
sented by an equivalent while structure, with initialization, loopContinuationTest and
increment placed as follows:

initialization;

while (loopContinuationTest) {
 statement;
 increment;
}

There is an exception to this rule that we will discuss in Section 9.7.
If the initialization expression in the for structure’s header is the first definition of the

control variable, the control variable can still be used after the for structure in the script.
The part of a script in which a variable name can be used is known as the variable’s scope.
Scope is discussed in detail in Chapter 10, “JavaScript: Functions.”

Good Programming Practice 9.7
Place only expressions involving the control variable in the initialization and increment sec-
tions of a for structure. Manipulations of other variables should appear either before the
loop (if they execute only once, like initialization statements) or in the loop body (if they ex-
ecute once per iteration of the loop, like incrementing or decrementing statements). 9.7

Fig. 9.3Fig. 9.3Fig. 9.3Fig. 9.3 Components of a typical for structure header.

for (var counter = 1; counter <= 7; ++counter)

Initial value of control variable Increment of control variable

Control variable name Final value of control variable
for which the condition is true

for keyword

Loop-continuation condition

iw3htp2.book Page 277 Wednesday, July 18, 2001 9:01 AM

278 JavaScript: Control Structures II Chapter 9

The three expressions in the for structure are optional. If loopContinuationTest is
omitted, JavaScript assumes that the loop-continuation condition is true, thus creating an
infinite loop. One might omit the initialization expression if the control variable is initial-
ized elsewhere in the program before the loop. One might omit the increment expression if
the increment is calculated by statements in the body of the for structure or if no increment
is needed. The increment expression in the for structure acts like a stand-alone statement
at the end of the body of the for structure. Therefore, the expressions

counter = counter + 1
counter += 1
++counter
counter++

are all equivalent in the incrementing portion of the for structure. Many programmers pre-
fer the form counter++, because the incrementing of the control variable occurs after the
body of the loop is executed. The postincrementing form therefore seems more natural. Be-
cause the variable being incremented in our example does not appear in an expression, pre-
incrementing and postincrementing both have the same effect. The two semicolons in the
for structure are required.

Common Programming Error 9.3
Using commas instead of the two required semicolons in the header of a for structure is a
syntax error. 9.3

Common Programming Error 9.4
Placing a semicolon immediately to the right of the right parenthesis of the header of a for
structure makes the body of that for structure an empty statement. This code normally re-
sults in a logic error. 9.4

The initialization, loop-continuation condition and increment portions of a for struc-
ture can contain arithmetic expressions. For example, assume that x = 2 and y = 10. If x
and y are not modified in the body of the loop, then the statement

for (var j = x; j <= 4 * x * y; j += y / x)

is equivalent to the statement

for (var j = 2; j <= 80; j += 5)

The “increment” of a for structure may be negative, in which case it is really a dec-
rement and the loop actually counts downward.

If the loop-continuation condition initially is false, the body of the for structure is
not performed. Instead, execution proceeds with the statement following the for structure.

The control variable frequently is printed or used in calculations in the body of a for
structure, but it does not have to be. It is common to use the control variable for controlling
repetition while never mentioning it in the body of the for structure.

Testing and Debugging Tip 9.1
Although the value of the control variable can be changed in the body of a for loop, avoid
changing it, because doing so can lead to subtle errors. 9.1

iw3htp2.book Page 278 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 279

The for structure is flowcharted much like the while structure. For example, Fig.
9.4 shows the flowchart of the for structure

for (var counter = 1; counter <= 7; ++counter)
 document.writeln("<p style = \"font-size: " +
 counter + "ex\">XHTML font size " + counter +
 "ex</p>");

 This flowchart makes it clear that the initialization occurs only once and that incrementing
occurs each time after the body statement executes. Note that, besides small circles and ar-
rows, the flowchart contains only rectangle symbols and a diamond symbol.

9.4 Examples Using the for Structure
The examples in this section show methods of varying the control variable in a for struc-
ture. In each case, we write the appropriate for header. Note the change in the relational
operator for loops that decrement the control variable.

Common Programming Error 9.5
Not using the proper relational operator in the loop-continuation condition of a loop that
counts downward (such as using i <= 1 in a loop that counts down to 1) is usually a logic
error that will yield incorrect results when the program runs. 9.5

a) Vary the control variable from 1 to 100 in increments of 1.

 for (var i = 1; i <= 100; ++i)

Fig. 9.4Fig. 9.4Fig. 9.4Fig. 9.4 Flowcharting a typical for repetition structure.

counter <= 7

document.writeln(
 "<p style=\"font-size: "
 + counter +
 "ex\">XHTML font size " +
 counter + "ex</p>");

true

false

var counter = 1

++counter

Establish
initial value
of control
variable.

Determine
if final value
of control
variable
has been
reached.

Body of loop
(this may be many
statements)

Increment
the control
variable.

iw3htp2.book Page 279 Wednesday, July 18, 2001 9:01 AM

280 JavaScript: Control Structures II Chapter 9

b) Vary the control variable from 100 to 1 in increments of -1 (i.e., decrements of 1).

 for (var i = 100; i >= 1; --i)

c) Vary the control variable from 7 to 77 in steps of 7.

 for (var i = 7; i <= 77; i += 7)

d) Vary the control variable from 20 to 2 in steps of -2.

 for (var i = 20; i >= 2; i -= 2)

e) Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14,
17, 20.

 for (var j = 2; j <= 20; j += 3)

f) Vary the control variable over the following sequence of values: 99, 88, 77, 66,
55, 44, 33, 22, 11, 0.

 for (var j = 99; j >= 0; j -= 11)

The next two scripts demonstrate the for repetition structure. Figure 9.5 uses the for
structure to sum the even integers from 2 to 100. Notice that the increment expression adds
2 to the control variable number after the body executes during each iteration of the loop.
The loop terminates when number has the value 102 (which is not added to the sum).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.5: Sum.html -->
6 <!-- Using the for repetition structure -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Sum the Even Integers from 2 to 100</title>
11
12 <script type = "text/javascript">
13 <!--
14 var sum = 0;
15
16 for (var number = 2; number <= 100; number += 2)
17 sum += number;
18
19 document.writeln("The sum of the even integers " +
20 "from 2 to 100 is " + sum);
21 // -->
22 </script>
23
24 </head><body></body>
25 </html>

Fig. 9.5Fig. 9.5Fig. 9.5Fig. 9.5 Summation with for (part 1 of 2).

iw3htp2.book Page 280 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 281

Note that the body of the for structure in Fig. 9.5 actually could be merged into the
rightmost (increment) portion of the for header, by using a comma as follows:

for (var number = 2; number <= 100;
 sum += number, number += 2)
 ;

Similarly, the initialization sum = 0 could be merged into the initialization section of the
for structure.

Good Programming Practice 9.8
Although statements preceding a for and in the body of a for often can be merged into the
for header, avoid doing so, because it makes the program more difficult to read. 9.8

Good Programming Practice 9.9
For clarity, limit the size of control-structure headers to a single line, if possible. 9.9

The next example computes compound interest (compounded yearly) using the for
structure. Consider the following problem statement:

A person invests $1000.00 in a savings account yielding 5% interest. Assuming that all
interest is left on deposit, calculate and print the amount of money in the account at the end
of each year for 10 years. Use the following formula to determine the amounts:

a = p (1 + r) n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate
n is the number of years
a is the amount on deposit at the end of the nth year.

This problem involves a loop that performs the indicated calculation for each of the 10
years the money remains on deposit. The solution is the script shown in Fig. 9.6.

Line 14 declares three variables and initializes principal to 1000.0 and rate to
.05. Lines 16–24 write an XHTML <table> tag that has a border of 1 and a width
of 100% (the table uses the entire width of the browser window). After lines 16–17 write
the initial attributes of the table, lines 18–19 write the caption that summarizes the
table’s content. Lines 20–21 create the table’s header (<thead>), a row (<tr>) and a

Fig. 9.5Fig. 9.5Fig. 9.5Fig. 9.5 Summation with for (part 2 of 2).

iw3htp2.book Page 281 Wednesday, July 18, 2001 9:01 AM

282 JavaScript: Control Structures II Chapter 9

table heading (<th>) that left aligns “Year.” Lines 22?24 create a table heading for
“Amount on deposit” and write the closing </tr> and </thead> tags.

The for structure (line 26) executes its body 10 times, varying control variable year
from 1 to 10 in increments of 1 (note that year represents n in the statement of the problem).
JavaScript does not include an exponentiation operator. Instead, we use the Math object’s
pow method for this purpose. Math.pow(x, y) calculates the value of x raised to the yth
power. Method Math.pow takes two numbers as arguments and returns the result.

Line 27 performs the calculation given in the problem statement

a = p (1 + r) n

where a is amount, p is principal, r is rate and n is year.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.6: interest.html -->
6 <!-- Using the for repetition structure -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Calculating Compound Interest</title>
11
12 <script type = "text/javascript">
13 <!--
14 var amount, principal = 1000.0, rate = .05;
15
16 document.writeln(
17 "<table border = \"1\" width = \"100%\">");
18 document.writeln(
19 "<caption>Calculating Compound Interest</caption>");
20 document.writeln(
21 "<thead><tr><th align = \"left\">Year</th>");
22 document.writeln(
23 "<th align = \"left\">Amount on deposit</th>");
24 document.writeln("</tr></thead>");
25
26 for (var year = 1; year <= 10; ++year) {
27 amount = principal * Math.pow(1.0 + rate, year);
28 document.writeln("<tbody><tr><td>" + year +
29 "</td><td>" + Math.round(amount * 100) / 100 +
30 "</td></tr>");
31 }
32
33 document.writeln("</tbody></table>");
34 // -->
35 </script>
36
37 </head><body></body>
38 </html>

Fig. 9.6Fig. 9.6Fig. 9.6Fig. 9.6 Calculating compound interest with for (part 1 of 2).

iw3htp2.book Page 282 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 283

Lines 28–30, write a line of XHTML markup that creates another row in the table. The
first column is the current year value, and the second column is the result of the expres-
sion

Math.round(amount * 100) / 100

which multiplies the current value of amount by 100 to convert the value from dollars to
cents, then uses the Math object’s round method to round the value to the closest integer.
The result is divided by 100, to produce a dollar value that has a maximum of two digits to
the right of the decimal point. Unlike many other programming languages, JavaScript does
not provide numeric-formatting capabilities that allow you to precisely control the display
format of a number. When the loop terminates, line 33 writes the closing </tbody> and
</table> tags.

Variables amount, principal and rate represent numbers in this script.
Remember that JavaScript represents all numbers as floating-point numbers. This feature
is convenient in this example, because we are dealing with fractional parts of dollars and
need a type that allows decimal points in its values. Unfortunately, floating-point numbers
can cause trouble. Here is a simple example of what can go wrong when using floating-
point numbers to represent dollar amounts (assuming that dollar amounts are displayed
with two digits to the right of the decimal point): Two dollar amounts stored in the machine
could be 14.234 (which would normally be rounded to 14.23 for display purposes) and
18.673 (which would normally be rounded to 18.67 for display purposes). When these
amounts are added, they produce the internal sum 32.907, which would normally be
rounded to 32.91 for display purposes. Thus your printout could appear as

Fig. 9.6Fig. 9.6Fig. 9.6Fig. 9.6 Calculating compound interest with for (part 2 of 2).

iw3htp2.book Page 283 Wednesday, July 18, 2001 9:01 AM

284 JavaScript: Control Structures II Chapter 9

 14.23
+ 18.67

 32.91

but a person adding the individual numbers as printed would expect the sum to be 32.90!
You have been warned!

9.5 switch Multiple-Selection Structure
Previously, we discussed the if single-selection structure and the if/else double-selec-
tion structure. Occasionally, an algorithm will contain a series of decisions in which a vari-
able or expression is tested separately for each of the values it may assume, and different
actions are taken for each value. JavaScript provides the switch multiple-selection struc-
ture to handle such decision making. The script in Fig. 9.7 demonstrates one of three dif-
ferent XHTML list formats determined by the value the user enters.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.7: SwitchTest.html -->
6 <!-- Using the switch structure -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Switching between XHTML List Formats</title>
11
12 <script type = "text/javascript">
13 <!--
14 var choice, // user’s choice
15 startTag, // starting list item tag
16 endTag, // ending list item tag
17 validInput = true, // indicates if input is valid
18 listType; // list type as a string
19
20 choice = window.prompt("Select a list style:\n" +
21 "1 (bullet), 2 (numbered), 3 (lettered)", "1");
22
23 switch (choice) {
24 case "1":
25 startTag = "";
26 endTag = "";
27 listType = "<h1>Bullet List</h1>";
28 break;
29 case "2":
30 startTag = "";
31 endTag = "";
32 listType = "<h1>Ordered List: Numbered</h1>";
33 break;

Fig. 9.7Fig. 9.7Fig. 9.7Fig. 9.7 Example using switch (part 1 of 3).

iw3htp2.book Page 284 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 285

34 case "3":
35 startTag = "<ol type = \"A\">";
36 endTag = "";
37 listType = "<h1>Ordered List: Lettered</h1>";
38 break;
39 default:
40 validInput = false;
41 }
42
43 if (validInput == true) {
44 document.writeln(listType + startTag);
45
46 for (var i = 1; i <= 3; ++i)
47 document.writeln("List item " + i + "");
48
49 document.writeln(endTag);
50 }
51 else
52 document.writeln("Invalid choice: " + choice);
53 // -->
54 </script>
55
56 </head>
57 <body>
58 <p>Click Refresh (or Reload) to run the script again</p>
59 </body>
60 </html>

Fig. 9.7Fig. 9.7Fig. 9.7Fig. 9.7 Example using switch (part 2 of 3).

iw3htp2.book Page 285 Wednesday, July 18, 2001 9:01 AM

286 JavaScript: Control Structures II Chapter 9

Fig. 9.7Fig. 9.7Fig. 9.7Fig. 9.7 Example using switch (part 3 of 3).

iw3htp2.book Page 286 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 287

Line 14 in the script declares the variable choice. This variable will store the user’s
choice, which determines which type of XHTML list to display. Lines 15–16 declare vari-
ables startTag and endTag, which store the XHTML tags that indicate the XHTML
list type the user chooses. Line 17 declares variable validInput and initializes it to
true. The script uses this variable to determine whether the user made a valid choice (indi-
cated by the value of true). If a choice is invalid, the script sets this variable’s value to
false. Line 18 declares variable listType, which stores a string indicating the
XHTML list type. This string appears before the list in the XHTML document.

Lines 20–21 prompt the user to enter a 1 to display a bullet (unordered) list, a 2 to dis-
play a numbered (ordered) list and a 3 to display a lettered (ordered) list. Lines 23–41
define a switch structure that assigns to the variables startTag, endTag and list-
Type values based on the value input by the user in the prompt dialog. The switch
structure consists of a series of case labels and an optional default case.

When the flow of control reaches the switch structure, the script evaluates the con-
trolling expression (choice in this example) in the parentheses following keyword
switch. The value of this expression is compared with the value in each of the case
labels, starting with the first case label. Assume that the user entered 2. Remember that
the value typed by the user in a prompt dialog is returned as a string. So, the string 2 is
compared to the string in each case in the switch structure. If a match occurs
(case "2":), the statements for that case execute. For the string 2 (lines 30–32) set
startTag to "" to indicate an ordered list (such lists are numbered by default), set
endTag to "" to indicate the end of an ordered list and set listType to
"<h1>Ordered List: Numbered</h1>". Line 33 exits the switch structure
immediately. The break statement causes program control to proceed with the first state-
ment after the switch structure. The break statement is used because the cases in a
switch statement would otherwise run together. If break is not used anywhere in a
switch structure, then each time a match occurs in the structure, the statements for all the
remaining cases execute. If no match occurs between the controlling expression’s value
and a case label, the default case executes and sets variable validInput to false.

Next, the flow of control continues with the if structure at line 43, which tests variable
validInput to determine whether its value is true. If so, lines 44–49 write the list-
Type, the startTag, three list items () and the endTag. Otherwise, the script
writes text in the XHTML document indicating that an invalid choice was made.

Each case can have multiple actions (statements). The switch structure is different
from other structures in that braces are not required around multiple actions in a case of
a switch. The general switch structure (i.e., using a break in each case) is flow-
charted in Fig. 9.8. [Note: As an exercise, flowchart the general switch structure without
break statements.]

The flowchart makes it clear that each break statement at the end of a case causes
control to exit from the switch structure immediately. The break statement is not
required for the last case in the switch structure (or the default case, when it appears
last), because program control automatically continues with the next statement after the
switch structure.

Common Programming Error 9.6
Forgetting a break statement when one is needed in a switch structure is a logic error. 9.6

iw3htp2.book Page 287 Wednesday, July 18, 2001 9:01 AM

288 JavaScript: Control Structures II Chapter 9

Good Programming Practice 9.10
Provide a default case in switch statements. Cases not explicitly tested in a switch
statement without a default case are ignored. Including a default case focuses the pro-
grammer on processing exceptional conditions. However, there are situations in which no
default processing is needed. 9.10

Good Programming Practice 9.11
Although the case clauses and the default case clause in a switch structure can occur
in any order, it is a good programming practice to place the default clause last. 9.11

Good Programming Practice 9.12
In a switch structure, when the default clause is listed last, the break for that case
statement is not required. Some programmers include this break for clarity and for symme-
try with other cases. 9.12

Note that having several case labels listed together (such as case 1: case 2: with
no statements between the cases) simply means that the same set of actions is to occur for
each of the cases. Again, note that, besides small circles and arrows, the flowchart contains
only rectangle symbols and diamond symbols.

Fig. 9.8Fig. 9.8Fig. 9.8Fig. 9.8 switch multiple-selection structure.

case a case a action(s)
true

false

.

.

.

break

case b action(s) break

false

false

case z case z action(s) break

default action(s)

true

true

case b

iw3htp2.book Page 288 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 289

9.6 do/while Repetition Structure
The do/while repetition structure is similar to the while structure. In the while struc-
ture, the loop-continuation test occurs at the beginning of the loop, before the body of the
loop executes. The do/while structure tests the loop-continuation condition after the loop
body executes; therefore, the loop body always executes at least once. When a do/while
terminates, execution continues with the statement after the while clause. Note that it is
not necessary to use braces in a do/while structure if there is only one statement in the
body. However, the braces usually are included, to avoid confusion between the while
and do/while structures. For example,

while (condition)

normally is regarded as the header to a while structure. A do/while structure with no
braces around a single-statement body appears as

do
 statement;
while (condition);

which can be confusing. The last line—while(condition);—may be misinterpreted by
the reader as a while structure containing an empty statement (the semicolon by itself).
Thus, to avoid confusion, the do/while structure with one statement often is written as
follows:

do {
 statement;
} while (condition);

Good Programming Practice 9.13
Some programmers always include braces in a do/while structure, even if the braces are
not necessary. This procedure helps eliminate ambiguity between the while structure and
the do/while structure containing one statement. 9.13

Common Programming Error 9.7
Infinite loops are caused when the loop-continuation condition never becomes false in a
while, for or do/while structure. To prevent this, make sure that there is not a semico-
lon immediately after the header of a while or for structure. In a counter-controlled loop,
make sure that the control variable is incremented (or decremented) in the body of the loop.
In a sentinel-controlled loop, make sure that the sentinel value is eventually input. 9.7

The script in Fig. 9.9 uses a do/while structure to display each of the six different
XHTML header types (h1 through h6). Line 14 declares control variable counter and
initializes it to 1. Upon entering the do/while structure, lines 17–19 write a line of
XHTML text in the document. The value of control variable counter is used both to
create the starting and ending header tags (e.g., <h1> and </h1>) and to create the line of
text to display (e.g., This is an h1 level head). Line 21 increments the counter
before the loop-continuation test occurs at the bottom of the loop.

The do/while flowchart in Fig. 9.10 makes it clear that the loop-continuation test
does not occur until the action executes at least once.

iw3htp2.book Page 289 Wednesday, July 18, 2001 9:01 AM

290 JavaScript: Control Structures II Chapter 9

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.9: DoWhileTest.html -->
6 <!-- Using the do/while structure -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Using the do/while Repetition Structure</title>
11
12 <script type = "text/javascript">
13 <!--
14 var counter = 1;
15
16 do {
17 document.writeln("<h" + counter + ">This is " +
18 "an h" + counter + " level head" + "</h" +
19 counter + ">");
20
21 ++counter;
22 } while (counter <= 6);
23 // -->
24 </script>
25
26 </head><body></body>
27 </html>

Fig. 9.9Fig. 9.9Fig. 9.9Fig. 9.9 Using the do/while repetition structure.

iw3htp2.book Page 290 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 291

9.7 break and continue Statements
The break and continue statements alter the flow of control. The break statement,
when executed in a while, for, do/while or switch structure, causes immediate exit
from that structure. Execution continues with the first statement after the structure. Com-
mon uses of the break statement are to escape early from a loop or to skip the remainder
of a switch structure (as in Fig. 9.7). Figure 9.11 demonstrates the break statement in
a for repetition structure.

Fig. 9.10Fig. 9.10Fig. 9.10Fig. 9.10 Flowcharting the do/while repetition structure.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.11: BreakTest.html -->
6 <!-- Using the break statement -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>
11 Using the break Statement in a for Structure
12 </title>
13
14 <script type = "text/javascript">
15 <!--
16 for (var count = 1; count <= 10; ++count) {
17 if (count == 5)
18 break; // break loop only if count == 5
19
20 document.writeln("Count is: " + count + "
");
21 }
22
23 document.writeln(
24 "Broke out of loop at count = " + count);
25 // -->
26 </script>

Fig. 9.11Fig. 9.11Fig. 9.11Fig. 9.11 Using the break statement in a for structure (part 1 of 2).

condition
true

action(s)

false

iw3htp2.book Page 291 Wednesday, July 18, 2001 9:01 AM

292 JavaScript: Control Structures II Chapter 9

During each iteration of the for structure at lines 16–21, the script writes the value of
count in the XHTML document. When the if structure at line 17 detects that count is
5, the break at line 18 executes. This statement terminates the for structure, and the pro-
gram proceeds to line 23 (the next statement in sequence immediately after the for struc-
ture), where the script writes the value of count when the loop terminated (i.e., 5). The
loop executes its body only four times.

The continue statement, when executed in a while, for or do/while structure,
skips the remaining statements in the body of that structure and proceeds with the next iter-
ation of the loop. In while and do/while structures, the loop-continuation test evaluates
immediately after the continue statement executes. In for structures, the increment
expression executes, then the loop-continuation test evaluates. This is the one case in
which for and while differ. Improper placement of continue before the increment in
a while may result in an infinite loop.

Figure 9.12 uses continue in a for structure to skip the document.writeln
statement in line 21 when the if structure at line 17 determines that the value of count is
5. When the continue statement executes, the script skips the remainder of the for
structure’s body. Program control continues with the increment of the for structure’s con-
trol variable, followed by the loop-continuation test to determine whether the loop should
continue executing.

Good Programming Practice 9.14
Some programmers feel that break and continue violate structured programming. Be-
cause the effects of these statements can be achieved by structured programming techniques,
these programmers do not use break and continue. 9.14

Performance Tip 9.1
The break and continue statements, when used properly, perform faster than the corre-
sponding structured techniques. 9.1

27
28 </head><body></body>
29 </html>

Fig. 9.11Fig. 9.11Fig. 9.11Fig. 9.11 Using the break statement in a for structure (part 2 of 2).

iw3htp2.book Page 292 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 293

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.12: ContinueTest.html -->
6 <!-- Using the break statement -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>
11 Using the continue Statement in a for Structure
12 </title>
13
14 <script type = "text/javascript">
15 <!--
16 for (var count = 1; count <= 10; ++count) {
17 if (count == 5)
18 continue; // skip remaining code in loop
19 // only if count == 5
20
21 document.writeln("Count is: " + count + "
");
22 }
23
24 document.writeln("Used continue to skip printing 5");
25 // -->
26 </script>
27
28 </head><body></body>
29 </html>

Fig. 9.12Fig. 9.12Fig. 9.12Fig. 9.12 Using the continue statement in a for structure .

iw3htp2.book Page 293 Wednesday, July 18, 2001 9:01 AM

294 JavaScript: Control Structures II Chapter 9

Software Engineering Observation 9.1
There is a tension between achieving quality software engineering and achieving the best-
performing software. Often, one of these goals is achieved at the expense of the other. For
all but the most performance-intensive situations, the following “rule of thumb” should be
followed: First make your code simple, readable and correct; then make it fast and small, but
only if necessary. 9.1

9.8 Labeled break and continue Statements
The break statement can break out of an immediately enclosing while, for, do/while
or switch structure. To break out of a nested set of structures, you can use the labeled
break statement. This statement, when executed in a while, for, do/while or
switch structure, causes immediate exit from that structure and any number of enclosing
repetition structures; program execution resumes with the first statement after the enclosing
labeled statement (a statement preceded by a label). The labeled statement can be a com-
pound statement (a set of statements enclosed in curly braces, {}). Labeled break state-
ments commonly are used to terminate nested looping structures containing while, for,
do/while or switch structures. Figure 9.13 demonstrates the labeled break statement
in a nested for structure.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.13: BreakLabelTest.html -->
6 <!-- Using the break statement with a Label -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Using the break Statement with a Label</title>
11
12 <script type = "text/javascript">
13 <!--
14 stop: { // labeled compound statement
15 for (var row = 1; row <= 10; ++row) {
16 for (var column = 1; column <= 5 ; ++column) {
17
18 if (row == 5)
19 break stop; // jump to end of stop block
20
21 document.write("* ");
22 }
23
24 document.writeln("
");
25 }
26
27 // the following line is skipped
28 document.writeln("This line should not print");
29 }
30

Fig. 9.13Fig. 9.13Fig. 9.13Fig. 9.13 Using a labeled break statement in a nested for structure (part 1 of 2).

iw3htp2.book Page 294 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 295

The labeled compound statement (lines 14–29) begins with a label (an identifier fol-
lowed by a colon). Here, we use the label “stop:.” The compound statement is enclosed
between the braces at the end of line 14 and in line 29, and includes both the nested for
structure starting at line 15 and the document.writeln statement in line 28. When the
if structure in line 18 detects that row is equal to 5, the statement in line 19 executes.
This statement terminates both the for structure at line 16 and its enclosing for structure
at line 15, and the program proceeds to the statement in line 31 (the first statement in
sequence after the labeled compound statement). The inner for structure executes its
body only four times. Notice that the document.writeln statement in line 28 never
executes, because it is included in the labeled compound statement and the outer for
structure never completes.

The continue statement proceeds with the next iteration (repetition) of the imme-
diately enclosing while, for or do/while structure. The labeled continue state-
ment, when executed in a repetition structure (while, for or do/while), skips the
remaining statements in that structure’s body and any number of enclosing repetition
structures, then proceeds with the next iteration of the enclosing labeled repetition struc-
ture (a repetition structure preceded by a label). In labeled while and do/while struc-
tures, the loop-continuation test evaluates immediately after the continue statement
executes. In a labeled for structure, the increment expression executes, then the loop-
continuation test evaluates. Figure 9.14 uses the labeled continue statement in a
nested for structure to cause execution to continue with the next iteration of the outer
for structure.

The labeled for structure (lines 14–26) starts with the nextRow label in line 14.
When the if structure at line 20 in the inner for structure detects that column is greater
than row, line 21 executes and program control continues with the increment of the control
variable of the outer for loop. Even though the inner for structure counts from 1 to 10,
the number of * characters output on a row never exceeds the value of row.

31 document.writeln("End of script");
32 // -->
33 </script>
34
35 </head><body></body>
36 </html>

Fig. 9.13Fig. 9.13Fig. 9.13Fig. 9.13 Using a labeled break statement in a nested for structure (part 2 of 2).

iw3htp2.book Page 295 Wednesday, July 18, 2001 9:01 AM

296 JavaScript: Control Structures II Chapter 9

9.9 Logical Operators
So far, we have studied only such simple conditions as count <= 10, total > 1000 and
number != sentinelValue. These conditions were expressed in terms of the relation-
al operators >, <, >= and <= and in terms of the equality operators == and !=. Each deci-

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.14: ContinueLabelTest.html -->
6 <!-- Using the continue statement -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Using the continue Statement with a Label</title>
11
12 <script type = "text/javascript">
13 <!--
14 nextRow: // target label of continue statement
15 for (var row = 1; row <= 5; ++row) {
16 document.writeln("
");
17
18 for (var column = 1; column <= 10; ++column) {
19
20 if (column > row)
21 continue nextRow; // next iteration of
22 // labeled loop
23
24 document.write("* ");
25 }
26 }
27 // -->
28 </script>
29
30 </head><body></body>
31 </html>

Fig. 9.14Fig. 9.14Fig. 9.14Fig. 9.14 Using a labeled continue statement in a nested for structure .

iw3htp2.book Page 296 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 297

sion tested one condition. To test multiple conditions in the process of making a decision,
we performed these tests in separate statements or in nested if or if/else structures.

JavaScript provides logical operators that can be used to form more complex condi-
tions by combining simple conditions. The logical operators are && (logical AND), || (log-
ical OR) and ! (logical NOT, also called logical negation). We consider examples of each
of these operators.

Suppose that, at some point in a program, we wish to ensure that two conditions are
both true before we choose a certain path of execution. In this case, we can use the logical
&& operator as follows:

if (gender == 1 && age >= 65)
 ++seniorFemales;

This if statement contains two simple conditions. The condition gender == 1 might be
evaluated to determine, for example, whether a person is a female. The condition age >=
65 is evaluated to determine whether a person is a senior citizen. The two simple conditions
are evaluated first, because the precedences of == and >= are both higher than the prece-
dence of &&. The if statement then considers the combined condition

gender == 1 && age >= 65

This condition is true if and only if both of the simple conditions are true. Finally, if
this combined condition is indeed true, the count of seniorFemales is incremented
by 1. If either or both of the simple conditions are false, the program skips the increment-
ing and proceeds to the statement following the if structure. The preceding combined con-
dition can be made more readable by adding redundant parentheses:

(gender == 1) && (age >= 65)

The table in Fig. 9.15 summarizes the && operator. The table shows all four possible
combinations of false and true values for expression1 and expression2. Such tables are
often called truth tables. JavaScript evaluates to false or true all expressions that
include relational operators, equality operators and/or logical operators.

Now let us consider the || (logical OR) operator. Suppose we wish to ensure that
either or both of two conditions are true before we choose a certain path of execution. In
this case, we use the || operator as in the following program segment:

if (semesterAverage >= 90 || finalExam >= 90)
 document.writeln("Student grade is A");

expression1 expression2 expression1 && expression2

false false false

false true false

true false false

true true true

Fig. 9.15Fig. 9.15Fig. 9.15Fig. 9.15 Truth table for the && (logical AND) operator.

iw3htp2.book Page 297 Wednesday, July 18, 2001 9:01 AM

298 JavaScript: Control Structures II Chapter 9

This statement also contains two simple conditions. The condition semesterAverage
>= 90 is evaluated to determine whether the student deserves an “A” in the course because
of a solid performance throughout the semester. The condition finalExam >= 90 is eval-
uated to determine whether the student deserves an “A” in the course because of an out-
standing performance on the final exam. The if statement then considers the combined
condition

semesterAverage >= 90 || finalExam >= 90

and awards the student an “A” if either or both of the simple conditions are true. Note that
the message “Student grade is A” is not printed only when both of the simple condi-
tions are false. Figure 9.16 is a truth table for the logical OR operator (||).

The && operator has a higher precedence than the || operator. Both operators asso-
ciate from left to right. An expression containing && or || operators is evaluated only until
truth or falsity is known. Thus, evaluation of the expression

gender == 1 && age >= 65

will stop immediately if gender is not equal to 1 (i.e., the entire expression is false)
and continues if gender is equal to 1 (i.e., the entire expression could still be true if the
condition age >= 65 is true). This performance feature for evaluation of logical AND
and logical OR expressions is called short-circuit evaluation.

JavaScript provides the ! (logical negation) operator to enable a programmer to
“reverse” the meaning of a condition (i.e., a true value becomes false, and a false
value becomes true). Unlike the logical operators && and ||, which combine two condi-
tions (i.e., they are binary operators), the logical negation operator has only a single condi-
tion as an operand (i.e., it is a unary operator). The logical negation operator is placed
before a condition to choose a path of execution if the original condition (without the log-
ical negation operator) is false, such as in the following program segment:

if (! (grade == sentinelValue))
 document.writeln("The next grade is " + grade);

The parentheses around the condition grade == sentinelValue are needed, because
the logical negation operator has a higher precedence than does the equality operator. Fig-
ure 9.17 is a truth table for the logical negation operator.

expression1 expression2 expression1 || expression2

false false false

false true true

true false true

true true true

Fig. 9.16Fig. 9.16Fig. 9.16Fig. 9.16 Truth table for the || (logical OR) operator.

iw3htp2.book Page 298 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 299

In most cases, the programmer can avoid using logical negation by expressing the con-
dition differently with an appropriate relational or equality operator. For example, the pre-
ceding statement may also be written as follows:

if (grade != sentinelValue)
 document.writeln("The next grade is " + grade);

This flexibility can help a programmer express a condition in a more convenient manner.
The script in Fig. 9.18 demonstrates all of the logical operators by producing their truth

tables. The script produces an XHTML table containing the results.
In the output of Fig. 9.18, the strings “false” and “true” indicate false and true for

the operands in each condition. The result of the condition is shown as true or false.
Note that when you add a boolean value to a string, JavaScript automatically adds the string
“false” or “true,” depending on the boolean value. Lines 14–42 build an XHTML table con-
taining the results.

An interesting feature of JavaScript is that most non-boolean values can be converted
by JavaScript into a boolean true or false value. Nonzero numeric values are considered
to be true. The numeric value zero is considered to be false. Any string that contains
characters is considered to be true. The empty string (i.e., the string containing no charac-
ters) is considered to be false. The value null and variables that have been declared but
not initialized are considered to be false. All objects (such as the browser’s document
and window objects and JavaScript’s Math object) are considered to be true.

expression !expression

false true

true false

Fig. 9.17Fig. 9.17Fig. 9.17Fig. 9.17 Truth table for operator ! (logical negation).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.18: LogicalOperators.html -->
6 <!-- Demonstrating Logical Operators -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Demonstrating the Logical Operators</title>
11
12 <script type = "text/javascript">
13 <!--
14 document.writeln(
15 "<table border = \"1\" width = \"100%\">");
16

Fig. 9.18Fig. 9.18Fig. 9.18Fig. 9.18 Demonstrating the logical operators (part 1 of 2).

iw3htp2.book Page 299 Wednesday, July 18, 2001 9:01 AM

300 JavaScript: Control Structures II Chapter 9

17 document.writeln(
18 "<caption>Demonstrating Logical " +
19 "Operators</caption");
20
21 document.writeln(
22 "<tr><td width = \"25%\">Logical AND (&&)</td>" +
23 "<td>false && false: " + (false && false) +
24 "
false && true: " + (false && true) +
25 "
true && false: " + (true && false) +
26 "
true && true: " + (true && true) +
27 "</td>");
28
29 document.writeln(
30 "<tr><td width = \"25%\">Logical OR (||)</td>" +
31 "<td>false || false: " + (false || false) +
32 "
false || true: " + (false || true) +
33 "
true || false: " + (true || false) +
34 "
true || true: " + (true || true) +
35 "</td>");
36
37 document.writeln(
38 "<tr><td width = \"25%\">Logical NOT (!)</td>" +
39 "<td>!false: " + (!false) +
40 "
!true: " + (!true) + "</td>");
41
42 document.writeln("</table>");
43 // -->
44 </script>
45
46 </head><body></body>
47 </html>

Fig. 9.18Fig. 9.18Fig. 9.18Fig. 9.18 Demonstrating the logical operators (part 2 of 2).

iw3htp2.book Page 300 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 301

 Figure 9.19 shows the precedence and associativity of the JavaScript operators intro-
duced up to this point. The operators are shown from top to bottom in decreasing order of
precedence.

9.10 Summary of Structured Programming
Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is younger than architecture is, and our
collective wisdom is considerably sparser. We have learned that structured programming
produces programs that are easier than unstructured programs to understand and hence are
easier to test, debug, modify and even prove correct in a mathematical sense.

Figure 9.20 summarizes JavaScript’s control structures. Small circles are used in the
figure to indicate the single entry point and the single exit point of each structure. Con-
necting individual flowchart symbols arbitrarily can lead to unstructured programs. There-
fore, the programming profession has chosen to combine flowchart symbols to form a
limited set of control structures and to build structured programs by properly combining
control structures in two simple ways.

For simplicity, only single-entry/single-exit control structures are used—that is, there
is only one way to enter and only one way to exit each control structure. Connecting control
structures in sequence to form structured programs is simple: The exit point of one control
structure is connected to the entry point of the next control structure (i.e., the control struc-
tures are simply placed one after another in a program). We have called this process control
structure stacking. The rules for forming structured programs also allow for control struc-
tures to be nested.

Figure 9.21 shows the rules for forming properly structured programs. The rules
assume that the rectangle flowchart symbol may be used to indicate any action, including
input/output.

Operators Associativity Type

() left to right parentheses

++ -- ! right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 9.19Fig. 9.19Fig. 9.19Fig. 9.19 Precedence and associativity of the operators discussed so far.

iw3htp2.book Page 301 Wednesday, July 18, 2001 9:01 AM

302 JavaScript: Control Structures II Chapter 9

Applying the rules of Fig. 9.21 always results in a structured flowchart with a neat,
building-block-like appearance. For example, repeatedly applying rule 2 to the simplest
flowchart (Fig. 9.22) results in a structured flowchart containing many rectangles in
sequence (Fig. 9.23). Notice that rule 2 generates a stack of control structures; so, let us call
rule 2 the stacking rule.

Fig. 9.20Fig. 9.20Fig. 9.20Fig. 9.20 JavaScript’s single-entry/single-exit sequence, selection and repetition
structures.

SS SS ee ee
qq qq

uu uu
ee ee

nn nn
cc cc

ee ee

T

F

i
f

 s
tr

u
c

tu
re

(s
in

g
le

 s
e

le
c

tio
n

)
T

F

i
f
/
e
l
s
e

 s
tr

u
c

tu
re

(d
o

u
b

le
 s

e
le

c
tio

n
)

T

F

s
w
i
t
c
h

 s
tr

u
c

tu
re

(m
u

lti
p

le
 s

e
le

c
tio

n
) b
r
e
a
k

T

F

T

F

. . .

T

F

w
h
i
l
e

 s
tr

u
c

tu
re

T

F

f
o
r

 s
tr

u
c

tu
re

T

F

d
o
/
w
h
i
l
e

 s
tr

u
c

tu
re

. . .

SS SS ee ee
ll ll ee ee

cc cc
tt tt ii ii

oo oo
nn nn

RR RR
ee ee

pp pp
ee ee

tt tt ii ii
tt tt ii ii

oo oo
nn nn

b
r
e
a
k

b
r
e
a
k

iw3htp2.book Page 302 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 303

Rule 3 is called the nesting rule. Repeatedly applying rule 3 to the simplest flowchart
results in a flowchart with neatly nested control structures. For example, in Fig. 9.24, the
rectangle in the simplest flowchart is first replaced with a double-selection (if/else)
structure. Then rule 3 is applied again to both of the rectangles in the double-selection struc-
ture, by replacing each of these rectangles with double-selection structures. The dashed box
around each of the double-selection structures represents the rectangle in the original sim-
plest flowchart that was replaced.

Rules for Forming Structured Programs

1) Begin with the “simplest flowchart” (Fig. 9.22).

2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence.

3) Any rectangle (action) can be replaced by any control structure (sequence, if, if/else,
switch, while, do/while or for).

4) Rules 2 and 3 may be applied as often as you like and in any order.

Fig. 9.21Fig. 9.21Fig. 9.21Fig. 9.21 Rules for forming structured programs.

Fig. 9.22Fig. 9.22Fig. 9.22Fig. 9.22 Simplest flowchart.

Fig. 9.23Fig. 9.23Fig. 9.23Fig. 9.23 Repeatedly applying rule 2 of Fig. 9.21 to the simplest flowchart.

.

.

.

Rule 2 Rule 2 Rule 2

iw3htp2.book Page 303 Wednesday, July 18, 2001 9:01 AM

304 JavaScript: Control Structures II Chapter 9

Rule 4 generates larger, more involved and more deeply nested structures. The flow-
charts that emerge from applying the rules in Fig. 9.21 constitute the set of all possible
structured flowcharts and hence the set of all possible structured programs.

The beauty of the structured approach is that we use only seven simple single-entry/
single-exit pieces and that we assemble them in only two simple ways. Figure 9.25 shows
the kinds of stacked building blocks that emerge from applying rule 2 and the kinds of
nested building blocks that emerge from applying rule 3. The figure also shows the kind of
overlapped building blocks that cannot appear in structured flowcharts (because of the
elimination of the goto statement).

Fig. 9.24Fig. 9.24Fig. 9.24Fig. 9.24 Applying rule 3 of Fig. 9.21 to the simplest flowchart.

Fig. 9.25Fig. 9.25Fig. 9.25Fig. 9.25 Stacked, nested and overlapped building blocks.

.

.

.

Rule 2 Rule 2 Rule 2

Stacked building blocks Nested building blocks

Overlapping building blocks
(Illegal in structured programs)

iw3htp2.book Page 304 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 305

If the rules in Fig. 9.21 are followed, an unstructured flowchart (such as that in Fig.
9.26) cannot be created. If you are uncertain about whether a particular flowchart is struc-
tured, apply the rules of Fig. 9.21 in reverse to try to reduce the flowchart to the simplest
flowchart. If the flowchart is reducible to the simplest flowchart, the original flowchart is
structured; otherwise, it is not.

Structured programming promotes simplicity. Bohm and Jacopini have given us the
result that only three forms of control are needed:

• sequence

• selection

• repetition

Sequence is trivial. Selection is implemented in one of three ways:

• if structure (single selection)

• if/else structure (double selection)

• switch structure (multiple selection)

In fact, it is straightforward to prove that the if structure is sufficient to provide any form of
selection; everything that can be done with the if/else structure and the switch structure
can be implemented by combining if structures (although perhaps not as smoothly).

Repetition is implemented in one of four ways:

• while structure

• do/while structure

• for structure

• for/in structure (discussed in Chapter 11)

It is straightforward to prove that the while structure is sufficient to provide any form of
repetition. Everything that can be done with the do/while structure and the for structure
can be done with the while structure (although perhaps not as elegantly).

Combining these results illustrates that any form of control ever needed in a JavaScript
program can be expressed in terms of:

• sequence

• if structure (selection)

• while structure (repetition)

Fig. 9.26Fig. 9.26Fig. 9.26Fig. 9.26 Unstructured flowchart.

iw3htp2.book Page 305 Wednesday, July 18, 2001 9:01 AM

306 JavaScript: Control Structures II Chapter 9

These control structures can be combined in only two ways—stacking and nesting. Indeed,
structured programming promotes simplicity.

In this chapter, we have discussed composition of programs from control structures
containing actions and decisions. In Chapter 10, we introduce another program-structuring
unit, called the function. We will learn to compose large programs by combining functions
that are composed of control structures. We will also discuss how functions promote soft-
ware reusability.

SUMMARY
• Counter-controlled repetition requires the name of a control variable (or loop counter), the initial

value of the control variable, the increment (or decrement) by which the control variable is modi-
fied each time through the loop (also known as each iteration of the loop) and the condition that
tests for the final value of the control variable to determine whether looping should continue.

• The double-quote character cannot be used in the contents of the string unless it is preceded by a
\, to create the escape sequence \".

• The for repetition structure handles all the details of counter-controlled repetition.

• JavaScript does not require variables to be declared before they are used. If a variable is used with-
out being declared, the JavaScript interpreter creates the variable at the point of its first use in the
script.

• The for structure’s first line (including the keyword for and everything in parentheses after
for) is often called the for structure.

• Braces ({ and }) are required to define the body of a for loop with multiple statements in its body.

• The general format of the header for the for structure is

for (initialization; loopContinuationTest; increment)
 statement;

where the initialization expression names the loop’s control variable and provides its initial value,
the loopContinuationTest expression is the loop-continuation condition and increment is an ex-
pression that increments the control variable.

• In most cases, the for structure can be represented by an equivalent while structure, with ini-
tialization, loopContinuationTest and increment placed as follows:

initialization;

while (loopContinuationTest) {
 statement;
 increment;
}

• The three expressions in the for structure are optional. If loopContinuationTest is omitted, the
loop-continuation condition is true, thus creating an infinite loop. Omit the initialization expres-
sion if the control variable is initialized in the program before the loop. Omit the increment expres-
sion if the increment is calculated in the body of the for struccture or if no increment is needed.

• The increment expression in a for structure acts like a stand-alone statement at the end of the for
structure’s body.

• The initialization, loop-continuation condition and increment portions of a for structure can con-
tain arithmetic expressions.

iw3htp2.book Page 306 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 307

• The “increment” of a for structure may be negative, in which case it is really a decrement and the
loop actually counts downward.

• If the loop-continuation condition is initially false, the body of the for structure is not per-
formed.

• JavaScript does not include an exponentiation operator. The Math object’s pow method calculates
the value of x raised to the yth power and returns the result.

• The Math object’s round method rounds its argument to the closest integer.

• The switch multiple-selection structure handles a series of decisions in which a variable or ex-
pression is tested separately for each of the values it may assume, and different actions are taken,
depending on the value.

• The switch structure consists of a series of case labels and an optional default case. When
the flow of control reaches the switch structure, the controlling expression in the parentheses
following keyword switch is evaluated. The value of this expression is compared with the value
in each of the case labels, starting with the first case label. If a match occurs, the statements for
that case are executed. If no match occurs between the controlling expression’s value and the val-
ue in a case label, the statements in the default case execute.

• Each case can have multiple actions (statements). The switch structure is different from other
structures in that braces are not required around multiple actions in a case of a switch.

• The break statement at the end of a case causes control to immediately exit the switch struct-
cure. The break statement is not required for the last case (or the default case when it ap-
pears last), because program control automatically continues with the next statement after the
switch structure.

• Listing several case labels together means that the same action is to occur for each of the cases.

• The do/while structure tests the loop-continuation condition after the body of the loop is per-
formed; therefore, the body of the loop is always executed at least once.

• Braces are not necessary in the do/while structure if there is only one statement in the body. The
braces are usually included to avoid confusion between the while and do/while structures.

• The break statement, when executed in a while, for, do/while or switch structure, causes
immediate exit from that structure.

• The continue statement, when executed in a while, for or do/while structure, skips the re-
maining statements in the body of that structure and proceeds with the next iteration of the loop.

• The labeled break statement, when executed in a while, for, do/while or switch structure,
causes immediate exit from that structure and any number of enclosing repetition structures; program
execution resumes with the first statement after the enclosing labeled (compound) statement.

• The labeled continue statement, when executed in a repetition structure (while, for or do/
while), skips the remaining statements in that structure’s body and in any number of enclosing
repetition structures and proceeds with the next iteration of the enclosing labeled loop.

• JavaScript provides logical operators && (logical AND), || (logical OR) and ! (logical NOT),
which may be used to form more complex conditions by combining simple conditions.

• A logical AND (&&) condition is true if and only if both of its operands are true. A logical OR
(||) condition is true if either or both of its operands are true.

• An expression containing && or || operators is evaluated only until truth or falsity is known. This
performance feature is called short-circuit evaluation.

• The unary logical negation (!) operator reverses the meaning of a condition.

• JavaScript uses only single-entry/single-exit control structures—that is, there is only one way to
enter and only one way to exit each control structure.

iw3htp2.book Page 307 Wednesday, July 18, 2001 9:01 AM

308 JavaScript: Control Structures II Chapter 9

• Structured programming promotes simplicity. Any form of control ever needed in a program can
be expressed in terms of the sequence structure, the if structure (selection) or the while structure
(repetition). These control structures can be combined in only two ways—stacking and nesting.

• Selection is implemented in one of three ways: the if structure (single selection), the if/else
structure (double selection) or the switch structure (multiple selection).

• Repetition is implemented in one of four ways: the while structure, the do/while structure,
the for structure or the for/in structure.

TERMINOLOGY

SELF-REVIEW EXERCISES
9.1 State whether each of the following is true or false. If false, explain why.

a) The default case is required in the switch selection structure.
b) The break statement is required in the default case of a switch selection structure.
c) The expression (x > y && a < b) is true if either x > y is true or a < b is true.
d) An expression containing the || operator is true if either or both of its operands is true.

9.2 Write a JavaScript statement or a set of statements to accomplish each of the following tasks:
a) Sum the odd integers between 1 and 99. Use a for structure. Assume that the variables

sum and count have been declared.
b) Calculate the value of 2.5 raised to the power of 3. Use the pow method.
c) Print the integers from 1 to 20 by using a while loop and the counter variable x. Assume

that the variable x has been declared, but not initialized. Print only five integers per line.
[Hint: Use the calculation x % 5. When the value of this expression is 0, use docu-
ment.write("
") to output a line break in the XHTML document.]

d) Repeat Exercise 9.2 (c), but using a for structure.

9.3 Find the error in each of the following code segments, and explain how to correct it:
a) x = 1;

while (x <= 10);
 x++;
}

b) for (y = .1; y != 1.0; y += .1)
 document.write(y + " ");

! operator logical AND (&&)
&& operator logical negation (!)
|| operator logical operators
break logical OR (||)
case label loop-continuation condition
continue multiple selection
counter-controlled repetition nested control structures
default case in switch off-by-one error
definite repetition repetition structures
do/while repetition structure scroll box
for repetition structure scrollbar
infinite loop short-circuit evaluation
labeled break statement single-entry/single-exit control structures
labeled compound statement stacked control structures
labeled continue statement switch selection structure
labeled repetition structure while repetition structure

iw3htp2.book Page 308 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 309

c) switch (n) {
 case 1:
 document.writeln("The number is 1");
 case 2:
 document.writeln("The number is 2");
 break;
 default:
 document.writeln("The number is not 1 or 2");
 break;
}

d) The following code should print the values from1 to 10:
n = 1;
while (n < 10)
 document.writeln(n++);

ANSWERS TO SELF-REVIEW EXERCISES
9.1 a) False. The default case is optional. If no default action is needed, then there is no need
for a default case. b) False. The break statement is used to exit the switch structure. The
break statement is not required for the last case in a switch structure. c) False. Both of the rela-
tional expressions must be true in order for the entire expression to be true when using the && oper-
ator. d) True.

9.2 a) sum = 0;
for (count = 1; count <= 99; count += 2)

 sum += count;
b) Math.pow(2.5, 3)
c) x = 1;

while (x <= 20) {
 document.write(x + " ");
 if (x % 5 == 0)
 document.write("
");
 ++x;
}

d) for (x = 1; x <= 20; x++) {
 document.write(x + " ");

 if (x % 5 == 0)
 document.write("
");
}

or

for (x = 1; x <= 20; x++)

 if (x % 5 == 0)
 document.write(x + "
");
 else
 document.write(x + " ");

9.3 a) Error: The semicolon after the while header causes an infinite loop, and there is a miss-
ing left brace. Correction: Replace the semicolon by a {, or remove both the ; and the }.

iw3htp2.book Page 309 Wednesday, July 18, 2001 9:01 AM

310 JavaScript: Control Structures II Chapter 9

b) Error: Using a floating-point number to control a for repetition structure may not work,
because floating-point numbers are represented approximately by most computers.
Correction: Use an integer, and perform the proper calculation to get the values you desire:
 for (y = 1; y != 10; y++)
 document.writeln(y / 10);

c) Error: Missing break statement in the statements for the first case.
Correction: Add a break statement at the end of the statements for the first case. Note
that this missing ststement is not necessarily an error if the programmer wants the state-
ment of case 2: to execute every time the case 1: statement executes.

d) Error: Improper relational operator used in the while repetition-continuation condition.
Correction: Use <= rather than <, or change 10 to 11.

EXERCISES
9.4 Find the error in each of the following segemnts of code. [Note: There may be more than one
error]:

a) For (x = 100, x >= 1, x++)
 document.writeln(x);

b) The following code should print whether integer value is odd or even:
switch (value % 2) {
 case 0:
 document.writeln("Even integer");
 case 1:
 document.writeln("Odd integer");
}

c) The following code should output the odd integers from 19 to 1:
for (x = 19; x >= 1; x += 2)
 document.writeln(x);

d) The following code should output the even integers from 2 to 100:
counter = 2;
do {
 document.writeln(counter);
 counter += 2;
} While (counter < 100);

9.5 What does the following script do?

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <html xmlns = "http://www.w3.org/1999/xhtml">
6 <head><title>Mystery</title>
7 <script type = "text/javascript">
8 <!--
9 for (var i = 1; i <= 10; i++) {

10
11 for (var j = 1; j <= 5; j++)
12 document.writeln("@");
13
14 document.writeln("
");
15 }

iw3htp2.book Page 310 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 311

9.6 Write a script that finds the smallest of several integers. Assume that the first value read spec-
ifies the number of values to be input from the user.

9.7 Write a script that calculates the product of the odd integers from 1 to 15 and then outputs
XHTML text that displays the results.

9.8 Modify the compound-interest program of Fig. 9.6 to repeat its steps for interest rates of 5,
6, 7, 8, 9 and 10%. Use a for loop to vary the interest rate.

9.9 Write a script that outputs XHTML to display the given patterns separately, one below the
other. Use for loops to generate the patterns. All asterisks (*) should be printed by a single statement
of the form document.write("*"); (this causes the asterisks to print side by side). A state-
ment of the form document.writeln("
"); can be used to position to the next line. A
statement of the form document.write(" "); can be used to display a space (needed for the
last two patterns). There should be no other output statements in the program. [Hint: The last two pat-
terns require that each line begin with an appropriate number of blanks. You may need to use the
XHTML <pre></pre> tags.]

(a) (b) (c) (d)
* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* ** ** *********
********** * * **********

9.10 One interesting application of computers is the drawing of graphs and bar charts (sometimes
called histograms). Write a script that reads five numbers between 1 and 30. For each number read,
output XHTML text that displays a line containing that number of adjacent asterisks. For example, if
your program reads the number 7, it should output XHTML text that displays *******.

9.11 (“The Twelve Days of Christmas” Song) Write a script that uses repetition and switch
structures to print the song “The Twelve Days of Christmas.” One switch structure should be used
to print the day (i.e., “First,” “Second,” etc.). A separate switch structure should be used to print
the remainder of each verse. You can find the words at the site

www.santas.net/twelvedaysofchristmas.htm

9.12 A mail-order house sells five different products whose retail prices are as follows: product 1,
$2.98; product 2, $4.50; product 3, $9.98; product 4, $4.49; and product 5, $6.87. Write a script that
reads a series of pairs of numbers as follows:

a) Product number
b) Quantity sold for one day

Your program should use a switch structure to help determine the retail price for each product and
should calculate and output XHTML that displays the total retail value of all products sold last week.

16 // -->
17 </script>
18
19 </head><body></body>
20 </html>

iw3htp2.book Page 311 Wednesday, July 18, 2001 9:01 AM

312 JavaScript: Control Structures II Chapter 9

Use a prompt dialog to obtain the product number from the user. Use a sentinel-controlled loop to
determine when the program should stop looping and display the final results.

9.13 Assume that i = 1, j = 2, k = 3 and m = 2. What does each of the given statements print?
Are the parentheses necessary in each case?

a) document.writeln(i == 1);
b) document.writeln(j == 3);
c) document.writeln(i >= 1 && j < 4);
d) document.writeln(m <= 99 && k < m);
e) document.writeln(j >= i || k == m);
f) document.writeln(k + m < j | 3 - j >= k);
g) document.writeln(!(k > m));

9.14 Modify Exercise 9.9 to combine your code from the four separate triangles of asterisks into
a single script that prints all four patterns side by side, making clever use of nested for loops.

9.15 (De Morgan’s Laws) In this chapter, wehave discussed the logical operators &&, || and !.
De Morgan’s Laws can sometimes make it more convenient for us to express a logical expression.
These laws state that the expression !(condition1 && condition2) is logically equivalent to the ex-
pression (!condition1 || !condition2). Also, the expression !(condition1 || condition2) is log-
ically equivalent to the expression (!condition1 && !condition2). Use De Morgan’s Laws to write
equivalent expressions for each of the following, and then write a program to show that the original
expression and the new expression are equivalent in each case:

a) !(x < 5) && !(y >= 7)
b) !(a == b) || !(g != 5)
c) !((x <= 8) && (y > 4))
d) !((i > 4) || (j <= 6))

9.16 Write a script that prints the following diamond shape:

* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* * ** *********
********** * * **********

*

*

iw3htp2.book Page 312 Wednesday, July 18, 2001 9:01 AM

Chapter 9 JavaScript: Control Structures II 313

You may use output statements that print a single asterisk (*), a single space or a single newline
character. Maximize your use of repetition (with nested for structures), and minimize the number
of output statements.

9.17 Modify the program you wrote in Exercise 9.16 to read an odd number in the range 1 to 19.
This number specifies the number of rows in the diamond. Your program should then display a dia-
mond of the appropriate size.

9.18 A criticism of the break statement and the continue statement is that each is unstruc-
tured. Actually, break statements and continue statements can always be replaced by structured
statements, although coding the replacement can be awkward. Describe in general how you would
remove any break statement from a loop in a program and replace that statement with some struc-
tured equivalent. [Hint: The break statement “jumps out of” a loop from the body of that loop. The
other way to leave is by failing the loop-continuation test. Consider using in the loop-continuation
test a second test that indicates “early exit because of a ‘break’ condition.”] Use the technique you
developed here to remove the break statement from the program of Fig. 9.11.

9.19 What does the following script do?

9.20 Describe in general how you would remove any continue statement from a loop in a pro-
gram and replace that statement with some structured equivalent. Use the technique you develop to
remove the continue statement from the program of Fig. 9.12.

9.21 Given the following switch structure:

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <html xmlns = "http://www.w3.org/1999/xhtml">
6 <head><title>Mystery</title>
7 <script type = "text/javascript">
8 <!--
9 for (var i = 1; i <= 5; i++) {

10 for (var j = 1; j <= 3; j++) {
11 for (var k = 1; k <= 4; k++)
12 document.write("*");
13 document.writeln("
");
14 }
15 document.writeln("
");
16 }
17 // -->
18 </script>
19
20 </head><body></body>
21 </html>

1 switch (k) {
2 case 1:
3 break;
4 case 2:
5 case 3:
6 ++k;
7 break;

iw3htp2.book Page 313 Wednesday, July 18, 2001 9:01 AM

314 JavaScript: Control Structures II Chapter 9

what values are assigned to x when k has values of 1, 2, 3, 4 and 10.

8 case 4:
9 --k;

10 break;
11 default:
12 k *= 3;
13 }
14
15 x = k;

iw3htp2.book Page 314 Wednesday, July 18, 2001 9:01 AM

10
JavaScript: Functions

Objectives
• To understand how to construct programs modularly

from small pieces called functions.
• To be able to create new functions.
• To understand the mechanisms used to pass

information between functions.
• To introduce simulation techniques that use random-

number generation.
• To understand how the visibility of identifiers is

limited to specific regions of programs.
Form ever follows function.
Louis Henri Sullivan

E pluribus unum.
(One composed of many.)
Virgil

O! call back yesterday, bid time return.
William Shakespeare, Richard II

Call me Ishmael.
Herman Melville, Moby Dick

When you call me that, smile.
Owen Wister

iw3htp2.book Page 315 Wednesday, July 18, 2001 9:01 AM

316 JavaScript: Functions Chapter 10

10.1 Introduction
Most computer programs that solve real-world problems are much larger than the programs
presented in the first few chapters of this book. Experience has shown that the best way to
develop and maintain a large program is to construct it from small, simple pieces, or modules.
This technique is called divide and conquer. This chapter describes many key features of Jav-
aScript that facilitate the design, implementation, operation and maintenance of large scripts.

10.2 Program Modules in JavaScript
Modules in JavaScript are called functions. JavaScript programs are written by combining
new functions that the programmer writes with “prepackaged” functions and objects avail-
able in JavaScript. The prepackaged functions that belong to JavaScript objects (such as
Math.pow and Math.round, introduced previously) are often called methods. The term
method implies that the function belongs to a particular object; however, the terms function
and method can be used interchangeably. We will refer to functions that belong to a partic-
ular JavaScript object as methods; all others are referred to as functions.

JavaScript provides several objects that have a rich collection of methods for per-
forming common mathematical calculations, string manipulations, date and time manipu-
lations, and manipulations of collections of data called Arrays. These objects make the
programmer’s job easier, because they provide many of the capabilities programmers need.
Some common predefined objects of JavaScript and their methods are discussed in Chapter
11, “JavaScript: Arrays” and Chapter 12, “JavaScript: Objects.”

Good Programming Practice 10.1
Familiarize yourself with the rich collection of objects and methods provided by JavaScript. 10.1

Outline

10.1 Introduction
10.2 Program Modules in JavaScript
10.3 Programmer-Defined Functions
10.4 Function Definitions
10.5 Random-Number Generation
10.6 Example: Game of Chance
10.7 Duration of Identifiers
10.8 Scope Rules
10.9 JavaScript Global Functions
10.10 Recursion
10.11 Example Using Recursion: Fibonacci Series
10.12 Recursion vs. Iteration
10.13 JavaScript Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2.book Page 316 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 317

Software Engineering Observation 10.1
Avoid reinventing the wheel. If possible, use JavaScript objects, methods and functions in-
stead of writing new functions. This practice reduces script development time and helps pre-
vent the introduction of new errors. 10.1

Portability Tip 10.1
Using the methods built into JavaScript objects helps make scripts more portable. 10.1

Performance Tip 10.1
Do not try to rewrite existing methods of JavaScript objects to make them more efficient. You
usually will not be able to increase the performance of the methods. 10.1

The programmer can write functions to define specific tasks that may be used at many
points in a script. These functions are referred to as programmer-defined functions. The actual
statements defining the function are written only once and are hidden from other functions.

A function is invoked (i.e., made to perform its designated task) by a function call. The
function call specifies the function name and provides information (as arguments) that the
called function needs to perform its task. A common analogy for this structure is the hier-
archical form of management. A boss (the calling function, or caller) asks a worker (the
called function) to perform a task and return (i.e., report back) the results when the task is
done. The boss function does not know how the worker function performs its designated
tasks. The worker may call other worker functions, and the boss will be unaware of this sit-
uation. We will soon see how this “hiding” of implementation details promotes good soft-
ware engineering. Figure 10.1 shows the boss function communicating with several
worker functions in a hierarchical manner. Note that worker1 acts as a “boss” function to
worker4 and worker5. Relationships among functions may be other than the hierar-
chical structure shown in this figure.

Functions (and methods) are invoked by writing the name of the function (or method),
followed by a left parenthesis, followed by the argument(s) of the function (or method), if
any, followed by a right parenthesis. For example, a programmer desiring to convert a
string stored in variable inputValue to a floating-point number and add it to variable
total, might write

Fig. 10.1Fig. 10.1Fig. 10.1Fig. 10.1 Hierarchical boss-function/worker-function relationship.

main

worker1 worker2 worker3

worker4 worker5

iw3htp2.book Page 317 Wednesday, July 18, 2001 9:01 AM

318 JavaScript: Functions Chapter 10

total += parseFloat(inputValue);

When this statement executes, JavaScript function parseFloat converts the string con-
tained in the parentheses (stored in variable inputValue in this case) to a floating-point
value and adds value to total. The variable inputValue is the argument of the parse-
Float function. Function parseFloat takes a string representation of a floating-point
number as an argument and returns the corresponding floating-point numeric value.

Function (and method) arguments may be constants, variables or expressions. If s1 =
"22.3" and s2 = "45", then the statement

total += parseFloat(s1 + s2);

evaluates the expression s1 + s2, concatenates the strings s1 and s2 (resulting in the
string "22.345"), converts the result into a floating-point number and adds the floating-
point number to variable total.

10.3 Programmer-Defined Functions
Functions allow the programmer to modularize a program. All variables declared in func-
tion definitions are local variables—i.e., they are known only in the function in which they
are defined. Most functions have a list of parameters that provide the means for communi-
cating information between functions via function calls. A function’s parameters are also
considered to be local variables. When a function is called, the arguments in the function
call are assigned to the corresponding parameters in the function definition.

There are several motivations for modularizing a program with functions. The divide-
and-conquer approach makes program development more manageable. Another motivation
is software reusability (i.e., using existing functions as building blocks to create new pro-
grams). With good function naming and definition, programs can be created from standard-
ized functions rather than being built by using customized code. For example, we did not
have to define how to convert strings to integers and floating-point numbers—JavaScript
already provides function parseInt to convert a string to an integer and function
parseFloat to convert a string to a floating-point number. A third motivation is to avoid
repeating code in a program. Packaging code as a function allows that code to be executed
from several locations in a program by calling the function.

Software Engineering Observation 10.2
Each function should perform a single, well-defined task, and the name of the function should
express that task effectively. This promotes software reusability. 10.2

Software Engineering Observation 10.3
If you cannot choose a concise name that expresses the function’s task, it is possible that your
function is performing too many diverse tasks. Usually, it is best to break such a function into
several smaller functions. 10.3

10.4 Function Definitions
Each script we have presented thus far in the text has consisted of a series of statements and
control structures in sequence. These scripts have been executed as the browser loads the
Web page and evaluates the <head> section of the page. We now consider how program-
mers write their own customized functions and call them in a script.

iw3htp2.book Page 318 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 319

Consider a script (Fig. 10.2) that uses a function square to calculate the squares of
the integers from 1 to 10. [Note: We continue to show many examples in which the body
element of the XHTML document is empty and the document is created directly by a Java-
Script. In later chapters, we show many examples in which JavaScripts interact with the ele-
ments in the body of a document.]

The for structure in lines 18–20 outputs XHTML that displays the results of squaring
the integers from 1 to 10. Each iteration of the loop calculates the square of the current
value of control variable x and outputs the result by writing a line in the XHTML document.
Function square is invoked, or called, on line 20 with the expression square(x). When
program control reaches this expression, the program calls function square (defined at lines
26–29). The () represent the function-call operator, which has high precedence. At this
point, the program makes a copy of the value of x (the argument) and program control trans-
fers to the first line of function square. Function square receives the copy of the value of
x and stores it in the parameter y. Then square calculates y * y. The result is passed back
to the point in line 20 where square was invoked. Lines 19–20 concatenate "The square
of ", the value of x, " is ", the value returned by function square and a
 tag and
write that line of text in the XHTML document. This process is repeated 10 times.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.2: SquareInt.html -->
6 <!-- Square function -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>A Programmer-Defined square Function</title>
11
12 <script type = "text/javascript">
13 <!--
14 document.writeln(
15 "<h1>Square the numbers from 1 to 10</h1>");
16
17 // square the numbers from 1 to 10
18 for (var x = 1; x <= 10; ++x)
19 document.writeln("The square of " + x + " is " +
20 square(x) + "
");
21
22 // The following square function's body is executed
23 // only when the function is explicitly called.
24
25 // square function definition
26 function square(y)
27 {
28 return y * y;
29 }
30 // -->
31 </script>

Fig. 10.2Fig. 10.2Fig. 10.2Fig. 10.2 Using programmer-defined function square (part 1 of 2).

iw3htp2.book Page 319 Wednesday, July 18, 2001 9:01 AM

320 JavaScript: Functions Chapter 10

The definition of function square (lines 26–29) shows that square expects a single
parameter y. Function square uses this name in its body to manipulate the value passed
to square from line 20. The return statement in square passes the result of the cal-
culation y * y back to the calling function. Note that JavaScript keyword var is not used
to declare variables in the parameter list of a function.

Common Programming Error 10.1
Using the JavaScript var keyword to declare a variable in a function parameter list results
in a JavaScript runtime error. 10.1

In this example, function square follows the rest of the script. When the for struc-
ture terminates, JavaScript will not continue to flow sequentially into function square. A
function must be called explicitly for the code in its body to execute. Thus, when the for
structure terminates in this example, the script terminates.

Good Programming Practice 10.2
Place a blank line between function definitions to separate the functions and enhance pro-
gram readability. 10.2

Software Engineering Observation 10.4
Statements that are enclosed in the body of a function definition are not executed by the Jav-
aScript interpreter unless the function is invoked explicitly. 10.4

32
33 </head><body></body>
34 </html>

Fig. 10.2Fig. 10.2Fig. 10.2Fig. 10.2 Using programmer-defined function square (part 2 of 2).

iw3htp2.book Page 320 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 321

The format of a function definition is

function function-name(parameter-list)
{
 declarations and statements
}

The function-name is any valid identifier. The parameter-list is a comma-separated list
containing the names of the parameters received by the function when it is called (remem-
ber that the arguments in the function call are assigned to the corresponding parameter in
the function definition). There should be one argument in the function call for each param-
eter in the function definition. If a function does not receive any values, the parameter-list
is empty (i.e., the function name is followed by an empty set of parentheses).

The declarations and statements within braces form the function body. The function
body is also referred to as a block. A block is a compound statement that includes declara-
tions. The terms block and compound statement often are used interchangeably.

Common Programming Error 10.2
Forgetting to return a value from a function that is supposed to return a value is a logic error. 10.2

Common Programming Error 10.3
Placing a semicolon after the right parenthesis enclosing the parameter list of a function def-
inition results in a JavaScript runtime error. 10.3

Common Programming Error 10.4
Redefining a function parameter as a local variable in the function is a logic error. 10.4

Common Programming Error 10.5
Passing to a function an argument that is not compatible with the corresponding parameter’s
expected type is a logic error and may result in a JavaScript runtime error. 10.5

Good Programming Practice 10.3
Although it is not incorrect to do so, do not use the same name for an argument passed to a
function and the corresponding parameter in the function definition. Using different names
avoids ambiguity. 10.3

Good Programming Practice 10.4
Choosing meaningful function names and meaningful parameter names makes programs
more readable and helps avoid excessive use of comments. 10.4

Software Engineering Observation 10.5
A function should usually be no longer than one printed page. Better yet, a function should
usually be no longer than half a printed page. Regardless of how long a function is, it should
perform one task well. Small functions promote software reusability. 10.5

Software Engineering Observation 10.6
Scripts should be written as collections of small functions. This practice makes programs
easier to write, debug, maintain and modify. 10.6

iw3htp2.book Page 321 Wednesday, July 18, 2001 9:01 AM

322 JavaScript: Functions Chapter 10

Software Engineering Observation 10.7
A function requiring a large number of parameters may be performing too many tasks. Con-
sider dividing the function into smaller functions that perform the separate tasks. The func-
tion header should fit on one line, if possible. 10.7

Software Engineering Observation 10.8
Modularizing programs in a neat, hierarchical manner promotes good software engineer-
ing— sometimes, however, at the expense of performance. 10.8

Performance Tip 10.2
A heavily modularized program—as compared with a monolithic (i.e., one-piece) program
without functions—makes potentially large numbers of function calls, which consume execu-
tion time and space on a computer’s processor(s). But monolithic programs are difficult to
program, test, debug, maintain and evolve. So modularize your programs judiciously, always
keeping in mind the delicate balance between performance and good software engineering. 10.2

Testing and Debugging Tip 10.1
Small functions are easier to test, debug and understand than large ones. 10.1

There are three ways to return control to the point at which a function was invoked. If
the function does not return a result, control returns when the program reaches the function-
ending right brace or by executing the statement

return;

If the function does return a result, the statement

return expression;

returns the value of expression to the caller. When a return statement is executed, control
returns immediately to the point at which the function was invoked.

The script in our next example (Fig. 10.3) uses a programmer-defined function called
maximum to determine and return the largest of three floating-point values.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.3: maximum.html -->
6 <!-- Maximum function -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Finding the Maximum of Three Values</title>
11
12 <script type = "text/javascript">
13 <!--
14 var input1 =
15 window.prompt("Enter first number", "0");

Fig. 10.3Fig. 10.3Fig. 10.3Fig. 10.3 Programmer-defined maximum function (part 1 of 3).

iw3htp2.book Page 322 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 323

16 var input2 =
17 window.prompt("Enter second number", "0");
18 var input3 =
19 window.prompt("Enter third number", "0");
20
21 var value1 = parseFloat(input1);
22 var value2 = parseFloat(input2);
23 var value3 = parseFloat(input3);
24
25 var maxValue = maximum(value1, value2, value3);
26
27 document.writeln("First number: " + value1 +
28 "
Second number: " + value2 +
29 "
Third number: " + value3 +
30 "
Maximum is: " + maxValue);
31
32 // maximum method definition (called from line 25)
33 function maximum(x, y, z)
34 {
35 return Math.max(x, Math.max(y, z));
36 }
37 // -->
38 </script>
39
40 </head>
41 <body>
42 <p>Click Refresh (or Reload) to run the script again</p>
43 </body>
44 </html>

Fig. 10.3Fig. 10.3Fig. 10.3Fig. 10.3 Programmer-defined maximum function (part 2 of 3).

iw3htp2.book Page 323 Wednesday, July 18, 2001 9:01 AM

324 JavaScript: Functions Chapter 10

The three floating-point values are input by the user via prompt dialogs (lines 14–
19). Lines 21–23 use function parseFloat to convert the strings input by the user to
floating-point values. The statement in line 25 passes the three floating-point values to
function maximum (defined at lines 33–36), which determines the largest floating-point
value. This value is returned to line 25 by the return statement in function maximum.
The value returned is assigned to variable maxValue. Lines 27–30 concatenate and dis-
play the three floating-point values input by the user and the maxValue.

Notice the implementation of the function maximum (lines 33–36). The first line indi-
cates that the function’s name is maximum and that the function takes three parameters (x,
y and z) to accomplish its task. Also, the body of the function contains the statement which
returns the largest of the three floating-point values, using two calls to the Math object’s
max method. First, method Math.max is invoked with the values of variables y and z to
determine the larger of the two values. Next, the value of variable x and the result of the
first call to Math.max are passed to method Math.max. Finally, the result of the second
call to Math.max is returned to the point at which maximum was invoked (i.e., line 25).
Note once again that the script terminates before sequentially reaching the definition of
function maximum. The statement in the body of function maximum executes only when
the function is invoked from line 25.

10.5 Random-Number Generation
We now take a brief and, it is hoped, entertaining diversion into a popular programming
application, namely simulation and game playing. In this section and the next section, we
will develop a nicely structured game-playing program that includes multiple functions.
The program uses most of the control structures we have studied thus far.

There is something in the air of a gambling casino that invigorates people, from the
high-rollers at the plush mahogany-and-felt craps tables to the quarter poppers at the one-
armed bandits. It is the element of chance, the possibility that luck will convert a pocketful
of money into a mountain of wealth. The element of chance can be introduced through the
Math object’s random method. (Remember, we are calling random a method because it
belongs to the Math object.)

Fig. 10.3Fig. 10.3Fig. 10.3Fig. 10.3 Programmer-defined maximum function (part 3 of 3).

iw3htp2.book Page 324 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 325

Consider the following statement:

var randomValue = Math.random();

Method random generates a floating-point value from 0.0 up to, but not including, 1.0. If
random truly produces values at random, then every value from 0.0 up to, but not includ-
ing, 1.0 has an equal chance (or probability) of being chosen each time random is called.

The range of values produced directly by random often is different than what is
needed in a specific application. For example, a program that simulates coin tossing might
require only 0 for “heads” and 1 for “tails.” A program that simulates rolling a six-sided die
would require random integers in the range from 1 to 6. A program that randomly predicts
the next type of spaceship, out of four possibilities, that will fly across the horizon in a video
game might require random integers in the range 0–3 or 1–4.

To demonstrate method random, let us develop a program (Fig. 10.4) that simulates
20 rolls of a six-sided die and displays the value of each roll. We use the multiplication
operator (*) with random as follows:

Math.floor(1 + Math.random() * 6)

First, the preceding expression multiplies the result of a call to Math.random() by 6 to
produce a number in the range 0.0 up to, but not including, 6.0. This is called scaling the
range of the random numbers. The number 6 is called the scaling factor. Next, we add 1 to
the result to shift the range of numbers to produce a number in the range 1.0 up to, but not
including, 7.0. Finally, we use method Math.floor to round the result down to the clos-
est integer value in the range 1 to 6. Math method floor rounds its floating-point number
argument to the closest integer not greater than the argument’s value—e.g., 1.75 is rounded
to 1, and –1.25 is rounded to –2. Figure 10.4 confirms that the results are in the range 1 to 6.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.4: RandomInt.html -->
6 <!-- Demonstrating the Random method -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Shifted and Scaled Random Integers</title>
11
12 <script type = "text/javascript">
13 <!--
14 var value;
15
16 document.writeln(
17 "<table border = \"1\" width = \"50%\">");
18 document.writeln(
19 "<caption>Random Numbers</caption><tr>");
20

Fig. 10.4Fig. 10.4Fig. 10.4Fig. 10.4 Shifted and scaled random integers (part 1 of 2).

iw3htp2.book Page 325 Wednesday, July 18, 2001 9:01 AM

326 JavaScript: Functions Chapter 10

21 for (var i = 1; i <= 20; i++) {
22 value = Math.floor(1 + Math.random() * 6);
23 document.writeln("<td>" + value + "</td>");
24
25 // write end and start <tr> tags when
26 // i is a multiple of 5 and not 20
27 if (i % 5 == 0 && i != 20)
28 document.writeln("</tr><tr>");
29 }
30
31 document.writeln("</tr></table>");
32 // -->
33 </script>
34
35 </head>
36 <body>
37 <p>Click Refresh (or Reload) to run the script again</p>
38 </body>
39 </html>

Fig. 10.4Fig. 10.4Fig. 10.4Fig. 10.4 Shifted and scaled random integers (part 2 of 2).

iw3htp2.book Page 326 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 327

To show that these numbers occur with approximately equal likelihood, let us simulate
6000 rolls of a die with the program in Fig. 10.5. Each integer from 1 to 6 should appear
approximately 1000 times. Use your browser’s Refresh (or Reload) button to execute the
script again.

As the output of the program shows, we used Math method random to simulate the
rolling of a six-sided die scaling and shifting. Note that we used nested control structures
to determine the number of times each side of the six-sided die occurred. The for loop in
lines 19–42 iterates 6000 times. During each iteration of the loop, line 20 produces a value
from 1 to 6. The nested switch structure in lines 22–41 uses the face value that was ran-
domly chosen as its controlling expression. Based on the value of face, the program incre-
ments one of the six counter variables during each iteration of the loop. Note that no
default case is provided in this switch structure, because the statement in line 20 only
produces only the values 1, 2, 3, 4, 5 and 6. In this example, the default case would never
execute. After we study Arrays in Chapter 11, we will discuss how to replace the entire
switch structure in this program with a single-line statement.

Run the program several times, and observe the results. Notice that the program pro-
duces different random numbers each time the script executes, so the results should vary.

The values returned by random are always in the range

0.0 ≤ Math.random() < 1.0

Previously, we demonstrated the statement

face = Math.floor(1 + Math.random() * 6);

which simulates the rolling of a six-sided die, which always assigns an integer (at random)
to variable face, in the range 1 ≤ face ≤ 6. Note that the width of this range (i.e., the
number of consecutive integers in the range) is 6, and the starting number in the range is 1.
Referring to the preceding statement, we see that the width of the range is determined by
the number used to scale random with the multiplication operator (6 in the preceding state-
ment) and that the starting number of the range is equal to the number (1 in the preceding
statement) added to Math.random() * 6. We can generalize this result as

face = Math.floor(a + Math.random() * b);

where a is the shifting value (which is equal to the first number in the desired range of con-
secutive integers) and b is the scaling factor (which is equal to the width of the desired
range of consecutive integers). In the exercises at the end of this chapter, we will see that it
is possible to choose integers at random from sets of values other than ranges of consecu-
tive integers.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.5: RollDie.html -->
6 <!-- Rolling a Six-Sided Die -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">

Fig. 10.5Fig. 10.5Fig. 10.5Fig. 10.5 Rolling a six-sided die 6000 times (part 1 of 3).

iw3htp2.book Page 327 Wednesday, July 18, 2001 9:01 AM

328 JavaScript: Functions Chapter 10

9 <head>
10 <title>Roll a Six-Sided Die 6000 Times</title>
11
12 <script type = "text/javascript">
13 <!--
14 var frequency1 = 0, frequency2 = 0,
15 frequency3 = 0, frequency4 = 0,
16 frequency5 = 0, frequency6 = 0, face;
17
18 // summarize results
19 for (var roll = 1; roll <= 6000; ++roll) {
20 face = Math.floor(1 + Math.random() * 6);
21
22 switch (face) {
23 case 1:
24 ++frequency1;
25 break;
26 case 2:
27 ++frequency2;
28 break;
29 case 3:
30 ++frequency3;
31 break;
32 case 4:
33 ++frequency4;
34 break;
35 case 5:
36 ++frequency5;
37 break;
38 case 6:
39 ++frequency6;
40 break;
41 }
42 }
43
44 document.writeln("<table border = \"1\"" +
45 "width = \"50%\">");
46 document.writeln("<thead><th>Face</th>" +
47 "<th>Frequency<th></thead>");
48 document.writeln("<tbody><tr><td>1</td><td>" +
49 frequency1 + "</td></tr>");
50 document.writeln("<tr><td>2</td><td>" + frequency2 +
51 "</td></tr>");
52 document.writeln("<tr><td>3</td><td>" + frequency3 +
53 "</td></tr>");
54 document.writeln("<tr><td>4</td><td>" + frequency4 +
55 "</td></tr>");
56 document.writeln("<tr><td>5</td><td>" + frequency5 +
57 "</td></tr>");
58 document.writeln("<tr><td>6</td><td>" + frequency6 +
59 "</td></tr></tbody></table>");
60 // -->
61 </script>

Fig. 10.5Fig. 10.5Fig. 10.5Fig. 10.5 Rolling a six-sided die 6000 times (part 2 of 3).

iw3htp2.book Page 328 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 329

10.6 Example: Game of Chance
One of the most popular games of chance is a dice game known as “craps,” which is played
in casinos and back alleys throughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5 and 6 spots,
respectively. After the dice have come to rest, the sum of the spots on the two upward faces is
calculated. If the sum is 7 or 11 on the first throw, the player wins. If the sum is 2, 3 or 12 on
the first throw (called “craps”), the player loses (i.e., the “house” wins). If the sum is 4, 5,

62
63 </head>
64 <body>
65 <p>Click Refresh (or Reload) to run the script again</p>
66 </body>
67 </html>

Fig. 10.5Fig. 10.5Fig. 10.5Fig. 10.5 Rolling a six-sided die 6000 times (part 3 of 3).

iw3htp2.book Page 329 Wednesday, July 18, 2001 9:01 AM

330 JavaScript: Functions Chapter 10

6, 8, 9 or 10 on the first throw, that sum becomes the player’s “point.” To win, you must con-
tinue rolling the dice until you “make your point” (i.e., roll your point value). The player
loses by rolling a 7 before making the point.

The script in Fig. 10.6 simulates the game of craps.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 10.6: Craps.html -->
6 <!-- Craps Program -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Program that Simulates the Game of Craps</title>
11
12 <script type = "text/javascript">
13 <!--
14 // variables used to test the state of the game
15 var WON = 0, LOST = 1, CONTINUE_ROLLING = 2;
16
17 // other variables used in program
18 var firstRoll = true, // true if first roll
19 sumOfDice = 0, // sum of the dice
20 myPoint = 0, // point if no win/loss on first roll
21 gameStatus = CONTINUE_ROLLING; // game not over yet
22
23 // process one roll of the dice
24 function play()
25 {
26 if (firstRoll) { // first roll of the dice
27 sumOfDice = rollDice();
28
29 switch (sumOfDice) {
30 case 7: case 11: // win on first roll
31 gameStatus = WON;
32 // clear point field
33 document.craps.point.value = "";
34 break;
35 case 2: case 3: case 12: // lose on first roll
36 gameStatus = LOST;
37 // clear point field
38 document.craps.point.value = "";
39 break;
40 default: // remember point
41 gameStatus = CONTINUE_ROLLING;
42 myPoint = sumOfDice;
43 document.craps.point.value = myPoint;
44 firstRoll = false;
45 }
46 }

Fig. 10.6Fig. 10.6Fig. 10.6Fig. 10.6 Program to simulate the game of craps (part 1 of 5).

iw3htp2.book Page 330 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 331

47 else {
48 sumOfDice = rollDice();
49
50 if (sumOfDice == myPoint) // win by making point
51 gameStatus = WON;
52 else
53 if (sumOfDice == 7) // lose by rolling 7
54 gameStatus = LOST;
55 }
56
57 if (gameStatus == CONTINUE_ROLLING)
58 window.status = "Roll again";
59 else {
60 if (gameStatus == WON)
61 window.status = "Player wins. " +
62 "Click Roll Dice to play again.";
63 else
64 window.status = "Player loses. " +
65 "Click Roll Dice to play again.";
66
67 firstRoll = true;
68 }
69 }
70
71 // roll the dice
72 function rollDice()
73 {
74 var die1, die2, workSum;
75
76 die1 = Math.floor(1 + Math.random() * 6);
77 die2 = Math.floor(1 + Math.random() * 6);
78 workSum = die1 + die2;
79
80 document.craps.firstDie.value = die1;
81 document.craps.secondDie.value = die2;
82 document.craps.sum.value = workSum;
83
84 return workSum;
85 }
86 // -->
87 </script>
88
89 </head>
90 <body>
91 <form name = "craps" action = "">
92 <table border = "1">
93 <caption>Craps</caption>
94 <tr><td>Die 1</td>
95 <td><input name = "firstDie" type = "text" />
96 </td></tr>
97 <tr><td>Die 2</td>
98 <td><input name = "secondDie" type = "text" />
99 </td></tr>

Fig. 10.6Fig. 10.6Fig. 10.6Fig. 10.6 Program to simulate the game of craps (part 2 of 5).

iw3htp2.book Page 331 Wednesday, July 18, 2001 9:01 AM

332 JavaScript: Functions Chapter 10

100 <tr><td>Sum</td>
101 <td><input name = "sum" type = "text" />
102 </td></tr>
103 <tr><td>Point</td>
104 <td><input name = "point" type = "text" />
105 </td></tr>
106 <tr><td><input type = "button" value = "Roll Dice"
107 onclick = "play()" /></td></tr>
108 </table>
109 </form>
110 </body>
111 </html>

Fig. 10.6Fig. 10.6Fig. 10.6Fig. 10.6 Program to simulate the game of craps (part 3 of 5).

A text
XHTML GUI
component

A button
XHTML GUI
component

Browser’s
status bar

iw3htp2.book Page 332 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 333

Fig. 10.6Fig. 10.6Fig. 10.6Fig. 10.6 Program to simulate the game of craps (part 4 of 5).

iw3htp2.book Page 333 Wednesday, July 18, 2001 9:01 AM

334 JavaScript: Functions Chapter 10

Notice that the player must roll two dice on the first and all subsequent rolls. When you
execute the script, click the Roll Dice button to play the game. The status bar in the lower-
left corner of the browser window displays the results of each roll. The screen captures
show four separate executions of the script (a win and a loss on the first roll, and a win and
a loss after the first roll).

Until now, all user interactions with scripts have been through either a prompt dialog
(into which the user types an input value for the program) or an alert dialog (in which a
message is displayed to the user, and the user can click OK to dismiss the dialog). Although
these dialogs are valid ways to receive input from a user and to display messages in a Java-
Script program, they are fairly limited in their capabilities—i.e., a prompt dialog can obtain
only one value at a time from the user and a message dialog can display only one message.

It is much more common to receive multiple inputs from the user at once via an
XHTML form (such as one in which the user enters name and address information) or to
display many pieces of data at once (such as the values of the dice, the sum of the dice and
the point in this example). To begin our introduction to more elaborate user interfaces, this
program uses an XHTML form (discussed in Chapter 5) and a new graphical user interface
concept: GUI event handling. This example is our first in which the JavaScript executes in
response to the user’s interaction with a GUI component in an XHTML form. This interac-
tion causes an event. Scripts often are used to respond to events.

Before we discuss the script code, we first discuss the <body> section (lines 90–110)
of the XHTML document. The GUI components in this section are used extensively in the
script.

Line 91 begins the definition of an XHTML <form> with its name attribute set to
craps. The name attribute craps enables script code to refer to the elements of the form.
This attribute helps a script distinguish between multiple forms in the same XHTML doc-
ument. Similarly, the name attribute is specified for each GUI component in the form, so
that the script code can refer to each GUI component individually. Valid XHTML code
requires that every form contain an action attribute. This form does not post its infor-
mation to a Web server, so the empty string, "", is used.

Fig. 10.6Fig. 10.6Fig. 10.6Fig. 10.6 Program to simulate the game of craps (part 5 of 5).

iw3htp2.book Page 334 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 335

In this example, we have decided to place the form’s GUI components in an XHTML
<table>, so line 92 begins the definition of the XHTML table and indicates that it has a
1-pixel border.

Lines 94–96 define the first row of the table. The column on the left contains the text
Die 1, and the column on the right contains the text field named firstDie. Lines 97–99
define the second row of the table. The column on the left contains the text Die 2, and the
column on the right contains the text field named secondDie.

Lines 100–102 define the third row of the table. The column on the left contains the
text Sum, and the column on the right contains the text field named sum.

Lines 103–105 define the fourth row of the table. The column on the left contains the
text Point, and the column on the right contains the text field named point.

Lines 106–107 define the last row of the table. The column on the left contains the
button Roll Dice. The button’s onclick attribute indicates the action to take when the
user of the XHTML document clicks the Roll Dice button. In this example, clicking the
button causes a call to function play.

This style of programming is known as event-driven programming—the user interacts
with a GUI component, the script is notified of the event and the script processes the event.
The user’s interaction with the GUI “drives” the program. The clicking of the button is
known as the event. The function that is called when an event occurs is known as an event-
handling function or event handler. When a GUI event occurs in a form, the browser auto-
matically calls the specified event-handling function. Before any event can be processed,
each GUI component must know which event-handling function will be called when a par-
ticular event occurs. Most XHTML GUI components have several different event types.
The event model is discussed in detail in Chapter 14, Dynamic HTML: Event Model. By
specifying onclick = "play()" for the Roll Dice button, we enable the browser to
listen for events (button-click events in particular). This registers the event handler for the
GUI component. (We also like to call the line on which it occurs the start listening line,
because the browser is now listening for button-click events from the button.) If no event
handler is specified for the Roll Dice button, the script will not respond when the user
presses the button. Lines 108–109 end the <table> and <form> tags, respectively.

The game is reasonably involved. The player may win or lose on the first roll, or may
win or lose on any roll. Line 15 creates variables that define the three game states—game
won, game lost or continue rolling the dice. Unlike many other programming languages,
JavaScript does not provide a mechanism to define a constant variable (i.e., a variable
whose value cannot be modified). For this reason, we used all capital letters for these vari-
able names, to indicate that we do not intend to modify their values and to make them stand
out in the code.

Good Programming Practice 10.5
Use only uppercase letters (with underscores between words) in the names of variables that
should be used as constants. This format makes these variables stand out in a program. 10.5

Good Programming Practice 10.6
Use meaningfully named variables rather than constants (such as 2) to make programs more
readable. 10.6

Lines 18–21 declare several variables that are used throughout the script. Variable
firstRoll indicates whether the next roll of the dice is the first roll in the current game.

iw3htp2.book Page 335 Wednesday, July 18, 2001 9:01 AM

336 JavaScript: Functions Chapter 10

Variable sumOfDice maintains the sum of the dice from the last roll. Variable myPoint
stores the “point” if the player does not win or lose on the first roll. Variable gameStatus
keeps track of the current state of the game (WON, LOST or CONTINUE_ROLLING).

We define a function rollDice (line 72) to roll the dice and to compute and display
their sum. Function rollDice is defined once, but is called from two places in the pro-
gram (lines 27 and 48). Function rollDice takes no arguments, so it has an empty param-
eter list. Function rollDice returns the sum of the two dice.

The user clicks the Roll Dice button to roll the dice. This action invokes function
play (line 24) of the script. Function play checks the variable firstRoll (line 26) to
determine whether it is true or false. If it is true, the roll is the first roll of the game.
Line 27 calls rollDice (defined at line 72), which picks two random values from 1 to 6,
displays the value of the first die, the value of the second die and the sum of the dice in the
first three text fields and returns the sum of the dice. (We discuss function rollDice in
detail shortly.) After the first roll has taken place, the nested switch structure at line 29
determines whether the game is won or lost, or whether the game should continue with
another roll. After the first roll, if the game is not over, sumOfDice is saved in myPoint
and displayed in the text field point in the XHTML form. Notice how the text field’s
value is changed at lines 33, 38 and 43. The expression

craps.point.value

accesses the value property of the text field point. The value property specifies the
text to display in the text field. To access this property, we specify the name of the form
(craps) that contains the text field, followed by a dot operator (.), followed by the name
of the text field we would like to manipulate. The dot operator is also known as the field-
access operator or the member-access operator. The preceding expression uses the dot op-
erator to access the point member of the craps form. Similarly, the second member-
access operator accesses the value member (or property) of the point text field. Actu-
ally, we will see in the chapters on dynamic HTML that every element of an XHTML doc-
ument is accessable in a manner similar to that shown here.

The program proceeds to the nested if/else structure at line 57, which sets the
window object’s status property (window.status in lines 58, 61 and 64) to

Roll again.

if gameStatus is equal to CONTINUE, to

Player wins. Click Roll Dice to play again.

if gameStatus is equal to WON and to

Player loses. Click Roll Dice to play again.

if gameStatus is equal to LOST. The window object’s status property displays the
string assigned to it in the status bar of the browser. If the game was won or lost, line 67
sets firstRoll to true to indicate that the next roll of the dice begins the next game.

The program then waits for the user to click the button Roll Dice again. Each time the
user clicks Roll Dice, the program calls function play, which, in turn, calls the rollDice
function to produce a new value for sumOfDice. If sumOfDice matches myPoint,
gameStatus is set to WON, the if/else structure at line 57 executes and the game is com-

iw3htp2.book Page 336 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 337

plete. If sum is equal to 7, gameStatus is set to LOST, the if/else structure at line 57
executes and the game is complete. Clicking the Roll Dice button starts a new game. The
program updates the four text fields in the XHTML form with the new values of the dice and
the sum on each roll, and updates the text field point each time a new game begins.

Function rollDice (line 72) defines its own local variables die1, die2 and
workSum at line 74. These variables are defined inside the body of rollDice, so they
are known only in that function. If these three variable names are used elsewhere in the pro-
gram, they will be entirely separate variables in memory. Lines 76–77 pick two random
values in the range 1 to 6 and assign them to variables die1 and die2, respectively. Lines
80–82 assign the values of die1, die2 and workSum to the corresponding text fields in
the XHTML form craps. Note that the integer values are converted automatically to
strings when they are assigned to each text field’s value property. Line 84 returns the
value of workSum for use in function play.

Software Engineering Observation 10.9
Variables that are defined inside the body of a function are known only in that function. If the
same variable names are used elsewhere in the program, they will be entirely separate vari-
ables in memory. 10.9

Note the interesting use of the various program control mechanisms we have dis-
cussed. The craps program uses two functions—play and rollDice—and the switch,
if/else and nested if structures. Note also the use of multiple case labels in the
switch structure to execute the same statements (lines 30 and 35). In the exercises at the
end of this chapter, we investigate various interesting characteristics of the game of craps.

Testing and Debugging Tip 10.2
Initializing variables when they are declared in functions helps the programmer avoid incor-
rect results and interpreter messages warning of uninitialized data. 10.2

10.7 Duration of Identifiers
Chapters 7 through 9 have used identifiers for variable names. The attributes of variables
include name, value and data type (such as string, number or boolean). We also use identi-
fiers as names for user-defined functions. Actually, each identifier in a program has other
attributes, including duration and scope (discussed in Section 10.8).

An identifier’s duration (also called its lifetime) is the period during which the identi-
fier exists in memory. Some identifiers exist briefly, some are repeatedly created and
destroyed and others exist for the entire execution of a script.

Identifiers that represent local variables in a function (i.e., parameters and variables
declared in the function body) have automatic duration. Automatic-duration variables are
created automatically when program control enters the function in which they are declared;
they exist while the function in which they are declared is active; and they are automatically
destroyed when the function in which they are declared is exited. For the remainder of the
text, we will refer to variables of automatic duration as local variables.

Software Engineering Observation 10.10
Automatic duration is a means of conserving memory, because automatic-duration variables
are created when program control enters the function in which they are declared and are de-
stroyed when the function in which they are declared is exited. 10.10

iw3htp2.book Page 337 Wednesday, July 18, 2001 9:01 AM

338 JavaScript: Functions Chapter 10

Software Engineering Observation 10.11
Automatic duration is an example of the principle of least privilege. This principle states that
each component of a system should have sufficient rights and privileges to accomplish its
designated task, but no additional rights or privileges. This feature helps prevent accidental
and/or malicious errors from occurring in systems. Why have variables stored in memory
and accessible when they are not needed? 10.11

JavaScript also has identifiers of static duration. Such identifiers are typically defined
in the <head> of the XHTML document and exist from the point at which the <head> of
the XHTML document is interpreted until the browsing session terminates (i.e., the
browser is closed by the user). Even though static-duration variables exist after the
<head> section of the document is interpreted, they cannot necessarily be used throughout
the script. Duration and scope (where a name can be used) are separate issues, as shown in
Section 10.8. Static-duration variables are globally accessible to the script—i.e., every
function in the script can potentially use the variables. For the remainder of the text, we
refer to variables of static duration as global variables, or script-level variables.

10.8 Scope Rules
The scope of an identifier for a variable or function is the portion of the program in which
the identifier can be referenced. A local variable declared in a function can be used only in
that function. The types of scope for an identifier are global scope and function (or local)
scope.

Identifiers declared inside a function have function (or local) scope. Function scope
begins with the opening left brace ({) of the function in which the identifier is declared and
ends at the terminating right brace (}) of the function. Local variables of a function have
function scope; so do function parameters, which are also local variables of the function. If
a local variable in a function has the same name as a global variable, the global variable is
“hidden” from the body of the function.

Good Programming Practice 10.7
Avoid local-variable names that hide global variable names. This can be accomplished by
avoiding the use of duplicate identifiers in a script. 10.7

The script in Fig. 10.7 demonstrates scoping issues in JavaScript with global variables
and local variables. This example also demonstrates the event onload, which calls an
event handler when the <body> of the XHTML document is completely loaded into the
browser window.

Global variable x (line 14) is declared and initialized to 1. This global variable is
hidden in any block (or function) that declares a variable named x. Function start (line
16) declares a local variable x (line 18) and initializes it to 5. This variable is output in a
line of XHTML text to show that the global variable x is hidden in start. The script
defines two other functions—functionA and functionB—that each take no argu-
ments and return nothing. Each function is called twice from function start.

Function functionA defines local variable x (line 33) and initializes it to 25. When
functionA is called, the variable is output in a line of XHTML text to show that the
global variable x is hidden in functionA; then the variable is incremented and output in
a line of XHTML text again before the function is exited. Each time this function is called,
local variable x is re-created and initialized to 25.

iw3htp2.book Page 338 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 339

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.7: scoping.html -->
6 <!-- Local and Global Variables -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>A Scoping Example</title>
11
12 <script type = "text/javascript">
13 <!--
14 var x = 1; // global variable
15
16 function start()
17 {
18 var x = 5; // variable local to function start
19
20 document.writeln("local x in start is " + x);
21
22 functionA(); // functionA has local x
23 functionB(); // functionB uses global variable x
24 functionA(); // functionA reinitializes local x
25 functionB(); // global variable x retains its value
26
27 document.writeln(
28 "<p>local x in start is " + x + "</p>");
29 }
30
31 function functionA()
32 {
33 var x = 25; // initialized each time
34 // functionA is called
35
36 document.writeln("<p>local x in functionA is " +
37 x + " after entering functionA");
38 ++x;
39 document.writeln("
local x in functionA is " +
40 x + " before exiting functionA" + "</p>");
41 }
42
43 function functionB()
44 {
45 document.writeln("<p>global variable x is " + x +
46 " on entering functionB");
47 x *= 10;
48 document.writeln("
global variable x is " +
49 x + " on exiting functionB" + "</p>");
50 }
51 // -->
52 </script>
53

Fig. 10.7Fig. 10.7Fig. 10.7Fig. 10.7 Scoping example (part 1 of 2).

iw3htp2.book Page 339 Wednesday, July 18, 2001 9:01 AM

340 JavaScript: Functions Chapter 10

Function functionB does not declare any variables. Therefore, when it refers to
variable x, the global variable x is used. When functionB is called, the global variable
is output in a line of XHTML text, multiplied by 10 and output in a line of XHTML text
again before the function is exited. The next time function functionB is called, the
global variable has its modified value, 10. Finally, the program outputs local variable x in
start in a line of XHTML text again, to show that none of the function calls modified the
value of x in start, because the functions all referred to variables in other scopes.

10.9 JavaScript Global Functions
JavaScript provides seven functions that are available globally in a JavaScript. We have al-
ready used two of these functions—parseInt and parseFloat. The global functions
are summarized in Fig. 10.8.

Actually, the global functions in Fig. 10.8 are all part of JavaScript’s Global object.
The Global object contains all the global variables in the script, all the user-defined func-
tions in the script and all the listed functions in Fig. 10.8. Because global functions and
user-defined functions are part of the Global object, some JavaScript programmers refer
to these functions as methods. We will use the term method only when referring to a func-
tion that is called for a particular object (such as Math.random()). As a JavaScript pro-
grammer, you do not need to use the Global object directly; JavaScript uses it for you.

54 </head>
55 <body onload = "start()"></body>
56 </html>

Fig. 10.7Fig. 10.7Fig. 10.7Fig. 10.7 Scoping example (part 2 of 2).

iw3htp2.book Page 340 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 341

10.10 Recursion
The programs we have discussed thus far are generally structured as functions that call one
another in a disciplined, hierarchical manner. For some problems, however, it is useful to
have functions call themselves. A recursive function is a function that calls itself, either di-
rectly, or indirectly through another function. Recursion is an important topic discussed at

Global function Description

escape This function takes a string argument and returns a string in which all
spaces, punctuation, accent characters and any other character that is
not in the ASCII character set (see Appendix C, ASCII Character Set)
are encoded in a hexadecimal format (see the Number Systems appen-
dix) that can be represented on all platforms.

eval This function takes a string argument representing JavaScript code to
execute. The JavaScript interpreter evaluates the code and executes it
when the eval function is called. This function allows JavaScript code
to be stored as strings and executed dynamically.

isFinite This function takes a numeric argument and returns true if the value
of the argument is not NaN, Number.POSITIVE_INFINITY or
Number.NEGATIVE_INFINITY; otherwise, the function returns
false.

isNaN This function takes a numeric argument and returns true if the value
of the argument is not a number; otherwise, the function returns
false. The function is commonly used with the return value of
parseInt or parseFloat to determine whether the result is a
proper numeric value.

parseFloat This function takes a string argument and attempts to convert the begin-
ning of the string into a floating-point value. If the conversion is unsuc-
cessful, the function returns NaN; otherwise, it returns the converted
value (e.g., parseFloat("abc123.45") returns NaN, and
parseFloat("123.45abc") returns the value 123.45).

parseInt This function takes a string argument and attempts to convert the begin-
ning of the string into an integer value. If the conversion is unsuccess-
ful, the function returns NaN; otherwise, it returns the converted value
(e.g., parseInt("abc123") returns NaN, and parseInt(
"123abc") returns the integer value 123). This function takes an
optional second argument, from 2 to 36, specifying the radix (or base)
of the number. Base 2 indicates that the first argument string is in
binary format, base 8 indicates that the first argument string is in octal
format and base 16 indicates that the first argument string is in hexa-
decimal format. See see the “Number Systems” appendix for more
information on binary, octal and hexadecimal numbers.

unescape This function takes a string as its argument and returns a string in
which all characters previously encoded with escape are decoded.

Fig. 10.8Fig. 10.8Fig. 10.8Fig. 10.8 JavaScript global functions.

iw3htp2.book Page 341 Wednesday, July 18, 2001 9:01 AM

342 JavaScript: Functions Chapter 10

length in upper-level computer science courses. In this section and the next, simple exam-
ples of recursion are presented. This book contains an extensive treatment of recursion. Fig-
ure 10.13 (at the end of Section 10.12) summarizes the recursion examples and exercises
in the book.

We consider recursion conceptually first; then we examine several programs con-
taining recursive functions. Recursive problem-solving approaches have a number of ele-
ments in common. A recursive function is called to solve a problem. The function
actually knows how to solve only the simplest case(s), or base case(s). If the function is
called with a base case, the function returns a result. If the function is called with a more
complex problem, the function divides the problem into two conceptual pieces: A piece
that the function knows how to process (the base case) and a piece that the function does
not know how to process. To make recursion feasible, the latter piece must resemble the
original problem, but be a slightly simpler or slightly smaller version of the original
problem. Because this new problem looks like the original problem, the function invokes
(calls) a fresh copy of itself to go to work on the smaller problem; this invocation is
referred to as a recursive call, or the recursion step. The recursion step also normally
includes the keyword return, because its result will be combined with the portion of
the problem the function knew how to solve to form a result that will be passed back to
the original caller.

The recursion step executes while the original call to the function is still open (i.e., it
has not finished executing). The recursion step can result in many more recursive calls, as
the function divides each new subproblem into two conceptual pieces. For the recursion
eventually to terminate, each time the function calls itself with a slightly simpler version of
the original problem, the sequence of smaller and smaller problems must converge on the
base case. At that point, the function recognizes the base case, returns a result to the pre-
vious copy of the function and a sequence of returns ensues up the line until the original
function call eventually returns the final result to the caller. This process sounds exotic
when compared with the conventional problem solving we have performed to this point. As
an example of these concepts at work, let us write a recursive program to perform a popular
mathematical calculation.

The factorial of a nonnegative integer n, written n! (and pronounced “n factorial”), is
the product

n · (n - 1) · (n - 2) · … · 1

where 1! is equal to 1 and 0! is defined to be 1. For example, 5! is the product 5 · 4 · 3 · 2 ·
1, which is equal to 120.

The factorial of an integer (number in the following example) greater than or equal
to zero, can be calculated iteratively (nonrecursively) using a for structure as follows:

var factorial = 1;

for (var counter = number; counter >= 1; --counter)
 factorial *= counter;

A recursive definition of the factorial function is arrived at by observing the following
relationship:

n! = n · (n – 1)!

iw3htp2.book Page 342 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 343

For example, 5! is clearly equal to 5 * 4!, as is shown by the following equations:

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

The evaluation of 5! would proceed as shown in Fig. 10.9. Figure 10.9 (a) shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1, which terminates the
recursion. Figure 10.9 (b) shows the values returned from each recursive call to its caller
until the final value is calculated and returned.

Figure 10.10 uses recursion to calculate and print the factorials of the integers 0 to 10.
The recursive function factorial first tests (line 25) to see if a terminating condition is
true (i.e., if number less than or equal to 1). If number is indeed less than or equal to
1, factorial returns 1, no further recursion is necessary and the function returns. If
number is greater than 1, line 28 expresses the problem as the product of number and a
recursive call to factorial evaluating the factorial of number - 1. Note that facto-
rial(number - 1) is a slightly simpler problem than the original calculation, fac-
torial(number).

Fig. 10.9Fig. 10.9Fig. 10.9Fig. 10.9 Recursive evaluation of 5!.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <!-- Fig. 10.10: FactorialTest.html -->
5 <!-- Recursive factorial example -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Recursive Factorial Function</title>

10

Fig. 10.10Fig. 10.10Fig. 10.10Fig. 10.10 Calculating factorials with a recursive function (part 1 of 2).

5!

5 * 4!

 4 * 3!

 3 * 2!

 2 * 1!

 1

5!

5 * 4!

 4 * 3!

 3 * 2!

 2 * 1!

 1

(a) Procession of recursive calls. (b) Values returned from each recursive call.

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

2! = 2 * 1 = 2 is returned

3! = 3 * 2 = 6 is returned

1 returned

iw3htp2.book Page 343 Wednesday, July 18, 2001 9:01 AM

344 JavaScript: Functions Chapter 10

Function factorial (line 23) receives as its argument the value for which to calcu-
late the factorial. As can be seen in the screen capture in Fig. 10.10, factorial values become
large quickly. Because JavaScript uses floating-point numeric representations, we are able
to calculate factorials of larger numbers.

11 <script language = "javascript">
12 document.writeln("<h1>Factorials of 1 to 10</h1>");
13 document.writeln(
14 "<table border = '1' width = '100%'>");
15
16 for (var i = 0; i <= 10; i++)
17 document.writeln("<tr><td>" + i + "!</td><td>" +
18 factorial(i) + "</td></tr>");
19
20 document.writeln("</table>");
21
22 // Recursive definition of function factorial
23 function factorial(number)
24 {
25 if (number <= 1) // base case
26 return 1;
27 else
28 return number * factorial(number - 1);
29 }
30 </script>
31 </head><body></body>
32 </html>

Fig. 10.10Fig. 10.10Fig. 10.10Fig. 10.10 Calculating factorials with a recursive function (part 2 of 2).

iw3htp2.book Page 344 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 345

Common Programming Error 10.6
Forgetting to return a value from a recursive function when one is needed results in a logic
error. 10.6

Common Programming Error 10.7
Either omitting the base case or writing the recursion step incorrectly so that it does not con-
verge on the base case will cause infinite recursion, eventually exhausting memory. This sit-
uation is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution. 10.7

Testing and Debugging Tip 10.3
Internet Explorer displays a message when a script takes an unusually long time to execute.
This information allows the user of the Web page to recover from a script that contains an
infinite loop or infinite recursion. 10.3

10.11 Example Using Recursion: Fibonacci Series
The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the sum
of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of
successive Fibonacci numbers converges on a constant value of 1.618…. This number, too,
repeatedly occurs in nature and has been called the golden ratio or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win-
dows, rooms and buildings whose length and width are in the ratio of the golden mean.
Postcards are often designed with a golden mean length/width ratio.

The Fibonacci series may be defined recursively as follows:

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

Note that there are two base cases for the Fibonacci calculation: fibonacci(0) is defined to
be 0, and fibonacci(1) is defined to be 1. The script of Fig. 10.11 calculates the ith Fibonacci
number recursively, using function fibonacci. Lines 36–45 define an XHTML form
(myForm) consisting of two text fields and a button. The user enters an integer in the first
text field (number), indicating the ith Fibonacci number to calculate, and clicks the Cal-
culate button. When the event occurs, function getFibonacciValue (defined at line
14) executes in response to the user-interface event and calls recursive function fi-
bonacci (defined at line 25) to calculate the specified Fibonacci number. Notice that Fi-
bonacci numbers tend to become large quickly. In Fig. 10.11, the screen captures show the
results of calculating several Fibonacci numbers.

The event handling in this example is similar to the event handling of the Craps script
in Fig. 10.6. Lines 40–41 define the form’s button and define getFibonacciValue as
the event handler for the button’s onclick event. When getFibonacciValue is
called, it converts from a string to an integer the value the user typed into the number text
field (lines 16–17). Then, the value is displayed in the browser’s status bar (lines 18–19).
Next, the value is passed to function fibonacci (line 20), and the result is displayed in

iw3htp2.book Page 345 Wednesday, July 18, 2001 9:01 AM

346 JavaScript: Functions Chapter 10

the text field result (line 20). Finally, a message is displayed in the browser’s status bar,
indicating that the call to function fibonacci is complete (line 21).

The call to fibonacci (line 20) from getFibonacciValue is not a recursive
call, but all subsequent calls to fibonacci are recursive. Each time fibonacci is
invoked, it immediately tests for the base case—n equal to 0 or 1. If this condition is true,
n is returned (fibonacci(0) is 0, and fibonacci(1) is 1). Interestingly, if n is greater than 1,
the recursion step generates two recursive calls, each of which is for a slightly simpler
problem than the original call to fibonacci. Figure 10.12 shows how function
fibonacci evaluates fibonacci(3); we abbreviate fibonacci as f to make the
figure more readable.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4 <!-- Fig. 10.11: FibonacciTest.html -->
5 <!-- Recursive Fibonacci example -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Recursive Fibonacci Function</title>

10
11 <script language = "javascript">
12
13 // Event handler for button XHTML component in myForm
14 function getFibonacciValue()
15 {
16 var value = parseInt(
17 document.myForm.number.value);
18 window.status =
19 "Calculating Fibonacci number for " + value;
20 document.myForm.result.value = fibonacci(value);
21 window.status = "Done calculating Fibonacci number";
22 }
23
24 // Recursive definition of function fibonacci
25 function fibonacci(n)
26 {
27 if (n == 0 || n == 1) // base case
28 return n;
29 else
30 return fibonacci(n - 1) + fibonacci(n - 2);
31 }
32 </script>
33 </head>
34
35 <body>
36 <form name = "myForm">
37 <table border = "1">
38 <tr><td>Enter an integer</td>
39 <td><input name = "number" type = "text"></td>

Fig. 10.11Fig. 10.11Fig. 10.11Fig. 10.11 Recursively generating Fibonacci numbers (part 1 of 2).

iw3htp2.book Page 346 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 347

This figure raises some interesting issues about the order in which JavaScript inter-
preters will evaluate the operands of operators. This issue is different than the order in
which operators are applied to their operands, namely the order dictated by the rules of
operator precedence. From Fig. 10.12, it appears that while evaluating f(3), two recursive
calls will be made, namely f(2) and f(1). But in what order will these calls be made?
Most programmers assume that the operands will be evaluated from left to right. In JavaS-
cript, this assumption is true.

40 <td><input type = "button" value = "Calculate"
41 onclick = "getFibonacciValue()"</tr>
42 <tr><td>Fibonacci value</td>
43 <td><input name = "result" type = "text"></td></tr>
44 </table>
45 </form></body>
46 </html>

Fig. 10.11Fig. 10.11Fig. 10.11Fig. 10.11 Recursively generating Fibonacci numbers (part 2 of 2).

iw3htp2.book Page 347 Wednesday, July 18, 2001 9:01 AM

348 JavaScript: Functions Chapter 10

The C and C++ languages (on which many of JavaScript’s features are based) do not
specify the order in which the operands of most operators (including +) are evaluated.
Therefore, the programmer can make no assumption in those languages about the order in
which these calls execute. The calls could, in fact execute f(2) first and f(1) second, or
the calls could execute in the reverse order: f(1)first and f(2) second. In this program
and in most other programs, it turns out that the final result would be the same. But in some
programs, the evaluation of an operand may have side effects that could affect the final
result of the expression.

The JavaScript language specifies that the order of evaluation of the operands is from
left to right. Thus, the function calls are, in fact, f(2) first and f(1) second.

Good Programming Practice 10.8
Do not write expressions that depend on the order of evaluation of the operands of an oper-
ator. This often results in programs that are difficult to read, debug, modify and maintain. 10.8

A word of caution is in order about recursive programs like the one we use here to gen-
erate Fibonacci numbers. Each invocation of the fibonacci function that does not match
one of the base cases (i.e., 0 or 1) results in two more recursive calls to the fibonacci
function. This set of calling rapidly gets out of hand. Calculating the Fibonacci value of 20
using the program in Fig. 10.11 requires 21,891 calls to the fibonacci function; calcu-
lating the Fibonacci value of 30 requires 2,692,537 calls to the fibonacci function.

As you try to calculate larger Fibonacci values, you will notice that each consecutive
Fibonacci number you ask the script to calculate results in a substantial increase in calcu-
lation time and number of calls to the fibonacci function. For example, the Fibonacci
value of 31 requires 4,356,617 calls, and the Fibonacci value of 32 requires 7,049,155 calls.
As you can see, the number of calls to fibonacci is increasing quickly—1,664,080 addi-
tional calls between Fibonacci values of 30 and 31, and 2,692,538 additional calls between
Fibonacci values of 31 and 32. This difference in the number of calls made between
Fibonacci values of 31 and 32 is more than 1.5 times the difference between Fibonacci
values of 30 and 31. Problems of this nature humble even the world’s most powerful com-

Fig. 10.12Fig. 10.12Fig. 10.12Fig. 10.12 Set of recursive calls to function fibonacci.

f(3)

f(1)f(2)

f(1) f(0) return 1

return 1 return 0

return +

+return

iw3htp2.book Page 348 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 349

puters! Computer scientists study, in the field of complexity theory, how hard algorithms
have to work to do their jobs. Complexity issues are discussed in detail in the upper level
computer science curriculum course generally called “Algorithms.”
 Performance Tip 10.3

Avoid Fibonacci-style recursive programs, which result in an exponential “explosion” of
calls. 10.3

10.12 Recursion vs. Iteration
In the previous sections, we studied two functions that can easily be implemented either re-
cursively or iteratively. In this section, we compare the two approaches and discuss why
the programmer might choose one approach over the other in a particular situation.

Both iteration and recursion are based on a control structure: Iteration uses a repetition
structure (such as for, while or do/while); recursion uses a selection structure (such
as if, if/else or switch). Both iteration and recursion involve repetition: Iteration
explicitly uses a repetition structure; recursion achieves repetition through repeated func-
tion calls. Iteration and recursion each involve a termination test: Iteration terminates when
the loop-continuation condition fails; recursion terminates when a base case is recognized.
Iteration with counter-controlled repetition and recursion both gradually approach termina-
tion: Iteration keeps modifying a counter until the counter assumes a value that makes the
loop-continuation condition fail; recursion keeps producing simpler versions of the original
problem until the base case is reached. Both iteration and recursion can occur infinitely: An
infinite loop occurs with iteration if the loop-continuation test never becomes false; infinite
recursion occurs if the recursion step does not reduce the problem each time via a sequence
that converges on the base case, or if the base case is incorrect.

Recursion has many negatives. It repeatedly invokes the mechanism and, conse-
quently, the overhead of function calls. This effect can be expensive in terms of both pro-
cessor time and memory space. Each recursive call causes another copy of the function
(actually, only the function’s variables) to be created; this effect can consume a consider-
able amount of memory. Iteration, on the other hand, normally occurs within a function, so
the overhead of repeated function calls and extra memory assignment is omitted. So why
choose recursion?

Software Engineering Observation 10.12
Any problem that can be solved recursively can also be solved iteratively (nonrecursively).
A recursive approach is normally chosen in preference to an iterative approach when the re-
cursive approach more naturally mirrors the problem and results in a program that is easier
to understand and debug. Another reason to choose a recursive solution is that an iterative
solution may not be apparent. 10.12

Performance Tip 10.4
Avoid using recursion in performance-oriented situations. Recursive calls take time and con-
sume additional memory. 10.4

Common Programming Error 10.8
Accidentally having a nonrecursive function call itself, either directly, or indirectly through
another function, can cause infinite recursion. 10.8

iw3htp2.book Page 349 Wednesday, July 18, 2001 9:01 AM

350 JavaScript: Functions Chapter 10

Most programming textbooks introduce recursion much later than we have done here.
We feel that recursion is a sufficiently rich and complex topic that it is better to introduce
it earlier and spread examples of it over the remainder of the JavaScript chapters. Figure
10.13 summarizes the recursion examples and exercises in the text.

Let us reconsider some observations we make repeatedly throughout the book. Good
software engineering is important. High performance is often important. Unfortunately,
these goals are often at odds with one another. Good software engineering is key to
making more manageable the task of developing larger and more complex software sys-
tems. High performance in these systems is key to realizing the systems of the future, which
will place ever greater computing demands on hardware. Where do functions fit in here?

Software Engineering Observation 10.13
Modularizing programs in a neat, hierarchical manner promotes good software engineering,
sometimes at the expense of performance. 10.13

Performance Tip 10.5
A heavily modularized program—as compared with a monolithic (i.e., one-piece) program
without functions—makes potentially large numbers of function calls, which consume execu-
tion time and space on a computer’s processor(s). But monolithic programs are difficult to
program, test, debug, maintain and evolve. So modularize your programs judiciously, always
keeping in mind the delicate balance between performance and good software engineering. 10.5

Chapter Recursion examples and exercises

10 Factorial function
Greatest common divisor
Sum of two integers
Multiply two integers
Raising an integer to an integer power
Towers of Hanoi
Visualizing recursion

11 Sum the elements of an array
Print an array
Print an array backward
Check if a string is a palindrome
Minimum value in an array
Selection sort
Eight Queens
Linear search
Binary search
Quicksort
Maze traversal

12 Printing a string input at the keyboard backward

Fig. 10.13Fig. 10.13Fig. 10.13Fig. 10.13 Summary of recursion examples and exercises in the text.

iw3htp2.book Page 350 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 351

10.13 JavaScript Internet and World Wide Web Resources
rummelplatz.uni-mannheim.de/~skoch/js/tutorial.htm
Voodoo’s Introduction to JavaScript teaches how to program in JavaScript.

www.stars.com/Authoring/JavaScript/Tutorial/functions.html
This site provides a tutorial on JavaScript functions.

www.w3schools.com/js/js_functions.asp
This URL provides an introduction to JavaScript functions.

SUMMARY
• Experience has shown that the best way to develop and maintain a large program is to construct it

from small, simple pieces, or modules. This technique is called divide and conquer.

• Modules in JavaScript are called functions. JavaScript programs are written by combining new
functions that the programmer writes with “prepackaged” functions and objects available in Java-
Script.

• The “prepackaged” functions that belong to JavaScript objects are often called methods. The term
method implies that the function belongs to a particular object.

• The programmer can write programmer-defined functions to define specific tasks that may be used
at many points in a script. The actual statements defining the function are written only once and
are hidden from other functions.

• A function is invoked by a function call. The function call specifies the function name and pro-
vides information (as arguments) that the called function needs to do its task.

• Functions allow the programmer to modularize a program.

• All variables declared in function definitions are local variables—they are known only in the func-
tion in which they are defined.

• Most functions have parameters that provide the means for communicating information between
functions via function calls. A function’s parameters are also considered to be local variables.

• The divide-and-conquer approach to program development makes program development more
manageable.

• Using existing functions as building blocks with which to create new programs promotes software
reusability. With good function naming and definition, programs can be created from standardized
functions rather than be built by using customized code.

• The () represent the function-call operator.

• The return statement passes the result of a function call back to the calling function.

• The format of a function definition is

function function-name(parameter-list)
{
 declarations and statements
}

The function-name is any valid identifier. The parameter-list is a comma-separated list containing
the names of the parameters received by the function when it is called. There should be one argu-
ment in the function call for each parameter in the function definition. If a function does not re-
ceive any values, the parameter-list is empty (i.e., the function name is followed by an empty set
of parentheses).

iw3htp2.book Page 351 Wednesday, July 18, 2001 9:01 AM

352 JavaScript: Functions Chapter 10

• The declarations and statements within braces form the function body. The function body is also
referred to as a block. A block is a compound statement that includes declarations. Variables can
be declared in any block, and blocks can be nested.

• There are three ways to return control to the point at which a function was invoked. If the function
does not return a result, control is returned when the function-ending right brace is reached or by
executing the statement

return;

• If the function does return a result, the statement

return expression;

returns the value of expression to the caller. When a return statement is executed, control re-
turns immediately to the point at which the function was invoked.

• The Math object max method determines the larger of its two argument values.

• The Math object random method generates numeric values from 0.0 up to, but not including, 1.0.

• Math method floor rounds its floating-point number argument to the closest integer not greater
than its argument’s value.

• The values produced directly by random are always in the range

0.0 ≤ Math.random() < 1.0

• We can generalize picking a random number from a range of values by writing

value = Math.floor(a + Math.random() * b);

where a is the shifting value (the first number in the desired range of consecutive integers) and b
is the scaling factor (the width of the desired range of consecutive integers).

• Graphical-user-interface event handling enables JavaScript code to execute in response to the us-
er’s interaction with a GUI component in an XHTML form. This interaction causes an event.
Scripts are often used to respond to events.

• Specifying the name attribute of an XHTML <form> enables script code to refer to the elements
of the form. This attribute helps a script distinguish between multiple forms in the same XHTML
document. Similarly, the name attribute is specified for each GUI component in the form, so the
script code can individually refer to each GUI component.

• An XHTML button’s attribute onclick indicates the action to take when the user clicks the button.

• When the user interacts with a GUI component, the script is notified of the event and processes the
event. The user’s interaction with the GUI “drives” the program. This style of programming is
known as event-driven programming.

• The clicking of the button (or any other GUI interaction) is known as the event. The function that
is called when an event occurs is known as an event-handling function, or event handler. When a
GUI event occurs in a form, the browser automatically calls the specified event-handling function.

• The value property specifies the text to display in an XHTML text-field GUI component.

• The dot operator (.) is known as the field-access operator, or the member-access operator.

• Each identifier in a program has many attributes, including duration and scope.

• An identifier’s duration, or lifetime, is the period during which the identifier exists in memory.

• Identifiers that represent local variables in a function have automatic duration. Automatic-duration
variables are created when program control enters the function in which they are declared; they

iw3htp2.book Page 352 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 353

exist while the function in which they are declared is active; and they are destroyed when the func-
tion in which they are declared is exited.

• Identifiers of static duration are typically defined in the <head> section of the XHTML document
and exist from the point at which the <head> section of the XHTML document is interpreted until
the browsing session terminates.

• Variables of static duration are normally called global variables, or script-level variables.

• The scope of an identifier for a variable or function is the portion of the program in which the iden-
tifier can be referenced. The scopes for an identifier are global scope and function (or local) scope.

• Event onload calls an event handler when the <body> of the XHTML document is loaded into
the browser.

• Identifiers declared inside a function have function (or local) scope. Function scope begins with
the opening left brace ({) of the function in which the identifier is declared and ends at the termi-
nating right brace (}) of the function. Local variables of a function have function scope, as do
function parameters, which are also local variables of the function.

• If a local variable in a function has the same name as a global variable, the global variable is “hid-
den” from the body of the function.

• Function escape takes a string argument and returns a string in which all spaces, punctuation,
accent characters and any other character that is not in the ASCII character set are encoded in a
hexadecimal format that can be represented on all platforms.

• Function eval takes a string argument representing JavaScript code to execute. The JavaScript
interpreter evaluates the code and executes it when the eval function is called.

• Function isFinite takes a numeric argument and returns true if the value of the argument is
not NaN, Number.POSITIVE_INFINITY or Number.NEGATIVE_INFINITY; otherwise,
the function returns false.

• Function isNaN takes a numeric argument and returns true if the value of the argument is not
a number; otherwise, the function returns false.

• Function parseFloat takes a string argument and attempts to convert the beginning of the
string into a floating-point value. If the conversion is not successful, the function returns NaN; oth-
erwise, it returns the converted value.

• Function parseInt takes a string argument and attempts to convert the beginning of the string
into an integer value. If the conversion is not successful, the function returns NaN; otherwise, it
returns the converted value. This function takes an optional second argument between 2 and 36
specifying the radix (or base) of the number.

• Function unescape takes a string as its argument and returns a string in which all characters that
were previously encoded with escape are decoded.

• JavaScript’s global functions are all part of the Global object, which also contains all the global
variables in the script and all the user-defined functions in the script.

• A recursive function is a function that calls itself, either directly or indirectly.

• If a recursive function is called with a base case, the function returns a result. If the function is
called with a more complex problem, the function divides the problem into two or more conceptual
pieces: A piece that the function knows how to do, and a slightly smaller version of the original
problem. Because this new problem looks like the original problem, the function launches a recur-
sive call to work on the smaller problem.

• For recursion to terminate, each time the recursive function calls itself with a slightly simpler ver-
sion of the original problem, the sequence of smaller and smaller problems must converge on the
base case. When the function recognizes the base case, the result is returned to the previous func-

iw3htp2.book Page 353 Wednesday, July 18, 2001 9:01 AM

354 JavaScript: Functions Chapter 10

tion call, and a sequence of returns ensues all the way up the line until the original call of the func-
tion eventually returns the final result.

• Both iteration and recursion are based on a control structure: Iteration uses a repetition structure;
recursion uses a selection structure.

• Both iteration and recursion involve repetition: Iteration explicitly uses a repetition structure; re-
cursion achieves repetition through repeated function calls.

• Iteration and recursion each involve a termination test: Iteration terminates when the loop-contin-
uation condition fails; recursion terminates when a base case is recognized.

• Iteration and recursion can occur infinitely: An infinite loop occurs with iteration if the loop-con-
tinuation test never becomes false; infinite recursion occurs if the recursion step does not reduce
the problem in a manner that converges on the base case.

• Recursion repeatedly invokes the mechanism and, consequently, the overhead of function calls.
This effect can be expensive in term of both processor time and memory space.

TERMINOLOGY
argument in a function call global scope
automatic duration global variable
automatic variable invoke a function
base case isFinite function
block isNaN function
call a function lifetime
called function local scope
caller local variable
calling function max method of the Math object
compound statement member-access operator (.)
converge on the base case method
copy of a value modularize a program
divide and conquer module
dot operator (.) name attribute of an XHTML <form>
duration onclick
escape function onload
eval function parameter in a function definition
event parseFloat function
event handler parseInt function
event-driven programming programmer-defined function
field-access operator (.) random method of the Math object
floor method of the Math object random-number generation
function recursion
function argument recursive function
function body recursive step
function call respond to an event
function definition return statement
function keyword scaling
function name scaling factor
function parameter scope
function scope script-level variable
function-call operator () shifting
Global object shifting value

iw3htp2.book Page 354 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 355

SELF-REVIEW EXERCISES
10.1 Fill in the blanks in each of the following statements:

a) Program modules in JavaScript are called .
b) A function is invoked with a .
c) A variable known only within the function in which it is defined is called a .
d) The statement in a called function can be used to pass the value of an expres-

sion back to the calling function.
e) The keyword indicates the beginning of a function definition.

10.2 For the given program, state the scope (either global scope or function scope) of each of the
following elements:

a) The variable x.
b) The variable y.
c) The function cube.
d) The function output.

script-level variable software engineering
shifting software reusability
shifting value static duration
side effect unescape function
signature value property of an XHTML text field
simulation

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Exercise 10.2: scoping.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Scoping</title>

10
11 <script type = "text/javascript">
12 <!--
13 var x;
14
15 function output()
16 {
17 for (var x = 1; x <= 10; x++)
18 document.writeln(cube(x) + "
");
19 }
20
21 function cube(y)
22 {
23 return y * y * y;
24 }
25 // -->
26 </script>
27
28 </head><body onload = "output()"></body>
29 </html>

iw3htp2.book Page 355 Wednesday, July 18, 2001 9:01 AM

356 JavaScript: Functions Chapter 10

10.3 Fill in the blanks in each of the following statements:
a) Programmer-defined functions, global variables and JavaScript’s global functions are all

part of the object.
b) Function determines if its argument is or is not a number.
c) Function takes a string argument and returns a string in which all spaces,

punctuation, accent characters and any other character that is not in the ASCII character
set are encoded in a hexadecimal format.

d) Function takes a string argument representing JavaScript code to execute.
e) Function takes a string as its argument and returns a string in which all char-

acters that were previously encoded with escape are decoded.

10.4 Fill in the blanks in each of the following statements:
a) The of an identifier is the portion of the program in which the identifier can

be used.
b) The three ways to return control from a called function to a caller are ,

 and .
c) The function is used to produce random numbers.
d) Variables declared in a block or in a function’s parameter list are of duration.

10.5 Locate the error in each of the following program segments, and explain how to correct the
error:

a) method g() {
 document.writeln("Inside method g");
}

b) // This function should return the sum of its arguments
function sum(x, y) {
 var result;
 result = x + y;
}

c) function f(a); {
 document.writeln(a);
}

10.6 Write a complete JavaScript program to prompt the user for the radius of a sphere, and call
function sphereVolume to calculate and display the volume of that sphere. Use the statement

volume = (4.0 / 3.0) * Math.PI * Math.pow(radius, 3);

to calculate the volume. The user should input the radius through an XHTML text field in a <form>
and clicks an XHTML button to initiate the calculation.

ANSWERS TO SELF-REVIEW EXERCISES
10.1 a) functions. b) function call. c) local variable. d) return. e) function.

10.2 a) Global scope. b) Function scope. c) Global scope. d) Global scope.

10.3 a) Global. b) isNaN. c) escape. d) eval. e) unescape.

10.4 a) scope. b) return; or return expression; or encountering the closing right brace of
a function. c) Math.random. e) automatic.

10.5 a) Error: method is not the keyword used to begin a function definition.
Correction: Change method to function.

iw3htp2.book Page 356 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 357

b) Error: The function is supposed to return a value, but does not.
Correction: Delete variable result, and either place the statement
 return x + y;
in the function or add the following statement at the end of the function body:
 return result;

c) Error: The semicolon after the right parenthesis that encloses the parameter list.
Correction: Delete the semicolon after the right parenthesis of the parameter list.

10.6 The following solution calculates the volume of a sphere using the radius entered by the user.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Exercise 10.6: volume.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Calculating Sphere Volumes</title>

10
11 <script type = "text/javascript">
12 <!--
13 function displayVolume()
14 {
15 var radius = parseFloat(myForm.radiusField.value);
16 window.status = "Volume is " + sphereVolume(radius);
17 }
18
19 function sphereVolume(r)
20 {
21 return (4.0 / 3.0) * Math.PI * Math.pow(r, 3);
22 }
23 // -->
24 </script>
25
26 </head>
27
28 <body>
29 <form name = "myForm" action = "">
30 Enter radius of sphere

31 <input name = "radiusField" type = "text" />
32 <input name = "calculate" type = "button" value =
33 "Calculate" onclick = "displayVolume()" />
34 </form>
35 </body>
36 </html>

iw3htp2.book Page 357 Wednesday, July 18, 2001 9:01 AM

358 JavaScript: Functions Chapter 10

EXERCISES
10.7 Write a script that uses a function circleArea to prompt the user for the radius of a circle
and to calculate and print the area of that circle.

10.8 A parking garage charges a $2.00 minimum fee to park for up to three hours. The garage
charges an additional $0.50 per hour for each hour or part thereof in excess of three hours. The max-
imum charge for any given 24-hour period is $10.00. Assume that no car parks for longer than 24
hours at a time. Write a script that calculates and displays the parking charges for each customer who
parked a car in this garage yesterday. You should input from the user the hours parked for each cus-
tomer. The program should display the charge for the current customer and should calculate and dis-
play the running total of yesterday's receipts. The program should use the function
calculateCharges to determine the charge for each customer. Use the techniques described in
Self-Review Exercise 10.6 to obtain the input from the user.

10.9 Write function distance that calculates the distance between two points (x1, y1) and (x2,
y2). All numbers and return values should be floating-point values. Incorporate this function into a
script that enables the user to enter the coordinates of the points through an XHTML form.

10.10 Answer each of the following questions:
a) What does it mean to choose numbers “at random”?
b) Why is the Math.random function useful for simulating games of chance?
c) Why is it often necessary to scale and/or shift the values produced by Math.random?
d) Why is computerized simulation of real-world situations a useful technique?

10.11 Write statements that assign random integers to the variable n in the following ranges:
a) 1 ≤ n ≤ 2
b) 1 ≤ n ≤ 100
c) 0 ≤ n ≤ 9
d) 1000 ≤ n ≤ 1112
e) –1 ≤ n ≤ 1
f) –3 ≤ n ≤ 11

10.12 For each of the following sets of integers, write a single statement that will print a number at
random from the set:

a) 2, 4, 6, 8, 10.
b) 3, 5, 7, 9, 11.
c) 6, 10, 14, 18, 22.

10.13 Write a function integerPower(base, exponent) that returns the value of

base exponent

For example, integerPower(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is a positive,
nonzero integer and base is an integer. Function integerPower should use a for or while
structure to control the calculation. Do not use any math library functions. Incorporate this function
into a script that reads integer values from an XHTML form for base and exponent and performs
the calculation with the integerPower function. The XHTML form should consist of two text
fields and a button to initiate the calculation. The user should interact with the program by typing
numbers in both text fields and then clicking the button.

10.14 Write a function multiple that determines, for a pair of integers, whether the second inte-
ger is a multiple of the first. The function should take two integer arguments and return true if the
second is a multiple of the first, and false otherwise. Incorporate this function into a script that in-
puts a series of pairs of integers (one pair at a time, using JTextFields). The XHTML form should

iw3htp2.book Page 358 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 359

consist of two text fields and a button to initiate the calculation. The user should interact with the pro-
gram by typing numbers in both text fields, and then clicking the button.

10.15 Write a script that inputs integers (one at a time) and passes them one at a time to function
isEven, which uses the modulus operator to determine if an integer is even. The function should
take an integer argument and return true if the integer is even and false otherwise. Use sentinel-
controlled looping and a prompt dialog.

10.16 Write a function squareOfAsterisks that displays a solid square of asterisks whose
side is specified in integer parameter side. For example, if side is 4, the function displays

Incorporate this function into a script that reads an integer value for side from the user at the key-
board and performs the drawing with the squareOfAsterisks function.

10.17 Modify the function created in Exercise 10.16 to form the square out of whatever character
is contained in parameter fillCharacter. Thus, if side is 5 and fillCharacter is “#”, the
function should print

#####
#####
#####
#####
#####

10.18 Write program segments that accomplish each of the following tasks:
a) Calculate the integer part of the quotient when integer a is divided by integer b.
b) Calculate the integer remainder when integer a is divided by integer b.
c) Use the program pieces developed in parts (a) and (b) to write a function displayDig-

its that receives an integer between 1 and 99999 and prints it as a series of digits, each
pair of which is separated by two spaces. For example, the integer 4562 should be print-
ed as
 4 5 6 2.

d) Incorporate the function developed in part (c) into a script that inputs an integer from a
prompt dialog and invokes displayDigits by passing to the function the integer
entered.

10.19 Implement the following functions:
a) Function celsius returns the Celsius equivalent of a Fahrenheit temperature, using the

calculation

C = 5.0 / 9.0 * (F - 32);

b) Function fahrenheit returns the Fahrenheit equivalent of a Celsius temperature, us-
ing the calculation

F = 9.0 / 5.0 * C + 32;

c) Use these functions to write a script that enables the user to enter either a Fahrenheit or
a Celsius temperature and displays the Celsius or Fahrenheit equivalent, respectively.

Your XHTML document should contain two buttons—one to initiate the conversion from Fahrenheit
to Celsius and one to initiate the conversion from Celsius to Fahrenheit.

iw3htp2.book Page 359 Wednesday, July 18, 2001 9:01 AM

360 JavaScript: Functions Chapter 10

10.20 Write a function minimum3 that returns the smallest of three floating-point numbers. Use
the Math.min function to implement minimum3. Incorporate the function into a script that reads
three values from the user and determines the smallest value. Display the result in the status bar.

10.21 An integer number is said to be a perfect number if its factors, including 1 (but not the number
itself), sum to the number. For example, 6 is a perfect number, because 6 = 1 + 2 + 3. Write a function
perfect that determines whether parameter number is a perfect number. Use this function in a
script that determines and displays all the perfect numbers between 1 and 1000. Print the factors of
each perfect number to confirm that the number is indeed perfect. Challenge the computing power of
your computer by testing numbers much larger than 1000. Display the results in a <textarea>.

10.22 An integer is said to be prime if it is divisible by only 1 and itself. For example, 2, 3, 5 and 7
are prime, but 4, 6, 8 and 9 are not.

a) Write a function that determines whether a number is prime.
b) Use this function in a script that determines and prints all the prime numbers between 1

and 10,000. How many of these 10,000 numbers do you really have to test before being
sure that you have found all the primes? Display the results in a <textarea>.

c) Initially, you might think that n/2 is the upper limit for which you must test to see whether
a number is prime, but you only need go as high as the square root of n. Why? Rewrite
the program, and run it both ways. Estimate the performance improvement.

10.23 Write a function that takes an integer value and returns the number with its digits reversed.
For example, given the number 7631, the function should return 1367. Incorporate the function into
a script that reads a value from the user. Display the result of the function in the status bar.

10.24 The greatest common divisor (GCD) of two integers is the largest integer that evenly divides
each of the two numbers. Write a function gcd that returns the greatest common divisor of two inte-
gers. Incorporate the function into a script that reads two values from the user. Display the result of
the function in the browser’s status bar.

10.25 Write a function qualityPoints that inputs a student’s average and returns 4 if the stu-
dent's average is 90–100, 3 if the average is 80–89, 2 if the average is 70–79, 1 if the average is 60–
69 and 0 if the average is lower than 60. Incorporate the function into a script that reads a value from
the user. Display the result of the function in the browser’s status bar.

10.26 Write a script that simulates coin tossing. Let the program toss the coin each time the user
clicks the “Toss” button. Count the number of times each side of the coin appears. Display the re-
sults. The program should call a separate function flip that takes no arguments and returns false
for tails and true for heads. [Note: If the program realistically simulates the coin tossing, each side
of the coin should appear approximately half the time.]

10.27 Computers are playing an increasing role in education. Write a program that will help an el-
ementary school student learn multiplication. Use Math.random to produce two positive one-digit
integers. It should then display a question such as

How much is 6 times 7?

The student then types the answer into a text field. Your program checks the student's answer. If it is
correct, display the string "Very good!" in the browser’s status bar, and generate a new question.
If the answer is wrong, display the string "No. Please try again." in the browser’s status bar,
and let the student try the same question again repeatedly until the student finally gets it right. A sep-
arate function should be used to generate each new question. This function should be called once
when the script begins execution and each time the user answers the question correctly.

10.28 The use of computers in education is referred to as computer-assisted instruction (CAI). One
problem that develops in CAI environments is student fatigue. This problem can be eliminated by

iw3htp2.book Page 360 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 361

varying the computer's dialogue to hold the student's attention. Modify the program of Exercise 10.27
print one of a variety of comments for each correct answer and each incorrect answer. The set of re-
sponses for correct answers is as follows:

Very good!
Excellent!
Nice work!
Keep up the good work!

The set of responses for incorrect answers is as follows:

No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.

Use random-number generation to choose a number from 1 to 4 that will be used to select an appro-
priate response to each answer. Use a switch structure to issue the responses.

10.29 More sophisticated computer-aided instruction systems monitor the student’s performance
over a period of time. The decision to begin a new topic is often based on the student’s success with
previous topics. Modify the program of Exercise 10.28 to count the number of correct and incorrect
responses typed by the student. After the student answers 10 questions, your program should calculate
the percentage of correct responses. If the percentage is lower than 75%, print Please ask your
instructor for extra help, and reset the program so another student can try it.

10.30 Write a script that plays a “guess the number” game as follows: Your program chooses the
number to be guessed by selecting a random integer in the range 1 to 1000. The script displays the
prompt Guess a number between 1 and 1000 next to a text field. The player types a first guess
into the text field and clicks a button to submit the guess to the script. If the player's guess is incorrect,
your program should display Too high. Try again. or Too low. Try again. in the brows-
er’s status bar to help the player “zero in” on the correct answer and should clear the text field so the
user can enter the next guess. When the user enters the correct answer, display Congratula-
tions. You guessed the number! in the status bar, and clear the text field so the user can play
again. [Note: The guessing technique employed in this problem is similar to a binary search.]

10.31 Modify the program of Exercise 10.30 to count the number of guesses the player makes. If
the number is 10 or fewer, display Either you know the secret or you got lucky! If the
player guesses the number in 10 tries, display Ahah! You know the secret! If the player makes
more than 10 guesses, display You should be able to do better! Why should it take no more
than 10 guesses? Well, with each “good guess,” the player should be able to eliminate half of the num-
bers. Now show why any number 1 to 1000 can be guessed in 10 or fewer tries.

10.32 Exercises 10.27 through 10.29 developed a computer-assisted instruction program to teach
an elementary school student multiplication. This exercise suggests enhancements to that program.

a) Modify the program to allow the user to enter a grade-level capability. A grade level of
1 means to use only single-digit numbers in the problems, a grade level of 2 means to use
numbers as large as two digits, etc.

b) Modify the program to allow the user to pick the type of arithmetic problems he or she
wishes to study. An option of 1 means addition problems only, 2 means subtraction prob-
lems only, 3 means multiplication problems only, 4 means division problems only and 5
means to intermix randomly problems of all these types.

10.33 Modify the craps program of Fig. 10.6 to allow wagering. Initialize variable bankBalance
to 1000 dollars. Prompt the player to enter a wager. Check that the wager is less than or equal to

iw3htp2.book Page 361 Wednesday, July 18, 2001 9:01 AM

362 JavaScript: Functions Chapter 10

bankBalance and, if not, have the user reenter wager until a valid wager is entered. After a valid
wager is entered, run one game of craps. If the player wins, increase bankBalance by wager,
and print the new bankBalance. If the player loses, decrease bankBalance by wager, print the
new bankBalance, check if bankBalance has become zero and, if so, print the message Sor-
ry. You busted! As the game progresses, print various messages to create some “chatter,” such
as Oh, you're going for broke, huh? or Aw c’mon, take a chance! or You're up
big. Now's the time to cash in your chips!. Implement the “chatter” as a separate func-
tion that randomly chooses the string to display.

10.34 Write a recursive function power(base, exponent) that, when invoked, returns

base exponent

for example, power(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is an integer
greater than or equal to 1. (Hint: The recursion step would use the relationship

base exponent = base · base exponent - 1

and the terminating condition occurs when exponent is equal to 1, because

base1 = base

Incorporate this function into a script that enables the user to enter the base and exponent.)

10.35 (Towers of Hanoi) Every budding computer scientist must grapple with certain classic prob-
lems, and the Towers of Hanoi (see Fig. 10.14) is one of the most famous. Legend has it that in a tem-
ple in the Far East, priests are attempting to move a stack of disks from one peg to another. The initial
stack has 64 disks threaded onto one peg and arranged from bottom to top by decreasing size. The
priests are attempting to move the stack from this peg to a second peg, under the constraints that ex-
actly one disk is moved at a time and at no time may a larger disk be placed above a smaller disk. A
third peg is available for temporarily holding disks. Supposedly, the world will end when the priests
complete their task, so there is little incentive for us to facilitate their efforts.

Fig. 10.14Fig. 10.14Fig. 10.14Fig. 10.14 Towers of Hanoi for the case with four disks.

iw3htp2.book Page 362 Wednesday, July 18, 2001 9:01 AM

Chapter 10 JavaScript: Functions 363

Let us assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that will print the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional functions, we would rapidly find our-
selves hopelessly knotted up in managing the disks. Instead, if we attack the problem with recursion
in mind, it immediately becomes tractable. Moving n disks can be viewed in terms of moving only
n – 1 disks (and hence the recursion) as follows:

a) Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
c) Move the n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk (i.e., the base case). This task is
accomplished simply by moving the disk, without the need for a temporary holding area.

Write a script to solve the Towers of Hanoi problem. Allow the user to enter the number of
disks in a text field. Use a recursive tower function with four parameters:

a) The number of disks to be moved
b) The peg on which the disks are initially threaded
c) The peg to which the stack of disks is to be moved
d) The peg to be used as a temporary holding area

Your program should display in a <textarea> the precise instructions it will take to move
the disks from the starting peg to the destination peg. For example, to move a stack of three disks
from peg 1 to peg 3, your program should display the following series of moves:

1 → 3 (This notation means to move one disk from peg 1 to peg 3.)

1 → 2

3 → 2

1 → 3

2 → 1

2 → 3

1 → 3

10.1 Any program that can be implemented recursively can be implemented iteratively, although
sometimes with more difficulty and less clarity. Try writing an iterative version of the Towers of Ha-
noi. If you succeed, compare your iterative version with the recursive version you developed in Ex-
ercise 10.35. Investigate issues of performance, clarity and your ability to demonstrate the correctness
of the programs.

10.2 (Visualizing Recursion) It is interesting to watch recursion “in action.” Modify the factorial
function of Fig. 10.10 to display its local variable and recursive-call parameter. For each recursive
call, display the outputs on a separate line and add a level of indentation. Do your utmost to make the
outputs clear, interesting and meaningful. Your goal here is to design and implement an output format
that helps a person understand recursion better. You may want to add such display capabilities to the
many other recursion examples and exercises throughout the text.

10.3 The greatest common divisor of integers x and y is the largest integer that evenly divides into
both x and y. Write a recursive function gcd that returns the greatest common divisor of x and y.
The gcd of x and y is defined recursively as follows: If y is equal to 0, then gcd(x, y) is x; oth-
erwise, gcd(x, y) is gcd(y, x % y), where % is the modulus operator. Use this function to
replace the one you wrote in the script of Exercise 10.24.

10.4 What does the following function do?

// Parameter b must be a positive
// integer to prevent infinite recursion

iw3htp2.book Page 363 Wednesday, July 18, 2001 9:01 AM

364 JavaScript: Functions Chapter 10

function mystery(a, b)
{
 if (b == 1)
 return a;
 else
 return a + mystery(a, b - 1);
}

10.5 After you determine what the program of Exercise 10.39 does, modify the function to operate
properly after removing the restriction of the second argument being nonnegative. Also, incorporate
the function into a script that enables the user to enter two integers, and test the function.

10.6 Find the error in the following recursive function, and explain how to correct it:

function sum(n)
{
 if (n == 0)
 return 0;
 else
 return n + sum(n);
}

iw3htp2.book Page 364 Wednesday, July 18, 2001 9:01 AM

11
JavaScript: Arrays

Objectives
• To introduce the array data structure.
• To understand the use of arrays to store, sort and

search lists and tables of values.
• To understand how to declare an array, initialize an

array and refer to individual elements of an array.
• To be able to pass arrays to functions.
• To be able to search and sort an array.
• To be able to declare and manipulate multiple-

subscript arrays.
With sobs and tears he sorted out
Those of the largest size …
Lewis Carroll

Attempt the end, and never stand to doubt;
Nothing’s so hard, but search will find it out.
Robert Herrick

Now go, write it before them in a table,
and note it in a book.
Isaiah 30:8

‘Tis in my memory lock’d,
And you yourself shall keep the key of it.
William Shakespeare

iw3htp2.book Page 365 Wednesday, July 18, 2001 9:01 AM

366 JavaScript: Arrays Chapter 11

11.1 Introduction
This chapter serves as an introduction to the important topic of data structures. Arrays are
data structures consisting of related data items (sometimes called collections of data items).
JavaScript arrays are “dynamic” entities, in that they can change size after they are created.
Many of the techniques demonstrated in this chapter are used frequently in the chapters on
Dynamic HTML, as we introduce the collections that allow a script programmer to manip-
ulate every element of an XHTML document dynamically.

11.2 Arrays
An array is a group of memory locations that all have the same name and normally are of
the same type (although this attribute is not required). To refer to a particular location or
element in the array, we specify the name of the array and the position number of the par-
ticular element in the array.

Figure 11.1 shows an array of integer values named c. This array contains 12 elements.
Any one of these elements may be referred to by giving the name of the array followed by
the position number of the particular element in square brackets ([]). The first element in
every array is the zeroth element. Thus, the first element of array c is referred to as c[0],
the second element of array c is referred to as c[1], the seventh element of array c is
referred to as c[6] and, in general, the ith element of array c is referred to as c[i-1].
Array names follow the same conventions as do other identifiers.

The position number in square brackets is called a subscript (or an index). A subscript
must be an integer or an integer expression. If a program uses an expression as a subscript,
then the expression is evaluated to determine the value of the subscript. For example, if we
assume that variable a is equal to 5 and that variable b is equal to 6, then the statement

c[a + b] += 2;

adds 2 to array element c[11]. Note that a subscripted array name is an lvalue—it can
be used on the left side of an assignment to place a new value into an array element.

Outline

11.1 Introduction
11.2 Arrays
11.3 Declaring and Allocating Arrays
11.4 Examples Using Arrays
11.5 References and Reference Parameters
11.6 Passing Arrays to Functions
11.7 Sorting Arrays
11.8 Searching Arrays: Linear Search and Binary Search
11.9 Multiple-Subscripted Arrays
11.10 JavaScript Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2.book Page 366 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 367

Let us examine array c in Fig. 11.1 more closely. The array’s name is c. The length of
array c is 12 and is determined by the following expression:

c.length

Every array in JavaScript knows its own length. The array’s 12 elements are referred to as
c[0], c[1], c[2], …, c[11]. The value of c[0] is -45, the value of c[1] is
6, the value of c[2] is 0, the value of c[7] is 62 and the value of c[11] is 78. To
calculate the sum of the values contained in the first three elements of array c and store the
result in variable sum, we would write

sum = c[0] + c[1] + c[2];

To divide the value of the seventh element of array c by 2 and assign the result to the vari-
able x, we would write

x = c[6] / 2;

Common Programming Error 11.1
It is important to note the difference between the “seventh element of the array” and “array
element seven.” Because array subscripts begin at 0, the “seventh element of the array” has
a subscript of 6, while “array element seven” has a subscript of 7 and is actually the eighth
element of the array. This confusion is a source of “off-by-one” errors. 11.1

Fig. 11.1Fig. 11.1Fig. 11.1Fig. 11.1 A 12-element array.

c[6]

-45

6

0

72

1543

-89

0

62

-3

1

6453

78

Name of array (Note
that all elements of
this array have the
same name, c)

c[0]

c[1]

c[2]

c[3]

c[11]

c[10]

c[9]

c[8]

c[7]

c[5]

c[4]

Position number (index
or subscript) of the
element within array c

iw3htp2.book Page 367 Wednesday, July 18, 2001 9:01 AM

368 JavaScript: Arrays Chapter 11

The brackets that enclose the array subscript are a JavaScript operator. Brackets have
the same level of precedence as do parentheses. The chart in Fig. 11.2 shows the prece-
dence and associativity of the operators introduced to this point in the text. They are
shown from top to bottom in decreasing order of precedence, alongside their associativity
and type.

11.3 Declaring and Allocating Arrays
Arrays occupy space in memory. Actually, an array in JavaScript is an Array object. The
programmer uses operator new to allocate dynamically the number of elements required
by each array. Operator new creates an object as the program executes by obtaining enough
memory to store an object of the type specified to the right of new. The process of creating
new objects is also known as creating an instance, or instantiating an object, and operator
new is known as the dynamic memory allocation operator. Array objects are allocated
with new because arrays are considered to be objects, and all objects must be created with
new. To allocate 12 elements for integer array c, use the statement

var c = new Array(12);

The preceding statement can also be performed in two steps as follows:

var c; // declares the array
c = new Array(12); // allocates the array

When arrays are allocated, the elements are not initialized.

Common Programming Error 11.2
Assuming that the elements of an array are initialized when the array is allocated may result
in logic errors. 11.2

Operators Associativity Type

() [] . left to right highest

++ -- ! right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 11.2Fig. 11.2Fig. 11.2Fig. 11.2 Precedence and associativity of the operators discussed so far.

iw3htp2.book Page 368 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 369

Memory may be reserved for several arrays by using a single declaration. The fol-
lowing declaration reserves 100 elements for array b and 27 elements for array x:

var b = new Array(100), x = new Array(27);

11.4 Examples Using Arrays
The script of Fig. 11.3 uses operator new to allocate an Array of five elements and an
empty array. The script demonstrates initializing an Array of existing elements and also
shows that an Array can grow dynamically to accommodate new elements. The Array’s
values are displayed in XHTML tables. [Note: Many of the scripts in this chapter are exe-
cuted in response to the <body>’s onload event.]

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 11.3: InitArray.html -->
6 <!-- Initializing an Array -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Initializing an Array</title>
11
12 <script type = "text/javascript">
13 <!--
14 // this function is called when the <body> element's
15 // onload event occurs
16 function initializeArrays()
17 {
18 var n1 = new Array(5); // allocate 5-element Array
19 var n2 = new Array(); // allocate empty Array
20
21 // assign values to each element of Array n1
22 for (var i = 0; i < n1.length; ++i)
23 n1[i] = i;
24
25 // create and initialize five-elements in Array n2
26 for (i = 0; i < 5; ++i)
27 n2[i] = i;
28
29 outputArray("Array n1 contains", n1);
30 outputArray("Array n2 contains", n2);
31 }
32
33 // output "header" followed by a two-column table
34 // containing subscripts and elements of "theArray"
35 function outputArray(header, theArray)
36 {
37 document.writeln("<h2>" + header + "</h2>");
38 document.writeln("<table border = \"1\" width =" +
39 "\"100%\">");

Fig. 11.3Fig. 11.3Fig. 11.3Fig. 11.3 Initializing the elements of an array (part 1 of 2).

iw3htp2.book Page 369 Wednesday, July 18, 2001 9:01 AM

370 JavaScript: Arrays Chapter 11

Function initializeArrays (defined at lines 16–31) is called by the browser as
the event handler for the <body>’s onload event. Line 18 creates Array n1 as an array
of five elements. Line 19 creates Array n2 as an empty array.

Lines 22–23 use a for structure to initialize the elements of n1 to their subscript num-
bers (0 to 4). Note the use of zero-based counting (remember, array subscripts start at 0),
so the loop can access every element of the array. Also, note the use of the expression

40
41 document.writeln("<thead><th width = \"100\"" +
42 "align = \"left\">Subscript</th>" +
43 "<th align = \"left\">Value</th></thead><tbody>");
44
45 for (var i = 0; i < theArray.length; i++)
46 document.writeln("<tr><td>" + i + "</td><td>" +
47 theArray[i] + "</td></tr>");
48
49 document.writeln("</tbody></table>");
50 }
51 // -->
52 </script>
53
54 </head><body onload = "initializeArrays()"></body>
55 </html>

Fig. 11.3Fig. 11.3Fig. 11.3Fig. 11.3 Initializing the elements of an array (part 2 of 2).

iw3htp2.book Page 370 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 371

n1.length in the condition for the for structure to determine the length of the array. In
this example, the length of the array is 5, so the loop continues executing as long as the
value of control variable i is less than 5. For a five-element array, the subscript values are
0 through 4, so using the less than operator, <, guarantees that the loop does not attempt to
access an element beyond the end of the array.

 Lines 26–27 use a for structure to add five elements to the Array n2 and initialize
each element to its subscript number (0 to 4). Note that Array n2 grows dynamically to
accommodate the values assigned to each element of the array.

Software Engineering Observation 11.1
JavaScript automatically reallocates an Array when a value is assigned to an element that
is outside the bounds of the original Array. Elements between the last element of the orig-
inal Array and the new element have undefined values. 11.1

Lines 29–30 invoke function outputArray (defined at lines 35–51) to display the
contents of each array in XHTML tables. Function outputArray receives two argu-
ments: A string to be output before the XHTML table that displays the contents of the array
and the array to output. Lines 37–44 output the header string and begin the definition of the
XHTML table with two columns: Subscript and Value. Lines 46–48 use a for struc-
ture to output XHTML text that defines each row of the table. Once again, note the use of
zero-based counting, so the loop can access every element of the array. Line 50 terminates
the definition of the XHTML table.

Common Programming Error 11.3
Referring to an element outside the Array bounds is normally a logic error. 11.3

Testing and Debugging Tip 11.1
When using subscripts to loop through an Array, the subscript should never go below 0 and
should always be less than the number of elements in the Array (i.e., one less than the size
of the Array). Make sure that the loop-terminating condition prevents the access of ele-
ments outside this range. 11.1

If the values of an Array’s elements are known in advance, the elements of the
Array can be allocated and initialized in the declaration of the array. There are two ways
in which the initial values can be specified. The statement

var n = [10, 20, 30, 40, 50];

uses a comma-separated initializer list enclosed in square brackets ([and]) to create a five-
element Array with subscripts of 0, 1, 2, 3 and 4. The array size is determined by the num-
ber of values in the initializer list. Note that the preceding declaration does not require the
new operator to create the Array object—this functionality is provided by the interpreter
when it encounters an array declaration that includes an initializer list. The statement

var n = new Array(10, 20, 30, 40, 50);

also creates a five-element array with subscripts of 0, 1, 2, 3 and 4. In this case, the initial
values of the array elements are specified as arguments in the parentheses following new
Array. The size of the array is determined by the number of values in parentheses. It is
also possible to reserve a space in an Array for a value to be specified later by using a
comma as a place holder in the initializer list. For example, the statement

iw3htp2.book Page 371 Wednesday, July 18, 2001 9:01 AM

372 JavaScript: Arrays Chapter 11

var n = [10, 20, , 40, 50];

creates a five-element array with no value specified for the third element (n[2]).
The script of Fig. 11.4 creates three Array objects to demonstrate initializing arrays

with initializer lists and displays each array in an XHTML table using the same function
outputArray discussed in Fig. 11.3. Notice that when Array integers2 is dis-
played in the Web page, the elements with subscripts 1 and 2 (the second and third elements
of the array) appear in the Web page as undefined. These elements are the two elements
of the array for which we did not supply values in the declaration in line 21 in the script.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 11.4: InitArray2.html -->
6 <!-- Initializing an Array with a Declaration -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Initializing an Array with a Declaration</title>
11
12 <script type = "text/javascript">
13 <!--
14 function start()
15 {
16 // Initializer list specifies number of elements and
17 // value for each element.
18 var colors = new Array("cyan", "magenta",
19 "yellow", "black");
20 var integers1 = [2, 4, 6, 8];
21 var integers2 = [2, , , 8];
22
23 outputArray("Array colors contains", colors);
24 outputArray("Array integers1 contains", integers1);
25 outputArray("Array integers2 contains", integers2);
26 }
27
28 // output "header" followed by a two-column table
29 // containing subscripts and elements of "theArray"
30 function outputArray(header, theArray)
31 {
32 document.writeln("<h2>" + header + "</h2>");
33 document.writeln("<table border = \"1\"" +
34 "width = \"100%\">");
35 document.writeln("<thead><th width = \"100\" " +
36 "align = \"left\">Subscript</th>" +
37 "<th align = \"left\">Value</th></thead><tbody>");
38
39 for (var i = 0; i < theArray.length; i++)
40 document.writeln("<tr><td>" + i + "</td><td>" +
41 theArray[i] + "</td></tr>");
42

Fig. 11.4Fig. 11.4Fig. 11.4Fig. 11.4 Initializing the elements of an array (part 1 of 2).

iw3htp2.book Page 372 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 373

The script of Fig. 11.5 sums the values contained in the 10-element integer array called
theArray, which is declared, allocated and initialized in line 16 in function start.
When the Web page loads, the script calls function start in response to the <body>’s
onload event. The statement in line 20 in the body of the first for loop does the totaling.
It is important to remember that the values being supplied as initializers for array the-
Array normally would be read into the program. For example, in a script, the user could
enter the values through an XHTML form.

43 document.writeln("</tbody></table>");
44 }
45 // -->
46 </script>
47
48 </head><body onload = "start()"></body>
49 </html>

Fig. 11.4Fig. 11.4Fig. 11.4Fig. 11.4 Initializing the elements of an array (part 2 of 2).

iw3htp2.book Page 373 Wednesday, July 18, 2001 9:01 AM

374 JavaScript: Arrays Chapter 11

In this example, we introduce JavaScript’s for/in control structure, which enables a
script to perform a task for each element in an array (or, as we will see in the chapters
on Dynamic HTML, for each element in a collection). This process is also known as iter-
ating over the elements of an array. Lines 24–25 show the syntax of a for/in structure.
Inside the parentheses, we declare the element variable used to select each element in the
object to the right of keyword in (theArray in this case). In the preceding for/in struc-

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 11.5: SumArray.html -->
6 <!-- Summing Elements of an Array -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Sum the Elements of an Array</title>
11
12 <script type = "text/javascript">
13 <!--
14 function start()
15 {
16 var theArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
17 var total1 = 0, total2 = 0;
18
19 for (var i = 0; i < theArray.length; i++)
20 total1 += theArray[i];
21
22 document.writeln("Total using subscripts: " + total1);
23
24 for (var element in theArray)
25 total2 += theArray[element];
26
27 document.writeln("
Total using for/in: " +
28 total2);
29 }
30 // -->
31 </script>
32
33 </head><body onload = "start()"></body>
34 </html>

Fig. 11.5Fig. 11.5Fig. 11.5Fig. 11.5 Computing the sum of the elements of an array.

iw3htp2.book Page 374 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 375

ture, JavaScript automatically determines the number of elements in the array. As the Java-
Script interpreter iterates over theArray’s elements, variable element is assigned a
value that can be used as a subscript for theArray. In the case of an Array, the value
assigned is a subscript in the range from 0 up to, but not including, theArray.length.
Each value is added to total2 to produce the sum of the elements in the array.

Testing and Debugging Tip 11.2
When iterating over all the elements of an Array, use a for/in control structure to ensure
that you manipulate only the existing elements of the Array. 11.2

In Chapter 10, we indicated that there is a more elegant way to implement the dice-
rolling program of Fig. 10.5. The program rolled a single six-sided die 6000 times and used
a switch structure to total the number of times each value was rolled. An array version
of this script is shown in Fig. 11.6. The switch structure in lines 22–41 of Fig. 10.5 is
replaced by line 19 of this program. This line uses the random face value as the subscript
for the array frequency to determine which element should to increment during each
iteration of the loop. Because the random-number calculation on line 18 produces numbers
from 1 to 6 (the values for a six-sided die), the frequency array must be large enough to
allow subscript values of 1 to 6. The smallest number of elements required for an array to
have these subscript values is seven elements (subscript values from 0 to 6). In this pro-
gram, we ignore element 0 of array frequency. Also, lines 28–30 of this program replace
lines 48–59 in Fig. 10.5. Because we can loop through array frequency to help product
the output, we do not have to enumerate each XHTML table row, as we did in Fig. 10.5.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 11.6: RollDie.html -->
6 <!-- Roll a Six-Sided Die 6000 Times -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Roll a Six-Sided Die 6000 Times</title>
11
12 <script type = "text/javascript">
13 <!--
14 var face, frequency = [, 0, 0, 0, 0, 0, 0];
15
16 // summarize results
17 for (var roll = 1; roll <= 6000; ++roll) {
18 face = Math.floor(1 + Math.random() * 6);
19 ++frequency[face];
20 }
21
22 document.writeln("<table border = \"1\"" +
23 "width = \"100%\">");
24 document.writeln("<thead><th width = \"100\"" +
25 " align = \"left\">Face<th align = \"left\">" +
26 "Frequency</th></thead></tbody>");

Fig. 11.6Fig. 11.6Fig. 11.6Fig. 11.6 Dice-rolling program using arrays instead of a switch (part 1 of 2).

iw3htp2.book Page 375 Wednesday, July 18, 2001 9:01 AM

376 JavaScript: Arrays Chapter 11

11.5 References and Reference Parameters
Two ways to pass arguments to functions (or methods) in many programming languages
are call-by-value and call-by-reference (also called pass-by-value and pass-by-reference).
When an argument is passed to a function using call-by-value, a copy of the argument’s val-
ue is made and is passed to the called function. In JavaScript, numbers and boolean values
are passed to functions by value.

Testing and Debugging Tip 11.3
With call-by-value, changes to the called function’s copy do not affect the original variable’s
value in the calling function. This prevents the accidental side effects that so greatly hinder
the development of correct and reliable software systems. 11.3

With call-by-reference, the caller gives the called function direct access to the caller’s
data and to modify those data if the called function so chooses. This procedure is accom-
plished by passing to the called function the actual location in memory (also called the
address) where the data resides. Call-by-reference can improve performance, because it

27
28 for (face = 1; face < frequency.length; ++face)
29 document.writeln("<tr><td>" + face + "</td><td>" +
30 frequency[face] + "</td></tr>");
31
32 document.writeln("</tbody></table>");
33 // -->
34 </script>
35
36 </head>
37 <body>
38 <p>Click Refresh (or Reload) to run the script again</p>
39 </body>
40 </html>

Fig. 11.6Fig. 11.6Fig. 11.6Fig. 11.6 Dice-rolling program using arrays instead of a switch (part 2 of 2).

iw3htp2.book Page 376 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 377

can eliminate the overhead of copying large amounts of data, but it can weaken security,
because the called function can access the caller’s data. In JavaScript, all objects and
Arrays are passed to functions by reference.

Software Engineering Observation 11.2
Unlike some other languages, JavaScript does not allow the programmer to choose whether
to pass each argument by value or by reference. Numbers and boolean values are passed by
value. Objects are not passed to functions; rather, references to objects are passed to func-
tions. When a function receives a reference to an object, the function can manipulate the ob-
ject directly. 11.2

Software Engineering Observation 11.3
When returning information from a function via a return statement, numbers and boolean
values are always returned by value (i.e., a copy is returned), and objects are always re-
turned by reference (i.e., a reference to the object is returned). 11.3

To pass a reference to an object into a function, simply specify in the function call the
reference name. Normally, the reference name is the identifier that the program uses to
manipulate the object. Mentioning the reference by its parameter name in the body of the
called function actually refers to the original object in memory, and the original object can
be accessed directly by the called function.

Arrays are objects in JavaScript, so Arrays are passed to functions call-by-refer-
ence—a called function can access the elements of the caller’s original Arrays. The name
of an array actually is a reference to an object that contains the array elements and the
length variable, which indicates the number of elements in the array. In the next section,
we demonstrate call-by-value and call-by-reference, using arrays.

Performance Tip 11.1
Passing arrays by reference makes sense for performance reasons. If arrays were passed by
value, a copy of each element would be passed. For large, frequently passed arrays, this pro-
cedure would waste time and would consume considerable storage for the array copies. 11.1

11.6 Passing Arrays to Functions
To pass an array argument to a function, specify the name of the array (a reference to the ar-
ray) without brackets. For example, if array hourlyTemperatures has been declared as

var hourlyTemperatures = new Array(24);

then the function call

modifyArray(hourlyTemperatures);

passes array hourlyTemperatures to function modifyArray. In JavaScript, every
array object “knows” its own size (via the length attribute). Thus, when we pass an array
object into a function, we do not pass the size of the array separately as an argument. In fact,
Fig. 11.3 illustrated this concept when we passed Arrays n1 and n2 to function outp-
utArray to display each Array’s contents.

Although entire arrays are passed by using call-by-reference, individual numeric and
boolean array elements are passed by call-by-value exactly as simple numeric and boolean
variables are passed (the objects referred to by individual elements of an Array of objects

iw3htp2.book Page 377 Wednesday, July 18, 2001 9:01 AM

378 JavaScript: Arrays Chapter 11

are still passed by call-by-reference). Such simple single pieces of data are called scalars,
or scalar quantities. To pass an array element to a function, use the subscripted name of the
element as an argument in the function call.

For a function to receive an Array through a function call, the function’s parameter
list must specify a parameter that will refer to the Array in the body of the function. Unlike
other programming languages, JavaScript does not provide a special syntax for this pur-
pose. JavaScript simply requires that the identifier for the Array be specified in the param-
eter list. For example, the function header for function modifyArray might be written as

function modifyArray(b)

indicating that modifyArray expects to receive a parameter named b (the argument sup-
plied in the calling function must be an Array). Because arrays are passed by reference,
when the called function uses the array name b, it refers to the actual array in the caller (ar-
ray hourlyTemperatures in the preceding call).

Software Engineering Observation 11.4
JavaScript does not check the number of arguments or types of arguments that are passed to
a function. It is possible to pass any number of values to a function. JavaScript will attempt
to perform conversions when the values are used. 11.4

The script of Fig. 11.7 demonstrates the difference between passing an entire array and
passing an array element. [Note: Function start (defined at lines 15–37) is called in
response to the <body>’s onload event.]

The statement in lines 21–22 invokes function outputArray to display the contents
of array a before it is modified. Function outputArray (defined at line 40) receives a
string to output and the array to output. The statement in lines 42–43 uses Array method
join to create a string containing all the elements in theArray. Method join takes as
its argument a string containing the separator that should be used to separate the elements
of the array in the string that is returned. If the argument is not specified, the empty string
is used as the separator.

Line 24 invokes function modifyArray and passes it array a. The modifyArray
function multiplies each element by 2. To illustrate that array a’s elements were modified,
the statement in lines 26–27 invokes function outputArray again to display the contents
of array a after it is modified. As the screen capture shows, the elements of a are indeed
modified by modifyArray.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 11.7: PassArray.html -->
6 <!-- Passing Arrays -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Passing Arrays and Individual Array
11 Elements to Functions</title>

Fig. 11.7Fig. 11.7Fig. 11.7Fig. 11.7 Passing arrays and individual array elements to functions (part 1 of 3).

iw3htp2.book Page 378 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 379

12
13 <script type = "text/javascript">
14 <!--
15 function start()
16 {
17 var a = [1, 2, 3, 4, 5];
18
19 document.writeln("<h2>Effects of passing entire " +
20 "array call-by-reference</h2>");
21 outputArray(
22 "The values of the original array are: ", a);
23
24 modifyArray(a); // array a passed call-by-reference
25
26 outputArray(
27 "The values of the modified array are: ", a);
28
29 document.writeln("<h2>Effects of passing array " +
30 "element call-by-value</h2>" +
31 "a[3] before modifyElement: " + a[3]);
32
33 modifyElement(a[3]);
34
35 document.writeln(
36 "
a[3] after modifyElement: " + a[3]);
37 }
38
39 // outputs "header" followed by the contents of "theArray"
40 function outputArray(header, theArray)
41 {
42 document.writeln(
43 header + theArray.join(" ") + "
");
44 }
45
46 // function that modifies the elements of an array
47 function modifyArray(theArray)
48 {
49 for (var j in theArray)
50 theArray[j] *= 2;
51 }
52
53 // function that attempts to modify the value passed
54 function modifyElement(e)
55 {
56 e *= 2;
57 document.writeln("
value in modifyElement: " + e);
58 }
59 // -->
60 </script>
61
62 </head><body onload = "start()"></body>
63 </html>

Fig. 11.7Fig. 11.7Fig. 11.7Fig. 11.7 Passing arrays and individual array elements to functions (part 2 of 3).

iw3htp2.book Page 379 Wednesday, July 18, 2001 9:01 AM

380 JavaScript: Arrays Chapter 11

To show the value of a[3] before the call to modifyElement, lines 29–31 output
the value of a[3] (as well as other information). Line 33 invokes modifyElement and
passes a[3]. Remember that a[3] actually is one integer value in the array a. Also,
remember that numeric values and boolean values always are passed to functions call-by-
value. Therefore, a copy of a[3] is passed. Function modifyElement multiplies its
argument by 2 and stores the result in its parameter e. The parameter of function modify-
Element is a local variable in that function, so when the function terminates, the local
variable is destroyed. Thus, when control is returned to start, the unmodified value of
a[3] is displayed by the statement in lines 35–36.

11.7 Sorting Arrays
Sorting data (placing the data into some particular order, such as ascending or descending)
is one of the most important computing functions. A bank sorts all checks by account num-
ber, so that it can prepare individual bank statements at the end of each month. Telephone
companies sort their lists of accounts by last name and, within that, by first name, to make
it easy to find phone numbers. Virtually every organization must sort some data—in many
cases, massive amounts of data. Sorting data is an intriguing problem that has attracted
some of the most intense research efforts in the field of computer science.

The Array object in JavaScript has a built-in method sort for sorting arrays. Figure
11.8 demonstrates the Array object’s sort method.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 11.8: sort.html -->
6 <!-- Sorting an Array -->

Fig. 11.8Fig. 11.8Fig. 11.8Fig. 11.8 Sorting an array with sort (part 1 of 2).

Fig. 11.7Fig. 11.7Fig. 11.7Fig. 11.7 Passing arrays and individual array elements to functions (part 3 of 3).

iw3htp2.book Page 380 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 381

By default, Array method sort (with no arguments) uses string comparisons to
determine the sorting order of the Array elements. The strings are compared by the
ASCII values of their characters. [Note: String comparison is discussed in more detail in

7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Sorting an Array with Array Method sort</title>
11
12 <script type = "text/javascript">
13 <!--
14 function start()
15 {
16 var a = [10, 1, 9, 2, 8, 3, 7, 4, 6, 5];
17
18 document.writeln("<h1>Sorting an Array</h1>");
19 outputArray("Data items in original order: ", a);
20 a.sort(compareIntegers); // sort the array
21 outputArray("Data items in ascending order: ", a);
22 }
23
24 // outputs "header" followed by the contents of "theArray"
25 function outputArray(header, theArray)
26 {
27 document.writeln("<p>" + header +
28 theArray.join(" ") + "</p>");
29 }
30
31 // comparison function for use with sort
32 function compareIntegers(value1, value2)
33 {
34 return parseInt(value1) - parseInt(value2);
35 }
36 // -->
37 </script>
38
39 </head><body onload = "start()"></body>
40 </html>

Fig. 11.8Fig. 11.8Fig. 11.8Fig. 11.8 Sorting an array with sort (part 2 of 2).

iw3htp2.book Page 381 Wednesday, July 18, 2001 9:01 AM

382 JavaScript: Arrays Chapter 11

Chapter 12, JavaScript: Objects.] In this example, we would like once again to sort an
array of integers.

Method sort takes as its optional argument the name of a function (called the com-
parator function) that compares its two arguments and returns one of the following:

• a negative value if the first argument is less than the second argument

• zero if the arguments are equal, or

• a positive value if the first argument is greater than the second argument

This example uses function compareIntegers (defined at lines 32–35) as the compar-
ator function for method sort. It calculates the difference between the integer values of
its two arguments (function parseInt ensures that the arguments are handled properly
as integers). If the first argument is less than the second argument, the difference will be a
negative value. If the arguments are equal, the difference will be zero. If the first argument
is greater than the second argument, the difference will be a positive value.

Line 20 invokes Array object a’s sort method and passes function compareIn-
tegers as an argument. In JavaScript, functions are considered to be data and can be
assigned to variables and passed to functions like any other data. Here, method sort
receives function compareIntegers as an argument, then uses the function to compare
elements of the Array a to determine their sorting order.

Software Engineering Observation 11.5
Functions in JavaScript are considered to be data. Therefore, functions can be assigned to
variables, stored in Arrays and passed to functions as other data types can. 11.5

11.8 Searching Arrays: Linear Search and Binary Search
Often, a programmer will be working with large amounts of data stored in arrays. It may be
necessary to determine whether an array contains a value that matches a certain key value.
The process of locating a particular element value in an array is called searching. In this
section we discuss two searching techniques—the simple linear search technique (Fig.
11.9) and the more efficient binary search (Fig. 11.10) technique.

In the script of Fig. 11.9, function linearSearch (defined at lines 38–45) uses a
for structure containing an if structure to compare each element of an array with a search
key (lines 40–42). If the search key is found, the function returns the subscript value (line
42) of the element to indicate the exact position of the search key in the array. [Note: The
loop in the linearSearch function terminates, and the function returns control to the
caller as soon as the return statement in its body executes.] If the search key is not found,
the function returns a value of –1. The function returns the value –1 because it is not a valid
subscript number.

If the array being searched is not in any particular order, it is just as likely that the value
will be found in the first element as the last. On average, therefore, the program will have
to compare the search key with half the elements of the array.

The program contains a 100-element array (defined at line 14) filled with the even inte-
gers from 0 to 198. The user types the search key in a text field (defined in the XHTML
form in lines 52–60) and clicks the Search button to start the search. [Note: The array is
passed to linearSearch even though the array is a global variable. This step occurs
because an array is normally passed to a function for searching.]

iw3htp2.book Page 382 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 383

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 11.9: LinearSearch.html -->
6 <!-- Linear Search of an Array -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Linear Search of an Array</title>
11
12 <script type = "text/javascript">
13 <!--
14 var a = new Array(100); // create an Array
15
16 // fill Array with even integer values from 0 to 198
17 for (var i = 0; i < a.length; ++i)
18 a[i] = 2 * i;
19
20 // function called when "Search" button is pressed
21 function buttonPressed()
22 {
23 var searchKey = searchForm.inputVal.value;
24
25 // Array a is passed to linearSearch even though it
26 // is a global variable. Normally an array will
27 // be passed to a method for searching.
28 var element = linearSearch(a, parseInt(searchKey));
29
30 if (element != -1)
31 searchForm.result.value =
32 "Found value in element " + element;
33 else
34 searchForm.result.value = "Value not found";
35 }
36
37 // Search "theArray" for the specified "key" value
38 function linearSearch(theArray, key)
39 {
40 for (var n = 0; n < theArray.length; ++n)
41 if (theArray[n] == key)
42 return n;
43
44 return -1;
45 }
46 // -->
47 </script>
48
49 </head>
50
51 <body>
52 <form name = "searchForm" action = "">
53 <p>Enter integer search key

Fig. 11.9Fig. 11.9Fig. 11.9Fig. 11.9 Linear search of an array (part 1 of 2).

iw3htp2.book Page 383 Wednesday, July 18, 2001 9:01 AM

384 JavaScript: Arrays Chapter 11

After each comparison, the binary search algorithm eliminates half of the elements in
the array being searched. The algorithm locates the middle array element and compares it
to the search key. If they are equal, the search key has been found and the subscript of that
element is returned. Otherwise, the problem is reduced to searching half of the array. If the
search key is less than the middle array element, the first half of the array is searched; oth-
erwise, the second half of the array is searched. If the search key is not the middle element
in the specified subarray (piece of the original array), the algorithm is repeated on one
quarter of the original array. The search continues until the search key is equal to the middle
element of a subarray or until the subarray consists of one element that is not equal to the
search key (i.e., the search key is not found).

54 <input name = "inputVal" type = "text" />
55 <input name = "search" type = "button" value = "Search"
56 onclick = "buttonPressed()" />
</p>
57
58 <p>Result

59 <input name = "result" type = "text" size = "30" /></p>
60 </form>
61 </body>
62 </html>

Fig. 11.9Fig. 11.9Fig. 11.9Fig. 11.9 Linear search of an array (part 2 of 2).

iw3htp2.book Page 384 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 385

In a worst-case scenario, searching an array of 1024 elements will take only 10 com-
parisons using a binary search. Repeatedly dividing 1024 by 2 (because after each compar-
ison we are able to eliminate half of the array) yields the values 512, 256, 128, 64, 32, 16,
8, 4, 2 and 1. The number 1024 (210) is divided by 2 only ten times to get the value 1.
Dividing by 2 is equivalent to one comparison in the binary search algorithm. An array of
1,048,576 (220) elements takes a maximum of 20 comparisons to find the key. An array of
one billion elements takes a maximum of 30 comparisons to find the key. When searching
a sorted array, this is a tremendous increase in performance over the linear search that
required comparing the search key to an average of half the elements in the array. For a one-
billion-element array, this is a difference between an average of 500 million comparisons
and a maximum of 30 comparisons! The maximum number of comparisons needed for the
binary search of any sorted array is the exponent of the first power of 2 greater than the
number of elements in the array.

Figure 11.10 presents the iterative version of function binarySearch (lines 42–66).
Function binarySearch is called from function buttonPressed—the event handler
for the search button in the XHTML form. Function binarySearch receives two argu-
ments—an array called theArray (the array to search) and key (the search key). The
array is passed to binarySearch, even though the array is global variable. Once again,
this is done because an array is normally passed to a function for searching. If key matches
the middle element of a subarray, middle (the subscript of the current element) is
returned, to indicate that the value was found and the search is complete. If key does not
match the middle element of a subarray, the low subscript or the high subscript (both
declared in the function) is adjusted, so that a smaller subarray can be searched. If key is
less than the middle element, the high subscript is set to middle - 1 and the search is
continued on the elements from low to middle - 1. If key is greater than the middle ele-
ment, the low subscript is set to middle + 1 and the search is continued on the elements
from middle + 1 to high. These comparisons are performed by the nested if/else
structure at lines 57–62.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 11.10 : BinarySearch.html -->
6 <!-- binary search -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Binary Search</title>
11
12 <script type = "text/javascript">
13 <!--
14 var a = new Array(15);
15

Fig. 11.10Fig. 11.10Fig. 11.10Fig. 11.10 Using a binary search (part 1 of 4).

iw3htp2.book Page 385 Wednesday, July 18, 2001 9:01 AM

386 JavaScript: Arrays Chapter 11

16 for (var i = 0; i < a.length; ++i)
17 a[i] = 2 * i;
18
19 // function called when "Search" button is pressed
20 function buttonPressed()
21 {
22 var searchKey = searchForm.inputVal.value;
23
24 searchForm.result.value =
25 "Portions of array searched\n";
26
27 // Array a is passed to binarySearch even though it
28 // is a global variable. This is done because
29 // normally an array is passed to a method
30 // for searching.
31 var element =
32 binarySearch(a, parseInt(searchKey));
33
34 if (element != -1)
35 searchForm.result.value +=
36 "\nFound value in element " + element;
37 else
38 searchForm.result.value += "\nValue not found";
39 }
40
41 // Binary search
42 function binarySearch(theArray, key)
43 {
44 var low = 0; // low subscript
45 var high = theArray.length - 1; // high subscript
46 var middle; // middle subscript
47
48 while (low <= high) {
49 middle = (low + high) / 2;
50
51 // The following line is used to display the
52 // part of theArray currently being manipulated
53 // during each iteration of the binary
54 // search loop.
55 buildOutput(theArray, low, middle, high);
56
57 if (key == theArray[middle]) // match
58 return middle;
59 else if (key < theArray[middle])
60 high = middle - 1; // search low end of array
61 else
62 low = middle + 1; // search high end of array
63 }
64
65 return -1; // searchKey not found
66 }
67

Fig. 11.10Fig. 11.10Fig. 11.10Fig. 11.10 Using a binary search (part 2 of 4).

iw3htp2.book Page 386 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 387

68 // Build one row of output showing the current
69 // part of the array being processed.
70 function buildOutput(theArray, low, mid, high)
71 {
72 for (var i = 0; i < theArray.length; i++) {
73 if (i < low || i > high)
74 searchForm.result.value += " ";
75 // mark middle element in output
76 else if (i == mid)
77 searchForm.result.value += a[i] +
78 (theArray[i] < 10 ? "* " : "* ");
79 else
80 searchForm.result.value += a[i] +
81 (theArray[i] < 10 ? " " : " ");
82 }
83
84 searchForm.result.value += "\n";
85 }
86 // -->
87 </script>
88 </head>
89
90 <body>
91 <form name = "searchForm" action = "">
92 <p>Enter integer search key

93 <input name = "inputVal" type = "text" />
94 <input name = "search" type = "button" value =
95 "Search" onclick = "buttonPressed()" />
</p>
96 <p>Result

97 <textarea name = "result" rows = "7" cols = "60">
98 </textarea></p>
99 </form>
100 </body>
101 </html>

Fig. 11.10Fig. 11.10Fig. 11.10Fig. 11.10 Using a binary search (part 3 of 4).

iw3htp2.book Page 387 Wednesday, July 18, 2001 9:01 AM

388 JavaScript: Arrays Chapter 11

11.9 Multiple-Subscripted Arrays
Multiple-subscripted arrays with two subscripts often are used to represent tables of values
consisting of information arranged in rows and columns. To identify a particular table ele-
ment, we must specify the two subscripts; by convention, the first identifies the element’s
row, and the second identifies the element’s column. Arrays that require two subscripts to
identify a particular element are called double-subscripted arrays (also called two-dimen-
sional arrays). Note that multiple-subscripted arrays can have more than two subscripts.
JavaScript does not support multiple-subscripted arrays directly, but does allow the pro-
grammer to specify single-subscripted arrays whose elements are also single-subscripted
arrays, thus achieving the same effect. Figure 11.11 illustrates a double-subscripted array
a, that contains three rows and four columns (i.e., a three-by-four array). In general, an ar-
ray with m rows and n columns is called an m-by-n array.

Every element in array a is identified in Fig. 11.11 by an element name of the form
a[i][j]; a is the name of the array, and i and j are the subscripts that uniquely identify
the row and column, respectively, of each element in a. Notice that the names of the ele-
ments in the first row all have a first subscript of 0; the names of the elements in the fourth
column all have a second subscript of 3.

Multiple-subscripted arrays can be initialized in declarations like a single-subscripted
array. Array b with two rows and two columns could be declared and initialized with the
statement

var b = [[1, 2], [3, 4]];

The values are grouped by row in square brackets. So, 1 and 2 initialize b[0][0] and
b[0][1], and 3 and 4 initialize b[1][0] and b[1][1]. The interpreter determines the
number of rows by counting the number of sub-initializer lists (represented by sets of square
brackets) in the main initializer list. The interpreter determines the number of columns in each
row by counting the number of initializer values in the sub-initializer list for that row.

Fig. 11.10Fig. 11.10Fig. 11.10Fig. 11.10 Using a binary search (part 4 of 4).

iw3htp2.book Page 388 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 389

Multiple-subscripted arrays are maintained as arrays of arrays. The declaration

var b = [[1, 2], [3, 4, 5]];

creates array b with row 0 containing two elements (1 and 2) and row 1 containing three
elements (3, 4 and 5).

A multiple-subscripted array in which each row has a different number of columns can
be allocated dynamically as follows:

var b;
b = new Array(2); // allocate rows
b[0] = new Array(5); // allocate columns for row 0
b[1] = new Array(3); // allocate columns for row 1

The preceding code creates a two-dimensional array with two rows. Row 0 has five col-
umns, and row 1 has three columns.

Figure 11.12 initializes double-subscripted arrays in declarations and uses nested for/
in loops to traverse the arrays (i.e., manipulate every element of the array).

Fig. 11.11Fig. 11.11Fig. 11.11Fig. 11.11 Double-subscripted array with three rows and four columns.

a[1][0] a[1][1] a[1][2] a[1][3]

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

Row subscript (or index)

Array name

Column subscript (or index)

a[0][0] a[0][1] a[0][2] a[0][3]

a[2][0] a[2][1] a[2][2] a[2][3]

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 11.12: InitArray3.html -->
6 <!-- Initializing Multidimensional Arrays -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Initializing Multidimensional Arrays</title>
11

Fig. 11.12Fig. 11.12Fig. 11.12Fig. 11.12 Initializing multidimensional arrays (part 1 of 2).

iw3htp2.book Page 389 Wednesday, July 18, 2001 9:01 AM

390 JavaScript: Arrays Chapter 11

12 <script type = "text/javascript">
13 <!--
14 function start()
15 {
16 var array1 = [[1, 2, 3], // first row
17 [4, 5, 6]]; // second row
18 var array2 = [[1, 2], // first row
19 [3], // second row
20 [4, 5, 6]]; // third row
21
22 outputArray("Values in array1 by row", array1);
23 outputArray("Values in array2 by row", array2);
24 }
25
26 function outputArray(header, theArray)
27 {
28 document.writeln("<h2>" + header + "</h2><tt>");
29
30 for (var i in theArray) {
31
32 for (var j in theArray[i])
33 document.write(theArray[i][j] + " ");
34
35 document.writeln("
");
36 }
37
38 document.writeln("</tt>");
39 }
40 // -->
41 </script>
42
43 </head><body onload = "start()"></body>
44 </html>

Fig. 11.12Fig. 11.12Fig. 11.12Fig. 11.12 Initializing multidimensional arrays (part 2 of 2).

iw3htp2.book Page 390 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 391

The program declares two arrays in function start (which is called in response to the
<body>’s onload event). The declaration of array1 (lines 16–17) provides six initial-
izers in two sublists. The first sublist initializes the first row of the array to the values 1, 2
and 3; the second sublist initializes the second row of the array to the values 4, 5 and 6. The
declaration of array2 (lines 18–20) provides six initializers in three sublists. The sublist
for the first row explicitly initializes the first row to have two elements, with values 1 and
2, respectively. The sublist for the second row initializes the second row to have one ele-
ment, with value 3. The sublist for the third row initializes the third row to the values 4, 5
and 6.

 Function start calls function outputArray from lines 22–23 to display each
array’s elements in the Web page. Function outputArray (lines 26–39) receives two
arguments—a string header to output before the array and the array to output (called
theArray). Note the use of a nested for/in structure to output the rows of each double-
subscripted array. The outer for/in structure iterates over the rows of the array. The inner
for/in structure iterates over the columns of the current row being processed. The nested
for/in structure in this example could have been written with for structures as follows:

for (var i = 0; i < theArray.length; ++i) {

 for (var j = 0; j < theArray[i].length; ++j)
 document.write(theArray[i][j] + " ");

 document.writeln("
");
}

In the outer for structure, the expression theArray.length determines the number of
rows in the array. In the inner for structure, the expression theArray[i].length de-
termines the number of columns in each row of the array. This condition enables the loop
to determine, for each row, the exact number of columns.

Many common array manipulations use for or for/in repetition structures. For
example, the following for structure sets all the elements in the third row of array a in Fig.
11.11 to zero:

for (var col = 0; col < a[2].length; ++col)
 a[2][col] = 0;

We specified the third row; therefore, we know that the first subscript is always 2 (0 is the
first row and 1 is the second row). The for loop varies only the second subscript (i.e., the
column subscript). The preceding for structure is equivalent to the assignment statements

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

The following for/in structure is also equivalent to the preceding for structure:

for (var col in a[2])
 a[2][col] = 0;

The following nested for structure determines the total of all the elements in array a:

iw3htp2.book Page 391 Wednesday, July 18, 2001 9:01 AM

392 JavaScript: Arrays Chapter 11

var total = 0;

for (var row = 0; row < a.length; ++row)

 for (var col = 0; col < a[row].length; ++col)
 total += a[row][col];

The for structure totals the elements of the array, one row at a time. The outer for struc-
ture begins by setting the row subscript to 0, so the elements of the first row may be totaled
by the inner for structure. The outer for structure then increments row to 1, so the ele-
ments of the second row can be totaled. Then, the outer for structure increments row to
2, so the elements of the third row can be totaled. The result can be displayed when the nest-
ed for structure terminates. The preceding for structure is equivalent to the following
for/in structure:

var total = 0;

for (var row in a)

 for (var col in a[row])
 total += a[row][col];

11.10 JavaScript Internet and World Wide Web Resources
alwaysfreewebtools.com/docs/Jscript/option5.htm#arrays
This site discusses JavaScript arrays.

hotwired.lycos.com/webmonkey/98/04/index1a_page8.html?tw=program-
ming
Thau’s JavaScript Tutorial introduces JavaScript arrays.

SUMMARY
• Arrays are data structures consisting of related data items (sometimes called collections).

• Arrays are “dynamic” entities, in that they can change size after they are created.

• An array is a group of memory locations that all have the same name and are normally of the same
type (although this attribute is not required).

• To refer to a particular location or element in the array, specify the name of the array and the po-
sition number of the particular element in the array.

• The first element in every array is the zeroth element.

• The length of an array is determined by arrayName.length.

• An array in JavaScript is an Array object. Operator new is used to dynamically allocate the num-
ber of elements required by an array. Operator new creates an object as the program executes, by
obtaining enough memory to store an object of the type specified to the right of new.

• The process of creating new objects is also known as creating an instance, or instantiating an ob-
ject, and operator new is known as the dynamic memory allocation operator.

• An array can be initialized with a comma-separated initializer list enclosed in square brackets ([
and]). The array size is determined by the number of values in the initializer list. When using an
initializer list in an array declaration, the new operator is not required to create the Array ob-
ject—this operator is provided by the interpreter.

• It is possible to reserve a space in an Array for a value to be specified later, by using a comma
as a place holder in the initializer list.

iw3htp2.book Page 392 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 393

• JavaScript’s for/in control structure enables a script to perform a task for each element in an
array. This process is also known as iterating over the elements of an array.

• The basic syntax of a for/in structure is

for (var element in arrayName)
 statement

where element is the name of the variable to which the for/in structure assigns a subscript
number and arrayName is the array over which to iterate.

• When a value is assigned to an element of an Array that is outside the current bounds of the Ar-
ray, JavaScript allocates more memory so the Array contains the appropriate number of ele-
ments. The new elements of the array are not initialized.

• Two ways to pass arguments to functions (or methods) in many programming languages are call-
by-value and call-by-reference (also called pass-by-value and pass-by-reference).

• When an argument is passed to a function by using call-by-value, a copy of the argument’s value
is made and passed to the called function. Numbers and boolean values are passed by value.

• With call-by-reference, the caller gives the called function the ability to access directly the caller’s
data and to modify those data. This procedure is accomplished by passing to the called function
the location or address in memory where the data reside. All objects and Arrays are passed by
reference.

• To pass a reference to an object into a function, specify in the function call the name of the refer-
ence. The name of the reference is the identifier that is used to manipulate the object in the program.

• The name of an array is actually a reference to an object that contains the elements of the array and
the length variable, which indicates the number of elements in the array.

• Placing data into some particular order, such as ascending or descending, is called sorting the data.

• The Array object in JavaScript has a built-in method, sort, for sorting arrays. By default, Ar-
ray method sort uses string comparisons to determine the sorting order of the elements of the
Array.

• Method sort takes as its optional argument the comparator function, which compares its two ar-
guments and returns a negative value if the first argument is less than the second argument, zero
if the arguments are equal or a positive value if the first argument is greater than the second argu-
ment.

• The process of locating a particular element value (the key value) in an array is called searching.

• A linear search compares each element of an array with a search key. If the search key is found,
the linear search normally returns the subscript for the element, to indicate the exact position of
the search key in the array. If the search key is not found, the linear search normally returns –1.

• If the array being searched with a linear search is not in any particular order, it is just as likely that
the value will be found in the first element as the last. On average, the program has to compare the
search key with half the elements of the array.

• If an array is sorted, the binary search technique can be used to locate a search key. The binary
search algorithm eliminates half of the elements in the array being searched after each comparison.
The algorithm locates the middle array element and compares it to the search key. If they are equal,
the search key has been found and the subscript of that element is returned. Otherwise, the problem
is reduced to searching half of the array. If the search key is less than the middle array element,
the first half of the array is searched; otherwise, the second half of the array is searched.

• The maximum number of comparisons needed for the binary search of any sorted array is the ex-
ponent of the first power of 2 greater than the number of elements in the array.

iw3htp2.book Page 393 Wednesday, July 18, 2001 9:01 AM

394 JavaScript: Arrays Chapter 11

• Multiple-subscripted arrays with two subscripts are often used to represent tables of values con-
sisting of information arranged in rows and columns. Two subscripts identify a particular table el-
ement; the first identifies the element’s row, and the second identifies the element’s column.

• Arrays requiring two subscripts to identify a particular element are called double-subscripted ar-
rays (or two-dimensional arrays). Multiple-subscripted arrays can have more than two subscripts.

• JavaScript does not support multiple-subscripted arrays directly, but does allow single-subscripted
arrays whose elements are also single-subscripted arrays, thus achieving the same effect.

• In general, an array with m rows and n columns is called an m-by-n array.

• Multiple-subscripted arrays can be initialized with initializer lists. The compiler determines the
number of rows by counting the number of sub-initializer lists (represented by sets of square
brackets) in the main initializer list. The compiler determines the number of columns in each row
by counting the number of initializer values in the sub-initializer list for that row.

TERMINOLOGY

SELF-REVIEW EXERCISES
11.1 Fill in the blanks in each of the following statements:

a) Lists and tables of values can be stored in .
b) The elements of an array are related by the fact that they have the same and

normally the same .
c) The number used to refer to a particular element of an array is called its .
d) The process of placing the elements of an array in order is called the array.

a[i] length of an Array
a[i][j] linear search of an array
array location in an array
array initializer list lvalue
Array object m-by-n array
binary search multiple-subscripted array
bounds of an array name of an array
call by reference off-by-one error
call by value pass by reference
column subscript pass by value
comma-separated initializer list passing arrays to functions
comparator function place holder in an initializer list (,)
creating an instance position number of an element
data structure reserve a space in an Array
declare an array row subscript
double-subscripted array search key
dynamic memory allocation operator (new) searching an array
element of an array single-subscripted array
for/in repetition structure sort method of the Array object
index of an element sorting an array
initialize an array square brackets []
initializer subscript
initializer list table of values
instantiating an object tabular format
iterating over an array’s elements value of an element
join method zeroth element

iw3htp2.book Page 394 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 395

e) Determining whether an array contains a certain key value is called the array.
f) An array that uses two subscripts is referred to as a array.

11.2 State whether each of the following is true or false. If false, explain why.
a) An array can store many different types of values.
b) An array subscript should normally be a floating-point value.
c) An individual array element that is passed to a function and modified in that function will

contain the modified value when the called function completes execution.

11.3 Write JavaScript statements (regarding array fractions) to accomplish each of the fol-
lowing tasks:

a) Declare an array with 10 elements, and initialize the elements of the array to 0.
b) Name the fourth element of the array.
c) Refer to array element 4.
d) Assign the value 1.667 to array element 9.
e) Assign the value 3.333 to the seventh element of the array.
f) Sum all the elements of the array, using a for/in repetition structure. Define variable x

as a control variable for the loop.

11.4 Write JavaScript statements (regarding array table) to accomplish each of the following
tasks:

a) Declare and create the array with 3 rows and 3 columns.
b) Display the number of elements.
c) Use a for/in repetition structure to initialize each element of the array to the sum of its

subscripts. Assume that the variables x and y are declared as control variables.

11.5 Find the error(s) in each of the following program segments, and correct the errors.
a) Assume that var b = new Array(10);

for (var i = 0; i <= b.length; ++i)
 b[i] = 1;

b) Assume that var a = [[1, 2], [3, 4]];
 a[1, 1] = 5;

ANSWERS TO SELF-REVIEW EXERCISES
11.1 a) Arrays. b) Name, type. c) Subscript. d) Sorting. e) Searching. f) Double-subscripted.

11.2 a) True. b). False. An array subscript must be an integer or an integer expression. c) False.
Individual primitive-data-type elements are passed call-by-value. If a reference to an array is passed,
then modifications to the elements of the array are reflected in the original element of the array. Also,
an individual element of an object type passed to a function is passed with call-by-reference, and
changes to the object will be reflected in the original array element.

11.3 a) var fractions = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
b) fractions[3]
c) fractions[4]
d) fractions[9] = 1.667;
e) fractions[6] = 3.333;
f) var total = 0;

for (var x in fractions)
 total += fractions[x];

11.4 a) var table = new Array(new Array(3), new Array(3),
 new Array(3));

iw3htp2.book Page 395 Wednesday, July 18, 2001 9:01 AM

396 JavaScript: Arrays Chapter 11

b) document.write("total: " + (table.length *
 table[i].length * table[i][j].length));.

c) for (var x in table)
 for (var y in table[x])
 table[x][y] = x + y;

11.5 a) Error: Referencing an array element outside the bounds of the array (b[10]). [Note: This
error is actually a logic error, not a syntax error.] Correction: Change the <= operator to <. b) Error:
The array subscripting is done incorrectly. Correction: Change the statement to a[1][1] = 5;.

EXERCISES
11.6 Fill in the blanks in each of the following statements:

a) JavaScript stores lists of values in .
b) The names of the four elements of array an p are , , and

.
c) The process of placing the elements of an array into either ascending or descending order

is called .
d) In a double-subscripted array, the first subscript identifies the of an element,

and the second subscript identifies the of an element.
e) An m-by-n array contains rows, columns and elements.
f) The name of the element in row 3 and column 5 of array d is .
g) The name of the element in the third row and fifth column of array d is .

11.7 State whether each of the following is true or false. If false, explain why.
a) To refer to a particular location or element within an array, we specify the name of the

array and the value of the particular element.
b) An array declaration reserves space for the array.
c) To indicate that 100 locations should be reserved for integer array p, the programmer

should write the declaration
 p[100];

d) A JavaScript program that initializes the elements of a 15-element array to zero must con-
tain at least one for statement.

e) A JavaScript program that totals the elements of a double-subscripted array must contain
nested for statements.

11.8 Write JavaScript statements to accomplish each of the following tasks:
a) Display the value of the seventh element of array f.
b) Initialize each of the five elements of single-subscripted array g to 8.
c) Total the elements of array c, which contains 100 numeric elements.
d) Copy 11-element array a into the first portion of array b, which contains 34 elements.
e) Determine and print the smallest and largest values contained in 99-element floating-

point array w.

11.9 Consider a two-by-three array t that will store integers.
a) Write a statement that declares and creates array t.
b) How many rows does t have?
c) How many columns does t have?
d) How many elements does t have?
e) Write the names of all the elements in the second row of t.
f) Write the names of all the elements in the third column of t.
g) Write a single statement that sets the element of t in row 1 and column 2 to zero.
h) Write a series of statements that initializes each element of t to zero. Do not use a repe-

tition structure.

iw3htp2.book Page 396 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 397

i) Write a nested for structure that initializes each element of t to zero.
j) Write a series of statements that determines and prints the smallest value in array t.
k) Write a statement that displays the elements of the first row of t.
l) Write a statement that totals the elements of the fourth column of t.
m) Write a series of statements that prints the array t in neat, tabular format. List the column

subscripts as headings across the top, and list the row subscripts at the left of each row.

11.10 Use a single-subscripted array to solve the following problem: A company pays its salespeo-
ple on a commission basis. The salespeople receive $200 per week plus 9% of their gross sales for
that week. For example, a salesperson who grosses $5000 in sales in a week receives $200 plus 9%
of $5000, or a total of $650. Write a script (using an array of counters) that obtains the gross sales for
each employee through an XHTML form and determines how many of the salespeople earned salaries
in each of the following ranges (assume that each salesperson’s salary is truncated to an integer
amount):

a) $200-$299
b) $300-$399
c) $400-$499
d) $500-$599
e) $600-$699
f) $700-$799
g) $800-$899
h) $900-$999
i) $1000 and over

11.11 Write statements that perform the following operations for a single-subscripted array:
a) Set the 10 elements of array counts to zeros.
b) Add 1 to each of the 15 elements of array bonus.
c) Display the five values of array bestScores, separated by spaces.

11.12 Use a single-subscripted array to solve the following problem: Read in 20 numbers, each of
which is between 10 and 100, inclusive. As each number is read, print it only if it is not a duplicate
of a number that has already been read. Provide for the “worst case,” in which all 20 numbers are
different. Use the smallest possible array to solve this problem.

11.13 Label the elements of three-by-five double-subscripted array sales to indicate the order in
which they are set to zero by the following program segment:

for (var row in sales)
 for (var col in sales[row])
 sales[row][col] = 0;

11.14 Write a script to simulate the rolling of two dice. The script should use Math.random to
roll the first die and should use Math.random again to roll the second die. The sum of the two val-
ues should then be calculated. [Note: Because each die can show an integer value from 1 to 6, the sum
of the values will vary from 2 to 12, with 7 being the most frequent sum and 2 and 12 being the least
frequent sums. Figure 11.12 shows the 36 possible combinations of the two dice. Your program
should roll the dice 36,000 times. Use a single-subscripted array to tally the numbers of times each
possible sum appears. Display the results in an XHTML table. Also, determine whether the totals are
reasonable (e.g., there are six ways to roll a 7, so approximately one sixth of all the rolls should be 7).]

11.15 Write a script that runs 1000 games of craps and answers the following questions:
a) How many games are won on the first roll, second roll, …, twentieth roll and after the

twentieth roll?
b) How many games are lost on the first roll, second roll, …, twentieth roll and after the

twentieth roll?

iw3htp2.book Page 397 Wednesday, July 18, 2001 9:01 AM

398 JavaScript: Arrays Chapter 11

c) What are the chances of winning at craps? [Note: You should discover that craps is one
of the fairest casino games. What do you suppose this means?]

d) What is the average length of a game of craps?
e) Do the chances of winning improve with the length of the game?

11.16 (Airline Reservations System) A small airline has just purchased a computer for its new au-
tomated reservations system. You have been asked to program the new system. You are to write a
program to assign seats on each flight of the airline’s only plane (capacity: 10 seats).

Your program should display the following menu of alternatives: Please type 1 for
"First Class" and Please type 2 for "Economy". If the person types 1, your program
should assign a seat in the first-class section (seats 1–5). If the person types 2, your program should
assign a seat in the economy section (seats 6–10). Your program should print a boarding pass indi-
cating the person’s seat number and whether it is in the first-class or economy section of the plane.

Use a single-subscripted array to represent the seating chart of the plane. Initialize all the ele-
ments of the array to 0 to indicate that all seats are empty. As each seat is assigned, set the corre-
sponding elements of the array to 1 to indicate that the seat is no longer available.

Your program should, of course, never assign a seat that has already been assigned. When the
first-class section is full, your program should ask the person if it is acceptable to be placed in the
economy section (and vice versa). If yes, then make the appropriate seat assignment. If no, then print
the message "Next flight leaves in 3 hours."

11.17 Use a double-subscripted array to solve the following problem: A company has four sales-
people (1 to 4) who sell five different products (1 to 5). Once a day, each salesperson passes in a slip
for each different type of product actually sold. Each slip contains

1. the salesperson number,

2. the product number, and

3. the total dollar value of that product sold that day.

Thus, each salesperson passes in between zero and five sales slips per day. Assume that the informa-
tion from all of the slips for last month is available. Write a script that will read all this information
for last month’s sales and summarize the total sales by salesperson by product. All totals should be
stored in the double-subscripted array sales. After processing all the information for last month,
display the results in an XHTML table format, with each of the columns representing a particular
salesperson and each of the rows representing a particular product. Cross-total each row to get the
total sales of each product for last month; cross-total each column to get the total sales by salesper-

Fig. 11.13Fig. 11.13Fig. 11.13Fig. 11.13 Thirty-six possible outcomes of rolling two dice.

1 2 3 4 5 6

1

2

3

4

5

6

876543

765432

1098765

987654

987

6 7 8

10

9 10 11

11 12

iw3htp2.book Page 398 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 399

son for last month. Your tabular printout should include these cross-totals to the right of the totaled
rows and to the bottom of the totaled columns.

11.18 (Turtle Graphics) The Logo language, which is popular among young computer users, made
the concept of turtle graphics famous. Imagine a mechanical turtle that walks around the room under
the control of a JavaScript program. The turtle holds a pen in one of two positions, up or down. While
the pen is down, the turtle traces out shapes as it moves; while the pen is up, the turtle moves about
freely without writing anything. In this problem, you will simulate the operation of the turtle and cre-
ate a computerized sketchpad as well.

Use a 20-by-20 array floor that is initialized to zeros. Read commands from an array that
contains them. Keep track of the current position of the turtle at all times and of whether the pen is
currently up or down. Assume that the turtle always starts at position (0,0) of the floor, with its pen
up. The set of turtle commands your script must process are as follows:

Suppose that the turtle is somewhere near the center of the floor. The following “program” would
draw and print a 12-by-12 square, and then leave the pen in the up position:

2
5,12
3
5,12
3
5,12
3
5,12
1
6
9

As the turtle moves with the pen down, set the appropriate elements of array floor to 1s. When the
6 command (print) is given, display an asterisk or some other character of your choosing wherever
there is a 1 in the array. Wherever there is a zero, display a blank. Write a script to implement the
turtle graphics capabilities discussed here. Write several turtle graphics programs to draw interesting
shapes. Add other commands to increase the power of your turtle graphics language.

11.19 (The Sieve of Eratosthenes) A prime integer is an integer that is evenly divisible by only itself
and 1. The Sieve of Eratosthenes is an algorithm for finding prime numbers. It operates as follows:

a) Create an array with all elements initialized to 1 (true). Array elements with prime sub-
scripts will remain as 1. All other array elements will eventually be set to zero.

b) Starting with array subscript 2 (subscript 1 must be prime), every time an array element
is found whose value is 1, loop through the remainder of the array and set to zero every

Command Meaning

1 Pen up

2 Pen down

3 Turn right

4 Turn left

5,10 Move forward 10 spaces (or a number other than 10)

6 Print the 20-by-20 array

9 End of data (sentinel)

iw3htp2.book Page 399 Wednesday, July 18, 2001 9:01 AM

400 JavaScript: Arrays Chapter 11

element whose subscript is a multiple of the subscript for the element with value 1. For
array subscript 2, all elements beyond 2 in the array that are multiples of 2 will be set to
zero (subscripts 4, 6, 8, 10, etc.); for array subscript 3, all elements beyond 3 in the array
that are multiples of 3 will be set to zero (subscripts 6, 9, 12, 15, etc.); and so on.

When this process is complete, the array elements that are still set to 1 indicate that the subscript is a
prime number. These subscripts can then be printed. Write a script that uses an array of 1000 ele-
ments to determine and print the prime numbers between 1 and 999. Ignore element 0 of the array.

11.20 (Simulation: The Tortoise and the Hare) In this problem, you will re-create one of the truly
great moments in history, namely the classic race of the tortoise and the hare. You will use random-
number generation to develop a simulation of this memorable event.

Our contenders begin the race at “square 1” of 70 squares. Each square represents a possible
position along the race course. The finish line is at square 70. The first contender to reach or pass
square 70 is rewarded with a pail of fresh carrots and lettuce. The course weaves its way up the side
of a slippery mountain, so occasionally the contenders lose ground.

There is a clock that ticks once per second. With each tick of the clock, your script should
adjust the position of the animals according to the following rules:

Use variables to keep track of the positions of the animals (i.e., position numbers are 1–70).
Start each animal at position 1 (i.e., the “starting gate”). If an animal slips left before square 1, move
the animal back to square 1.

Generate the percentages in the preceding table by producing a random integer i in the range 1
≤ i ≤ 10. For the tortoise, perform a “fast plod” when 1 ≤ i ≤ 5, a “slip” when 6 ≤ i ≤ 7 and a “slow
plod” when 8 ≤ i ≤ 10. Use a similar technique to move the hare.

Begin the race by printing

BANG !!!!!
AND THEY'RE OFF !!!!!

Then, for each tick of the clock (i.e., each repetition of a loop), print a 70-position line showing
the letter T in the position of the tortoise and the letter H in the position of the hare. Occasionally, the
contenders will land on the same square. In this case, the tortoise bites the hare, and your script
should print OUCH!!! beginning at that position. All print positions other than the T, the H or the
OUCH!!! (in case of a tie) should be blank.

After each line is printed, test whether either animal has reached or passed square 70. If so,
print the winner, and terminate the simulation. If the tortoise wins, print TORTOISE WINS!!!

Animal Move type Percentage of the time Actual move

Tortoise Fast plod 50% 3 squares to the right

Slip 20% 6 squares to the left

Slow plod 30% 1 square to the right

Hare Sleep 20% No move at all

Big hop 20% 9 squares to the right

Big slip 10% 12 squares to the left

Small hop 30% 1 square to the right

Small slip 20% 2 squares to the left

iw3htp2.book Page 400 Wednesday, July 18, 2001 9:01 AM

Chapter 11 JavaScript: Arrays 401

YAY!!! If the hare wins, print Hare wins. Yuch. If both animals win on the same tick of the
clock, you may want to favor the turtle (the “underdog”), or you may want to print It's a tie. If
neither animal wins, perform the loop again to simulate the next tick of the clock. When you are
ready to run your script, assemble a group of fans to watch the race. You’ll be amazed at how
involved your audience gets!

Later in the book, we introduce a number of Dynamic HTML capabilities, such as graphics,
images, animation and sound. As you study those features, you might enjoy enhancing your tortoise-
and-hare contest simulation.

iw3htp2.book Page 401 Wednesday, July 18, 2001 9:01 AM

12
JavaScript: Objects

Objectives
• To understand object-based programming

terminology and concepts.
• To understand encapsulation and data hiding.
• To appreciate the value of object orientation.
• To be able to use the Math object.
• To be able to use the String object.
• To be able to use the Date object.
• To be able to use the Boolean and Number objects.
My object all sublime
I shall achieve in time.
W. S. Gilbert

Is it a world to hide virtues in?
William Shakespeare, Twelfth Night

Good as it is to inherit a library, it is better to collect one.
Augustine Birrell

A philosopher of imposing stature doesn’t think in a vacuum.
Even his most abstract ideas are, to some extent, conditioned
by what is or is not known in the time when he lives.
Alfred North Whitehead

iw3htp2_12.fm Page 402 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 403

12.1 Introduction
Most JavaScript programs demonstrated to this point illustrate basic computer program-
ming concepts. These programs provide you with the foundation you need to build power-
ful and complex scripts as part of your Web pages. As you proceed beyond this chapter,
you will use JavaScript to manipulate every element of an XHTML document from a script.

This chapter presents a more formal treatment of objects. The chapter overviews—and
serves as a reference for—several of JavaScript’s built-in objects and demonstrates many
of their capabilities. In the chapters on Dynamic HTML that follow this chapter, you will
be introduced to many objects provided by the browser that enable scripts to interact with
the different elements of an XHTML document.

12.2 Thinking About Objects
Now we begin our introduction to objects. We will see that objects are a natural way of
thinking about the world and of writing scripts that manipulate XHTML documents.

In Chapters 7 through 11, we used built-in JavaScript objects—Math and Array—
and we used objects provided by the Web browser—document and window—to per-
form tasks in our scripts. JavaScript uses objects to perform many tasks, so JavaScript is
referred to as an object-based programming language. As we have seen, JavaScript also
uses constructs from the “conventional” structured programming methodology supported
by many other programming languages. The first six JavaScript chapters concentrated on
these “conventional” parts of JavaScript, as they are important components of all Java-
Script programs.

Outline

12.1 Introduction
12.2 Thinking About Objects
12.3 Math Object
12.4 String Object

12.4.1 Fundamentals of Characters and Strings
12.4.2 Methods of the String Object
12.4.3 Character Processing Methods
12.4.4 Searching Methods
12.4.5 Splitting Strings and Obtaining Substrings
12.4.6 XHTML Markup Methods

12.5 Date Object
12.6 Boolean and Number Objects
12.7 JavaScript Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Special Section: Challenging String Manipulation Projects

iw3htp2_12.fm Page 403 Wednesday, July 18, 2001 10:32 AM

404 JavaScript: Objects Chapter 12

This section introduces the basic concepts (i.e., “object think”) and terminology (i.e.,
“object speak”) of object-based programming, so we can properly refer to the object-based
concepts as we encounter them in the remainder of the text.

Let us start by introducing some of the key terminology of object orientation. Look
around you in the real world. Everywhere you look you see them—objects! People, ani-
mals, plants, cars, planes, buildings, computers and the like. Humans think in terms of
objects. We have the marvelous ability of abstraction, which enables us to view screen
images as objects such as people, planes, trees and mountains rather than as individual dots
of color (called pixels, for “picture elements”). We can, if we wish, think in terms of
beaches rather than grains of sand, forests rather than trees and houses rather than bricks.

We might be inclined to divide objects into two categories—animate objects and inan-
imate objects. Animate objects are “alive” in some sense. They move around and do things.
Inanimate objects, like towels, seem not to do much at all. They just kind of “sit around.”
All these objects, however, do have some things in common. They all have attributes, such
as size, shape, color, weight and the like; and they all exhibit behaviors—for example, a
ball rolls, bounces, inflates and deflates; a baby cries, sleeps, crawls, walks and blinks; a
car accelerates, decelerates, brakes and turns; a towel absorbs water.

Humans learn about objects by studying their attributes and observing their behaviors.
Different objects can have similar attributes and can exhibit similar behaviors. Compari-
sons can be made, for example, between babies and adults and between humans and chim-
panzees. Cars, trucks, little red wagons and skateboards have much in common.

Objects encapsulate data (attributes) and methods (behavior); the data and methods of
an object are tied together intimately. Objects have the property of information hiding. Pro-
grams communicate with objects through well-defined interfaces. Normally, implementa-
tion details of objects are hidden within the objects themselves.

Most people reading this book probably drive (or have driven) an automobile—a per-
fect example of an object. Surely it is possible to drive an automobile effectively without
knowing the details of how engines, transmissions and exhaust systems work internally.
Millions of human years of research and development have been performed for automo-
biles and have resulted in extremely complex objects containing thousands of parts
(attributes). All of this complexity is hidden (encapsulated) from the driver. The driver only
sees the friendly user interface of behaviors that enable the driver to make the car go faster
by pressing the gas pedal, go slower by pressing the brake pedal, turn left or right by turning
the steering wheel, go forward or backward by selecting the gear and turn on and off by
turning the key in the ignition.

Like the designers of an automobile, the designers of World Wide Web browsers have
defined a set of objects that encapsulate the elements of an XHTML document and expose
to a JavaScript programmer attributes and behaviors that enable a JavaScript program to
interact with (or script) the elements (objects) in an XHTML document. The browser’s
window object provides attributes and behaviors that enable a script to manipulate a
browser window. When a string is assigned to the window object’s status property
(attribute), that string is displayed in the status bar of the browser window. The window
object’s alert method (behavior) allows the programmer to display a message in a sepa-
rate window. We will soon see that the browser’s document object contains attributes and
behaviors that provide access to every element of an XHTML document. Similarly, Java-
Script provides objects that encapsulate various capabilities in a script. For example, the

iw3htp2_12.fm Page 404 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 405

JavaScript Array object provides attributes and behaviors that enable a script to manipu-
late a collection of data. The Array object’s length property (attribute) contains the
number of elements in the Array. The Array object’s sort method (behavior) orders
the elements of the Array.

Indeed, with object technology, we will build most future software by combining
“standardized, interchangeable parts” called objects. These parts allow programmers to
create new programs without having to “reinvent the wheel.” Objects will allow program-
mers to speed and enhance the quality of future software development efforts.

12.3 Math Object
The Math object’s methods allow the programmer to perform many common mathemati-
cal calculations. As shown previously, an object’s methods are called by writing the name
of the object followed by a dot operator (.) and the name of the method. In parentheses fol-
lowing the method name is the argument (or a comma-separated list of arguments) to the
method. For example, a programmer desiring to calculate and display the square root of
900.0 might write

document.writeln(Math.sqrt(900.0));

When this statement executes, it calls method Math.sqrt to calculate the square root of
the number contained in the parentheses (900.0). The number 900.0 is the argument of
the Math.sqrt method. The preceding statement would display 30.0. Invoking the
sqrt method of the Math object is also referred to as sending the sqrt message to Math
object. Similarly, invoking the writeln method of the document object is also referred
to as sending the writeln message to the document object. Some Math object methods
are summarized in Fig. 12.1.

Method Description Example

abs(x) absolute value of x abs(7.2) is 7.2
abs(0.0) is 0.0
abs(-5.6) is 5.6

ceil(x) rounds x to the smallest integer
not less than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

cos(x) trigonometric cosine of x
(x in radians)

cos(0.0) is 1.0

exp(x) exponential method ex exp(1.0) is 2.71828
exp(2.0) is 7.38906

floor(x) rounds x to the largest integer not
greater than x

floor(9.2) is 9.0
floor(-9.8) is -10.0

log(x) natural logarithm of x (base e) log(2.718282) is 1.0
log(7.389056) is 2.0

Fig. 12.1Fig. 12.1Fig. 12.1Fig. 12.1 Commonly used Math object methods (part 1 of 2).

iw3htp2_12.fm Page 405 Wednesday, July 18, 2001 10:32 AM

406 JavaScript: Objects Chapter 12

Common Programming Error 12.1
Forgetting to invoke a Math method by preceding the method name with the object name
Math and a dot operator (.) is an error. 12.1

Software Engineering Observation 12.1
The primary difference between invoking a function and invoking a method is that a function
does not require an object name and a dot operator to call the function. 12.1

The Math object also defines several commonly used mathematical constants, sum-
marized in Fig. 12.2. [Note: By convention, the names of these constants are written in all
uppercase letters.]

Good Programming Practice 12.1
Use the mathematical constants of the Math object rather than explicitly typing the numeric
value of the constant. 12.1

max(x, y) larger value of x and y max(2.3, 12.7) is 12.7
max(-2.3, -12.7) is -2.3

min(x, y) smaller value of x and y min(2.3, 12.7) is 2.3
min(-2.3, -12.7) is -12.7

pow(x, y) x raised to power y (xy) pow(2.0, 7.0) is 128.0
pow(9.0, .5) is 3.0

round(x) rounds x to the closest integer round(9.75) is 10
round(9.25) is 9

sin(x) trigonometric sine of x
(x in radians)

sin(0.0) is 0.0

sqrt(x) square root of x sqrt(900.0) is 30.0
sqrt(9.0) is 3.0

tan(x) trigonometric tangent of x
(x in radians)

tan(0.0) is 0.0

Method Description Example

Fig. 12.1Fig. 12.1Fig. 12.1Fig. 12.1 Commonly used Math object methods (part 2 of 2).

Constant Description Value

Math.E Euler’s constant. Approximately 2.718.

Math.LN2 Natural logarithm of 2. Approximately 0.693.

Math.LN10 Natural logarithm of 10. Approximately 2.302.

Math.LOG2E Base 2 logarithm of Euler’s
constant.

Approximately 1.442.

Math.LOG10E Base 10 logarithm of Euler’s constant. Approximately 0.434.

Fig. 12.2Fig. 12.2Fig. 12.2Fig. 12.2 Properties of the Math object (part 1 of 2).

iw3htp2_12.fm Page 406 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 407

12.4 String Object
In this section, we introduce JavaScript’s string- and character-processing capabilities. The
techniques discussed here are appropriate for processing names, addresses, credit card in-
formation, etc.

12.4.1 Fundamentals of Characters and Strings

Characters are the fundamental building blocks of JavaScript programs. Every program is
composed of a sequence of characters that—when grouped together meaningfully—is in-
terpreted by the computer as a series of instructions used to accomplish a task.

A string is a series of characters treated as a single unit. A string may include letters,
digits and various special characters, such as +, -, *, /, $ and others. JavaScript supports
the set of characters called Unicode® that represents a large portion of the world’s commer-
cially viable languages. (We discuss Unicode in detail in Appendix G.) A string is an object
of type String. String literals or string constants (often called anonymous String
objects) are written as a sequence of characters in double quotation marks or single quota-
tion marks as follows:

"John Q. Doe" (a name)
'9999 Main Street' (a street address)
"Waltham, Massachusetts" (a city and state)
'(201) 555-1212' (a telephone number)

A String may be assigned to a variable in a declaration. The declaration

var color = "blue";

initializes variable color with the String object containing the string "blue".
Strings can be compared with the relational operators (<, <=, > and >=) and the equality
operators (== and !=).

12.4.2 Methods of the String Object
The String object encapsulates the attributes and behaviors of a string of characters. The
String object provides many methods (behaviors) for selecting characters from a string,
combining strings (called concatenation), obtaining substrings of a string, searching for
substrings within a string, tokenizing a string and converting strings to all uppercase or low-
ercase letters. The String object also provides several methods that generate XHTML

Math.PI π—the ratio of a circle’s circumfer-
ence to its diameter.

Approximately 3.141592653589793.

Math.SQRT1_2 Square root of 0.5. Approximately 0.707.

Math.SQRT2 Square root of 2.0. Approximately 1.414.

Constant Description Value

Fig. 12.2Fig. 12.2Fig. 12.2Fig. 12.2 Properties of the Math object (part 2 of 2).

iw3htp2_12.fm Page 407 Wednesday, July 18, 2001 10:32 AM

408 JavaScript: Objects Chapter 12

tags. Figure 12.3 summarizes many String methods. Figures 12.4–12.7 demonstrate
some of these methods.

Method Description

charAt(index) Returns a string containing the character at the specified index. If
there is no character at that index, charAt returns an empty
string. The first character is located at index 0.

charCodeAt(index) Returns the Unicode value of the character at the specified index.
If there is no character at that index, charCodeAt returns NaN.

concat(string) Concatenates its argument to the end of the string that invokes the
method. The string invoking this method is not modified; rather a
new String is returned. This method is the same as adding two
strings with the string concatenation operator + (e.g., s1.con-
cat(s2) is the same as s1 + s2).

fromCharCode(
 value1, value2, …)

Converts a list of Unicode values into a string containing the cor-
responding characters.

indexOf(
 substring, index)

Searches for the first occurrence of substring starting from posi-
tion index in the string that invokes the method. The method
returns the starting index of substring in the source string or –1 if
substring is not found. If the index argument is not provided, the
method begins searching from index 0 in the source string.

lastIndexOf(
 substring, index)

Searches for the last occurrence of substring starting from posi-
tion index and searching toward the beginning of the string that
invokes the method. The method returns the starting index of sub-
string in the source string or –1 if substring is not found. If the
index argument is not provided, the method begins searching
from end of the source string.

slice(start, end) Returns a string containing the portion of the string from index
start through index end. If the end index is not specified, the
method returns a string from the start index to the end of the source
string. A negative end index specifies an offset from the end of the
string starting from a position one past the end of the last character
(so, –1 indicates the last character position in the string).

split(string) Splits the source string into an array of strings (tokens) where its
string argument specifies the delimiter (i.e., the characters that
indicate the end of each token in the source string).

substr(
 start, length)

Returns a string containing length characters starting from index
start in the source string. If length is not specified, a string contain-
ing characters from start to the end of the source string is returned.

substring(
 start, end)

Returns a string containing the characters from index start up to
but not including index end in the source string.

toLowerCase() Returns a string in which all uppercase letters are converted to
lowercase letters. Non-letter characters are not changed.

Fig. 12.3Fig. 12.3Fig. 12.3Fig. 12.3 Some methods of the String object (part 1 of 2).

iw3htp2_12.fm Page 408 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 409

12.4.3 Character Processing Methods

The script of Fig. 12.4 demonstrates some of the String object’s character processing
methods, including charAt (returns the character at a specific position), charCodeAt
(returns the Unicode value of the character at a specific position), fromCharCode (re-
turns a string created from a series of Unicode values), toLowerCase (returns the low-
ercase version of a string) and toUpperCase (returns the uppercase version of a string).

toUpperCase() Returns a string in which all lowercase letters are converted to
uppercase letters. Non-letter characters are not changed.

toString() Returns the same string as the source string.

valueOf() Returns the same string as the source string.

Methods that generate XHTML tags

anchor(name) Wraps the source string in an anchor element (<a>) with
name as the anchor name.

blink() Wraps the source string in a <blink></blink> element.

fixed() Wraps the source string in a <tt></tt> element.

link(url) Wraps the source string in an anchor element (<a>) with
url as the hyperlink location.

strike() Wraps the source string in a <strike></strike> element.

sub() Wraps the source string in a element.

sup() Wraps the source string in a element.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 12.4: CharacterProcessing.html -->
6 <!-- Character Processing Methods -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Character Processing Methods</title>
11
12 <script type = "text/javascript">
13 <!--
14 var s = "ZEBRA";
15 var s2 = "AbCdEfG";
16

Fig. 12.4Fig. 12.4Fig. 12.4Fig. 12.4 String methods charAt, charCodeAt, fromCharCode,
toLowercase and toUpperCase (part 1 of 2).

Method Description

Fig. 12.3Fig. 12.3Fig. 12.3Fig. 12.3 Some methods of the String object (part 2 of 2).

iw3htp2_12.fm Page 409 Wednesday, July 18, 2001 10:32 AM

410 JavaScript: Objects Chapter 12

Lines 17–18 display the first character in String s ("ZEBRA") using String
method charAt. Method charAt returns a string containing the character at the specified
index (0 in this example). Indices for the characters in a string start at 0 (the first character)
and go up to (but not including) the string’s length (i.e., if the string contains five char-
acters, the indices are 0 through 4). If the index is outside the bounds of the string, the
method returns an empty string.

Lines 19–20 display the character code for the first character in String s
("ZEBRA") by calling String method charCodeAt. Method charCodeAt returns
the Unicode value of the character at the specified index (0 in this example). If the index is
outside the bounds of the string, the method returns NaN.

String method fromCharCode receives as its argument a comma-separated list of
Unicode values and builds a string containing the character representation of those Unicode
values. Lines 22–24 display the string “WORD,” which consists of the character codes 87,
79, 82 and 68. Notice that the String object calls method fromCharCode, rather than
a specific String variable. Appendix C, ASCII Character Set, contains the character
codes ASCII character set—a subset of the Unicode character set (Appendix G) that con-
tains only Western characters.

17 document.writeln("<p>Character at index 0 in '" +
18 s + "' is " + s.charAt(0));
19 document.writeln("
Character code at index 0 in '"
20 + s + "' is " + s.charCodeAt(0) + "</p>");
21
22 document.writeln("<p>'" +
23 String.fromCharCode(87, 79, 82, 68) +
24 "' contains character codes 87, 79, 82 and 68</p>")
25
26 document.writeln("<p>'" + s2 + "' in lowercase is '" +
27 s2.toLowerCase() + "'");
28 document.writeln("
'" + s2 + "' in uppercase is '"
29 + s2.toUpperCase() + "'</p>");
30 // -->
31 </script>
32
33 </head><body></body>
34 </html>

Fig. 12.4Fig. 12.4Fig. 12.4Fig. 12.4 String methods charAt, charCodeAt, fromCharCode,
toLowercase and toUpperCase (part 2 of 2).

iw3htp2_12.fm Page 410 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 411

The statements at lines 26–27 and 28–29 use String methods toLowerCase and
toUpperCase to display versions of String s2 ("AbCdEfG") in all lowercase letters
and all uppercase letters, respectively.

12.4.4 Searching Methods
Often it is useful to search for a character or a sequence of characters in a string. For exam-
ple, if you are creating your own word processor, you may want to provide a capability for
searching through the document. The script of Fig. 12.5 demonstrates the String object
methods indexOf and lastIndexOf that search for a specified substring in a string.
All the searches in this example are performed on the global string letters (initialized
at line 16 with "abcdefghijklmnopqrstuvwxyzabcdefghijklm" in the script).

The user types a substring in the XHTML form searchForm’s inputVal text field
and presses search (with the label Search on the screen) to search for the substring in
letters. Clicking the Search button calls function buttonPressed (defined at lines
18–29) to respond to the onclick event and to perform the searches. The results of each
search are displayed in the appropriate text field of searchForm.

Lines 20–21 use String method indexOf to determine the location of the first
occurrence in string letters of the string searchForm.inputVal.value (i.e., the
string the user typed in the inputVal text field). If the substring is found, the index at
which the first occurrence of the substring begins is returned; otherwise, –1 is returned.

Lines 22–23 use String method lastIndexOf to determine the location of the last
occurrence in letters of the string in text field inputVal. If the substring is found, the
index at which the last occurrence of the substring begins is returned; otherwise, –1 is
returned.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 12.5: SearchingStrings.html -->
6 <!-- Searching Strings -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>
11 Searching Strings with indexOf and lastIndexOf
12 </title>
13
14 <script type = "text/javascript">
15 <!--
16 var letters = "abcdefghijklmnopqrstuvwxyzabcdefghijklm";
17
18 function buttonPressed()
19 {
20 searchForm.first.value =
21 letters.indexOf(searchForm.inputVal.value);

Fig. 12.5Fig. 12.5Fig. 12.5Fig. 12.5 Searching Strings with indexOf and lastIndexOf (part 1 of 3).

iw3htp2_12.fm Page 411 Wednesday, July 18, 2001 10:32 AM

412 JavaScript: Objects Chapter 12

22 searchForm.last.value =
23 letters.lastIndexOf(searchForm.inputVal.value);
24 searchForm.first12.value =
25 letters.indexOf(searchForm.inputVal.value, 12);
26 searchForm.last12.value =
27 letters.lastIndexOf(
28 searchForm.inputVal.value, 12);
29 }
30 // -->
31 </script>
32
33 </head>
34 <body>
35 <form name = "searchForm" action = "">
36 <h1>The string to search is:

37 abcdefghijklmnopqrstuvwxyzabcdefghijklm</h1>
38 <p>Enter substring to search for
39 <input name = "inputVal" type = "text" />
40 <input name = "search" type = "button" value = "Search"
41 onclick = "buttonPressed()" />
</p>
42
43 <p>First occurrence located at index
44 <input name = "first" type = "text" size = "5" />
45
Last occurrence located at index
46 <input name = "last" type = "text" size = "5" />
47
First occurrence from index 12 located at index
48 <input name = "first12" type = "text" size = "5" />
49
Last occurrence from index 12 located at index
50 <input name = "last12" type = "text" size = "5" /></p>
51 </form>
52 </body>
53 </html>

Fig. 12.5Fig. 12.5Fig. 12.5Fig. 12.5 Searching Strings with indexOf and lastIndexOf (part 2 of 3).

iw3htp2_12.fm Page 412 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 413

Lines 24–25 use String method indexOf to determine the location of the first
occurrence in string letters of the string in the inputVal text field, starting from
index 12 in letters. If the substring is found, the index at which the first occurrence of
the substring (starting from index 12) begins is returned; otherwise, –1 is returned.

Lines 26–28 use String method lastIndexOf to determine the location of the last
occurrence in letters of the string in the inputVal text field starting from index 12
in letters. If the substring is found, the index at which the first occurrence of the sub-
string (starting from index 12) begins is returned; otherwise, –1 is returned.

Software Engineering Observation 12.2
String methods indexOf or lastIndexOf, with their optional second argument (the
starting index from which to search), are particularly useful for continuing a search through
a large amount of text. 12.2

12.4.5 Splitting Strings and Obtaining Substrings

When you read a sentence, your mind breaks the sentence into individual words, or tokens,
each of which conveys meaning to you. The process of breaking a string into tokens is
called tokenization. Interpreters also perform tokenization. They break up statements into
such individual pieces as keywords, identifiers, operators and other elements of a program-
ming language. Figure 12.6 demonstrates String method split that breaks a string into
its component tokens. Tokens are separated from one another by delimiters, typically
white-space characters such as blank, tab, newline and carriage return. Other characters
may also be used as delimiters to separate tokens.The XHTML document displays a form
containing a text field where the user types a sentence to tokenize. The results of the token-
ization process are displayed in an XHTML textarea GUI component. The script also
demonstrates String method substring which returns a portion of a string.

The user types a sentence into form myForm’s inputVal text field and presses
button splitButton (labeled Split on the screen) to tokenize the string. Function

Fig. 12.5Fig. 12.5Fig. 12.5Fig. 12.5 Searching Strings with indexOf and lastIndexOf (part 3 of 3).

iw3htp2_12.fm Page 413 Wednesday, July 18, 2001 10:32 AM

414 JavaScript: Objects Chapter 12

splitButtonPressed (defined at lines 14–21) handles splitButton’s onclick
event.

Line 16 calls String method split to tokenize myForm.inputVal.value,
which contains the string the user entered. The argument to method split is the delimiter
string—the string that determines the end of each token in the original string. In this
example, the space character delimits the tokens. The delimiter string can contain multiple
characters that should be used as delimiters. Method split returns an array of strings con-
taining the tokens. Line 17 uses Array method join to combine the strings in array
strings and separate each string with a newline character (\n). The resulting string is
assigned to the value property of the XHTML form’s output GUI component (an
XHTML textarea).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 12.6: SplitAndSubString.html -->
6 <!-- String Method split and substring -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>String Method split and substring</title>
11
12 <script type = "text/javascript">
13 <!--
14 function splitButtonPressed()
15 {
16 var strings = myForm.inputVal.value.split(" ");
17 myForm.output.value = strings.join("\n");
18
19 myForm.outputSubstring.value =
20 myForm.inputVal.value.substring(0, 10);
21 }
22 // -->
23 </script>
24 </head>
25
26 <body>
27 <form name = "myForm" action = "">
28 <p>Enter a sentence to split into words

29 <input name = "inputVal" type = "text" size = "40" />
30 <input name = "splitButton" type = "button" value =
31 "Split" onclick = "splitButtonPressed()" /></p>
32
33 <p>The sentence split into words is

34 <textarea name = "output" rows = "8" cols = "34">
35 </textarea></p>
36
37 <p>The first 10 characters of the input string are
38 <input name = "outputSubstring" type = "text"
39 size = "15" /></p>

Fig. 12.6Fig. 12.6Fig. 12.6Fig. 12.6 Using String method split and Array method join (part 1 of 2).

iw3htp2_12.fm Page 414 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 415

Lines 19–20 use String method substring to obtain a string containing the first
10 characters of the string the user entered in text field inputVal. The method returns the
substring from the starting index (0 in this example) up to but not including the ending index
(10 in this example). If the ending index is greater than the length of the string, the substring
returned includes the characters from the starting index to the end of the original string.

12.4.6 XHTML Markup Methods

The script of Fig. 12.7 demonstrates the String object’s methods that generate XHTML
markup tags. When a String object invokes a markup method, the method wraps the
String’s contents in the appropriate XHTML tag. These methods are particularly useful
for generating XHTML dynamically during script processing. [Note: Internet Explorer ig-
nores the blink element.]

40 </form>
41 </body>
42 </html>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 12.7: MarkupMethods.html -->
6 <!-- XHTML markup methods of the String object -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

Fig. 12.7Fig. 12.7Fig. 12.7Fig. 12.7 XHTML markup methods of the String object (part 1 of 2).

Fig. 12.6Fig. 12.6Fig. 12.6Fig. 12.6 Using String method split and Array method join (part 2 of 2).

iw3htp2_12.fm Page 415 Wednesday, July 18, 2001 10:32 AM

416 JavaScript: Objects Chapter 12

Lines 14–20 define the strings that call each of the XHTML markup methods of the
String object. Line 22 uses String method anchor to format the string in variable
anchorText ("This is an anchor") as

This is an anchor

The name of the anchor is the argument to the method. This anchor will be used later in
the example as the target of a hyperlink.

10 <title>XHTML Markup Methods of the String Object</title>
11
12 <script type = "text/javascript">
13 <!--
14 var anchorText = "This is an anchor",
15 blinkText = "This is blinking text",
16 fixedText = "This is monospaced text",
17 linkText = "Click here to go to anchorText",
18 strikeText = "This is strike out text",
19 subText = "subscript",
20 supText = "superscript";
21
22 document.writeln(anchorText.anchor("top"));
23 document.writeln("
" + blinkText.blink());
24 document.writeln("
" + fixedText.fixed());
25 document.writeln("
" + strikeText.strike());
26 document.writeln(
27 "
This is text with a " + subText.sub());
28 document.writeln(
29 "
This is text with a " + supText.sup());
30 document.writeln(
31 "
" + linkText.link("#top"));
32 // -->
33 </script>
34
35 </head><body></body>
36 </html>

Fig. 12.7Fig. 12.7Fig. 12.7Fig. 12.7 XHTML markup methods of the String object (part 2 of 2).

iw3htp2_12.fm Page 416 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 417

Line 23 calls String method blink to make the string blink in the Web page by
formatting the string in variable blinkText ("This is blinking text") as

<blink>This is blinking text</blink>

Line 24 uses String method fixed to display text in a fixed-width font by format-
ting the string in variable fixedText ("This is monospaced text") as

<tt>This is monospaced text</tt>

Line 25 uses String method strike to display text with a line through it by for-
matting the string in variable strikeText ("This is strike out text") as

<strike>This is strike out text</strike>

Lines 26–27 use String method sub to display subscript text by formatting the
string in variable subText ("subscript") as

_{subscript}

Notice that the resulting line in the XHTML document displays the word subscript
smaller than the rest of the line and slightly below the line. Lines 28–29 call String meth-
od sup to display superscript text by formatting the string in variable supText ("su-
perscript") as

^{superscript}

Notice that the resulting line in the XHTML document displays the word superscript
smaller than the rest of the line and slightly above the line.

Lines 30–31use String method link to create a hyperlink by formatting the string
in variable linkText ("Click here to go to anchorText") as

Click here to go to anchorText

The target of the hyperlink (#top in this example) is the argument to the method and can
be any URL. In this example, the hyperlink target is the anchor created at line 22. If you
make your browser window short and scroll to the bottom of the Web page, then click this
link, the browser will reposition to the top of the Web page.

12.5 Date Object
JavaScript’s Date object provides methods for date and time manipulations. Date and time
processing can be performed based on the computer’s local time zone or based on World
Time Standard’s Universal Coordinated Time (UTC)—formerly called Greenwich Mean
Time (GMT). Most methods of the Date object have a local time zone and a UTC version.
The methods of the Date object are summarized in Fig. 12.8.

Method Description

getDate()
getUTCDate()

Returns a number from 1 to 31 representing the day of the
month in local time or UTC, respectively.

Fig. 12.8Fig. 12.8Fig. 12.8Fig. 12.8 Methods of the Date object (part 1 of 3).

iw3htp2_12.fm Page 417 Wednesday, July 18, 2001 10:32 AM

418 JavaScript: Objects Chapter 12

getDay()
getUTCDay()

Returns a number from 0 (Sunday) to 6 (Saturday) represent-
ing the day of the week in local time or UTC, respectively.

getFullYear()
getUTCFullYear()

Returns the year as a four-digit number in local time or UTC,
respectively.

getHours()
getUTCHours()

Returns a number from 0 to 23 representing hours since mid-
night in local time or UTC, respectively.

getMilliseconds()
getUTCMilliSeconds()

Returns a number from 0 to 999 representing the number of
milliseconds in local time or UTC, respectively. The time is
stored in hours, minutes, seconds and milliseconds.

getMinutes()
getUTCMinutes()

Returns a number from 0 to 59 representing the minutes for
the time in local time or UTC, respectively.

getMonth()
getUTCMonth()

Returns a number from 0 (January) to 11 (December) repre-
senting the month in local time or UTC, respectively.

getSeconds()
getUTCSeconds()

Returns a number from 0 to 59 representing the seconds for
the time in local time or UTC, respectively.

getTime() Returns the number of milliseconds between January 1, 1970
and the time in the Date object.

getTimezoneOffset() Returns the difference in minutes between the current time on
the local computer and UTC—previously known as Green-
wich Mean Time (GMT).

setDate(val)
setUTCDate(val)

Sets the day of the month (1 to 31) in local time or UTC,
respectively.

setFullYear(y, m, d)
setUTCFullYear(y, m, d)

Sets the year in local time or UTC, respectively. The second
and third arguments representing the month and the date are
optional. If an optional argument is not specified, the current
value in the Date object is used.

setHours(h, m, s, ms)
setUTCHours(h, m, s, ms)

Sets the hour in local time or UTC, respectively. The sec-
ond, third and fourth arguments representing the minutes,
seconds and milliseconds are optional. If an optional argu-
ment is not specified, the current value in the Date object is
used.

setMilliSeconds(ms)
setUTCMilliseconds(ms)

Sets the number of milliseconds in local time or UTC, respec-
tively.

setMinutes(m, s, ms)
setUTCMinutes(m, s, ms)

Sets the minute in local time or UTC, respectively. The sec-
ond and third arguments representing the seconds and milli-
seconds are optional. If an optional argument is not specified,
the current value in the Date object is used.

setMonth(m, d)
setUTCMonth(m, d)

Sets the month in local time or UTC, respectively. The second
argument representing the date is optional. If the optional
argument is not specified, the current date value in the Date
object is used.

Method Description

Fig. 12.8Fig. 12.8Fig. 12.8Fig. 12.8 Methods of the Date object (part 2 of 3).

iw3htp2_12.fm Page 418 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 419

The script of Fig. 12.9 demonstrates many of the local time zone methods in Fig. 12.8.
Line 14 creates a new Date object. The new operator allocates the memory for the Date
object. The empty parentheses indicate a call to the Date object’s constructor with no
arguments. A constructor is an initializer method for an object. Constructors are called
automatically when an object is allocated with new. The Date constructor with no argu-
ments initializes the local computer’s Date object with the current date and time.

Software Engineering Observation 12.3
When an object is allocated with new, the object’s constructor is called automatically to ini-
tialize the object before it is used in the program. 12.3

Lines 18–21 demonstrate the methods toString, toLocaleString, toUTC-
String and valueOf. Notice that method valueOf returns a large integer value rep-
resenting the total number of milliseconds between midnight, January 1, 1970 and the date
and time stored in Date object current.

Lines 25–35 demonstrate the Date object’s get methods for the local time zone.
Notice that method getFullYear returns the year as a four-digit number. Also, notice
that method getTimeZoneOffset returns the difference in minutes between the local
time zone and UTC time (a difference of four hours at the time of the sample execution).

setSeconds(s, ms)
setUTCSeconds(s, ms)

Sets the second in local time or UTC, respectively. The sec-
ond argument representing the milliseconds is optional. If this
argument is not specified, the current millisecond value in the
Date object is used.

setTime(ms) Sets the time based on its argument—the number of elapsed
milliseconds since January 1, 1970.

toLocaleString() Returns a string representation of the date and time in a form
specific to the computer’s locale. For example, September 13,
2001 at 3:42:22 PM is represented as 09/13/01 15:47:22 in
the United States and 13/09/01 15:47:22 in Europe.

toUTCString() Returns a string representation of the date and time in the
form: 19 Sep 2001 15:47:22 UTC

toString() Returns a string representation of the date and time in a form
specific to the locale of the computer (Mon Sep 19 15:47:22
EDT 2001 in the United States).

valueOf() The time in number of milliseconds since midnight, January
1, 1970.

Method Description

Fig. 12.8Fig. 12.8Fig. 12.8Fig. 12.8 Methods of the Date object (part 3 of 3).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 Demonstrating date and time methods of the Date object (part 1 of 3).

iw3htp2_12.fm Page 419 Wednesday, July 18, 2001 10:32 AM

420 JavaScript: Objects Chapter 12

4
5 <!-- Fig. 12.9: DateTime.html -->
6 <!-- Date and Time Methods -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Date and Time Methods</title>
11
12 <script type = "text/javascript">
13 <!--
14 var current = new Date();
15
16 document.writeln(
17 "<h1>String representations and valueOf</h1>");
18 document.writeln("toString: " + current.toString() +
19 "
toLocaleString: " + current.toLocaleString() +
20 "
toUTCString: " + current.toUTCString() +
21 "
valueOf: " + current.valueOf());
22
23 document.writeln(
24 "<h1>Get methods for local time zone</h1>");
25 document.writeln("getDate: " + current.getDate() +
26 "
getDay: " + current.getDay() +
27 "
getMonth: " + current.getMonth() +
28 "
getFullYear: " + current.getFullYear() +
29 "
getTime: " + current.getTime() +
30 "
getHours: " + current.getHours() +
31 "
getMinutes: " + current.getMinutes() +
32 "
getSeconds: " + current.getSeconds() +
33 "
getMilliseconds: " +
34 current.getMilliseconds() +
35 "
getTimezoneOffset: " +
36 current.getTimezoneOffset());
37
38 document.writeln(
39 "<h1>Specifying arguments for a new Date</h1>");
40 var anotherDate = new Date(2001, 2, 18, 1, 5, 0, 0);
41 document.writeln("Date: " + anotherDate);
42
43 document.writeln(
44 "<h1>Set methods for local time zone</h1>");
45 anotherDate.setDate(31);
46 anotherDate.setMonth(11);
47 anotherDate.setFullYear(2001);
48 anotherDate.setHours(23);
49 anotherDate.setMinutes(59);
50 anotherDate.setSeconds(59);
51 document.writeln("Modified date: " + anotherDate);
52 // -->
53 </script>
54
55 </head><body></body>
56 </html>

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 Demonstrating date and time methods of the Date object (part 2 of 3).

iw3htp2_12.fm Page 420 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 421

Line 39 demonstrates creating a new Date object and supplying arguments to the
Date constructor for year, month, date, hours, minutes, seconds and milliseconds. Note
that the hours, minutes, seconds and milliseconds arguments are all optional. If any one of
these arguments is not specified, a zero is supplied in its place. For the hours, minutes and
seconds arguments, if the argument to the right of any of these arguments is specified, that
argument must also be specified (e.g., if the minutes argument is specified, the hours argu-
ment must be specified; if the milliseconds argument is specified, all the arguments must
be specified).

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 Demonstrating date and time methods of the Date object (part 3 of 3).

iw3htp2_12.fm Page 421 Wednesday, July 18, 2001 10:32 AM

422 JavaScript: Objects Chapter 12

Lines 44–49 demonstrate the Date object set methods for the local time zone. Date
objects represent the month internally as an integer from 0 to 11. These values are off-by-
one from what you might expect (i.e., 1 for January, 2 for February, …, and 12 for
December). When creating a Date object, you must specify 0 to indicate January, 1 to indi-
cate February, …, and 11 to indicate December.

Common Programming Error 12.2
Assuming months are represented as numbers from 1 to 12 leads to off-by-one errors when
you are processing Dates. 12.2

The Date object provides two other methods that can be called without creating a new
Date object—Date.parse and Date.UTC. Method Date.parse receives as its
argument a string representing a date and time, and returns the number of milliseconds
between midnight, January 1, 1970 and the specified date and time. This value can be con-
verted to a Date object with the statement

var theDate = new Date(numberOfMilliseconds);

which passes to the Date constructor the number of milliseconds since midnight, January
1, 1970 for the Date object.

Method parse converts the string using the following rules:

• Short dates can be specified in the form MM-DD-YY, MM-DD-YYYY, MM/DD/YY
or MM/DD/YYYY. The month and day are not required to be two digits.

• Long dates that specify the complete month name (e.g., “January”), date and year
can specify the month, date and year in any order.

• Text in parentheses within the string is treated as a comment and ignored. Com-
mas and whitespace characters are treated as delimiters.

• All month and day names must have at least two characters. The names are not
required to be unique. If the names are identical, the name is resolved as the last
match (e.g., “Ju” represents “July” rather than “June”).

• If the name of the day of the week is supplied, it is ignored.

• All standard time zones (e.g., EST for Eastern Standard Time), Universal Coordi-
nated Time (UTC) and Greenwich Mean Time (GMT) are recognized.

• When specifying hours, minutes and seconds, separate each by colons.

• When using 24-hour clock format, “PM” should not be used for times after 12 noon.

Date method UTC returns the number of milliseconds between midnight, January 1,
1970 and the date and time specified as its arguments. The arguments to the UTC method
include the required year, month and date, and the optional hours, minutes, seconds and
milliseconds. If any of the hours, minutes, seconds or milliseconds arguments is not speci-
fied, a zero is supplied in its place. For the hours, minutes and seconds arguments, if the
argument to the right of any of these arguments in the argument list is specified, that argu-
ment must also be specified (e.g., if the minutes argument is specified, the hours argument
must be specified; if the milliseconds argument is specified, all the arguments must be spec-
ified). As with the result of Date.parse, the result of Date.UTC can be converted to a
Date object by creating a new Date object with the result of Date.UTC as its argument.

iw3htp2_12.fm Page 422 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 423

12.6 Boolean and Number Objects
JavaScript provides the Boolean and Number objects as object wrappers for boolean
true/false values and numbers, respectively. These wrappers define methods and prop-
erties useful in manipulating boolean values and numbers.

When a JavaScript program requires boolean value, JavaScript automatically creates a
Boolean object to store the value. JavaScript programmers can create Boolean objects
explicitly with the statement

var b = new Boolean(booleanValue);

The constructor argument booleanValue specifies whether the value of the Boolean ob-
ject should be true or false. If booleanValue is false, 0, null, Number.NaN or the
empty string (""), or if no argument is supplied, the new Boolean object contains
false. Otherwise, the new Boolean object contains true. Figure 12.10 summarizes
the methods of the Boolean object.

JavaScript automatically creates Number objects to store numeric values in a JavaS-
cript program. JavaScript programmers can create a Number object with the statement

var n = new Number(numericValue);

The constructor argument numericValue is the number to store in the object. Although you
can explicitly create Number objects, normally the JavaScript interpreter creates them as
needed. Figure 12.11 summarizes the methods and properties of the Number object.

Method Description

toString() Returns the string “true” if the value of the Boolean object is true;
otherwise, returns the string “false.”

valueOf() Returns the value true if the Boolean object is true; otherwise,
returns false.

Fig. 12.10Fig. 12.10Fig. 12.10Fig. 12.10 Methods of the Boolean object.

Method or Property Description

toString(radix) Returns the string representation of the number. The
optional radix argument (a number from 2 to 36) specifies
the number’s base. For example, radix 2 results in the binary
representation of the number, 8 results in the octal represen-
tation, 10 results in the decimal representation and 16
results in the hexadecimal representation. See Appendix D
“Number Systems” for a review of the binary, octal, decimal
and hexadecimal number systems.

Fig. 12.11Fig. 12.11Fig. 12.11Fig. 12.11 Methods and properties of the Number object.

iw3htp2_12.fm Page 423 Wednesday, July 18, 2001 10:32 AM

424 JavaScript: Objects Chapter 12

12.7 JavaScript Internet and World Wide Web Resources
www.javascript.com
JavaScript.com provides JavaScript tips and articles.

www.iboost.com/build/programming/js/tutorial/885.htm
This page provides a tutorial on JavaScript objects.

www.cs.uidaho.edu/~acm/javascript/jsdoc
This site provides a list of JavaScript language features and a short reference section that includes ob-
jects.

www.javascriptsearch.com
This site provides a variety of JavaScript examples.

www.a1javascripts.com
This site provides JavaScript examples, links, tutorials and tools.

SUMMARY
• Objects are a natural way of thinking about the world.

• Because JavaScript uses objects to perform many tasks, JavaScript is commonly referred to as an
object-based programming language.

• Humans think in terms of objects. We have the marvelous ability of abstraction, which enables us
to view screen images as objects such as people, planes, trees and mountains rather than as indi-
vidual dots of color (called pixels for “picture elements”). All objects have attributes and exhibit
behaviors. Humans learn about objects by studying their attributes and observing their behaviors.

• Objects encapsulate data (attributes) and methods (behavior).

valueOf() Returns the numeric value.

Number.MAX_VALUE This property represents the largest value that can be stored
in a JavaScript program—approximately 1.79E+308

Number.MIN_VALUE This property represents the smallest value that can be
stored in a JavaScript program—approximately
2.22E–308

Number.NaN This property represents not a number—a value returned
from arithmetic expressions that do not result in a number
(e.g., the expression parseInt("hello") cannot con-
vert the string "hello" into a number, so parseInt
would return Number.NaN). To determine whether a value
is NaN, test the result with function isNaN which returns
true if the value is NaN; otherwise, it returns false.

Number.NEGATIVE_INFINITY This property represents a value less than
-Number.MAX_VALUE.

Number.POSITIVE_INFINITY This property represents a value greater than
Number.MAX_VALUE.

Method or Property Description

Fig. 12.11Fig. 12.11Fig. 12.11Fig. 12.11 Methods and properties of the Number object.

iw3htp2_12.fm Page 424 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 425

• Objects have the property of information hiding.

• Programs communicate with objects by using well-defined interfaces.

• World Wide Web browsers have a set of objects that encapsulate the elements of an XHTML doc-
ument and expose to a JavaScript programmer attributes and behaviors that enable a JavaScript
program to interact with (or script) the elements (i.e., objects) in an XHTML document.

• Math object methods allow programmers to perform many common mathematical calculations.

• An object’s methods are called by writing the name of the object followed by a dot operator (.)
and the name of the method. In parentheses following the method name is the argument (or a com-
ma-separated list of arguments) to the method.

• Invoking (or calling) a method of an object is called “sending a message to the object.”

• Characters are the fundamental building blocks of JavaScript programs. Every program is com-
posed of a sequence of characters that—when grouped together meaningfully—is interpreted by
the computer as a series of instructions used to accomplish a task.

• A string is a series of characters treated as a single unit.

• A string may include letters, digits and various special characters, such as +, -, *, /, $ and others.

• String literals or string constants (often called anonymous String objects) are written as a se-
quence of characters in double quotation marks or single quotation marks.

• String method charAt returns the character at a specific index in a string. Indices for the charac-
ters in a string start at 0 (the first character) and go up to (but not including) the string’s length
(i.e., if the string contains five characters, the indices are 0 through 4). If the index is outside the
bounds of the string, the method returns an empty string.

• String method charCodeAt returns the Unicode value of the character at a specific index in
a string. If the index is outside the bounds of the string, the method returns NaN. String method
fromCharCode creates a string from a list of Unicode values.

• String method toLowerCase returns the lowercase version of a string. String method
toUpperCase returns the uppercase version of a string.

• String method indexOf determines the location of the first occurrence of its argument in the
string used to call the method. If the substring is found, the index at which the first occurrence of
the substring begins is returned; otherwise, -1 is returned. This method receives an optional sec-
ond argument specifying the index from which to begin the search.

• String method lastIndexOf determines the location of the last occurrence of its argument
in the string used to call the method. If the substring is found, the index at which the first occur-
rence of the substring begins is returned; otherwise, -1 is returned. This method receives an op-
tional second argument specifying the index from which to begin the search.

• The process of breaking a string into tokens is called tokenization. Tokens are separated from one
another by delimiters, typically white-space characters such as blank, tab, newline and carriage re-
turn. Other characters may also be used as delimiters to separate tokens.

• String method split breaks a string into its component tokens. The argument to method
split is the delimiter string—the string that determines the end of each token in the original
string. Method split returns an array of strings containing the tokens.

• String method substring returns the substring from the starting index (its first argument) up
to but not including the ending index (its second argument). If the ending index is greater than the
length of the string, the substring returned includes the characters from the starting index to the
end of the original string.

• String method anchor wraps the string that calls the method in XHTML element <a>
with the name of the anchor supplied as the argument to the method.

iw3htp2_12.fm Page 425 Wednesday, July 18, 2001 10:32 AM

426 JavaScript: Objects Chapter 12

• String method blink makes a string blink in a Web page by wrapping the string that calls the
method in a <blink></blink> XHTML element.

• String method fixed displays text in a fixed-width font by wrapping the string that calls the
method in a <tt></tt> XHTML element.

• String method strike displays struck-out text (i.e., text with a line through it) by wrapping
the string that calls the method in a <strike></strike> XHTML element.

• String method sub displays subscript text by wrapping the string that calls the method in a
 XHTML element.

• String method sup displays superscript text by wrapping the string that calls the method in a
 XHTML element.

• String method link creates a hyperlink by wrapping the string that calls the method in XHT-
ML element <a>. The target of the hyperlink (i.e, value of the href property) is the argu-
ment to the method and can be any URL.

• JavaScript’s Date object provides methods for date and time manipulations.

• Date and time processing can be performed based on the computer’s local time zone or based on
World Time Standard’s Universal Coordinated Time (UTC)—formerly called Greenwich Mean
Time (GMT).

• Most methods of the Date object have a local time zone and a UTC version.

• Date method parse receives as its argument a string representing a date and time and returns
the number of milliseconds between midnight, January 1, 1970 and the specified date and time.

• Date method UTC returns the number of milliseconds between midnight, January 1, 1970 and the
date and time specified as its arguments. The arguments to the UTC method include the required
year, month and date, and the optional hours, minutes, seconds and milliseconds. If any of the
hours, minutes, seconds or milliseconds arguments is not specified, a zero is supplied in its place.
For the hours, minutes and seconds arguments, if the argument to the right of any of these argu-
ments is specified, that argument must also be specified (e.g., if the minutes argument is specified,
the hours argument must be specified; if the milliseconds argument is specified, all the arguments
must be specified).

• JavaScript provides the Boolean and Number objects as object wrappers for boolean true/
false values and numbers, respectively.

• When a boolean value is required in a JavaScript program, JavaScript automatically creates a
Boolean object to store the value.

• JavaScript programmers can create Boolean objects explicitly with the statement

var b = new Boolean(booleanValue);

• The argument booleanValue specifies whether the value of the Boolean object should be true
or false. If booleanValue is false, 0, null, Number.NaN or the empty string (""), or if no
argument is supplied, the new Boolean object contains false. Otherwise, the new Boolean
object contains true.

• JavaScript automatically creates Number objects to store numeric values in a JavaScript program.

• JavaScript programmers can create a Number object with the statement

var n = new Number(numericValue);

• The argument numericValue is the number to store in the object. Although you can explicitly cre-
ate Number objects, normally they are created when needed by the JavaScript interpreter.

iw3htp2_12.fm Page 426 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 427

TERMINOLOGY
abs method of Math information hiding
abstraction lastIndexOf method of String
anchor method of String link method of String
anonymous String object LN10 property of Math
attribute LN2 property of Math
behavior local time zone
blink method of String log method of Math
Boolean object LOG10E property of Math
bounds of the string LOG2E property of Math
ceil method of Math Math object
character max method of Math
charAt method of String MAX_SIZE property of Number
charCodeAt method of String min method of Math
concat method of String MIN_SIZE property of Number
cos method of Math NaN property of Number
date NEGATIVE_INFINITY property of Number
Date object Number object
delimiters object
double quotation marks object wrapper
E property of Math object-based programming language
empty string parse method of Date
encapsulation PI property of Math
ending index POSITIVE_INFINITY property of Number
exp method of Math pow method of Math
fixed method of String round method of Math
floor method of Math search a string
fromCharCode method of String sending a message to an object
getDate method of Date setDate method of Date
getDay method of Date setFullYear method of Date
getFullYear method of Date setHours method of Date
getHours method of Date setMilliSeconds method of Date
getMilliseconds method of Date setMinutes method of Date
getMinutes method of Date setMonth method of Date
getMonth method of Date setSeconds method of Date
getSeconds method of Date setTime method of Date
getTime method of Date setUTCDate method of Date
getTimezoneOffset method of Date setUTCFullYear method of Date
getUTCDate method of Date setUTCHours method of Date
getUTCDay method of Date setUTCMilliseconds method of Date
getUTCFullYear method of Date setUTCMinutes method of Date
getUTCHours method of Date setUTCMonth method of Date
getUTCMilliSeconds method of Date setUTCSeconds method of Date
getUTCMinutes method of Date sin method of Math
getUTCMonth method of Date single quotation marks
getUTCSeconds method of Date slice method of String
Greenwich Mean Time (GMT) special characters
hiding split method of String
index in a string sqrt method of Math
indexOf method of String SQRT1_2 property of Math

iw3htp2_12.fm Page 427 Wednesday, July 18, 2001 10:32 AM

428 JavaScript: Objects Chapter 12

SELF-REVIEW EXERCISES
12.1 Fill in the blanks in each of the following statements:

a) Because JavaScript uses objects to perform many tasks, JavaScript is commonly referred
to as an .

b) All objects have and exhibit .
c) The methods of the object allow programmers to perform many common

mathematical calculations.
d) Invoking (or calling) a method of an object is referred to as .
e) String literals or string constants are written as a sequence of characters in or

.
f) Indices for the characters in a string start at .
g) String methods and search for the first and last occurrence of

a substring in a String, respectively.
h) The process of breaking a string into tokens is called .
i) String method formats a String as a hyperlink.
j) Date and time processing can be performed based on the or based on World

Time Standard’s .
k) Date method receives as its argument a string representing a date and time,

and returns the number of milliseconds between midnight, January 1, 1970 and the spec-
ified date and time.

ANSWERS TO SELF-REVIEW EXERCISES
12.1 a) object-based programming language. b) attributes, behaviors. c) Math. d) sending a mes-
sage to the object. e) double quotation marks, single quotation marks. f) 0. g) indexOf, lastIn-
dexOf. h) tokenization. i) link. j) computer’s local time zone, Universal Coordinated Time
(UTC). k) parse.

EXERCISES
12.2 Write a script that tests whether the examples of the Math method calls shown in Fig. 12.1
actually produce the indicated results.

SQRT2 property of Math toLocaleString method of Date
starting index toLowerCase method of String
strike method of String toString method of Date
string toString method of String
string constant toUpperCase method of String
string literal toUTCString method of Date
sub method of String Unicode
substr method of String Universal Coordinated Time (UTC)
substring UTC method of Date
substring method of String valueOf method of Boolean
sup method of String valueOf method of Date
sup method of String valueOf method of Number
tan method of Math valueOf method of String
time well-defined interfaces
token wrap in XHTML tags
tokenization

iw3htp2_12.fm Page 428 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 429

12.3 Write a script that tests as many of the Math library functions in Fig. 12.1 as you can. Exer-
cise each of these functions by having your program display tables of return values for a diversity of
argument values in an XHTML textarea.

12.4 Math method floor may be used to round a number to a specific decimal place. For exam-
ple, the statement

y = Math.floor(x * 10 + .5) / 10;

rounds x to the tenths position (the first position to the right of the decimal point). The statement

y = Math.floor(x * 100 + .5) / 100;

rounds x to the hundredths position (i.e., the second position to the right of the decimal point). Write
a script that defines four functions to round a number x in various ways:

a) roundToInteger(number)
b) roundToTenths(number)
c) roundToHundredths(number)
d) roundToThousandths(number)

For each value read, your program should display the original value, the number rounded to the
nearest integer, the number rounded to the nearest tenth, the number rounded to the nearest hun-
dredth and the number rounded to the nearest thousandth.

12.5 Modify the solution to Exercise 12.4 to use Math method round instead of method floor.

12.6 Write a script that uses relational and equality operators to compare two Strings input by
the user through an XHTML form. Output in an XHTML textarea whether the first string is less
than, equal to or greater than the second.

12.7 Write a script that uses random number generation to create sentences. Use four arrays of
strings called article, noun, verb and preposition. Create a sentence by selecting a word
at random from each array in the following order: article, noun, verb, preposition, ar-
ticle and noun. As each word is picked, concatenate it to the previous words in the sentence. The
words should be separated by spaces. When the final sentence is output, it should start with a capital
letter and end with a period. The program should generate 20 sentences and output them to an XHT-
ML textarea.

The arrays should be filled as follows: the article array should contain the articles "the",
"a", "one", "some" and "any"; the noun array should contain the nouns "boy", "girl",
"dog", "town" and "car"; the verb array should contain the verbs "drove", "jumped",
"ran", "walked" and "skipped"; the preposition array should contain the prepositions
"to", "from", "over", "under" and "on".

After the preceding script is written, modify the script to produce a short story consisting of
several of these sentences.

12.8 (Limericks) A limerick is a humorous five-line verse in which the first and second lines
rhyme with the fifth, and the third line rhymes with the fourth. Using techniques similar to those de-
veloped in Exercise 12.7, write a script that produces random limericks. Polishing this program to
produce good limericks is a challenging problem, but the result will be worth the effort!

12.9 (Pig Latin) Write a script that encodes English language phrases into pig Latin. Pig Latin is
a form of coded language often used for amusement. Many variations exist in the methods used to
form pig Latin phrases. For simplicity, use the following algorithm:

To form a pig Latin phrase from an English language phrase, tokenize the phrase into an array
of words using String method split. To translate each English word into a pig Latin word, place
the first letter of the English word at the end of the word and add the letters “ay.” Thus the word
“jump” becomes “umpjay,” the word “the” becomes “hetay” and the word “computer”

iw3htp2_12.fm Page 429 Wednesday, July 18, 2001 10:32 AM

430 JavaScript: Objects Chapter 12

becomes “omputercay.” Blanks between words remain as blanks. Assume the following: The
English phrase consists of words separated by blanks, there are no punctuation marks and all words
have two or more letters. Function printLatinWord should display each word. Each token (i.e.,
word in the sentence) is passed to method printLatinWord to print the pig Latin word. Enable
the user to input the sentence through an XHTML form. Keep a running display of all the converted
sentences in an XHTML textarea.

12.10 Write a script that inputs a telephone number as a string in the form (555) 555-5555. The
script should use String method split to extract the area code as a token, the first three digits of
the phone number as a token and the last four digits of the phone number as a token. Display the area
code in one text field and the seven-digit phone number in another text field.

12.11 Write a script that inputs a line of text, tokenizes the line with String method split and
outputs the tokens in reverse order.

12.12 Write a script that inputs text from an XHTML form and outputs the text in uppercase and
lowercase letters.

12.13 Write a script that inputs several lines of text and a search character and uses String meth-
od indexOf to determine the number of occurrences of the character in the text.

12.14 Write a script based on the program of Exercise 12.13 that inputs several lines of text and
uses String method indexOf to determine the total number of occurrences of each letter of the
alphabet in the text. Uppercase and lowercase letters should be counted together. Store the totals for
each letter in an array, and print the values in tabular format in an XHTML textarea after the totals
have been determined.

12.15 Write a script that reads a series of strings and outputs in an XHTML textarea only those
strings beginning with the letter “b.”

12.16 Write a script that reads a series of strings and outputs in an XHTML textarea only those
strings ending with the letters “ED.”

12.17 Write a script that inputs an integer code for a character and displays the corresponding char-
acter.

12.18 Modify your solution to Exercise 12.17 so that it generates all possible three-digit codes in
the range 000 to 255 and attempts to display the corresponding characters. Display the results in an
XHTML textarea.

12.19 Write your own version of the String method indexOf and use it in a script.

12.20 Write your own version of the String method lastIndexOf and use it in a script.

12.21 Write a program that reads a five-letter word from the user and produces all possible three-
letter words that can be derived from the letters of the five-letter word. For example, the three-letter
words produced from the word “bathe” include the commonly used words “ate,” “bat,” “bet,” “tab,”
“hat,” “the” and “tea.” Output the results in an XHTML textarea.

12.22 (Printing Dates in Various Formats) Dates are printed in several common formats. Write a
script that reads a date from an XHTML form and creates a Date object in which to store that date.
Then, use the various methods of the Date object that convert Dates into strings to display the date
in several formats.

SPECIAL SECTION: ADVANCED STRING MANIPULATION EXERCISES
The preceding exercises are keyed to the text and designed to test the reader's understanding of fun-
damental string manipulation concepts. This section includes a collection of intermediate and
advanced string manipulation exercises. The reader should find these problems challenging, yet

iw3htp2_12.fm Page 430 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 431

entertaining. The problems vary considerably in difficulty. Some require an hour or two of program
writing and implementation. Others are useful for lab assignments that might require two or three
weeks of study and implementation. Some are challenging term projects.

12.23 (Text Analysis) The availability of computers with string manipulation capabilities has result-
ed in some rather interesting approaches to analyzing the writings of great authors. Much attention
has been focused on whether William Shakespeare ever lived. Some scholars believe there is substan-
tial evidence indicating that Christopher Marlowe or other authors actually penned the masterpieces
attributed to Shakespeare. Researchers have used computers to find similarities in the writings of
these two authors. This exercise examines three methods for analyzing texts with a computer.

a) Write a script that reads several lines of text from the keyboard and prints a table indicating
the number of occurrences of each letter of the alphabet in the text. For example, the phrase

To be, or not to be: that is the question:

contains one “a,” two “b’s,” no “c’s,” etc.
b) Write a script that reads several lines of text and prints a table indicating the number of

one-letter words, two-letter words, three-letter words, etc. appearing in the text. For ex-
ample, the phrase

Whether 'tis nobler in the mind to suffer

contains

c) Write a script that reads several lines of text and prints a table indicating the number of
occurrences of each different word in the text. The first version of your program should
include the words in the table in the same order in which they appear in the text. For ex-
ample, the lines

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer

contain the words “to” three times, the word “be” two times, the word “or” once, etc. A
more interesting (and useful) printout should then be attempted in which the words are
sorted alphabetically.

12.24 (Check Protection) Computers are frequently employed in check-writing systems such as
payroll and accounts payable applications. Many strange stories circulate regarding weekly pay-
checks being printed (by mistake) for amounts in excess of $1 million. Incorrect amounts are printed
by computerized check-writing systems because of human error and/or machine failure. Systems de-
signers build controls into their systems to prevent such erroneous checks from being issued.

Word length Occurrences

1 0

2 2

3 1

4 2 (including 'tis)

5 0

6 2

7 1

iw3htp2_12.fm Page 431 Wednesday, July 18, 2001 10:32 AM

432 JavaScript: Objects Chapter 12

Another serious problem is the intentional alteration of a check amount by someone who
intends to cash a check fraudulently. To prevent a dollar amount from being altered, most computer-
ized check-writing systems employ a technique called check protection.

Checks designed for imprinting by computer contain a fixed number of spaces in which the
computer may print an amount. Suppose a paycheck contains eight blank spaces in which the com-
puter is supposed to print the amount of a weekly paycheck. If the amount is large, then all eight of
those spaces will be filled, for example:

1,230.60 (check amount)

12345678 (position numbers)

On the other hand, if the amount is less than $1000, then several of the spaces would ordinarily
be left blank. For example,

 99.87

12345678

contains three blank spaces. If a check is printed with blank spaces, it is easier for someone to alter
the amount of the check. To prevent a check from being altered, many check-writing systems insert
leading asterisks to protect the amount as follows:

***99.87

12345678

Write a script that inputs a dollar amount to be printed on a check, and then prints the amount in
check-protected format with leading asterisks if necessary. Assume that nine spaces are available for
printing the amount.

12.25 (Writing the Word Equivalent of a Check Amount) Continuing the discussion of the previous
exercise, we reiterate the importance of designing check-writing systems to prevent alteration of
check amounts. One common security method requires that the check amount be written both in num-
bers and “spelled out” in words as well. Even if someone is able to alter the numerical amount of the
check, it is extremely difficult to change the amount in words.

Many computerized check-writing systems do not print the amount of the check in words. Per-
haps the main reason for this omission is the fact that most high-level languages used in commercial
applications do not contain adequate string manipulation features. Another reason is that the logic
for writing word equivalents of check amounts is somewhat involved.

Write a script that inputs a numeric check amount and writes the word equivalent of the
amount. For example, the amount 112.43 should be written as

ONE HUNDRED TWELVE and 43/100

12.26 (Morse Code) Perhaps the most famous of all coding schemes is the Morse code, developed
by Samuel Morse in 1832 for use with the telegraph system. The Morse code assigns a series of dots
and dashes to each letter of the alphabet, each digit and a few special characters (such as period, com-
ma, colon and semicolon). In sound-oriented systems, the dot represents a short sound and the dash
represents a long sound. Other representations of dots and dashes are used with light-oriented systems
and signal-flag systems.

Separation between words is indicated by a space, or, quite simply, by the absence of a dot or
dash. In a sound-oriented system, a space is indicated by a short period of time during which no

iw3htp2_12.fm Page 432 Wednesday, July 18, 2001 10:32 AM

Chapter 12 JavaScript: Objects 433

sound is transmitted. The international version of the Morse code appears in Fig. 12.12.

Write a script that reads an English language phrase and encodes the phrase into Morse code.
Also write a program that reads a phrase in Morse code and converts the phrase into the English lan-
guage equivalent. Use one blank between each Morse-coded letter and three blanks between each
Morse-coded word.

12.27 (Metric Conversion Program) Write a script that will assist the user with metric conversions.
Your program should allow the user to specify the names of the units as strings (i.e., centimeters, li-
ters, grams, etc. for the metric system and inches, quarts, pounds, etc. for the English system) and
should respond to simple questions such as

"How many inches are in 2 meters?"
"How many liters are in 10 quarts?"

Your program should recognize invalid conversions. For example, the question

"How many feet in 5 kilograms?"

is not a meaningful question because "feet" is a unit of length while "kilograms" is a unit of
mass.

Character Code Character Code

A .- T -

B -... U ..-

C -.-. V ...-

D -.. W .--

E . X -..-

F ..-. Y -.--

G --. Z --..

H

I .. Digits

J .--- 1 .----

K -.- 2 ..---

L .-.. 3 ...--

M -- 4-

N -. 5

O --- 6 -....

P .--. 7 --...

Q --.- 8 ---..

R .-. 9 ----.

S ... 0 -----

Fig. 12.12Fig. 12.12Fig. 12.12Fig. 12.12 Letters of the alphabet as expressed in international Morse code.

iw3htp2_12.fm Page 433 Wednesday, July 18, 2001 10:32 AM

434 JavaScript: Objects Chapter 12

SPECIAL SECTION: CHALLENGING STRING MANIPULATION PROJECTS
12.28 (Project: A Spelling Checker) Many popular word processing software packages have built-
in spell checkers.

In this project, you are asked to develop your own spell-checker utility. We make suggestions to
help get you started. You should then consider adding more capabilities. Use a computerized dictio-
nary (if you have access to one) as a source of words.

Why do we type so many words with incorrect spellings? In some cases, it is because we sim-
ply do not know the correct spelling, so we make a “best guess.” In some cases, it is because we
transpose two letters (e.g., “defualt” instead of “default”). Sometimes we double-type a letter acci-
dentally (e.g., “hanndy” instead of “handy”). Sometimes we type a nearby key instead of the one we
intended (e.g., “biryhday” instead of “birthday”). And so on.

Design and implement a spell-checker application in JavaScript. Your program should maintain
an array wordList of strings. Enable the user to enter these strings.

Your program should ask a user to enter a word. The program should then look up that word in
the wordList array. If the word is present in the array, your program should print “Word is
spelled correctly.”

If the word is not present in the array, your program should print “word is not spelled
correctly.” Then your program should try to locate other words in wordList that might be the
word the user intended to type. For example, you can try all possible single transpositions of adja-
cent letters to discover that the word “default” is a direct match to a word in wordList. Of course,
this implies that your program will check all other single transpositions, such as “edfault,” “dfeault,”
“deafult,” “defalut” and “defautl.” When you find a new word that matches one in wordList, print
that word in a message, such as “Did you mean "default?".”

Implement other tests, such as replacing each double letter with a single letter and any other
tests you can develop to improve the value of your spell checker.

12.29 (Project: Crossword Puzzle Generator) Most people have worked a crossword puzzle, but
few have ever attempted to generate one. Generating a crossword puzzle is suggested here as a string
manipulation project requiring substantial sophistication and effort.

There are many issues the programmer must resolve to get even the simplest crossword puzzle
generator program working. For example, how does one represent the grid of a crossword puzzle
inside the computer? Should one use a series of strings, or should double-subscripted arrays be
used?

The programmer needs a source of words (i.e., a computerized dictionary) that can be directly
referenced by the program. In what form should these words be stored to facilitate the complex
manipulations required by the program?

The really ambitious reader will want to generate the “clues” portion of the puzzle, in which the
brief hints for each “across” word and each “down” word are printed for the puzzle worker. Merely
printing a version of the blank puzzle itself is not a simple problem.

iw3htp2_12.fm Page 434 Wednesday, July 18, 2001 10:32 AM

13
Dynamic HTML:
Object Model and

Collections

Objectives
• To use the Dynamic HTML Object Model and

scripting to create dynamic Web pages.
• To understand the Dynamic HTML object hierarchy.
• To use the all and children collections to

enumerate all of the XHTML elements of a Web page.
• To use dynamic styles and dynamic positioning.
• To use the frames collection to access objects in a

separate frame on your Web page.
• To use the navigator object to determine which

browser is being used to access your page.
Absolute freedom of navigation upon the seas...

Woodrow Wilson

Our children may learn about heroes of the past. Our task is
to make ourselves architects of the future.

Jomo Mzee Kenyatta

The complex is made over into the simple, the hypothetical
into the dogmatic, and the relative into an absolute.
Walter Lippmann

The thing that impresses me most about America is the way
parents obey their children.
Duke of Windsor

The test of greatness is the page of history.
William Hazlitt

iw3htp2_13.fm Page 435 Wednesday, July 18, 2001 3:04 PM

436 Dynamic HTML: Object Model and Collections Chapter 13

13.1 Introduction1

In this chapter we introduce the Dynamic HTML object model. The object model allows
Web authors to control the presentation of their pages and gives them access to all elements
on their Web page. The whole Web page—elements, forms, frames, tables, etc.—is repre-
sented in an object hierarchy. Using scripting, an author is able to retrieve and modify any
properties or attributes of the Web page dynamically.

This chapter begins by examining several of the objects available in the object hier-
archy. Toward the end of the chapter there is a diagram of the extensive object hierarchy,
with explanations of the various objects and properties and links to Web sites with further
information on the topic.

Software Engineering Observation 13.1
With Dynamic HTML, XHTML elements can be treated as objects and attributes of these el-
ements can be treated as properties of those objects. Then, objects identified with an id at-
tribute can be scripted with languages like JavaScript and VBScript (Chapter 24) to achieve
dynamic effects. 13.1

13.2 Object Referencing
The simplest way to reference an element is by using the element’s id attribute. The ele-
ment is represented as an object, and its various XHTML attributes become properties that
can be manipulated by scripting. Figure 13.1 uses this method to read the innerText
property of a p element.

Outline

13.1 Introduction
13.2 Object Referencing
13.3 Collections all and children
13.4 Dynamic Styles
13.5 Dynamic Positioning
13.6 Using the frames Collection
13.7 navigator Object
13.8 Summary of the DHTML Object Model

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. Microsoft Dynamic HTML (discussed in Chapters 13–18) and Netscape Dynamic HTML are in-
compatible. In this book, we focus on Microsoft Dynamic HTML. We have tested all of the Dy-
namic HTML examples in Microsoft Internet Explorer 5.5 and Netscape® Communicator® 6. All
of these examples execute in Microsoft Internet Explorer; most do not execute in Netscape Com-
municator 6. We have posted the testing results at www.deitel.com. The material we present
in Chapter 19, Macromedia® Flash,™ executes properly in both of the latest Microsoft and
Netscape browsers and enables you to achieve many of the effects of Dynamic HTML.

iw3htp2_13.fm Page 436 Wednesday, July 18, 2001 3:04 PM

Chapter 13 Dynamic HTML: Object Model and Collections 437

Line 24 uses the onload event to call the JavaScript start function when document
loading completes. (Events are covered in depth in the next chapter.) Function start dis-

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 13.1: reference.html -->
6 <!-- Object Model Introduction -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Object Model</title>
11
12 <script type = "text/javascript">
13 <!--
14 function start()
15 {
16 alert(pText.innerText);
17 pText.innerText = "Thanks for coming.";
18 }
19 // -->
20 </script>
21
22 </head>
23
24 <body onload = "start()">
25 <p id = "pText">Welcome to our Web page!</p>
26 </body>
27 </html>

Fig. 13.1Fig. 13.1Fig. 13.1Fig. 13.1 Object referencing with the Dynamic HTML Object Model .

iw3htp2_13.fm Page 437 Wednesday, July 18, 2001 3:04 PM

438 Dynamic HTML: Object Model and Collections Chapter 13

plays an alert box containing the value of pText.innerText. The object pText
refers to the p element whose id is set to pText (line 25). The innerText property of
the object refers to the text contained in that element (Welcome to our Web page!).
Line 17 of function start sets the innerText property of pText to a different value.
Changing the text displayed on screen in this manner is an example of a Dynamic HTML
capability called dynamic content.

13.3 Collections all and children
Included in the Dynamic HTML Object Model is the notion of collections, which basically
are arrays of related objects on a page. There are several special collections in the object
model (several collections are listed in Fig. 13.10 and Fig. 13.11 at the end of this chapter).
The Dynamic HTML Object Model includes a special collection, all. The all collection
is a collection of all the XHTML elements in a document, in the order in which they appear.
This provides an easy way of referring to any specific element, especially if it does not have
an id. The script in Fig. 13.2 iterates through the all collection and displays the list of
XHTML elements on the page by writing to the innerHTML property of a p element.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 13.2: all.html -->
6 <!-- Using the all collection -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Object Model</title>
11
12 <script type = "text/javascript">
13 <!--
14 var elements = "";
15
16 function start()
17 {
18 for (var loop = 0; loop < document.all.length; ++loop)
19 elements += "
" + document.all[loop].tagName;
20
21 pText.innerHTML += elements;
22 alert(elements);
23 }
24 // -->
25 </script>
26 </head>
27
28 <body onload = "start()">
29 <p id = "pText">Elements on this Web page:</p>
30 </body>
31 </html>

Fig. 13.2Fig. 13.2Fig. 13.2Fig. 13.2 Looping through the all collection (part 1 of 2).

iw3htp2_13.fm Page 438 Wednesday, July 18, 2001 3:04 PM

Chapter 13 Dynamic HTML: Object Model and Collections 439

Lines 18–19 in function start loop through the elements of the all collection and
display each element’s name. The all collection is a property of the document object
(discussed in more detail later in this chapter). The length property of the all collection
(and other collections) specifies the number of elements in the collection. For each element
in the collection, we append to elements the name of the XHTML element (determined
with the tagName property). When the loop terminates, we write the names of the ele-
ments to pText.innerHTML—the innerHTML property is similar to the innerText
property, but it can include XHTML formatting. Note that line 1, lines 2–3 and all the com-
ment elements are represented with a tagName property of ! in the document.

When we use the document.all collection, we refer to all the XHTML elements in
the document. However, every element has its own all collection, consisting of all the ele-
ments contained within that element. For example, the body element’s all collection
contains the p element in line 28.

A collection similar to the all collection is the children collection, which for a
specific element contains that element’s child elements. For example, an html element has
only two children—the head element and the body element. Figure 13.3 uses the chil-
dren collection to walk through all the elements in the document. When you look at the
script in this XHTML document, do you notice anything different about this script’s use of
functions compared to the uses of functions in our prior scripts? The difference is that func-
tion child (defined at line 16) calls itself at line 25 in the program. This is a programming
technique called recursion, which is an alternative problem-solving approach to looping
and iteration. Recursion was introduced in Chapter 10.

Function child uses recursion to view all the elements on the page—it starts at the
level of the html element (document.all[4] on line 38) and begins walking through
all the children of that element. If it encounters an element that has its own children (line
24), it recursively calls the child function, passing the object of the new element through
which the function should loop. As that loop finishes, the loop which called it proceeds to
the next element in its own array of children. We use the tagName property to gather

Fig. 13.2Fig. 13.2Fig. 13.2Fig. 13.2 Looping through the all collection (part 2 of 2).

iw3htp2_13.fm Page 439 Wednesday, July 18, 2001 3:04 PM

440 Dynamic HTML: Object Model and Collections Chapter 13

the names of the tags we encounter while looping through the document, and we place them
in the string elements. The script adds ul and li tags to display the element in a hier-
archical manner on the page. When the original call to function child completes, line 39
changes the outerHTML property of the p element myDisplay to string elements.
Property outerHTML is similar to property innerHTML we introduced in the previous
example, but it includes the enclosing XHTML tags (tags <p id = "myDisplay"> and
</p> in this case) as well as the content inside them.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 13.3: children.html -->
6 <!-- The children collection -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Object Model</title>
11
12 <script type = "text/javascript">
13 <!--
14 var elements = "";
15
16 function child(object)
17 {
18 var loop = 0;
19
20 elements += "" + object.tagName + "";
21
22 for (loop = 0; loop < object.children.length; loop++)
23 {
24 if (object.children[loop].children.length)
25 child(object.children[loop]);
26 else
27 elements += "" +
28 object.children[loop].tagName +
29 "";
30 }
31
32 elements += " ";
33 }
34 // -->
35 </script>
36 </head>
37
38 <body onload = "child(document.all[4]);
39 myDisplay.outerHTML += elements;">
40
41 <p>Welcome to our Web page!</p>
42

Fig. 13.3Fig. 13.3Fig. 13.3Fig. 13.3 Navigating the object hierarchy by using collection children (part 1 of 2).

iw3htp2_13.fm Page 440 Wednesday, July 18, 2001 3:04 PM

Chapter 13 Dynamic HTML: Object Model and Collections 441

13.4 Dynamic Styles
An element’s style can be changed dynamically. Often such a change is made in response
to user events, which are discussed in the next chapter. Figure 13.4 is a simple example of
changing styles in response to user input.

Function start, in lines 14–20 prompts the user to enter a color name, then sets the
background color to that value. We refer to the background color as docu-
ment.body.style.backgroundColor—the body property of the document
object refers to the body element. We then use the style object (a property of most
XHTML elements) to set the background-color CSS property. (This is referred to as
backgroundColor in JavaScript, to avoid confusion with the subtraction (-) operator.
This naming convention is consistent for most of the CSS properties. For example, bor-
derWidth correlates to the border-width CSS property, and fontFamily corre-
lates to the font-family CSS property).

43 <p id = "myDisplay">
44 Elements on this Web page:
45 </p>
46
47 </body>
48 </html>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 13.4: dynamicstyle.html -->
6 <!-- Dynamic Styles -->

Fig. 13.4Fig. 13.4Fig. 13.4Fig. 13.4 Dynamic styles (part 1 of 2).

Fig. 13.3Fig. 13.3Fig. 13.3Fig. 13.3 Navigating the object hierarchy by using collection children (part 2 of 2).

iw3htp2_13.fm Page 441 Wednesday, July 18, 2001 3:04 PM

442 Dynamic HTML: Object Model and Collections Chapter 13

The Dynamic HTML object model also allows you to change the class attribute of
an element—instead of changing many individual styles at a time, you can have preset style
classes for easily altering element styles. Figure 13.5 prompts the user to enter the name of
a style class, and then changes the screen text to that style.

7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Object Model</title>
11
12 <script type = "text/javascript">
13 <!--
14 function start()
15 {
16 var inputColor = prompt(
17 "Enter a color name for the " +
18 "background of this page", "");
19 document.body.style.backgroundColor = inputColor;
20 }
21 // -->
22 </script>
23 </head>
24
25 <body onload = "start()">
26 <p>Welcome to our Web site!</p>
27 </body>
28 </html>

Fig. 13.4Fig. 13.4Fig. 13.4Fig. 13.4 Dynamic styles (part 2 of 2).

iw3htp2_13.fm Page 442 Wednesday, July 18, 2001 3:04 PM

Chapter 13 Dynamic HTML: Object Model and Collections 443

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 13.5: dynamicstyle2.html -->
6 <!-- More Dynamic Styles -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Object Model</title>
11
12 <style type = "text/css">
13
14 .bigText { font-size: 3em;
15 font-weight: bold }
16
17 .smallText { font-size: .75em }
18
19 </style>
20
21 <script type = "text/javascript">
22 <!--
23 function start()
24 {
25 var inputClass = prompt(
26 "Enter a className for the text " +
27 "(bigText or smallText)", "");
28 pText.className = inputClass;
29 }
30 // -->
31 </script>
32 </head>
33
34 <body onload = "start()">
35 <p id = "pText">Welcome to our Web site!</p>
36 </body>
37 </html>

Fig. 13.5Fig. 13.5Fig. 13.5Fig. 13.5 Dynamic styles in action (part 1 of 2).

iw3htp2_13.fm Page 443 Wednesday, July 18, 2001 3:04 PM

444 Dynamic HTML: Object Model and Collections Chapter 13

As in the previous example, we prompt the user for information—in this case, we ask
for the name of a style class to apply, either bigText or smallText. Once we have this
information, we then use the className property to change the style class of pText.

13.5 Dynamic Positioning
Another important feature of Dynamic HTML is dynamic positioning, by means of which
XHTML elements can be positioned with scripting. This is done by declaring an element’s
CSS position property to be either absolute or relative, and then moving the el-
ement by manipulating any of the top, left, right or bottom CSS properties.

The example of Fig. 13.6 demonstrates dynamic positioning, dynamic styles and
dynamic content—we vary the position of the element on the page by accessing its CSS
left attribute, we use scripting to vary the color, fontFamily and fontSize
attributes, and we use the element’s innerHTML property to alter the content of the element.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 13.6: dynamicposition.html -->
6 <!-- Dynamic Positioning -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Dynamic Positioning</title>
11
12 <script type = "text/javascript">
13 <!--
14 var speed = 5;
15 var count = 10;
16 var direction = 1;
17 var firstLine = "Text growing";
18 var fontStyle = ["serif", "sans-serif", "monospace"];
19 var fontStylecount = 0;

Fig. 13.6Fig. 13.6Fig. 13.6Fig. 13.6 Dynamic positioning (part 1 of 3).

Fig. 13.5Fig. 13.5Fig. 13.5Fig. 13.5 Dynamic styles in action (part 2 of 2).

iw3htp2_13.fm Page 444 Wednesday, July 18, 2001 3:04 PM

Chapter 13 Dynamic HTML: Object Model and Collections 445

20
21 function start()
22 {
23 window.setInterval("run()", 100);
24 }
25
26 function run()
27 {
28 count += speed;
29
30 if ((count % 200) == 0) {
31 speed *= -1;
32 direction = !direction;
33
34 pText.style.color =
35 (speed < 0) ? "red" : "blue" ;
36 firstLine =
37 (speed < 0) ? "Text shrinking" : "Text growing";
38 pText.style.fontFamily =
39 fontStyle[++fontStylecount % 3];
40 }
41
42 pText.style.fontSize = count / 3;
43 pText.style.left = count;
44 pText.innerHTML = firstLine + "
 Font size: " +
45 count + "px";
46 }
47 // -->
48 </script>
49 </head>
50
51 <body onload = "start()">
52 <p id = "pText" style = "position: absolute; left: 0;
53 font-family: serif; color: blue">
54 Welcome!</p>
55 </body>
56 </html>

Fig. 13.6Fig. 13.6Fig. 13.6Fig. 13.6 Dynamic positioning (part 2 of 3).

iw3htp2_13.fm Page 445 Wednesday, July 18, 2001 3:04 PM

446 Dynamic HTML: Object Model and Collections Chapter 13

To continuously update the p element’s content, in line 23 we use a new function,
setInterval. This function takes two parameters—a function name, and how often to
run that function (in this case, every 100 milliseconds). A similar JavaScript function is
setTimeout, which takes the same parameters but instead waits the specified amount of
time before calling the named function only once. There are also JavaScript functions for
stopping either of these two timers—the clearTimeout and clearInterval func-
tions. To stop a specific timer, the parameter you pass to either of these functions should be
the value that the corresponding set time function returned. For example, if you started a
setTimeout timer with

timer1 = window.setTimeout("timedFunction()", 2000);

you could then stop the timer by calling

window.clearTimeout(timer1);

which would stop the timer before it fired.

13.6 Using the frames Collection
One problem that you might run into while developing applications is communication be-
tween frames. The referencing we have used certainly allows for access to objects and

Fig. 13.6Fig. 13.6Fig. 13.6Fig. 13.6 Dynamic positioning (part 3 of 3).

iw3htp2_13.fm Page 446 Wednesday, July 18, 2001 3:04 PM

Chapter 13 Dynamic HTML: Object Model and Collections 447

XHTML elements on the same page, but what if those elements and objects are in different
frames? Figure 13.7 and Fig. 13.8 solve this problem by using the frames collection.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
4
5 <!-- Fig. 13.7: index.html -->
6 <!-- Using the frames collection -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Frames collection</title>
11 </head>
12
13 <frameset rows = "100, *">
14 <frame src = "top.html" name = "upper" />
15 <frame src = "" name = "lower" />
16 </frameset>
17
18 </html>

Fig. 13.7Fig. 13.7Fig. 13.7Fig. 13.7 frameset file for cross-frame scripting.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 13.8: top.html -->
6 <!-- Cross-frame scripting -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>The frames collection</title>
11
12 <script type = "text/javascript">
13 <!--
14 function start()
15 {
16 var text = prompt("What is your name?", "");
17 parent.frames("lower").document.write(
18 "<h1>Hello, " + text + "</h1>");
19 }
20 // -->
21 </script>
22 </head>
23
24 <body onload = "start()">
25 <h1>Cross-frame scripting!</h1>
26 </body>
27 </html>

Fig. 13.8Fig. 13.8Fig. 13.8Fig. 13.8 Accessing other frames.

iw3htp2_13.fm Page 447 Wednesday, July 18, 2001 3:04 PM

448 Dynamic HTML: Object Model and Collections Chapter 13

Lines 17–18 (Fig. 13.8) apply changes to the lower frame. To reference the lower
frame, we first reference the parent frame of the current frame, then use the frames col-
lection. We use a new notation here—frames("lower")—to refer to the element in
the frames collection with an id or name of lower. The <frame> tag for the lower frame
appears second in the XHTML file, so the frame is second in the frames collection. We
then use the familiar document.write method in that frame to update it with the user
input from our prompt on line 17.

13.7 navigator Object
One of the most appealing aspects of the Internet is its diversity. Unfortunately, because of
this diversity, sometimes standards are compromised. Each of the two most popular brows-
ers currently on the market, Netscape’s Communicator and Microsoft’s Internet Explorer,
has many features that give the Web author great control over the browser, but many of
their features are incompatible. Each, however, supports the navigator object, which
contains information about the Web browser that is viewing the page. This allows Web au-

Fig. 13.8Fig. 13.8Fig. 13.8Fig. 13.8 Accessing other frames.

iw3htp2_13.fm Page 448 Wednesday, July 18, 2001 3:04 PM

Chapter 13 Dynamic HTML: Object Model and Collections 449

thors to determine which browser the user has—this is especially important when the page
uses browser-specific features, because it allows the author to redirect users to pages that
their browsers can display properly. Figure 13.9 demonstrates how to determine the type of
browser that requests the document navigator.html.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 13.9: navigator.html -->
6 <!-- Using the navigator object -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>The navigator Object</title>
11
12 <script type = "text/javascript">
13 <!--
14 function start()
15 {
16 if (navigator.appName=="Microsoft Internet Explorer")
17 {
18 if (navigator.appVersion.substring(1, 0) >= "4")
19 document.location = "newIEversion.html";
20 else
21 document.location = "oldIEversion.html";
22 }
23 else
24 document.location = "NSversion.html";
25 }
26 // -->
27 </script>
28 </head>
29
30 <body onload = "start()">
31 <p>Redirecting your browser to the appropriate page,
32 please wait...</p>
33 </body>
34 </html>

Fig. 13.9Fig. 13.9Fig. 13.9Fig. 13.9 Using the navigator object to redirect users (part 1 of 2).

iw3htp2_13.fm Page 449 Wednesday, July 18, 2001 3:04 PM

450 Dynamic HTML: Object Model and Collections Chapter 13

When the page loads, the onload event calls function start, which checks the
value of the property navigator.appName. This property of the navigator object
contains the name of the browser application (for IE, this property is “Microsoft
Internet Explorer”; for Netscape, it is “Netscape”). If the browser viewing this
page is not Internet Explorer, in line 24 we redirect the browser to the document “NSver-
sion.html” by assigning the document name to property document.location—
the URL of the document being viewed. When a script assigns document.location a
new URL, the browser immediately switches Web pages.

Line 18 checks the version of the browser with the navigator.appVersion
property. The value of appVersion is not a simple integer, however—it is a string con-
taining other information, such as the Operating System of the user’s computer. Therefore,
the script uses method substring to retrieve the first character of the string, which is the
actual version number. If the version number is 4 or greater, we redirect to newIEver-
sion.html. Otherwise, we redirect the browser to oldIEversion.html.

As we see here, the navigator object is crucial in providing browser-specific pages
so that as many users as possible can view your site properly.

Portability Tip 13.1
Always make provisions for other browsers if you are using a browser-specific technology
or feature on your Web page. 13.1

13.8 Summary of the DHTML Object Model
As you have seen in the preceding sections, the objects and collections supported by Inter-
net Explorer allow the script programmer tremendous flexibility in manipulating the ele-
ments of a Web page. We have shown how to access the objects in a page, how to navigate
the objects in a collection, how to change element styles dynamically and how to change
the position of elements dynamically.

The Dynamic HTML object model provided by Internet Explorer allows a script pro-
grammer to access every element in an XHTML document. Literally every element in a
document is represented by a separate object. The diagram in Fig. 13.10 shows many of the
important objects and collections supported in Internet Explorer. The table of Fig. 13.11
provides a brief description of each object and collection in the diagram of Fig. 13.10. For
a comprehensive listing of all objects and collections supported by Internet Explorer,
browse the Microsoft DHTML, HTML and CSS Web site,

Fig. 13.9Fig. 13.9Fig. 13.9Fig. 13.9 Using the navigator object to redirect users (part 2 of 2).

iw3htp2_13.fm Page 450 Wednesday, July 18, 2001 3:04 PM

Chapter 13 Dynamic HTML: Object Model and Collections 451

msdn.microsoft.com/workshop/c-frame.htm#/workshop/author/
default.asp

This site provides detailed information on HTML, Dynamic HTML and Cascading
Style Sheets technologies. The DHTML References section of this site provides detailed
descriptions of every object, event and collection used in DHTML. For each object, all the
properties, methods and collections supported by that object are discussed. For each collec-
tion, all the properties and methods supported by that collection are discussed.

Fig. 13.10Fig. 13.10Fig. 13.10Fig. 13.10 DHTML Object Model.

Object or collection Description

Objects

window This object represents the browser window and provides access to the
document object contained in the window. If the window contains
frames, a separate window object is created automatically for each
frame, to provide access to the document rendered in that frame.
Frames are considered to be subwindows in the browser.

Fig. 13.11Fig. 13.11Fig. 13.11Fig. 13.11 Objects in the Internet Explorer 5.5 object model (part 1 of 3).

applets

all

anchors

embeds

forms

filters

images

links

plugins

styleSheets

scripts

frames

plugins

collection

body

screen

document

history

navigator

location

event

document

document

object

window

Key

iw3htp2_13.fm Page 451 Wednesday, July 18, 2001 3:04 PM

452 Dynamic HTML: Object Model and Collections Chapter 13

document This object represents the XHTML document rendered in a window.
The document object provides access to every element in the XHTML
document and allows dynamic modification of the XHTML document.

body This object provides access to the body element of an XHTML docu-
ment.

history This object keeps track of the sites visited by the browser user. The object
provides a script programmer with the ability to move forward and back-
ward through the visited sites, but for security reasons does not allow the
actual site URLs to be manipulated.

navigator This object contains information about the Web browser, such as the
name of the browser, the version of the browser, the operating system on
which the browser is running and other information that can help a script
writer customize the user’s browsing experience.

location This object contains the URL of the rendered document. When this
object is set to a new URL, the browser immediately switches (navigates)
to the new location.

event This object can be used in an event handler to obtain information about
the event that occurred (e.g., the mouse coordinates during a mouse
event).

screen The object contains information about the computer screen for the com-
puter on which the browser is running. Information such as the width and
height of the screen in pixels can be used to determine the size at which
elements should be rendered in a Web page.

Collections

all Many objects have an all collection that provides access to every ele-
ment contained in the object. For example, the body object’s all col-
lection provides access to every element in the body element of an
XHTML document.

anchors This collection contains all anchor elements (a) that have a name or id
attribute. The elements appear in the collection in the order they were
defined in the XHTML document.

applets This collection contains all the applet elements in the XHTML docu-
ment. Currently, the most common applet elements are Java™ applets.

embeds This collection contains all the embed elements in the XHTML docu-
ment.

forms This collection contains all the form elements in the XHTML document.
The elements appear in the collection in the order they were defined in
the XHTML document.

frames This collection contains window objects that represent each frame in the
browser window. Each frame is treated as its own subwindow.

Object or collection Description

Fig. 13.11Fig. 13.11Fig. 13.11Fig. 13.11 Objects in the Internet Explorer 5.5 object model (part 2 of 3).

iw3htp2_13.fm Page 452 Wednesday, July 18, 2001 3:04 PM

Chapter 13 Dynamic HTML: Object Model and Collections 453

SUMMARY
• The Dynamic HTML object model gives Web authors great control over the presentation of their

pages by giving them access to all elements on their Web page. The whole Web page—elements,
forms, frames, tables, etc.—is represented in an object hierarchy. Using scripting, an author is able
to retrieve and modify any properties or attributes of the Web page dynamically.

• The simplest way to reference an element is by its id attribute. The element is represented as an
object, and its various XHTML attributes become properties that can be manipulated by scripting.

• The innerText property of the object refers to the text contained in that element

• Changing the text displayed on screen is a Dynamic HTML ability called dynamic content.

• Collections are basically arrays of related objects on a page. There are several special collections
in the object model.

• The all collection contains all the XHTML elements in a document.

• The length property of the a collection specifies the size of the collection.

• Property innerHTML is similar to property innerText, but it can include XHTML formatting.

• Every element has its own all collection consisting of all the elements contained in that element.

• The children collection of an element contains only that element’s direct child elements. For
example, an html element has only two children: the head element and the body element.

• The tagName property contains the name of the tags we encounter while looping through the
document, to place them in the string elements.

• The outerHTML property is similar to the innerHTML property, but it includes the enclosing
XHTML tags as well as the content inside them.

• The className property of an element is used to change that element’s style class.

• An important feature of Dynamic HTML is dynamic positioning, in which XHTML elements can
be positioned with scripting. This is done by declaring an element’s CSS position property to
be either absolute or relative, and then moving the element by manipulating any of the
top, left, right or bottom CSS properties.

images This collection contains all the img elements in the XHTML document.
The elements appear in the collection in the order they were defined in
the XHTML document.

links This collection contains all the anchor elements (a) with an href prop-
erty. This collection also contains all the area elements that represent
links in an image map.

plugins Like the embeds collection, this collection contains all the embed ele-
ments in the XHTML document.

scripts This collection contains all the script elements in the XHTML docu-
ment.

styleSheets This collection contains styleSheet objects that represent each
style element in the XHTML document and each style sheet included
in the XHTML document via link.

Object or collection Description

Fig. 13.11Fig. 13.11Fig. 13.11Fig. 13.11 Objects in the Internet Explorer 5.5 object model (part 3 of 3).

iw3htp2_13.fm Page 453 Wednesday, July 18, 2001 3:04 PM

454 Dynamic HTML: Object Model and Collections Chapter 13

• Function setInterval takes two parameters—a function name and how often to call it.

• Function setTimeout takes the same parameters as setInterval, but instead waits the spec-
ified amount of time before calling the named function only once.

• There are also JavaScript functions for stopping the setTimeout and setInterval timers—
the clearTimeout and clearInterval functions. To stop a specific timer, the parameter you
pass to either of these functions should be the value that the corresponding set time function returned.

• The frames collections contains all the frames in a document.

• The navigator object contains information about the Web browser that is viewing the page.
This allows Web authors to determine which browser the user has.

• The navigator.appName property contains the name of the application—IE, this property is
“Microsoft Internet Explorer”, for Netscape it is “Netscape”.

• The version of the browser is accessible through the navigator.appVersion property. The
value of appVersion is not a simple integer, however—it is a string containing other informa-
tion, such as the current Operating System. The navigator object is crucial in providing brows-
er-specific pages so that as many users as possible can view your site properly.

TERMINOLOGY

SELF-REVIEW EXERCISES
13.1 State whether each of the following is true or false. If false, explain why.

a) An XHTML element may be referred to in JavaScript by its id attribute.
b) Only the document object has an all collection.
c) An element’s tag is accessed with the tagName property.
d) You can change an element’s style class dynamically with the style property.
e) The frames collection contains all the frames on a page.
f) The setTimeout method calls a function repeatedly at a set time interval.
g) The browser object is often used to determine which Web browser is viewing the page.

all iteration
all collection of an element JavaScript
background-color CSS property left CSS property
base case length property of a collection
body property of document object loop through a collection
bottom CSS property object referencing
children collection onload event
className property outerHTML property
clearInterval JavaScript function position: absolute
clearTimeout JavaScript function position: relative
collection prompt dialog
document object reference an object
document.all.length right CSS property
dynamic content setInterval JavaScript function
Dynamic HTML Object Model setTimeout JavaScript function
dynamic positioning style object
dynamic style tagName property
fontSize property top CSS property
id attribute window.setInterval
innerHTML property window.setTimeout
innerText property

iw3htp2_13.fm Page 454 Wednesday, July 18, 2001 3:04 PM

Chapter 13 Dynamic HTML: Object Model and Collections 455

h) The browser may be sent to a new URL by setting the document.url property.
i) Collection links contains all links in a document with specified name or id attributes.

13.2 Fill in the blanks for each of the following statements.
a) The property refers to the text inside an element.
b) The property refers to the text inside an element, including XHTML tags.
c) The property refers to the text and XHTML inside an element and the en-

closing XHTML tags.
d) The property contains the length of a collection.
e) An element’s CSS position property must be set to or in or-

der to reposition it dynamically.
f) The property contains the name of the browser viewing the Web page.
g) The property contains the version of the browser viewing the Web page.
h) The collection contains all img elements on a page.
i) The object contains information about the sites that a user previously visited.
j) CSS properties may be accessed using the object.

ANSWERS TO SELF-REVIEW EXERCISES
13.1 a) True. b) False. All elements have an all collection. c) True. d) False; this is done with
the className property. e) True. f) False; the setInterval method does this. g) False; the nav-
igator object does this. h) False; use the document.location object to send the browser to a dif-
ferent URL. i) False; the anchors collection contains all links in a document.

13.2 a) innerText. b) innerHTML. c) outerHTML. d) length. e) absolute, relative.
f) navigator.appName. g) navigator.appVersion. h) images. i) history. j) style.

EXERCISES
13.3 Modify Fig.13.9 to display a greeting to the user which contains the name and version of their
browser.

13.4 Use the screen object to get the size of the user’s screen, then use this information to place
an image (using dynamic positioning) in the middle of the page.

13.5 Write a script that loops through the elements in a page and places enclosing
... tags around all text inside all p elements.

13.6 Write a script that prints out the length of all collections on a page.

13.7 Create a Web page in which users are allowed to select their favorite layout and formatting
through the use of the className property.

13.8 (15 Puzzle) Write a Web page that enables the user to play the game of 15. There is a 4-by-
4 board (implemented as an XHTML table) for a total of 16 slots. One of the slots is empty. The other
slots are occupied by 15 tiles, randomly numbered from 1 through 15. Any tile next to the currently
empty slot can be moved into the currently empty slot by clicking on the tile. Your program should
create the board with the tiles out of order. The user’s goal is to arrange the tiles into sequential order
row by row. Using the DHTML object model and the onclick event, write a script that allows the
user swap the positions of the open position and an adjacent tile. [Hint: The onclick event should
be specified for each table cell.]

13.9 Modify your solution to Exercise 13.8 to determine when the game is over, then prompt the
user to determine whether to play again. If so, scramble the numbers.

13.10 Modify your solution to Exercise 13.9 to use an image that is split into 16 equally sized piec-
es. Discard one of the pieces and randomly place the other 15 pieces in the XHTML table.

iw3htp2_13.fm Page 455 Wednesday, July 18, 2001 3:04 PM

14
Dynamic HTML:

Event Model

Objectives
• To understand the notion of events, event handlers and

event bubbling.
• To be able to create event handlers that respond to

mouse and keyboard events.
• To be able to use the event object to be made aware of,

and ultimately, respond to user actions.
• To understand how to recognize and respond to the

most popular events.
The wisest prophets make sure of the event first.
Horace Walpole

Do you think I can listen all day to such stuff?
Lewis Carroll

The user should feel in control of the computer; not the other
way around. This is achieved in applications that embody
three qualities: responsiveness, permissiveness, and
consistency.
Inside Macintosh, Volume 1
Apple Computer, Inc., 1985

We are responsible for actions performed in response to
circumstances for which we are not responsible.
Allan Massie

iw3htp2_14.fm Page 456 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 457

14.1 Introduction
We have seen that XHTML pages can be controlled via scripting. Dynamic HTML with the
event model exists so that scripts can respond to user interactions and change the page ac-
cordingly. This makes Web applications more responsive and user-friendly and can reduce
server load—a concern we will learn more about in Chapters 25–31.

With the event model, scripts can respond to a user who is moving the mouse, scrolling
up or down the screen or entering keystrokes. Content becomes more dynamic while inter-
faces become more intuitive.

In this chapter, we discuss how to use the event model to respond to user actions. We
give examples of event handling for 10 of the most common and useful events, which range
from mouse capture to error handling to form processing. For example, we use the
onreset event to prompt a user to confirm that they want to reset a form. Included at the
end of the chapter is a table of all DHTML events.

14.2 Event onclick
One of the most common events is onclick. When the user clicks the mouse, the on-
click event fires. With JavaScript, we are able to respond to onclick and other events.
Figure 14.1 is an example of simple event handling for the onclick event.

The script beginning on lines 15–16 introduces a new notation. The for attribute of the
script element specifies another element’s id attribute. In this case, para represents the
p element in line 26. When the event specified in the event attribute occurs for the element
specified in the for attribute, the statements in the script execute. Line 26 sets the id for the
p element to para. Attribute id specifies a unique identifier for an XHTML element. When
the onclick event for this element is fired, the script in lines 15–20 executes.

Another way to handle events is with inline scripting. Lines 29–30 specify the event as
an XHTML attribute. This syntax associates the script directly with the input element.
Inline scripting like this often is used to pass a value associated with the clicked element,
to an event handler.

Outline

14.1 Introduction
14.2 Event onclick
14.3 Event onload
14.4 Error Handling with onerror
14.5 Tracking the Mouse with Event onmousemove
14.6 Rollovers with onmouseover and onmouseout
14.7 Form Processing with onfocus and onblur
14.8 More Form Processing with onsubmit and onreset
14.9 Event Bubbling
14.10 More DHTML Events

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_14.fm Page 457 Wednesday, July 18, 2001 5:27 PM

458 Dynamic HTML: Event Model Chapter 14

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 14.1: onclick.html -->
6 <!-- Demonstrating the onclick event -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>DHTML Event Model - onclick</title>
11
12 <!-- The for attribute declares the script for -->
13 <!-- a certain element, and the event for a -->
14 <!-- certain event. -->
15 <script type = "text/javascript" for = "para"
16 event = "onclick">
17 <!--
18 alert("Hi there");
19 // -->
20 </script>
21 </head>
22
23 <body>
24
25 <!-- The id attribute gives a unique identifier -->
26 <p id = "para">Click on this text!</p>
27
28 <!-- You can specify event handlers inline -->
29 <input type = "button" value = "Click Me!"
30 onclick = "alert('Hi again')" />
31
32 </body>
33 </html>

Fig. 14.1Fig. 14.1Fig. 14.1Fig. 14.1 Triggering an onclick event (part 1 of 2).

Executes because of
script lines 14–19

iw3htp2_14.fm Page 458 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 459

14.3 Event onload
The onload event fires whenever an element finishes loading successfully. Frequently,
this event is used in the body element to initiate a script after the page loads into the client.
Figure 14.2 uses the onload event for this purpose. The script called by the onload
event, updates a timer that indicates how many seconds have elapsed since the document
has been loaded.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 14.2: onload.html -->
6 <!-- Demonstrating the onload event -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>DHTML Event Model - onload</title>
11 <script type = "text/javascript">
12 <!--
13 var seconds = 0;
14
15 function startTimer() {
16 // 1000 milliseconds = 1 second
17 window.setInterval("updateTime()", 1000);
18 }
19
20 function updateTime() {
21 seconds++;
22 soFar.innerText = seconds;
23 }
24 // -->

Fig. 14.2Fig. 14.2Fig. 14.2Fig. 14.2 Demonstrating the onload event (part 1 of 2).

Fig. 14.1Fig. 14.1Fig. 14.1Fig. 14.1 Triggering an onclick event (part 2 of 2).

Executes because
of event handler on
lines 28–29

iw3htp2_14.fm Page 459 Wednesday, July 18, 2001 5:27 PM

460 Dynamic HTML: Event Model Chapter 14

Our reference to the onload event occurs in line 28. After the body section loads,
the browser triggers the onload event. This calls function startTimer, which in turn
uses method window.setInterval to specify that function updateTime should be
called every 1000 milliseconds. Other uses of the onload event are to open a popup
window once your page has loaded, or to trigger a script when an image or applet loads.

14.4 Error Handling with onerror
The Web is a dynamic medium. Sometimes scripts refer to objects that existed at a specified
location when the script was written, but the location changes at a later time, rendering your
scripts invalid. The error dialog presented by browsers in such cases can be confusing to
the user. To prevent this dialog box from displaying and to handle errors more elegantly,
scripts can use the onerror event to execute specialized error-handling code. Figure 14.3
uses the onerror event to launch a script that writes error messages to the status bar of
the browser. [Note: This program works correctly if “Script debugging” is disabled in In-
ternet Explorer. In the Tools menu’s Internet Options dialog, click the Advanced tab,
and select Disable script debugging under Browsing.]

25 </script>
26 </head>
27
28 <body onload = "startTimer()">
29
30 <p>Seconds you have spent viewing this page so far:
31 0</p>
32
33 </body>
34 </html>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 14.3: onerror.html -->
6 <!-- Demonstrating the onerror event -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">

Fig. 14.3Fig. 14.3Fig. 14.3Fig. 14.3 Handling script errors by handling an onerror event (part 1 of 2).

Fig. 14.2Fig. 14.2Fig. 14.2Fig. 14.2 Demonstrating the onload event (part 2 of 2).

iw3htp2_14.fm Page 460 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 461

Line 15 indicates that function handleError should execute when an onerror
event occurs in the window object. The misspelled function name (alrrt) in line 18
intentionally creates an error; the code in line 15 then calls function handleError.

9 <head>
10 <title>DHTML Event Model - onerror</title>
11 <script type = "text/javascript">
12 <!--
13 // Specify that if an onerror event is triggered
14 // in the window function handleError should execute
15 window.onerror = handleError;
16
17 function doThis() {
18 alrrt("hi"); // alert misspelled, creates an error
19 }
20
21 // The ONERROR event passes three values to the
22 // function: the name of the error, the url of
23 // the file, and the line number.
24 function handleError(errType, errURL, errLineNum)
25 {
26 // Writes to the status bar at the
27 // bottom of the window.
28 window.status = "Error: " + errType + " on line " +
29 errLineNum;
30
31 // Returning a value of true cancels the
32 // browser’s reaction.
33 return true;
34 }
35 // -->
36 </script>
37 </head>
38
39 <body>
40
41 <input id = "mybutton" type = "button" value = "Click Me!"
42 onclick = "doThis()" />
43
44 </body>
45 </html>

Fig. 14.3Fig. 14.3Fig. 14.3Fig. 14.3 Handling script errors by handling an onerror event (part 2 of 2).

Custom
error
output

iw3htp2_14.fm Page 461 Wednesday, July 18, 2001 5:27 PM

462 Dynamic HTML: Event Model Chapter 14

The function definition (lines 24–34) accepts three parameters from the onerror
event, which is one of the few events that passes parameters to an event handler. The
parameters are the type of error that occurred, the URL of the file that had the error and the
line number on which the error occurred.

Lines 28–29 use the parameters passed to the function by onerror to write information
about the scripting error to the status bar at the bottom of the browser window (Fig. 14.3).
You can use this technique to provide error messages that are more user friendly.

Line 33 returns true to the event handler to indicate that the error has been handled.
This prevents the browser’s default response (the dialog we wish to circumvent). Returning
false indicates that the error has not been handled and causes the default response to
occur. Chances are that, if you are using an advanced feature of JavaScript, there will be
some browsers that cannot view your site properly. In these cases, error handling is partic-
ularly useful. If a browser triggers an onerror event, your Web page can provide a
custom message to the user such as “Your browser does not support some features on this
site. It may not render correctly.”

Software Engineering Observation 14.1
Use error handling on your Web site to prevent incompatible browsers from complaining
about scripts they cannot process. 14.1

14.5 Tracking the Mouse with Event onmousemove
Event onmousemove fires repeatedly whenever the user moves the mouse over the Web
page. Figure 14.4 uses this event to update a coordinate display that gives the position of
the mouse in the coordinate system of the object containing the mouse cursor.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 14.4: onmousemove.html -->
6 <!-- Demonstrating the onmousemove event -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>DHTML Event Model - onmousemove event</title>
11 <script type = "text/javascript">
12 <!--
13 function updateMouseCoordinates()
14 {
15 coordinates.innerText = event.srcElement.tagName +
16 " (" + event.offsetX + ", " + event.offsetY + ")";
17 }
18 // -->
19 </script>
20 </head>
21
22 <body style = "back-groundcolor: wheat"
23 onmousemove = "updateMouseCoordinates()">

Fig. 14.4Fig. 14.4Fig. 14.4Fig. 14.4 Demonstrating the onmousemove event (part 1 of 2).

iw3htp2_14.fm Page 462 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 463

Our event handling in this example occurs in lines 15–16. The event object (line 15)
contains information about the triggered event. Property srcElement references the ele-

24
25 (0, 0)

26 <img src = "deitel.gif" style = "position: absolute;
27 top: 100; left: 100" alt = "Deitel" />
28
29 </body>
30 </html>

Fig. 14.4Fig. 14.4Fig. 14.4Fig. 14.4 Demonstrating the onmousemove event (part 2 of 2).

Updated text
(keeps changing
as you move the
mouse)

iw3htp2_14.fm Page 463 Wednesday, July 18, 2001 5:27 PM

464 Dynamic HTML: Event Model Chapter 14

ment that triggered the event. The script uses tagName to retrieve the element’s name and
display the name in the innerText (line 15) of the span called coordinates (line 25).

The offsetX and offsetY properties of the event object give the location of the
mouse cursor relative to the top-left corner of the object on which the event was triggered.
Notice that when you move the cursor over the image, the coordinate display changes to
the image’s coordinate system. This is because the onmousemove event occurs over the
image. Figure 14.5 lists several other event object properties. The properties of the
event object contain information about any events that occur on your page and are used
to create Web pages that are truly dynamic and responsive to the user.

14.6 Rollovers with onmouseover and onmouseout
Two more events fired by mouse movement are onmouseover and onmouseout.
When the mouse cursor moves over an element, an onmouseover event occurs for that
element. When the mouse cursor leaves the element, an onmouseout event occurs for
that element. Figure 14.6 uses these events to achieve a rollover effect that updates text
when the mouse cursor moves over that text. We also introduce a technique for creating
rollover images.

Property of event Description

altkey This value is true if Alt key was pressed when event fired.

button Returns which mouse button was pressed by user (1: left-mouse button,
2: right-mouse button, 3: left and right buttons, 4: middle button, 5: left
and middle buttons, 6: right and middle buttons, 7: all three buttons).

cancelBubble Set to false to prevent this event from bubbling (see Section 14.9,
“Event Bubbling”).

clientX / clientY The coordinates of the mouse cursor inside the client area (i.e., the
active area where the Web page is displayed, excluding scrollbars, nav-
igation buttons, etc.).

ctrlKey This value is true if Ctrl key was pressed when event fired.

offsetX / offsetY The coordinates of the mouse cursor relative to the object that fired the
event.

propertyName The name of the property that changed in this event.

recordset A reference to a data field’s recordset (see Chapter 16, “Data Binding”).

returnValue Set to false to cancel the default browser action.

screenX / screenY The coordinates of the mouse cursor on the screen coordinate system.

shiftKey This value is true if Shift key was pressed when event fired.

srcElement A reference to the object that fired the event.

type The name of the event that fired.

x / y The coordinates of the mouse cursor relative to this element’s parent
element.

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 Some event object properties.

iw3htp2_14.fm Page 464 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 465

To create a rollover effect for the image in the table caption, lines 15–18 create two new
JavaScript Image objects—captionImage1 and captionImage2. Image caption-
Image2 displays when the mouse hovers over the image. Image captionImage1 dis-
plays when the mouse is outside the image. The script sets the src properties of each Image
in lines 16 and 18. Creating Image objects pre-loads the images, so the browser does not
need to download the rollover image the first time the script indicates to display the image. If
the image is large or the connection is slow, this causes a noticeable delay in the image update.

Lines 22–25 in the mOver function handle the onmouseover event for the image by
setting its src attribute (event.srcElement.src) to the src property of the appro-
priate Image object (captionImage2.src). The same task occurs with caption-
Image1 in the mOut function (lines 36–39).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 14.6: onmouseoverout.html -->
6 <!-- Events onmouseover and onmouseout -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>
11 DHTML Event Model - onmouseover and onmouseout
12 </title>
13 <script type = "text/javascript">
14 <!--
15 captionImage1 = new Image();
16 captionImage1.src = "caption1.gif";
17 captionImage2 = new Image();
18 captionImage2.src = "caption2.gif";
19
20 function mOver()
21 {
22 if (event.srcElement.id == "tableCaption") {
23 event.srcElement.src = captionImage2.src;
24 return;
25 }
26
27 // If the element which triggered onmouseover has
28 // an id, change its color to its id.
29 if (event.srcElement.id)
30 event.srcElement.style.color =
31 event.srcElement.id;
32 }
33
34 function mOut()
35 {
36 if (event.srcElement.id == "tableCaption") {
37 event.srcElement.src = captionImage1.src;
38 return;
39 }

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Events onmouseover and onmouseout (part 1 of 4).

iw3htp2_14.fm Page 465 Wednesday, July 18, 2001 5:27 PM

466 Dynamic HTML: Event Model Chapter 14

40
41 // If it has an id, change the text inside to the
42 // text of the id.
43 if (event.srcElement.id)
44 event.srcElement.innerText = event.srcElement.id;
45 }
46
47 document.onmouseover = mOver;
48 document.onmouseout = mOut;
49 // -->
50 </script>
51 </head>
52
53 <body style = "background-color: wheat">
54
55 <h1>Guess the Hex Code's Actual Color</h1>
56
57 <p>Can you tell a color from its hexadecimal RGB code
58 value? Look at the hex code, guess the color. To see
59 what color it corresponds to, move the mouse over the
60 hex code. Moving the mouse out will display the color
61 name.</p>
62
63 <table style = "width: 50%; border-style: groove;
64 text-align: center; font-family: monospace;
65 font-weight: bold">
66
67 <caption>
68 <img src = "caption1.gif" id = "tableCaption"
69 alt = "Table Caption" />
70 </caption>
71
72 <tr>
73 <td>#000000</td>
74 <td>#0000FF</td>
75 <td>#FF00FF</td>
76 <td>#808080</td>
77 </tr>
78 <tr>
79 <td>#008000</td>
80 <td>#00FF00</td>
81 <td>#800000</td>
82 <td>#000080</td>
83 </tr>
84 <tr>
85 <td>#808000</td>
86 <td>#800080</td>
87 <td>#FF0000</td>
88 <td>#C0C0C0</td>
89 </tr>
90 <tr>
91 <td>#00FFFF</td>
92 <td>#008080</td>

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Events onmouseover and onmouseout (part 2 of 4).

iw3htp2_14.fm Page 466 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 467

93 <td>#FFFF00</td>
94 <td>#FFFFFF</td>
95 </tr>
96 </table>
97
98 </body>
99 </html>

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Events onmouseover and onmouseout (part 3 of 4).

iw3htp2_14.fm Page 467 Wednesday, July 18, 2001 5:27 PM

468 Dynamic HTML: Event Model Chapter 14

The script handles the onmouseover event for the table cells in lines 29–31. As men-
tioned earlier, the event object contains information about the triggered event. In partic-
ular, the id property of the srcElement object is the id attribute of that element. This
code tests if an id is specified, and, if it is, the code changes the color of the element to
match the color name in the id. As you can see in the code for the table (lines 63–96), each
id is one of the 16 basic XHTML colors.

Lines 43–44 handle the onmouseout event by changing the text in the table cell the
cursor just left to match the color that it represents.

14.7 Form Processing with onfocus and onblur
The onfocus and onblur events are particularly useful when dealing with form ele-
ments that allow user input (Fig. 14.7).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 14.7: onfocusblur.html -->
6 <!-- Demonstrating the onfocus and onblur events -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>DHTML Event Model - onfocus and onblur</title>
11 <script type = "text/javascript">

Fig. 14.7Fig. 14.7Fig. 14.7Fig. 14.7 Events onfocus and onblur (part 1 of 3).

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Events onmouseover and onmouseout (part 4 of 4).

iw3htp2_14.fm Page 468 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 469

12 <!--
13 var helpArray =
14 ["Enter your name in this input box.",
15 "Enter your email address in this input box, " +
16 "in the format user@domain.",
17 "Check this box if you liked our site.",
18 "In this box, enter any comments you would " +
19 "like us to read.",
20 "This button submits the form to the " +
21 "server-side script",
22 "This button clears the form",
23 "This textarea provides context-sensitive " +
24 "help. Click on any input field or use the TAB " +
25 "key to get more information about the " +
26 "input field."];
27
28 function helpText(messageNum)
29 {
30 myForm.helpBox.value = helpArray[messageNum];
31 }
32 // -->
33 </script>
34 </head>
35
36 <body>
37
38 <form id = "myForm" action = "">
39 Name: <input type = "text" name = "name"
40 onfocus = "helpText(0)" onblur = "helpText(6)" />

41 Email: <input type = "text" name = "email"
42 onfocus = "helpText(1)" onblur = "helpText(6)" />

43 Click here if you like this site
44 <input type = "checkbox" name = "like" onfocus =
45 "helpText(2)" onblur = "helpText(6)" />
<hr />
46
47 Any comments?

48 <textarea name = "comments" rows = "5" cols = "45"
49 onfocus = "helpText(3)" onblur = "helpText(6)">
50 </textarea>

51 <input type = "submit" value = "Submit" onfocus =
52 "helpText(4)" onblur = "helpText(6)" />
53 <input type = "reset" value = "Reset" onfocus =
54 "helpText(5)" onblur = "helpText(6)" />
55
56 <textarea name = "helpBox" style = "position: absolute;
57 right: 0; top: 0" rows = "4" cols = "45">
58 This textarea provides context-sensitive help. Click on
59 any input field or use the Tab key to get more information
60 about the input field.</textarea>
61 </form>
62
63 </body>
64 </html>

Fig. 14.7Fig. 14.7Fig. 14.7Fig. 14.7 Events onfocus and onblur (part 2 of 3).

iw3htp2_14.fm Page 469 Wednesday, July 18, 2001 5:27 PM

470 Dynamic HTML: Event Model Chapter 14

The onfocus event fires when an element gains focus (i.e., when the user clicks a
form field or when the user uses the Tab key to move between form elements) and onblur
fires when an element loses focus, which occurs when another control gains the focus. In
line 30, the script changes the text inside the text box in the upper-right corner based on the
messageNum passed to helpText. The elements of the form, for example on lines 39–
40 each pass a different value to the helpText function when they gain focus and the
onfocus event is fired. When elements lose focus, they all pass the value 6 to helpText
so that helpBox can display the default message, “This textarea provides con-
text-sensitive help. Click on any...”

14.8 More Form Processing with onsubmit and onreset
Two more useful events for processing forms are onsubmit and onreset. These events
fire when a form is submitted or reset, respectively (Fig. 14.8).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 14.8: onsubmitreset.html -->
6 <!-- Demonstrating the onsubmit and onreset events -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>
11 DHTML Event Model - onsubmit and onreset events
12 </title>
13 <script type = "text/javascript">

Fig. 14.8Fig. 14.8Fig. 14.8Fig. 14.8 Events onsubmit and onreset (part 1 of 3).

Fig. 14.7Fig. 14.7Fig. 14.7Fig. 14.7 Events onfocus and onblur (part 3 of 3).

iw3htp2_14.fm Page 470 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 471

14 <!--
15 var helpArray =
16 ["Enter your name in this input box.",
17 "Enter your email address in this input box, " +
18 "in the format user@domain.",
19 "Check this box if you liked our site.",
20 "In this box, enter any comments you would " +
21 "like us to read.",
22 "This button submits the form to the " +
23 "server-side script",
24 "This button clears the form",
25 "This textarea provides context-sensitive " +
26 "help. Click on any input field or use the Tab " +
27 "key to get more information about " +
28 "the input field."];
29
30 function helpText(messageNum)
31 {
32 myForm.helpBox.value = helpArray[messageNum];
33 }
34
35 function formSubmit() {
36 window.event.returnValue = false;
37
38 if (confirm ("Are you sure you want to submit?"))
39 window.event.returnValue = true;
40 }
41
42 function formReset() {
43 window.event.returnValue = false;
44
45 if (confirm("Are you sure you want to reset?"))
46 window.event.returnValue = true;
47 }
48 // -->
49 </script>
50 </head>
51
52 <body>
53
54 <form id = "myForm" onsubmit = "formSubmit()"
55 onreset = "formReset()" action = "">
56 Name: <input type = "text" name = "name"
57 onfocus = "helpText(0)" onblur = "helpText(6)" />

58 Email: <input type = "text" name = "email"
59 onfocus = "helpText(1)" onblur = "helpText(6)" />

60 Click here if you like this site
61 <input type = "checkbox" name = "like" onfocus =
62 "helpText(2)" onblur = "helpText(6)" /><hr />
63
64 Any comments?

65 <textarea name = "comments" rows = "5" cols = "45"
66 onfocus = "helpText(3)" onblur = "helpText(6)">

Fig. 14.8Fig. 14.8Fig. 14.8Fig. 14.8 Events onsubmit and onreset (part 2 of 3).

iw3htp2_14.fm Page 471 Wednesday, July 18, 2001 5:27 PM

472 Dynamic HTML: Event Model Chapter 14

Line 36 sets the returnValue property to false and cancels the default action of
the event on the element, which in this case is for the browser to submit the form. Line 38
pops up a dialog asking the user a question. If the user clicks OK, function confirm
returns true. If the user clicks Cancel, confirm returns false. Using this informa-
tion, line 39 sets the returnValue back to true, because the user has confirmed that
the form should indeed be submitted.

14.9 Event Bubbling
Event bubbling, a crucial part of the event model, is the process whereby events fired in
child elements also “bubble” up to their parent elements for handling. If you intend to han-
dle an event in a child element, you might need to cancel the bubbling of that event in that
child element’s event-handling code by using the cancelBubble property of the event
object, as shown in Fig. 14.9.

67 </textarea>

68 <input type = "submit" value = "Submit" onfocus =
69 "helpText(4)" onblur = "helpText(6)" />
70 <input type = "reset" value = "Reset" onfocus =
71 "helpText(5)" onblur = "helpText(6)" />
72
73 <textarea name = "helpBox" style = "position: absolute;
74 right:0; top: 0" rows = "4" cols = "45">
75 This textarea provides context-sensitive help. Click on
76 any input field or use the Tab key to get more
77 information about the input field.</textarea>
78 </form>
79
80 </body>
81 </html>

Fig. 14.8Fig. 14.8Fig. 14.8Fig. 14.8 Events onsubmit and onreset (part 3 of 3).

iw3htp2_14.fm Page 472 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 473

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 14.9: bubbling.html -->
6 <!-- Disabling event bubbling -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>DHTML Event Model - Event Bubbling</title>
11
12 <script type = "text/javascript">
13 <!--
14 function documentClick()
15 {
16 alert("You clicked in the document");
17 }
18
19 function paragraphClick(value)
20 {
21 alert("You clicked the text");
22
23 if (value)
24 event.cancelBubble = true;
25 }
26
27 document.onclick = documentClick;
28 // -->
29 </script>
30 </head>
31
32 <body>
33
34 <p onclick = "paragraphClick(false)">Click here!</p>
35 <p onclick = "paragraphClick(true)">Click here, too!</p>
36 </body>
37 </html>

Fig. 14.9Fig. 14.9Fig. 14.9Fig. 14.9 Event bubbling (part 1 of 2).

The event has bubbled
up to the document
level

iw3htp2_14.fm Page 473 Wednesday, July 18, 2001 5:27 PM

474 Dynamic HTML: Event Model Chapter 14

Common Programming Error 14.1
Forgetting to cancel event bubbling when necessary may cause unexpected results in your
scripts. 14.1

Clicking the first p element (line 34) triggers the statement

onclick = "paragraphClick(false)"

then triggers the statement (in line 27)

document.onclick = documentClick;

because the onclick event has bubbled up to the document level. This is probably not the
desired result. However, clicking the second p element (line 35) passes a value of true to
function paragraphClick, so that the if statement on line 23 executes line 24 which
disables the event bubbling for this event by setting the cancelBubble property of the
event object to true.

14.10 More DHTML Events
The events we covered in this chapter are among the most common in use. The remaining
DHTML events and their descriptions are listed in Fig. 14.10.

Fig. 14.9Fig. 14.9Fig. 14.9Fig. 14.9 Event bubbling (part 2 of 2).

The event has been
canceled

Event Description

Clipboard events

onbeforecut Fires before a selection is cut to the clipboard.

onbeforecopy Fires before a selection is copied to the clipboard.

onbeforepaste Fires before a selection is pasted from the clipboard.

oncopy Fires when a selection is copied to the clipboard.

Fig. 14.10Fig. 14.10Fig. 14.10Fig. 14.10 Dynamic HTML events (part 1 of 3).

iw3htp2_14.fm Page 474 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 475

oncut Fires when a selection is cut to the clipboard.

onabort Fires if image transfer has been interrupted by user.

onpaste Fires when a selection is pasted from the clipboard.

Data binding events

onafterupdate Fires immediately after a databound object has been updated.

onbeforeupdate Fires before a data source is updated.

oncellchange Fires when a data source has changed.

ondataavailable Fires when new data from a data source become available.

ondatasetchanged Fires when content at a data source has changed.

ondatasetcomplete Fires when transfer of data from the data source has
completed.

onerrorupdate Fires if an error occurs while updating a data field.

onrowenter Fires when a new row of data from the data source is
available.

onrowexit Fires when a row of data from the data source has just
finished.

onrowsdelete Fires when a row of data from the data source is deleted.

onrowsinserted Fires when a row of data from the data source is inserted.

Keyboard Events

onhelp Fires when the user initiates help (i.e., by pressing the F1 key).

onkeydown Fires when the user pushes down a key.

onkeypress Fires when the user presses a key.

onkeyup Fires when the user ends a key press.

marquee events

onbounce Fires when a scrolling marquee bounces back in the other
direction.

onfinish Fires when a marquee finishes its scrolling.

onstart Fires when a marquee begins a new loop.

Mouse events

oncontextmenu Fires when the context menu is shown (right-click).

ondblclick Fires when the mouse is double-clicked.

ondrag Fires during a mouse drag.

ondragend Fires when a mouse drag ends.

ondragenter Fires when something is dragged onto an area.

ondragleave Fires when something is dragged out of an area.

Event Description

Fig. 14.10Fig. 14.10Fig. 14.10Fig. 14.10 Dynamic HTML events (part 2 of 3).

iw3htp2_14.fm Page 475 Wednesday, July 18, 2001 5:27 PM

476 Dynamic HTML: Event Model Chapter 14

SUMMARY
• The event model allows scripts to respond to user actions and change a page accordingly. This

makes Web applications responsive and user-friendly and can lessen server load greatly.

• With the event model, scripts can respond to a user moving the mouse, scrolling up or down the
screen or entering keystrokes. Content becomes more dynamic, and interfaces become more in-
tuitive.

• One of the most common events is onclick. When the user clicks the mouse, onclick fires.

ondragover Fires when a drag is held over an area.

ondragstart Fires when a mouse drag begins.

ondrop Fires when a mouse button is released over a valid target
during a drag.

onmousedown Fires when a mouse button is pressed down.

onmouseup Fires when a mouse button is released.

Miscellaneous Events

onafterprint Fires immediately after the document prints.

onbeforeeditfocus Fires before an element gains focus for editing.

onbeforeprint Fires before a document is printed.

onbeforeunload Fires before a document is unloaded (i.e., the window was closed or
a link was clicked).

onchange Fires when a new choice is made in a select element, or when a
text input is changed and the element loses focus.

onfilterchange Fires when a filter changes properties or finishes a transition (see
Chapter 15, Filters and Transitions).

onlosecapture Fires when the releaseCapture method is invoked.

onpropertychange Fires when the property of an object is changed.

onreadystatechange Fires when the readyState property of an element
changes.

onreset Fires when a form resets (i.e., the user clicks an
<input type = "reset">).

onresize Fires when the size of an object changes (i.e., the user resizes a win-
dow or frame).

onscroll Fires when a window or frame is scrolled.

onselect Fires when a text selection begins (applies to input or
textarea).

onselectstart Fires when the object is selected.

onstop Fires when the user stops loading the object.

onunload Fires when a page is about to unload.

Event Description

Fig. 14.10Fig. 14.10Fig. 14.10Fig. 14.10 Dynamic HTML events (part 3 of 3).

iw3htp2_14.fm Page 476 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 477

• The for attribute of the script element specifies an element by its id attribute. When the event
specified in the event attribute occurs for the element with id specified in the for attribute, the
designated script runs.

• Specifying an event as an XHTML attribute allows you to insert script directly into your XHTML.
Inline scripting is usually used to pass a value (to a event handler) based on the element that was
clicked.

• The onload event fires whenever an element finishes loading successfully and is often used in
the body element to initiate scripts as soon as the page has been loaded into the client.

• You can use the onerror event to write error-handling code.

• The syntax window.onerror = functionName specifies that functionName runs if the oner-
ror event is triggered in the window object.

• Event handlers can accept three parameters from the onerror event (one of the few events that
passes parameters to an event handler). The onerror event passes the type of error that occurred,
the URL of the file that had the error and the line number on which the error occurred.

• Returning true in an error handler prevents the browser from displaying an error dialog.

• Writing a function to ignore other script errors is not a good idea—try writing scripts that adjust
or stop their actions if an error in loading the page has been detected.

• Event onmousemove fires constantly whenever the mouse is in motion.

• The event object contains much information about the triggered event.

• Property srcElement of the event object is a pointer to the element that triggered the event.
The offsetX and offsetY properties of the event object give the location of the cursor rel-
ative to the top-left corner of the object on which the event was triggered.

• Notice that when you move the mouse cursor over an element like an image, the offsetX and
offsetY properties change to that element’s coordinate system. This is because it is now the el-
ement over which the onmousemove is being triggered.

• Whenever the mouse cursor moves over an element, it fires event onmouseover for that ele-
ment. Once the mouse cursor leaves the element, an onmouseout event is fired.

• The id property of the srcElement object is the id attribute of that element.

• Events onfocus and onblur fire when an element gains or loses focus, respectively.

• The events onsubmit and onreset fire when a form is submitted or reset, respectively.

• The code window.event.returnValue = false cancels the default browser action.

• Event bubbling, a crucial part of the event model, is the process whereby events fired in child el-
ements also “bubble” up to their parent elements for handling. If you intend to handle an event in
a child element, you might need to cancel the bubbling of that event in that child element’s event-
handling code by using the cancelBubble property of the event object.

TERMINOLOGY
altKey property of event object event attribute of script element
button property of event object event bubbling
cancelBubble property of event object event handler
clientX property of event object event model
clientY property of event object event object (property of the window object)
confirm method of window object events in DHTML
ctrlKey property of event object fire an event
Dynamic HTML event model for attribute of script element

iw3htp2_14.fm Page 477 Wednesday, July 18, 2001 5:27 PM

478 Dynamic HTML: Event Model Chapter 14

SELF-REVIEW EXERCISES
14.1 Fill in the blanks in each of the following statements:

a) The state of three special keys can be retrieved by using the event object. These keys
are , and .

b) If a child element does not handle an event, lets the event rise through the
object hierarchy.

d) Using the property of the script element allows you to specify to which
element the script applies.

e) The property of the event object specifies whether to continue bubbling
the current event.

innerText property of an XHTML element onkeyup event
keyboard events onload event
mouse events onlosecapture event
offsetX property of event object onmousedown event
offsetY property of event object onmousemove event
onafterprint event onmouseout event
onafterupdate event onmouseover event
onbeforecopy event onmouseup event
onbeforecut event onpaste event
onbeforeeditfocus event onpropertychange event
onbeforepaste event onreadystatechange event
onbeforeprint event onreset event
onbeforeunload event onresize event
onbeforeupdate event onrowexit event
onblur event onrowsdelete event
onbounce event onrowsinserted event
oncellchange event onscroll event
onchange event onselect event
onclick event onselectstart event
oncontextmenu event onstart event
oncopy event onstop event
oncut event onsubmit event
ondataavailable event onunload event
ondatasetchanged event position of the mouse cursor
ondatasetcomplete event propertyName property of event object
ondblclick event returnValue property of event
ondrag event screenX property of event
ondragend event screenY property of event
ondragenter event setInterval method of window object
ondragleave event shiftkey property of event
ondragover event srcElement property of event
ondragstart event status bar at bottom of a window
ondrop event status property of window object
onerrorupdate event Tab key to switch between fields on a form
onfinish event tagName property of event object
onfocus event trigger an event
onhelp event type property of event
onkeydown event x property of event object
onkeypress event y property of event object

iw3htp2_14.fm Page 478 Wednesday, July 18, 2001 5:27 PM

Chapter 14 Dynamic HTML: Event Model 479

f) Setting window.returnValue to cancels the default browser action for
the event.

g) In an event handler, the reference for the id of an element that fired an event is
.

h) Three events that fire when the user clicks the mouse are , and
.

14.2 State whether each of the following is true or false. If the statement is false, explain why.
a) The onload event fires whenever an element starts loading successfully.
b) The onclick even fires directly when the user clicks the mouse.
c) It is generally a good idea to include a function in your document that will ignore other

script errors.
d) When using the rollover effect with images, it is a good programming practice to create

image objects that preload the desired images.
e) Returning true in an error handler prevents the browser from displaying an error dialog.

ANSWERS TO SELF-REVIEW EXERCISES
14.1 a) Ctrl, Alt and Shift. b) event bubbling. c) for. d) returnValue. e) false.
f) event.srcElement.id. g) onclick, onmousedown, onmouseup.

14.2 a) False. The onload event fires whenever an element finishes loading successfully. b)
True. c) False. it is not a good idea to write a function that ignores other script errors, instead, you
should try writing a script that adjusts or stops the actions if an error has occurred when loading a
page. d) True. e) True.

EXERCISES
14.3 Write an error handler that changes the alt text of an image to “Error Loading” if the image
loading is not completed.

14.4 You have a server-side script that cannot handle any ampersands (&) in the form data. Write
a function that converts all ampersands in a form field to “and” when the field loses focus (onblur).

14.5 Write a function that responds to a click anywhere on the page by displaying an alert dia-
log. Display the event name if the user held Shift during the mouse click. Display the element name
that triggered the event if the user held Ctrl during the mouse click.

14.6 Use CSS absolute positioning, onmousemove and event.x/event.y to have a sentence
of text follow the mouse as the user moves the mouse over the Web page. Disable this feature if the
user double-clicks (ondblclick).

14.7 Modify Exercise 14.5 to have an image follow the mouse as the user moves the mouse over
the Web page.

14.8 Add two elements to Fig. 14.9 that users can click. Use the deitel.gif image file as the
first element. When the user clicks the image, display an alert dialog box with the text “you clicked
the image.” For the second element, create a one-row table containing a text string. Set the table bor-
der to one. When the user clicks the table element, display an alert dialog box containing “you
clicked the table.” In the two accompanying functions, set each event object to true.

iw3htp2_14.fm Page 479 Wednesday, July 18, 2001 5:27 PM

15
Dynamic HTML:

Filters and Transitions

Objectives
• To use filters to achieve special effects.
• To combine filters to achieve an even greater variety

of special effects.
• To be able to create animated visual transitions

between Web pages.
• To be able to modify filters dynamically, using

DHTML.
...as through a filter, before the clear product emerges.
F. Scott Fitzgerald

There is strong shadow where there is much light.
Johann Wolfgang von Goethe

When all things are equal, translucence in writing is more
effective than transparency, just as glow is more revealing
than glare.
James Thurber

...one should disdain the superficial and let the true beauty
of one’s soul shine through.
Fran Lebowitz

Modernity exists in the form of a desire to wipe out whatever
came earlier, in the hope of reaching at least a point that
could be called a true present, a point of origin that marks a
new departure.
Paul de Man

iw3htp2_15.fm Page 480 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 481

15.1 Introduction
Just a few years ago it was not realistic to offer the kinds of dramatic visual effects you will
see in this chapter, because desktop computer processing power was insufficient. Today,
with powerful processors, these visual effects are realizable without delays. Just as you ex-
pect to see dramatic visual effects on TV weather reports, Web users appreciate visual ef-
fects when browsing Web pages.

In the past, achieving these kinds of effects, if you could get them at all, demanded fre-
quent trips back and forth to the server. With the consequent delays, the beauty of the
effects was lost.

Performance Tip 15.1
With Dynamic HTML, many visual effects are implemented directly in the client-side brows-
er (Internet Explorer 5.5 for this book), so no server-side processing delays are incurred. The
DHTML code that initiates these effects is generally quite small and is coded directly into the
XHTML Web page. 15.1

You will be able to achieve a great variety of effects, such as transitioning between
pages with random dissolves and horizontal and vertical blinds effects similar to those you
find in slide presentation software packages. You can convert colored images to gray in
response to user actions; this could be used, for example, to indicate that some option is not
currently selectable. You can make letters glow for emphasis. You can create drop shadows
to give text a three-dimensional appearance.

In this chapter, we discuss both filters and transitions. Applying filters to text and
images causes changes that are persistent. Transitions are temporary; applying a transi-

Outline

15.1 Introduction
15.2 Flip filters: flipv and fliph
15.3 Transparency with the chroma Filter
15.4 Creating Image masks
15.5 Miscellaneous Image filters: invert, gray and xray
15.6 Adding shadows to Text
15.7 Creating Gradients with alpha
15.8 Making Text glow
15.9 Creating Motion with blur
15.10 Using the wave Filter
15.11 Advanced Filters: dropShadow and light
15.12 Transitions I: Filter blendTrans
15.13 Transitions II: Filter revealTrans

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_15.fm Page 481 Thursday, July 19, 2001 10:26 AM

482 Dynamic HTML: Filters and Transitions Chapter 15

tion allows you to transfer from one page to another with a pleasant visual effect such as
a random dissolve. Filters and transitions do not add content to your pages—rather, they
present existing content in an engaging manner to capture the user’s attention.

Each of the visual effects achievable with filters and transitions is programmable, so
these effects can be adjusted dynamically by programs that respond to user-initiated
events, such as mouse clicks and keystrokes. Filters and transitions are so easy to use that
virtually any Web page designer or programmer can incorporate these effects with min-
imal effort.

Look-and-Feel Observation 15.1
Experiment by applying combinations of filters to the same element. You may discover some
eye-pleasing effects that are particularly appropriate for your applications. 15.1

Part of the beauty of DHTML filters and transitions is that they are built right into
Internet Explorer. You do not need to spend time working with sophisticated graphics pack-
ages, preparing images that will be downloaded (slowly) from servers. When Internet
Explorer renders your page, it applies all the special effects and does this while running on
the client computer, without lengthy waits for files to download from the server.

Look-and-Feel Observation 15.2
DHTML’s effects are programmable. They can be applied dynamically to elements of your
pages in response to user events such as mouse clicks and keystrokes. 15.2

Filters and transitions are specified with the CSS filter property. They give you the
same kind of graphics capabilities you get through presentation software like Microsoft’s
PowerPoint®. You can have new pages or portions of pages fade in and fade out. You can
have a page randomly dissolve into the next page. You can make portions of the page trans-
parent or semitransparent so that you can see what is behind them. You can make elements
glow for emphasis. You can blur text or an image to give it the illusion of motion. You can
create drop shadows on elements to give them a three-dimensional effect. You can even
combine effects to generate a greater variety of effects.

Software Engineering Observation 15.1
Filters and transitions can be applied to block-level elements such as div or p, but can be
applied only to inline-level elements such as strong or em if the element has its height
or width CSS properties set. 15.1

Portability Tip 15.1
Filters and transitions are Microsoft technologies available only in Windows-based versions
of Internet Explorer 5.5. Do not use these capabilities if you are writing for other browsers.
If you are writing for an audience with a diversity of browsers and you use DHTML filters
and transitions, you should also make alternate provisions. 15.1

15.2 Flip filters: flipv and fliph
The flipv and fliph filters mirror text or images vertically and horizontally, respective-
ly. Figure 15.1 demonstrates these effects, using both filters to flip text.

iw3htp2_15.fm Page 482 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 483

Line 32 applies a filter using the style attribute. The value of the filter property
is the name of the filter. In this case, the filter is fliph, which flips the affected object
horizontally.

Line 38 applies more than one filter at once by specifying multiple filters separated by
spaces as values of the filter attribute. In this case, the flipv filter is also applied,
which vertically flips the object to which the filter is applied.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 15.1: flip.html -->
6 <!-- Using the flip filters -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>The flip filter</title>
11
12 <style type = "text/css">
13 body { background-color: #CCFFCC }
14
15 table { font-size: 3em;
16 font-family: Arial, sans-serif;
17 background-color: #FFCCCC;
18 border-style: ridge ;
19 border-collapse: collapse }
20
21 td { border-style: groove;
22 padding: 1ex }
23 </style>
24 </head>
25
26 <body>
27
28 <table>
29
30 <tr>
31 <!-- Filters are applied in style declarations -->
32 <td style = "filter: fliph">Text</td>
33 <td>Text</td>
34 </tr>
35
36 <tr>
37 <!-- More than one filter can be applied at once -->
38 <td style = "filter: flipv fliph">Text</td>
39 <td style = "filter: flipv">Text</td>
40 </tr>
41
42 </table>
43
44 </body>
45 </html>

Fig. 15.1Fig. 15.1Fig. 15.1Fig. 15.1 Using the flip filter (part 1 of 2).

iw3htp2_15.fm Page 483 Thursday, July 19, 2001 10:26 AM

484 Dynamic HTML: Filters and Transitions Chapter 15

15.3 Transparency with the chroma Filter
The chroma filter applies transparency effects dynamically, without using a graphics ed-
itor to hard-code transparency into the image. Figure 15.2 alters the transparency of an im-
age, using object model scripting based on a user selection from a select element.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 15.2: chroma.html -->
6 <!-- Applying transparency using the chroma filter -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Chroma Filter</title>
11
12 <script type = "text/javascript">
13 <!--
14 function changecolor(theColor)
15 {
16 if (theColor) {
17 // if the user selected a color, parse the
18 // value to hex and set the filter color.
19 chromaImg.filters("chroma").color = theColor;
20 chromaImg.filters("chroma").enabled = true;
21 }

Fig. 15.2Fig. 15.2Fig. 15.2Fig. 15.2 Changing values of the chroma filter (part 1 of 2).

Fig. 15.1Fig. 15.1Fig. 15.1Fig. 15.1 Using the flip filter (part 2 of 2).

No filters applied

flipv filter applied

fliph filter applied

Both fliph and flipv
filters applied

iw3htp2_15.fm Page 484 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 485

22 else // if the user selected "None",
23 // disable the filter.
24 chromaImg.filters("chroma").enabled = false;
25 }
26 // -->
27 </script>
28 </head>
29
30 <body>
31
32 <h1>Chroma Filter:</h1>
33
34 <img id = "chromaImg" src = "trans.gif" style =
35 "position: absolute; filter: chroma" alt =
36 "Transparent Image" />
37
38 <form action = "">
39 <!-- The onchange event fires when -->
40 <!-- a selection is changed -->
41 <select onchange = "changecolor(this.value)">
42 <option value = "">None</option>
43 <option value = "#00FFFF">Cyan</option>
44 <option value = "#FFFF00">Yellow</option>
45 <option value = "#FF00FF">Magenta</option>
46 <option value = "#000000" selected = "selected">
47 Black</option>
48 </select>
49 </form>
50
51 </body>
52 </html>

Fig. 15.2Fig. 15.2Fig. 15.2Fig. 15.2 Changing values of the chroma filter (part 2 of 2).

iw3htp2_15.fm Page 485 Thursday, July 19, 2001 10:26 AM

486 Dynamic HTML: Filters and Transitions Chapter 15

Lines 19 sets the filter properties dynamically using JavaScript. In this case,
the value of the select drop-down list (lines 41–48) is a string containing the color value.
This value is passed as an argument to function changecolor.

Line 20 turns on the filter. Each filter has a property named enabled. If this property
is set to true, the filter is applied. If it is set to false, the filter is not applied. Line 24 indi-
cates that, if the user selected None (line 43) from the drop-down list, the filter is disabled.

Line 41 introduces a new event, onchange. This event fires whenever the value of
a form field changes. In this example, an onchange event occurs when the user makes a
new selection in the colorSelect drop-down list. The expression this.value repre-
sents the currently selected value in the select GUI component.

15.4 Creating Image masks
Applying the mask filter to an image allows you to create an image mask, in which the
background of an element is a solid color and the foreground of an element is transparent
to the image or color behind it. Figure 15.3 adds the mask filter to an h1 element which
overlaps an image. The foreground of that h1 element (the text inside it) is transparent, so
you can see the background image through the letters in the foreground.

Line 21 sets the color parameter for the mask filter. Parameters always are specified
in the format param = value.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 15.3: mask.html -->
6 <!-- Placing a mask over an image -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Mask Filter</title>
11 </head>
12
13 <body>
14
15 <h1>Mask Filter</h1>
16
17 <!-- Filter parameters are specified in parentheses, -->
18 <!-- in the form param1 = value1, param2 = value2, -->
19 <!-- etc. -->
20 <div style = "position: absolute; top: 125; left: 20;
21 filter: mask(color = #CCFFFF)">
22 <h1 style = "font-family: Courier, monospace">
23 AaBbCcDdEeFfGgHhIiJj

24 KkLlMmNnOoPpQqRrSsTt
25 </h1>
26 </div>

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 Using the mask filter (part 1 of 2).

iw3htp2_15.fm Page 486 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 487

15.5 Miscellaneous Image filters: invert, gray and xray
The three image filters discussed in this section apply simple image effects to images or
text. The invert filter applies a negative image effect—dark areas become light and light
areas become dark. The gray filter applies a grayscale image effect, in which all color is
stripped from the image and all that remains is brightness data. The xray filter applies an
x-ray effect, which basically is an inversion of the grayscale effect. Figure 15.4 demon-

27
28 <img src = "gradient.gif" width = "400" height = "200"
29 alt = "Image with Gradient Effect" />
30 </body>
31 </html>

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 Using the mask filter (part 2 of 2).

iw3htp2_15.fm Page 487 Thursday, July 19, 2001 10:26 AM

488 Dynamic HTML: Filters and Transitions Chapter 15

strates applying these filters, alone and in combination, to a simple image. Each of our fil-
ters in lines 26–41 applies a separate image effect to hc.jpg.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 15.4: misc.html -->
6 <!-- Image filters to invert, grayscale or xray an image -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Misc. Image filters</title>
11
12 <style type = "text/css">
13 .cap { font-weight: bold;
14 background-color: #DDDDAA;
15 text-align: center }
16 </style>
17 </head>
18
19 <body>
20 <table class = "cap">
21 <tr>
22 <td>Normal</td>
23 <td>Grayscale</td>
24 </tr>
25 <tr>
26 <td><img src = "hc.jpg" alt =
27 "normal scenic view" /></td>
28 <td><img src = "hc.jpg" style = "filter: gray"
29 alt = "gray scenic view"/>
30 </td>
31 </tr>
32 <tr>
33 <td>Xray</td>
34 <td>Invert</td>
35 </tr>
36 <tr>
37 <td><img src = "hc.jpg" style = "filter: xray"
38 alt = "xray scenic view"/>
39 </td>
40 <td><img src = "hc.jpg" style = "filter: invert"
41 alt = "inverted scenic view"/>
42 </td>
43 </tr>
44 </table>
45
46 </body>
47 </html>

Fig. 15.4Fig. 15.4Fig. 15.4Fig. 15.4 Filters invert, gray and xray (part 1 of 2).

iw3htp2_15.fm Page 488 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 489

Look-and-Feel Observation 15.3
A good use of the invert filter is to signify that something has just been clicked or selected. 15.3

15.6 Adding shadows to Text
A simple filter that adds depth to your text is the shadow filter. This filter creates a shad-
owing effect that gives your text a three-dimensional appearance (Fig. 15.5).

Fig. 15.4Fig. 15.4Fig. 15.4Fig. 15.4 Filters invert, gray and xray (part 2 of 2).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 15.5: shadow.html -->
6 <!-- Applying the shadow filter -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">

Fig. 15.5Fig. 15.5Fig. 15.5Fig. 15.5 Applying a shadow filter to text (part 1 of 2).

iw3htp2_15.fm Page 489 Thursday, July 19, 2001 10:26 AM

490 Dynamic HTML: Filters and Transitions Chapter 15

9 <head>
10 <title>Shadow Filter</title>
11
12 <script type = "text/javascript">
13 <!--
14 var shadowDirection = 0;
15
16 function start()
17 {
18 window.setInterval("runDemo()", 500);
19 }
20
21 function runDemo()
22 {
23 shadowText.innerText =
24 "Shadow Direction: " + shadowDirection % 360;
25 shadowText.filters("shadow").direction =
26 (shadowDirection % 360);
27 shadowDirection += 45;
28 }
29 // -->
30 </script>
31 </head>
32
33 <body onload = "start()">
34
35 <h1 id = "shadowText" style = "position: absolute; top: 25;
36 left: 25; padding: 10; filter: shadow(direction = 0,
37 color = red)">Shadow Direction: 0</h1>
38 </body>
39 </html>

Fig. 15.5Fig. 15.5Fig. 15.5Fig. 15.5 Applying a shadow filter to text (part 2 of 2).

iw3htp2_15.fm Page 490 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 491

Lines 35–37 apply the shadow filter to text. Property direction of the shadow
filter determines in which direction the shadow effect is applied—this can be set to one of
eight directions expressed in angular notation: 0 (up), 45 (above-right), 90 (right), 135
(below-right), 180 (below), 225 (below-left), 270 (left) and 315 (above-left). Property
color specifies the color of the shadow that is applied to the text. Lines 23–27 in function
runDemo, cycle through the direction property values, from 0 to 315, and update prop-
erty innerText of the h1 element (shadowText) to match the current shadow direction.

Note that we apply a padding CSS style to the h1 element. Otherwise, the shadow
effect is partially cut off by the border of the element. Increasing the padding provides
greater distance between the text and the border of the element, allowing the full effect to
be displayed.

Software Engineering Observation 15.2
Some filters may be cut off by element borders—make sure to increase the padding in that
element if this happens. 15.2

15.7 Creating Gradients with alpha
In Chapter 3, we saw a brief example of the gradient effect, which is a gradual progression
from a starting color to a target color. Internet Explorer 5.5 allows you to create the same
effect dynamically using the alpha filter (Fig. 15.6). The alpha filter also is used for
transparency effects not achievable with the chroma filter.

Lines 26–29 apply the alpha filter to a div element containing an image. The
style property of the filter determines in what style the opacity is applied; a value of 0
applies uniform opacity, a value of 1 applies a linear gradient, a value of 2 applies a cir-
cular gradient and a value of 3 applies a rectangular gradient.

The opacity and finishopacity properties are both percentages that determine
at what percent opacity the specified gradient starts and finishes, respectively. Additional
attributes are startX, startY, finishX and finishY. These specify at what x-y
coordinates the gradient starts and finishes in that element.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 15.6: alpha.html -->
6 <!-- Applying the alpha filter to an image -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Alpha Filter</title>
11 <script type = "text/javascript">
12 <!--
13 function run()
14 {
15 pic.filters("alpha").opacity = opacityButton.value;
16 pic.filters("alpha").finishopacity =
17 opacityButton2.value;

Fig. 15.6Fig. 15.6Fig. 15.6Fig. 15.6 Applying the alpha filter (part 1 of 3).

iw3htp2_15.fm Page 491 Thursday, July 19, 2001 10:26 AM

492 Dynamic HTML: Filters and Transitions Chapter 15

18 pic.filters("alpha").style = styleSelect.value;
19 }
20 // -->
21 </script>
22 </head>
23
24 <body>
25
26 <div id = "pic"
27 style = "position: absolute; left:0; top: 0;
28 filter: alpha(style = 2, opacity = 100,
29 finishopacity = 0)">
30
31 </div>
32
33 <table style = "position: absolute; top: 250; left: 0;
34 background-color: #CCFFCC" border = "1">
35
36 <tr>
37 <td>Opacity (0-100):</td>
38 <td><input type = "text" id = "opacityButton"
39 size = "3" maxlength = "3" value = "100" /></td>
40 </tr>
41
42 <tr>
43 <td>FinishOpacity (0-100):</td>
44 <td><input type = "text" id = "opacityButton2"
45 size = "3" maxlength = "3" value = "0" /></td>
46 </tr>
47
48 <tr>
49 <td>Style:</td>
50 <td><select id = "styleSelect">
51 <option value = "1">Linear</option>
52 <option value = "2" selected = "selected">
53 Circular</option>
54 <option value = "3">Rectangular</option>
55 </select></td>
56 </tr>
57
58 <tr>
59 <td align = "center" colspan = "2">
60 <input type = "button" value = "Apply"
61 onclick = "run()" />
62 </td>
63 </tr>
64 </table>
65
66 </body>
67 </html>

Fig. 15.6Fig. 15.6Fig. 15.6Fig. 15.6 Applying the alpha filter (part 2 of 3).

iw3htp2_15.fm Page 492 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 493

15.8 Making Text glow
The glow filter adds an aura of color around text. The color and strength can both be spec-
ified as demonstrated in Fig. 15.7.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 15.7: glow.html -->
6 <!-- Applying the glow filter -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Glow Filter</title>
11 <script type = "text/javascript">
12 <!--
13 var strengthIndex = 1;
14 var counter = 1;
15 var upDown = true;

Fig. 15.7Fig. 15.7Fig. 15.7Fig. 15.7 Applying changes to the glow filter (part 1 of 3).

Fig. 15.6Fig. 15.6Fig. 15.6Fig. 15.6 Applying the alpha filter (part 3 of 3).

iw3htp2_15.fm Page 493 Thursday, July 19, 2001 10:26 AM

494 Dynamic HTML: Filters and Transitions Chapter 15

16 var colorArray = ["FF0000", "FFFF00", "00FF00",
17 "00FFFF", "0000FF", "FF00FF"];
18 function apply()
19 {
20 glowSpan.filters("glow").color =
21 parseInt(glowColor.value, 16);
22 glowSpan.filters("glow").strength =
23 glowStrength.value;
24 }
25
26 function startdemo()
27 {
28 window.setInterval("rundemo()", 150);
29 }
30
31 function rundemo()
32 {
33 if (upDown) {
34 glowSpan.filters("glow").strength =
35 strengthIndex++;
36 }
37 else {
38 glowSpan.filters("glow").strength =
39 strengthIndex--;
40 }
41
42 if (strengthIndex == 1) {
43 upDown = !upDown;
44 counter++;
45 glowSpan.filters("glow").color =
46 parseInt(colorArray[counter % 6], 16);
47 }
48
49 if (strengthIndex == 10) {
50 upDown = !upDown;
51 }
52 }
53 // -->
54 </script>
55 </head>
56
57 <body style = "background-color: #00AAAA">
58 <h1>Glow Filter:</h1>
59
60 <span id = "glowSpan" style = "position: absolute;
61 left: 200;top: 100; padding: 5; filter: glow(
62 color = red, strength = 5); font-size: 2em">
63 Glowing Text
64
65
66 <table border = "1" style = "background-color: #CCFFCC">
67 <tr>
68 <td>Color (Hex)</td>

Fig. 15.7Fig. 15.7Fig. 15.7Fig. 15.7 Applying changes to the glow filter (part 2 of 3).

iw3htp2_15.fm Page 494 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 495

Lines 16–17 establish an array of color values to cycle through in the demo. Lines 45–
46 change the color attribute of the glow filter based on counter, which is incre-
mented (line 44) every time the value of strengthIndex becomes 1. As in the example
with the chroma filter, we use the parseInt function to assign a proper hexadecimal
value (taken from the colorArray we declared in lines 16–17) to the color property.

Lines 33–40 increment or decrement the strength property of the glow filter based
on the value of upDown, which is toggled in the if structures at lines 42 and 49 when
strengthIndex reaches either 1 or 10.

Clicking the Run Demo button starts a cycle that oscillates the filter strength,
cycling through the colors in colorArray after every loop.

Common Programming Error 15.1
When the glow filter is set to a large strength, the effect is often cut off by the borders of
the element. Add CSS padding to prevent this. 15.1

69 <td><input id = "glowColor" type = "text" size = "6"
70 maxlength = "6" value = "FF0000" /></td>
71 </tr>
72 <tr>
73 <td>Strength (1-255)</td>
74 <td><input id = "glowStrength" type = "text"
75 size = "3" maxlength = "3" value = "5" />
76 </td>
77 </tr>
78 <tr>
79 <td colspan = "2">
80 <input type = "button" value = "Apply"
81 onclick = "apply()" />
82 <input type = "button" value = "Run Demo"
83 onclick = "startdemo()" /></td>
84 </tr>
85 </table>
86
87 </body>
88 </html>

Fig. 15.7Fig. 15.7Fig. 15.7Fig. 15.7 Applying changes to the glow filter (part 3 of 3).

iw3htp2_15.fm Page 495 Thursday, July 19, 2001 10:26 AM

496 Dynamic HTML: Filters and Transitions Chapter 15

15.9 Creating Motion with blur
The blur filter creates an illusion of motion by blurring text or images in a certain direc-
tion. As we see in Fig. 15.8, the blur filter can be applied in any of eight directions, and
its strength can vary.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 15.8: blur.html -->
6 <!-- The blur filter -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Blur Filter</title>
11 <script type = "text/javascript">
12 <!--
13 var strengthIndex = 1;
14 var blurDirection = 0;
15 var upDown = 0;
16 var timer;
17
18 function reBlur()
19 {
20 blurImage.filters("blur").direction =
21 document.forms("myForm").Direction.value;
22 blurImage.filters("blur").strength =
23 document.forms("myForm").Strength.value;
24 blurImage.filters("blur").add =
25 document.forms("myForm").AddBox.checked;
26 }
27
28 function startDemo()
29 {
30 timer = window.setInterval("runDemo()", 5);
31 }
32
33 function runDemo()
34 {
35 document.forms("myForm").Strength.value =
36 strengthIndex;
37 document.forms("myForm").Direction.value =
38 (blurDirection % 360);
39
40 if (strengthIndex == 35 || strengthIndex == 0)
41 upDown = !upDown;
42
43 blurImage.filters("blur").strength =
44 (upDown ? strengthIndex++ : strengthIndex--);
45

Fig. 15.8Fig. 15.8Fig. 15.8Fig. 15.8 Using the blur filter (part 1 of 3).

iw3htp2_15.fm Page 496 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 497

46 if (strengthIndex == 0)
47 blurImage.filters("blur").direction =
48 ((blurDirection += 45) % 360);
49 }
50 // -->
51 </script>
52 </head>
53
54 <body>
55 <form name = "myForm" action = "">
56
57 <table border = "1" style = "background-color: #CCFFCC">
58 <caption>Blur filter controls</caption>
59
60 <tr>
61 <td>Direction:</td>
62 <td><select name = "Direction">
63 <option value = "0">above</option>
64 <option value = "45">above-right</option>
65 <option value = "90">right</option>
66 <option value = "135">below-right</option>
67 <option value = "180">below</option>
68 <option value = "225">below-left</option>
69 <option value = "270">left</option>
70 <option value = "315">above-left</option>
71 </select></td>
72 </tr>
73
74 <tr>
75 <td>Strength:</td>
76 <td><input name = "Strength" size = "3" type = "text"
77 maxlength = "3" value = "0" /></td>
78 </tr>
79
80 <tr>
81 <td>Add original?</td>
82 <td><input type = "checkbox" name = "AddBox" /></td>
83 </tr>
84
85 <tr>
86 <td align = "center" colspan = "2">
87 <input type = "button" value = "Apply"
88 onclick = "reBlur();" /></td>
89 </tr>
90
91 <tr>
92 <td colspan = "2">
93 <input type = "button" value = "Start demo"
94 onclick = "startDemo();" />
95 <input type = "button" value = "Stop demo"
96 onclick = "window.clearInterval(timer);" /></td>
97 </tr>
98

Fig. 15.8Fig. 15.8Fig. 15.8Fig. 15.8 Using the blur filter (part 2 of 3).

iw3htp2_15.fm Page 497 Thursday, July 19, 2001 10:26 AM

498 Dynamic HTML: Filters and Transitions Chapter 15

99 </table>
100 </form>
101
102 <div id = "blurImage" style = "position: absolute;
103 top: 0; left: 300; padding: 0; filter: blur(
104 add = 0, direction = 0, strength = 0);
105 background-color: white;">
106 <img align = "middle" src = "shapes.gif"
107 alt = "Shapes" />
108 </div>
109
110 </body>
111 </html>

Fig. 15.8Fig. 15.8Fig. 15.8Fig. 15.8 Using the blur filter (part 3 of 3).

iw3htp2_15.fm Page 498 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 499

The three properties of the blur filter are add, direction and strength. The
add property, when set to true, adds a copy of the original image over the blurred image,
creating a more subtle blurring effect; Fig. 15.8 demonstrates the contrast between setting
this to true or false.

The direction property determines in which direction the blur filter is applied.
This is expressed in angular form (as we saw in Fig. 15.5 with the shadow filter). The
strength property determines how strong the blurring effect is.

Lines 24–25 assign to the add property of the blur filter the boolean checked prop-
erty of the Add checkbox—if the box was checked, the value is true.

Lines 47–48 increment the direction property whenever the strength of the
blur filter is 0 (i.e., whenever an iteration has completed). The value assigned to the
direction property cycles through all the multiples of 45 between 0 and 360.

15.10 Using the wave Filter
The wave filter allows you to apply sine-wave distortions to text and images on your Web
pages (Fig. 15.9). The wave filter, as seen in lines 35–36, has many properties. The add
property, like the blur filter, adds a copy of the text or image underneath the filtered ef-
fect. The add property is useful only when applying the wave filter to images.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 15.9: wave.html -->
6 <!-- Applying the wave filter -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Wave Filter</title>
11
12 <script type = "text/javascript">
13 <!--
14 var wavePhase = 0;
15
16 function start()
17 {
18 window.setInterval("wave()", 5);
19 }
20
21 function wave()
22 {
23 wavePhase++;
24 flag.filters("wave").phase = wavePhase;
25 }
26 // -->
27 </script>
28 </head>
29

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 Adding a wave filter to text (part 1 of 2).

iw3htp2_15.fm Page 499 Thursday, July 19, 2001 10:26 AM

500 Dynamic HTML: Filters and Transitions Chapter 15

Performance Tip 15.2
Applying the wave filter to images is processor intensive—if your viewers have inadequate
processor power, your pages may act sluggishly on their systems. 15.2

30 <body onload = "start();">
31
32 <span id = "flag"
33 style = "align: center; position: absolute;
34 left: 30; padding: 15;
35 filter: wave(add = 0, freq = 1, phase = 0,
36 strength = 10); font-size: 2em">
37 Here is some waaaavy text
38
39
40 </body>
41 </html>

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 Adding a wave filter to text (part 2 of 2).

iw3htp2_15.fm Page 500 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 501

The freq property determines the frequency of the wave applied—i.e., how many
complete sine waves are applied in the affected area. Increasing this property creates a more
pronounced wave effect, but makes the text harder to read.

The phase property indicates the phase shift of the wave. Increasing this property
does not modify any physical attributes of the wave, but merely shifts it in space. This prop-
erty is useful for creating a gentle waving effect, as we do in this example. The last prop-
erty, strength, is the amplitude of the sine wave that is applied. In the script, lines 23–
24, increment the phase shift of the wave in every call to the wave function.

15.11 Advanced Filters: dropShadow and light
Two filters that apply advanced image processing effects are the dropShadow and
light filters. The dropShadow filter, as you can probably tell, applies an effect similar
to the drop shadow we applied to our images with Photoshop Elements in Chapter 3—it
creates a blacked-out version of the image, and places it behind the image, offset by a spec-
ified number of pixels.

The light filter is the most powerful and advanced filter available in Internet
Explorer 5.5. It allows you to simulate the effect of a light source shining on your page.
With scripting, this filter can be used with dazzling results. Fig. 15.10 combines these two
filters to create an interesting effect.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 15.10: dropshadow.html -->
6 <!-- Using the light filter with the dropshadow filter -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>DHTML dropShadow and light Filters</title>
11
12 <script type = "text/javascript">
13 <!--
14 function setlight()
15 {
16 dsImg.filters("light").addPoint(150, 150,
17 125, 255, 255, 255, 100);
18 }
19
20 function run()
21 {
22 eX = event.offsetX;
23 eY = event.offsetY;
24
25 xCoordinate = Math.round(
26 eX-event.srcElement.width / 2, 0);
27 yCoordinate = Math.round(
28 eY-event.srcElement.height / 2, 0);

Fig. 15.10Fig. 15.10Fig. 15.10Fig. 15.10 Applying light filter with a dropShadow (part 1 of 2).

iw3htp2_15.fm Page 501 Thursday, July 19, 2001 10:26 AM

502 Dynamic HTML: Filters and Transitions Chapter 15

Let us begin by examining the dropShadow filter. In lines 44–47, we apply the drop-
Shadow filter to our image. The offx and offy properties determine by how many pixels
the drop shadow is offset. The color property specifies the color of the drop shadow. Note
that we also declare the light filter in line 46, although we do not give it any initial param-
eters—all the parameters and methods of the light filter are set by scripting. Lines 16–17
call the addPoint method of the light filter. This adds a point light source—a source of

29
30 dsImg.filters("dropShadow").offx =
31 xCoordinate / -3;
32 dsImg.filters("dropShadow").offy =
33 yCoordinate / -3;
34
35 dsImg.filters("light").moveLight(
36 0, eX, eY, 125, 1);
37 }
38 // -->
39 </script>
40 </head>
41
42 <body onload = "setlight()" style = "background-color: green">
43
44 <img id = "dsImg" src = "circle.gif"
45 style = "top: 100; left: 100; filter: dropShadow(
46 offx = 0, offy = 0, color = black) light()"
47 onmousemove = "run()" alt = "Circle Image" />
48
49 </body>
50 </html>

Fig. 15.10Fig. 15.10Fig. 15.10Fig. 15.10 Applying light filter with a dropShadow (part 2 of 2).

iw3htp2_15.fm Page 502 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 503

light which emanates from a single point and radiates in all directions. The first two parame-
ters (150, 150) set the x-y coordinates at which to add the point source. In this case we place
the source at the center of the image, which is 300-by-300 pixels. The next parameter (125)
sets the height of the point source. This simulates how far above the surface the light is situ-
ated. Small values create a small but high-intensity circle of light on the image, while large
values cast a circle of light which is darker, but spreads over a greater distance. The next three
parameters (255, 255, 255) specify the RGB value of the light, in decimal. In this case we
set the light to a color of white (#FFFFFF). The last value (100), is a strength percentage—
we set our light in this case to radiate with 100% strength.

This point light source creates a pleasant lighting effect, but it is static. We can use
scripting to animate the light source in response to user actions. We use the
onmousemove event (line 47) to have the light source follow the mouse cursor as the user
moves it over the image. Lines 22–36 of the run function animate both the dropshadow
and light filters in response to user actions. First we set the variables xCoord and
yCoord to the distance between the current cursor position (eX and eY, which were set to
event.offsetX and event.offsetY on lines 22–23) and the middle of the image
(event.srcElement.width / 2 or event.srcElement.height / 2). In the
next lines of code, we set the offx and offy properties of the dropShadow filter rela-
tive to the current x-y coordinates of the image. We divide by a certain amount to create an
effect of height (shadows cast by objects far from light sources only move a small amount
when the light source moves by a larger amount).

We then call the moveLight method to update the position of the light source as well.
The first parameter (0) is the index of the light source on the page. Multiple light sources
have index numbers assigned to them in the order in which they are added. The next two
parameters (event.offsetX, event.offsetY) specify the x-y coordinates to which
we should move the light source. We use the offsetX and offsetY properties of the
event object to move the light source to the current mouse cursor position over the image.
The next parameter (125) specifies the height to which we move the light source. In this
case, we keep the light source as the same level it was when we declared it. The last param-
eter (1) indicates that the values we are using are absolute. To move the light source by rel-
ative amounts instead, use a value of 0 for the last parameter of the moveLight function.

As you can see, combining the dropShadow and light filters creates a stunning
effect that responds to user actions. The point source is not the only type of light source
available for the light filter. Figure 15.11 demonstrates the use of a cone light source for
illuminating an image.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 15.11: conelight.html -->
6 <!-- Automating the cone light source -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head><title>Cone lighting</title>

10

Fig. 15.11Fig. 15.11Fig. 15.11Fig. 15.11 Dynamic cone source lighting (part 1 of 3).

iw3htp2_15.fm Page 503 Thursday, July 19, 2001 10:26 AM

504 Dynamic HTML: Filters and Transitions Chapter 15

11 <script type = "text/javascript">
12 var upDown = true;
13 var counter = 0;
14 var moveRate = -2;
15
16 function setLight()
17 {
18 marquee.filters("light").addCone(0, marquee.height,
19 8, marquee.width / 2, 30, 255, 150, 255, 50, 15);
20 marquee.filters("light").addCone(marquee.width,
21 marquee.height, 8, 200, 30, 150, 255, 255, 50, 15);
22 marquee.filters("light").addCone(marquee.width / 2,
23 marquee.height, 4, 200, 100, 255, 255, 150, 50, 50);
24
25 window.setInterval("display()", 100);
26 }
27
28 function display()
29 {
30 counter++;
31
32 if ((counter % 30) == 0)
33 upDown = !upDown;
34
35 if ((counter % 10) == 0)
36 moveRate *= -1;
37
38 if (upDown) {
39 marquee.filters("light").moveLight(
40 0, -1, -1, 3, 0);
41 marquee.filters("light").moveLight(
42 1, 1, -1, 3, 0);
43 marquee.filters("light").moveLight(
44 2, moveRate, 0, 3, 0);
45 }
46 else {
47 marquee.filters("light").moveLight(
48 0, 1, 1, 3, 0);
49 marquee.filters("light").moveLight(
50 1, -1, 1, 3, 0);
51 marquee.filters("light").moveLight(
52 2, moveRate, 0, 3, 0) ;
53 }
54 }
55 </script>
56 </head>
57 <body style = "background-color: #000000"
58 onload = "setLight()">
59
60 <img id = "marquee" src = "marquee.gif"
61 style = "filter: light; position: absolute; left: 25;
62 top: 25" alt = "Deitel movie marquee" />
63

Fig. 15.11Fig. 15.11Fig. 15.11Fig. 15.11 Dynamic cone source lighting (part 2 of 3).

iw3htp2_15.fm Page 504 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 505

Lines 18–19 add our first cone light source, using the addCone method. The param-
eters of this method are similar to the addPoint method. The first two parameters specify
the x-y coordinates of the light source, and the third parameter specifies the simulated
height above the page at which the light should be placed. The next two parame-
ters (marquee.width / 2, 30) are new—they specify the x-y coordinates at which the
cone source is targeted. The next three parameters (255, 150, 255) specify the RGB value
of the light which is cast, just as we did in the addPoint method. The next parameter (50)
specifies the strength of the cone source, in a percentage (also equivalent to the strength
parameter in the addPoint method). The last value (15) specifies the spread of the light
source, in degrees (this can be set in the range 0–90). In this case we set the spread of the
cone to 15 degrees, illuminating a relatively narrow area.

In lines 39–40, we use the moveLight method once again. When used on cone sources,
the moveLight method moves the target of the light. In this case we set the last parameter
to 0 to move the light by a relative amount, not an absolute amount, as we did in Fig 15.10.

15.12 Transitions I: Filter blendTrans
The transitions included with Internet Explorer 5.5 give the author control of many scriptable
PowerPoint type effects. Transitions are set as values of the filter CSS property, just as
regular filters are. We then use scripting to begin the transition. Figure 15.12 is a simple ex-
ample of the blendTrans transition, which creates a smooth fade-in/fade-out effect.

64 </body>
65 </html>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 15.12: blendtrans.html -->
6 <!-- Blend transition -->

Fig. 15.12Fig. 15.12Fig. 15.12Fig. 15.12 Using the blendTrans transition (part 1 of 2).

Fig. 15.11Fig. 15.11Fig. 15.11Fig. 15.11 Dynamic cone source lighting (part 3 of 3).

iw3htp2_15.fm Page 505 Thursday, July 19, 2001 10:26 AM

506 Dynamic HTML: Filters and Transitions Chapter 15

Lines 26–27 set the filter to blendTrans and the duration parameter to 3.
This determines how long the transition takes. In lines 16–18, we invoke two methods of
blendTrans. The apply method (line 16) initializes the transition for the affected ele-
ment. Once this is done, we set the visibility of the element to hidden—this takes
effect when we invoke method play in line 18.

Figure 15.13 is a more complex example of the blendTrans transition. We use this
to transition between two separate images.

7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Using blendTrans</title>
11
12 <script type = "text/javascript">
13 <!--
14 function blendOut()
15 {
16 textInput.filters("blendTrans").apply();
17 textInput.style.visibility = "hidden";
18 textInput.filters("blendTrans").play();
19 }
20 // -->
21 </script>
22 </head>
23
24 <body>
25
26 <div id = "textInput" onclick = "blendOut()" style =
27 "width: 300; filter: blendTrans(duration = 3)">
28 <h1>Some fading text</h1>
29 </div>
30
31 </body>
32 </html>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Fig. 15.13Fig. 15.13Fig. 15.13Fig. 15.13 Blending between images with blendTrans (part 1 of 3).

Fig. 15.12Fig. 15.12Fig. 15.12Fig. 15.12 Using the blendTrans transition (part 2 of 2).

iw3htp2_15.fm Page 506 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 507

4
5 <!-- Fig 15.13: blendtrans2.html -->
6 <!-- Blend Transition -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Blend Transition II</title>
11
12 <script type = "text/javascript">
13 <!--
14 var whichImage = true;
15
16 function blend()
17 {
18 if (whichImage) {
19 image1.filters("blendTrans").apply();
20 image1.style.visibility = "hidden";
21 image1.filters("blendTrans").play();
22 }
23 else {
24 image2.filters("blendTrans").apply();
25 image2.style.visibility = "hidden";
26 image2.filters("blendTrans").play();
27 }
28 }
29
30 function reBlend(fromImage)
31 {
32 if (fromImage) {
33 image1.style.zIndex -= 2;
34 image1.style.visibility = "visible";
35 }
36 else {
37 image1.style.zIndex += 2;
38 image2.style.visibility = "visible";
39 }
40
41 whichImage = !whichImage;
42 blend();
43 }
44 // -->
45 </script>
46 </head>
47
48 <body style = "color: darkblue; background-color: lightblue"
49 onload = "blend()">
50
51 <h1>Blend Transition Demo</h1>
52
53 <img id = "image2" src = "cool12.jpg"
54 onfilterchange = "reBlend(false)"
55 style = "position: absolute; left: 50; top: 50;
56 width: 300; filter: blendTrans(duration = 4);

Fig. 15.13Fig. 15.13Fig. 15.13Fig. 15.13 Blending between images with blendTrans (part 2 of 3).

iw3htp2_15.fm Page 507 Thursday, July 19, 2001 10:26 AM

508 Dynamic HTML: Filters and Transitions Chapter 15

57 z-index: 1" alt = "First Transition Image" />
58
59 <img id = "image1" src = "cool8.jpg"
60 onfilterchange = "reBlend(true)"
61 style = "position: absolute; left: 50; top: 50;
62 width: 300; filter: blendTrans(duration = 4);
63 z-index: 2" alt = "Second Transition Image" />
64
65 </body>
66 </html>

Fig. 15.13Fig. 15.13Fig. 15.13Fig. 15.13 Blending between images with blendTrans (part 3 of 3).

iw3htp2_15.fm Page 508 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 509

We begin by placing two overlapping images on the page, with ids image1 and
image2 (lines 53–63). The body tag’s onload event (line 49) calls function blend as
the body loads. The blend function checks the value of the whichImage variable, and,
because it is set to true, begins a fade transition on image1. Because there are two
images in the same place, when image1 fades out, it appears that image2 fades in to
replace it. When the transition is complete, image1’s onfilterchange event (line 60)
fires. This calls function reBlend, which in lines 33–34 changes the zIndex (the Java-
Script version of the z-index CSS property) of image1 so that it is now below image2.
Once this is done, the image is made visible again. The function then toggles the which-
Image property, and calls function blend so that the whole process starts again, now
transitioning from image2 back to image1.

15.13 Transitions II: Filter revealTrans
The revealTrans filter allows you to transition by using professional-style transitions,
from box out to random dissolve. Figure 15.14 cycles through all 24 of these, transitioning
from one image to another.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 15.14: revealtrans.html -->
6 <!-- Cycling through 24 transitions -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>24 DHTML Transitions</title>
11
12 <script type = "text/javascript">
13 <!--
14 var transitionName =
15 ["Box In", "Box Out",
16 "Circle In", "Circle Out",
17 "Wipe Up", "Wipe Down", "Wipe Right", "Wipe Left",
18 "Vertical Blinds", "Horizontal Blinds",
19 "Checkerboard Across", "Checkerboard Down",
20 "Random Dissolve",
21 "Split Vertical In", "Split Vertical Out",
22 "Split Horizontal In", "Split Horizontal Out",
23 "Strips Left Down", "Strips Left Up",
24 "Strips Right Down", "Strips Right Up",
25 "Random Bars Horizontal", "Random Bars Vertical",
26 "Random"];
27
28 var counter = 0;
29 var whichImage = true;
30

Fig. 15.14Fig. 15.14Fig. 15.14Fig. 15.14 Transitions using revealTrans (part 1 of 4).

iw3htp2_15.fm Page 509 Thursday, July 19, 2001 10:26 AM

510 Dynamic HTML: Filters and Transitions Chapter 15

31 function blend()
32 {
33 if (whichImage) {
34 image1.filters("revealTrans").apply();
35 image1.style.visibility = "hidden";
36 image1.filters("revealTrans").play();
37 }
38 else {
39 image2.filters("revealTrans").apply();
40 image2.style.visibility = "hidden";
41 image2.filters("revealTrans").play();
42 }
43 }
44
45 function reBlend(fromImage)
46 {
47 counter++;
48
49 if (fromImage) {
50 image1.style.zIndex -= 2;
51 image1.style.visibility = "visible";
52 image2.filters("revealTrans").transition =
53 counter % 24;
54 }
55 else {
56 image1.style.zIndex += 2;
57 image2.style.visibility = "visible";
58 image1.filters("revealTrans").transition =
59 counter % 24;
60 }
61
62 whichImage = !whichImage;
63 blend();
64 transitionDisplay.innerHTML = "Transition " +
65 counter % 24 + ": " + transitionName[counter % 24];
66 }
67 // -->
68 </script>
69 </head>
70
71 <body style = "color: white; background-color: lightcoral"
72 onload = "blend()">
73
74 <img id = "image2" src = "icontext.gif"
75 style = "position: absolute; left: 10; top: 10;
76 width: 300; z-index:1; visibility: visible;
77 filter: revealTrans(duration = 2, transition = 0)"
78 onfilterchange = "reBlend(false)" alt =
79 "Programming Tips" />
80
81 <img id = "image1" src = "icons2.gif"
82 style = "position: absolute; left: 10; top: 10;
83 width: 300; z-index:1; visibility: visible;

Fig. 15.14Fig. 15.14Fig. 15.14Fig. 15.14 Transitions using revealTrans (part 2 of 4).

iw3htp2_15.fm Page 510 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 511

84 filter: revealTrans(duration = 2, transition = 0)"
85 onfilterchange = "reBlend(true)" alt = "Icons" />
86
87 <div id = "transitionDisplay" style = "position: absolute;
88 top: 70; left: 80">Transition 0: Box In</div>
89
90 </body>
91 </html>

Fig. 15.14Fig. 15.14Fig. 15.14Fig. 15.14 Transitions using revealTrans (part 3 of 4).

iw3htp2_15.fm Page 511 Thursday, July 19, 2001 10:26 AM

512 Dynamic HTML: Filters and Transitions Chapter 15

The script in this example is almost the same as the script in the blendTrans example.
In lines 52–53, we set the transition property of the image, which determines what
visual transition is used here. There are 24 different visual transitions (their names are listed
in the transitionName array) for updating the div element transitionDisplay.

SUMMARY
• Applying filters to text and images causes changes that are persistent.

• Transitions are temporary phenomena; applying a transition allows you to transfer from one page
to another with a pleasant visual effect, such as a random dissolve.

• Filters and transitions do not add content to your pages—rather, they present existing content in
an engaging manner to help hold the user’s attention.

• Each of the visual effects achievable with filters and transitions is programmable, so these effects
can be adjusted dynamically by programs that respond to user-initiated events like mouse clicks
and keystrokes.

• When Internet Explorer renders your page, it applies all the special effects and does this while run-
ning on the client computer without lengthy waits for files to download from the server.

• The flipv and fliph filters mirror text or images vertically and horizontally, respectively.

• Filters are applied in the style attribute. The filter property’s value is the name of the filter.

• More than one filter can be applied at once. Enter multiple filters as values of the filter at-
tribute, separated by spaces.

• The chroma filter applies transparency effects dynamically, without using a graphics editor to
hard-code transparency into the image.

Fig. 15.14Fig. 15.14Fig. 15.14Fig. 15.14 Transitions using revealTrans (part 4 of 4).

iw3htp2_15.fm Page 512 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 513

• Use the parseInt function to convert a string to a hexadecimal integer for setting the color
property of the chroma filter. The second parameter of parseInt specifies the base of the
integer.

• Each filter has a property named enabled. If this property is set to true, the filter is applied. If
it is set to false, the filter is not applied.

• The onchange event fires whenever the value of a form field changes.

• Applying the mask filter to an image allows you to create an image mask, in which the back-
ground of an element is a solid color and the foreground of an element is transparent to the image
or color behind it.

• Parameters for filters are always specified in the format param = value.

• The invert filter applies a negative image effect—dark areas become light, and light areas be-
come dark.

• The gray filter applies a grayscale image effect, in which all color is stripped from the image and
all that remains is brightness data.

• The xray filter applies an x-ray effect which is basically just an inversion of the grayscale effect.

• A simple filter that adds depth to your text is the shadow filter. This filter creates a shadowing
effect that gives your text a three-dimensional look. The direction property of the shadow
filter determines in which direction the shadow effect will be applied—this can be set to any of
eight directions, expressed in angular notation: 0 (up), 45 (above-right), 90 (right), 135 (below-
right), 180 (below), 225 (below-left), 270 (left) and 315 (above-left). The color property of
the shadow filter specifies the color of the shadow that is applied to the text.

• Internet Explorer 5.5 allows you to create gradient effects dynamically, using the alpha filter.
The style property of the filter determines in what style the opacity is applied; a value of 0 ap-
plies uniform opacity, a value of 1 applies a linear gradient, a value of 2 applies a circular gradient
and a value of 3 applies a rectangular gradient. The opacity and finishopacity properties
are both percentages determining at what percent opacity the specified gradient will start and fin-
ish, respectively. Additional attributes are startX, startY, finishX and finishY. These
allow you to specify at what x-y coordinates the gradient starts and finishes in that element.

• The glow filter allows you to add an aura of color around your text. The color and strength
can both be specified.

• The blur filter creates an illusion of motion by blurring text or images in a certain direction. The
blur filter can be applied in any of eight directions, and its strength can vary. The add property,
when set to true, adds a copy of the original image over the blurred image, creating a more subtle
blurring effect. The direction property determines in which direction the blur filter will be
applied. This is expressed in angular form (as with the shadow filter). The strength property
determines how strong the blurring effect is.

• The wave filter allows you to apply sine-wave distortions to text and images on your Web pages.

• The add property, as in the case of the blur filter, adds a copy of the text or image, but under-
neath the filtered effect. The add property is useful when applying the wave filter to images. The
freq property determines the frequency of the wave applied—i.e., how many complete sine
waves are applied in the affected area. Increasing this property would create a more pronounced
wave effect, but makes the text harder to read. The phase property indicates the phase shift of
the wave. Increasing this property does not modify any physical attributes of the wave, but merely
shifts it in space. This property is useful for creating a gentle waving effect, as we do in this ex-
ample. The last property, strength, is the amplitude of the sine wave that is applied.

• Two filters that apply advanced image processing effects are the dropShadow and light fil-
ters. The dropShadow filter applies an effect similar to the drop shadow we applied to our im-

iw3htp2_15.fm Page 513 Thursday, July 19, 2001 10:26 AM

514 Dynamic HTML: Filters and Transitions Chapter 15

ages in Chapter 3—it creates a blacked-out version of the image, and places it behind the image,
offset by a specified number of pixels.

• The light filter is the most powerful and advanced filter available in Internet Explorer 5.5. It
allows you to simulate the effect of a light source shining on your page.

• The offx and offy properties of the dropShadow filter determine by how many pixels the
drop shadow offsets. The color property specifies the color of the drop shadow.

• All the parameters and methods of the light filter are done by scripting. The addPoint meth-
od adds a point light source—a source of light which emanates from a single point and radiates in
all directions. The first two parameters set the x-y coordinates at which to add the point source.
The next parameter sets the height of the point source.This simulates how far above the surface
the light is situated. Small values create a small but high-intensity circle of light on the image,
while large values cast a circle of light which is darker, but spreads over a greater distance. The
next three parameters specify the RGB value of the light, in decimal.The last parameter is a
strength percentage.

• The moveLight method updates the position of the light source. The first parameter is the index of
the light source on the page. Multiple light sources have index numbers assigned to them in the order
they are added. The next two parameters specify the x-y coordinates to which we should move the
light source. The next parameter specifies the height to which we move the light source. Setting the
last parameter to 1 indicates that the values we are using are absolute. To move your light source by
relative amounts instead, use a value of 0 for the last parameter of the moveLight function.

• The parameters of the addCone method are similar to the addPoint method. The first two pa-
rameters specify the x-y coordinates of the light source, and the third parameter specifies the sim-
ulated height above the page at which the light should be placed. The next two parameters specify
the x-y coordinates at which the cone source is targeted. The next three parameters specify the
RGB value of the light which is cast, just as in the addPoint method. The next parameter spec-
ifies the strength of the cone source, in a percentage. The last value specifies the spread of the light
source, in degrees (this can be set in the range 0–90).

• The transitions included with Internet Explorer 5.5 give the author control of scriptable PowerPoint
type effects. Transitions are set as values of the filter CSS property, just as regular filters are.

• The duration parameter of blendTrans determines how long the transition will take.

• The apply method initializes the transition for the affected element. The play method then be-
gins the transition.

• The revealTrans filter allows you to transition using professional-style transitions, from Box
Out to Random Dissolve. The transition property determines what visual transition is used.
There are 24 different visual transitions.

TERMINOLOGY
add property of blur filter color property of dropshadow filter
add property of wave filter color property of glow filter
addCone method of light filter color property of shadow filter
addPoint method of light filter combining filters
alpha filter cone light source
blendTrans filter CSS filter property
blur filter direction property of blur filter
chroma filter direction property of shadow filter
circular gradient dropShadow filter
color property of chroma filter duration of blendTrans filter

iw3htp2_15.fm Page 514 Thursday, July 19, 2001 10:26 AM

Chapter 15 Dynamic HTML: Filters and Transitions 515

SELF-REVIEW EXERCISES
15.1 State whether the following are true or false. If false, explain why.

a) You can determine the strength of the shadow filter.
b) The flip filter flips text horizontally.
c) The mask filter makes the foreground of an element transparent.
d) The freq property of the wave filter determines how many sine waves are applied to

that element.
e) Increasing the margin of an element prevents the glow filter from being clipped by the

element’s border.
f) The apply method begins a transition.
g) The invert filter creates a negative image effect.
h) The add property adds a duplicate image below the affected image.

15.2 Fill in the blanks in the following statements:
a) You must use the function to pass a value to the color property.

enabled property of each filter light filter
fade-in/fade-out effect linear opacity
filter mask filter
filter property with style attribute moveLight property of light filter
filter strength negative image effect with invert filter
filter:alpha offx property of dropshadow filter
filter:blur offy property of dropshadow filter
filter:chroma opacity property of alpha filter
filter:dropshadow padding (CSS)
filter:fliph phase property of wave filter
filter:flipv phase shift of a wave
filter:glow point light source
filter:gray radial opacity
filter:invert random dissolve transition
filter:light rectangular opacity
filter:mask revealTrans filter
filter:shadow shadow filter
filter:wave sine-wave distortions
filter:xray spread of cone light source
finishopacity property of alpha filter startx property of alpha filter
finishx property of alpha filter starty property of alpha filter
finishy property of alpha filter strength property of blur filter
flipH filter strength property of glow filter
flipV filter strength property of wave filter
freq property of wave filter style property of alpha filter
glow filter three-dimensional effect with shadow filter
gradient transition effects
gray filter transparency effects
grayscale image effect uniform opacity
height of light source vertical blinds transition
horizontal blinds transition visibility
illusion of motion by blurring visual filters
image mask wave filter
invert filter xray filter

iw3htp2_15.fm Page 515 Thursday, July 19, 2001 10:26 AM

516 Dynamic HTML: Filters and Transitions Chapter 15

b) The last parameter of the moveLight method determines whether the move is
or .

c) The amplitude of the wave filter is controlled by the property.
d) There are directions in which the blur filter can be applied.
e) There are two coordinate pairs in the parameters of the addCone method: the

 and the .
f) There are different transition styles for the revealTrans transition.
g) The two properties of the dropShadow filter that specify the offset of the shadow are

 and .
h) The four styles of opacity are , , and .
i) The filter creates a grayscale version of the effected image.

ANSWERS TO SELF-REVIEW EXERCISES
15.1 a) False; there is no strength property for the shadow filter. b) False; the flipH filter
flips text horizontally. c) True. d) True. e) False; increasing the padding of an element prevents clip-
ping. f) False; the play method begins a transition. g) True. h) True.

15.2 a) parseInt. b) relative, absolute. c) strength. d) eight. e) source, target. f) 24. g)
offx, offy. h) uniform, linear, circular, rectangular. i) gray.

EXERCISES
15.3 Create a Web page that applies the invert filter to an image if the user moves the mouse
over the image.

15.4 Create a Web page that applies the glow filter to a hyperlink if the user moves the mouse
over the link.

15.5 Write a script that blurs images and slowly unblurs them when they are finished loading
into the browser (use event onload for the image).

15.6 Write a script that creates a cone light filter that tracks mouse movements across the page.

15.7 Write a script that uses the blendTrans filter to transition into an image after the image
fully loads (use event onload for the image).

15.8 Write a script that changes the attributes of an alpha filter every 20 seconds (see setInt-
erval in Chapter 13). Change both the color and the style of the alpha filter every time.

15.9 (Slide Show) Use the revealTrans filter to present your own slide show in a Web page.
On each transition, display a new image.

15.10 (Image Selector) Design a Web page that allows the user to choose from a series of images
and allows the user to view the image in color and in grayscale.

iw3htp2_15.fm Page 516 Thursday, July 19, 2001 10:26 AM

16
Dynamic HTML:
Data Binding with

Tabular Data Control

Objectives
• To understand Dynamic HTML’s notion of data

binding and how to bind data to XHTML elements.
• To be able to sort and filter data directly on the client

without involving the server.
• To be able to bind a table and other XHTML

elements to data source objects (DSOs).
• To be able to filter data to select only records

appropriate for a particular application.
• To be able to navigate backward and forward through

a database with the Move methods.
Let’s look at the record.
Alfred Emanuel Smith

It is a capital mistake to theorize before one has data.
Sir Arthur Conan Doyle

The more the data banks record about each one of us, the less
we exist.
Marshall McLuhan

Poor fellow, he suffers from files.
Aneurin Bevan

iw3htp2_16.fm Page 517 Thursday, July 19, 2001 8:55 AM

518 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

16.1 Introduction
This is one of the most important chapters for people who will build substantial, real-world,
Web-based applications. Businesses and organizations thrive on data. Dynamic HTML
helps Web application developers produce more responsive data-intensive applications.

Performance Tip 16.1
Prior to Dynamic HTML, the kinds of data manipulations we discuss in this chapter had to be
done on the server, increasing the server load and the network load and resulting in choppy
application responsiveness. With Dynamic HTML, these manipulations, such as sorting and fil-
tering data, can now be done directly on the client without involving the server and the network. 16.1

With data binding, data need no longer reside exclusively on the server. The data can
be maintained on the client and in a manner that distinguishes that data from the XHTML
markup on the page. Typically, data are sent to the client and then all subsequent manipu-
lations take place on that data directly on the client, thus eliminating server activity and net-
work delays.

Performance Tip 16.2
With Dynamic HTML (rather than server-based database processing) it is more likely that a
larger amount of data will be sent to the client on the first request. This initial downloading
of the data by Internet Explorer is performed in a manner that enables processing to begin
immediately on the portion of the data that has arrived. 16.2

Also, with the kind of data-binding technology we discuss in this chapter, changes to
data made on the client do not propagate back to the server. This is not a problem for a great
many popular applications. If you do need to access the database directly and have the
changes that you make on the client actually update the original database, you can use tech-
niques we demonstrate in Chapters 25–31.

Once the data is available on the client, the data can then be sorted and filtered in var-
ious ways. We present examples of each of these operations.

To bind external data to XHTML elements, Internet Explorer employs software
capable of connecting the browser to live data sources. These are known as Data Source

Outline

16.1 Introduction
16.2 Simple Data Binding
16.3 Moving a Recordset
16.4 Binding to an img
16.5 Binding to a table
16.6 Sorting table Data
16.7 Advanced Sorting and Filtering
16.8 Data Binding Elements
16.9 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_16.fm Page 518 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 519

Objects (DSOs). There are several DSOs available in IE5.5—in this chapter we discuss the
most popular DSO—the Tabular Data Control (TDC).

Software Engineering Observation 16.1
Data-bound properties can be modified with Dynamic HTML even after the browser renders
the page. 16.1

16.2 Simple Data Binding
The Tabular Data Control (TDC) is an ActiveX control that is added to a page with the ob-
ject element. Data are stored in a separate file (Fig. 16.1) and not embedded into the XHT-
ML document. Figure 16.2 demonstrates a simple use of data binding with the TDC to update
the contents of a span element (the data file used by this example is listed in Fig. 16.1).

1 @ColorName@|@ColorHexRGBValue@
2 @aqua@|@#00FFFF@
3 @black@|@#000000@
4 @blue@|@#0000FF@
5 @fuchsia@|@#FF00FF@
6 @gray@|@#808080@
7 @green@|@#008000@
8 @lime@|@#00FF00@
9 @maroon@|@#800000@

10 @navy@|@#000080@
11 @olive@|@#808000@
12 @purple@|@#800080@
13 @red@|@#FF0000@
14 @silver@|@#C0C0C0@
15 @teal@|@#008080@
16 @yellow@|@#FFFF00@
17 @white@|@#FFFFFF@

Fig. 16.1Fig. 16.1Fig. 16.1Fig. 16.1 XHTML color table data (HTMLStandardColors.txt).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 16.2: introdatabind.html -->
6 <!-- Simple data binding and recordset manipulation -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Intro to Data Binding</title>
11
12 <!-- This object element inserts an ActiveX control -->
13 <!-- for handling and parsing our data. The PARAM -->
14 <!-- tags give the control starting parameters -->
15 <!-- such as URL. -->
16 <object id = "Colors"
17 classid = "CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83">

Fig. 16.2Fig. 16.2Fig. 16.2Fig. 16.2 Simple data binding (part 1 of 4).

iw3htp2_16.fm Page 519 Thursday, July 19, 2001 8:55 AM

520 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

18 <param name = "DataURL" value =
19 "HTMLStandardColors.txt" />
20 <param name = "UseHeader" value = "TRUE" />
21 <param name = "TextQualifier" value = "@" />
22 <param name = "FieldDelim" value = "|" />
23 </object>
24
25 <script type = "text/javascript">
26 <!--
27 var recordSet = Colors.recordset;
28
29 function reNumber()
30 {
31 if (!recordSet.EOF)
32 recordNumber.innerText =
33 recordSet.absolutePosition;
34 else
35 recordNumber.innerText = " ";
36 }
37
38 function forward()
39 {
40 recordSet.MoveNext();
41
42 if (recordSet.EOF)
43 recordSet.MoveFirst();
44
45 colorSample.style.backgroundColor =
46 colorRGB.innerText;
47 reNumber();
48 }
49 // -->
50 </script>
51 </head>
52
53 <body onload = "reNumber()" onclick = "forward()">
54
55 <h1>XHTML Color Table</h1>
56 <h3>Click to move forward in the recordset.</h3>
57
58 <p>Color Name:
59 <span id = "colorId" style = "font-family: monospace"
60 datasrc = "#Colors" datafld = "ColorName">

61
62 Color RGB Value:
63 <span id = "colorRGB" style = "font-family: monospace"
64 datasrc = "#Colors" datafld = "ColorHexRGBValue">
65

66
67 Currently viewing record number
68
69

70

Fig. 16.2Fig. 16.2Fig. 16.2Fig. 16.2 Simple data binding (part 2 of 4).

iw3htp2_16.fm Page 520 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 521

71 <span id = "colorSample" style = "background-color: aqua;
72 color: 888888; font-size: 30pt">Color Sample
73 </p>
74
75 </body>
76 </html>

Fig. 16.2Fig. 16.2Fig. 16.2Fig. 16.2 Simple data binding (part 3 of 4).

iw3htp2_16.fm Page 521 Thursday, July 19, 2001 8:55 AM

522 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

Line 1 of Fig. 16.1 begins our data file with a header row. This row specifies the names
of the columns below (ColorName and ColorHexRGBValue). Data in each field is
enclosed in text qualifiers (@) and each field is separated with a field delimiter (|).

The object element (lines 16–23 in Fig. 16.2) here inserts the Tabular Data Con-
trol—one of the Microsoft ActiveX controls built into Internet Explorer 5.5. Attribute
classid specifies the ActiveX control to add to the Web page—here we use the
classid of the Tabular Data Control.

The param tag specifies parameters for the object in the object element. Attribute
name is the parameter name and attribute value is the value. Parameter DataURL is the
URL of the data source (HTMLStandardColors.txt). Parameter UseHeader, when
set to true, specifies that the first line of our data file has a header row.

Common Programming Error 16.1
Forgetting to set the UseHeader parameter to true when you have a header row in your
data source is an error that can cause problems in referencing columns. 16.1

The third parameter, TextQualifier, sets the text qualifier of our data (in this case
to @). A text qualifier is the character placed on both ends of the field data. The fourth
parameter, FieldDelim, sets the field delimiter of our data (in this case to |). The field
is the character delimiting separate data fields.

Lines 59–60 bind the data to a span element. The datasrc attribute refers to the id
of the TDC object (Colors, in this case) preceded with a hash mark (#), and the
datafld attribute specifies the name of the field to bind it to (ColorName, in this case).
This places the data contained in the first record (i.e., row) of the ColorName column into
the span element.

So far, we only have a static display of data. We can update it dynamically with some
simple scripting. Line 27 assigns the recordset property of the Colors object (our

Fig. 16.2Fig. 16.2Fig. 16.2Fig. 16.2 Simple data binding (part 4 of 4).

iw3htp2_16.fm Page 522 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 523

TDC object element) to the variable recordSet. A recordset is simply a set of data—
in our case, it is the data from our HTMLStandardColors.txt data source. To move
the recordset to a different row in the data source, line 41 calls the MoveNext method of
the recordSet object. This moves the current recordset forward by one row, automati-
cally updating the span to which we bound our data. Note that line 40 determines if the
boolean EOF property of the recordSet is false. If false, it indicates that the end of
the data source has been reached. If EOF is true, line 43 calls the MoveFirst method
to move to the first recordset in the file.

Common Programming Error 16.2
Trying to use the MoveNext or MovePrevious methods past the boundaries of the data
source is a JavaScript error. 16.2

16.3 Moving a Recordset
Most applications will probably need more functionality than simply moving forward.
Figure 16.3 demonstrates creating a user interface for navigating the data source of Fig. 16.1.

The switch on lines 31–64 evaluates the value passed to move. The two new func-
tions we use are MoveLast and MovePrevious, which move to the last recordset and
the previous recordset, respectively. Line 41 tests if the recordset is pointing to the begin-
ning of the file (BOF), so that we can redirect it.

Common Programming Error 16.3
Calling MovePrevious when a recordset points to the first record in a data file is an error. 16.3

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 16.3: moving.html -->
6 <!-- Moving through a recordset -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Dynamic Recordset Viewing</title>
11 <object id = "Colors"
12 classid = "CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83">
13 <param name = "DataURL" value =
14 "HTMLStandardColors.txt" />
15 <param name = "UseHeader" value = "TRUE" />
16 <param name = "TextQualifier" value = "@" />
17 <param name = "FieldDelim" value = "|" />
18 </object>
19
20 <script type = "text/javascript">
21 <!--
22 var recordSet = Colors.recordset;
23

Fig. 16.3Fig. 16.3Fig. 16.3Fig. 16.3 Moving through a recordset using JavaScript (part 1 of 4).

iw3htp2_16.fm Page 523 Thursday, July 19, 2001 8:55 AM

524 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

24 function update()
25 {
26 h1Title.style.color = colorRGB.innerText;
27 }
28
29 function move(whereTo)
30 {
31 switch (whereTo) {
32
33 case "first":
34 recordSet.MoveFirst();
35 update();
36 break;
37
38 // If recordset is at beginning, move to end.
39 case "previous":
40
41 recordSet.MovePrevious();
42
43 if (recordSet.BOF)
44 recordSet.MoveLast();
45
46 update();
47 break;
48
49 // If recordset is at end, move to beginning.
50 case "next":
51
52 recordSet.MoveNext();
53
54 if (recordSet.EOF)
55 recordSet.MoveFirst();
56
57 update();
58 break;
59
60 case "last":
61 recordSet.MoveLast();
62 update();
63 break;
64 }
65 }
66 // -->
67 </script>
68
69 <style type = "text/css">
70 input { background-color: khaki;
71 color: green;
72 font-weight: bold }
73 </style>
74 </head>
75
76 <body style = "background-color: darkkhaki">

Fig. 16.3Fig. 16.3Fig. 16.3Fig. 16.3 Moving through a recordset using JavaScript (part 2 of 4).

iw3htp2_16.fm Page 524 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 525

77
78 <h1 style = "color: black" id = "h1Title">
79 XHTML Color Table</h1>
80 <span style = "position: absolute; left: 200; width: 270;
81 border-style: groove; text-align: center;
82 background-color: cornsilk; padding: 10">
83 Color Name:
84 <span id = "colorName" style = "font-family: monospace"
85 datasrc = "#Colors" datafld = "ColorName">ABC
86

87
88 Color RGB Value:
89 <span id = "colorRGB" style = "font-family: monospace"
90 datasrc = "#Colors" datafld = "ColorHexRGBValue">ABC
91

92
93 <input type = "button" value = "First"
94 onclick = "move('first');" />
95
96 <input type = "button" value = "Previous"
97 onclick = "move('previous');" />
98
99 <input type = "button" value = "Next"
100 onclick = "move('next');" />
101
102 <input type = "button" value = "Last"
103 onclick = "move('last');" />
104
105
106 </body>
107 </html>

Fig. 16.3Fig. 16.3Fig. 16.3Fig. 16.3 Moving through a recordset using JavaScript (part 3 of 4).

iw3htp2_16.fm Page 525 Thursday, July 19, 2001 8:55 AM

526 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

16.4 Binding to an img
Many different types of XHTML elements can be bound to data sources. One of the more
interesting elements in which to bind data is the img element. Figure 16.4 lists a data source
that contains image file names. Figure 16.5 binds an img element to the data source shown
in Fig. 16.4.

Fig. 16.3Fig. 16.3Fig. 16.3Fig. 16.3 Moving through a recordset using JavaScript (part 4 of 4).

iw3htp2_16.fm Page 526 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 527

1 image
2 numbers/0.gif
3 numbers/1.gif
4 numbers/2.gif
5 numbers/3.gif
6 numbers/4.gif
7 numbers/5.gif
8 numbers/6.gif
9 numbers/7.gif

10 numbers/8.gif
11 numbers/9.gif

Fig. 16.4Fig. 16.4Fig. 16.4Fig. 16.4 images.txt data source file for Fig. 16.5.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 16.5: bindimg.html -->
6 <!-- Binding data to an image -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Binding to a img</title>
11
12 <object id = "Images"
13 classid = "CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83">
14 <param name = "DataURL" value = "images.txt" />
15 <param name = "UseHeader" value = "True" />
16 </object>
17
18 <script type = "text/javascript">
19 <!--
20 recordSet = Images.recordset;
21
22 function move(whereTo)
23 {
24 switch(whereTo) {
25
26 case "first":
27 recordSet.MoveFirst();
28 break;
29
30 case "previous":
31
32 recordSet.MovePrevious();
33
34 if (recordSet.BOF)
35 recordSet.MoveLast();
36
37 break;
38

Fig. 16.5Fig. 16.5Fig. 16.5Fig. 16.5 Binding data to an img element (part 1 of 2).

iw3htp2_16.fm Page 527 Thursday, July 19, 2001 8:55 AM

528 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

39 case "next":
40
41 recordSet.MoveNext();
42
43 if (recordSet.EOF)
44 recordSet.MoveFirst();
45
46 break;
47
48 case "last":
49 recordSet.MoveLast();
50 break;
51 }
52 }
53 // -->
54 </script>
55 </head>
56
57 <body>
58
59 <img datasrc = "#Images" datafld = "image" alt = "Image"
60 style = "position: relative; left: 45px" />

61
62 <input type = "button" value = "First"
63 onclick = "move('first');" />
64
65 <input type = "button" value = "Previous"
66 onclick = "move('previous');" />
67
68 <input type = "button" value = "Next"
69 onclick = "move('next');" />
70
71 <input type = "button" value = "Last"
72 onclick = "move('last');" />
73
74 </body>
75 </html>

Fig. 16.5Fig. 16.5Fig. 16.5Fig. 16.5 Binding data to an img element (part 2 of 2).

iw3htp2_16.fm Page 528 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 529

Lines 59–60 bind the data source to an img element. When binding to an img element,
changing the recordset updates the src attribute of the image. Clicking any of the naviga-
tion buttons changes the image displayed on screen.

16.5 Binding to a table
Binding data to a table element is perhaps the most important feature of data binding.
This is done somewhat differently from the data binding we have seen. Figure 16.6 binds
to a table element the data in Fig. 16.1.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 16.6: tablebind.html -->
6 <!-- Using Data Binding with tables -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Data Binding and Tables</title>
11 <object id = "Colors"
12 classid = "CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83">
13 <param name = "DataURL" value =
14 "HTMLStandardColors.txt" />
15 <param name = "UseHeader" value = "TRUE" />
16 <param name = "TextQualifier" value = "@" />
17 <param name = "FieldDelim" value = "|" />
18 </object>
19 </head>
20
21 <body style = "background-color: darkseagreen">
22
23 <h1>Binding Data to a <code>table</code></h1>
24
25 <table datasrc = "#Colors" style = "border-style: ridge;
26 border-color: darkseagreen;
27 background-color: lightcyan">
28
29 <thead>
30 <tr style = "background-color: mediumslateblue">
31 <th>Color Name</th>
32 <th>Color RGB Value</th>
33 </tr>
34 </thead>
35
36 <tbody>
37 <tr style = "background-color: lightsteelblue">
38 <td></td>
39 <td><span datafld = "ColorHexRGBValue"
40 style = "font-family: monospace"></td>
41 </tr>
42 </tbody>

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 Binding data to a table element (part 1 of 2).

iw3htp2_16.fm Page 529 Thursday, July 19, 2001 8:55 AM

530 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

Lines 25–27 begin binding the table by adding the datasrc attribute to the opening
table tag. We complete the data binding in lines 38–40 by adding the datafld attribute
to span tags that reside in the table cells. Note that in the file we only have one row of table
cells—Internet Explorer iterates through the data file, and creates a table row for each
record it finds.

16.6 Sorting table Data
If you are manipulating a large data source, your client will probably need some way to sort
the data. This is accomplished with the Sort property of the TDC (Fig. 16.7).

43
44 </table>
45
46 </body>
47 </html>

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 Binding data to a table element (part 2 of 2).

iw3htp2_16.fm Page 530 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 531

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 16.7: sorting.html -->
6 <!-- Sorting table data -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Data Binding and Tables</title>
11 <object id = "Colors"
12 classid = "CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83">
13 <param name = "DataURL" value =
14 "HTMLStandardColors.txt" />
15 <param name = "UseHeader" value = "TRUE" />
16 <param name = "TextQualifier" value = "@" />
17 <param name = "FieldDelim" value = "|" />
18 </object>
19 </head>
20
21 <body style = "background-color: darkseagreen">
22
23 <h1>Sorting Data</h1>
24
25 <table datasrc = "#Colors" style = "border-style: ridge;
26 border-color: darkseagreen;
27 background-color: lightcyan">
28 <caption>
29 Sort by:
30
31 <select onchange = "Colors.Sort = this.value;
32 Colors.Reset();">
33 <option value = "ColorName">Color Name (Ascending)
34 </option>
35 <option value = "-ColorName">Color Name (Descending)
36 </option>
37 <option value = "ColorHexRGBValue">Color RGB Value
38 (Ascending)</option>
39 <option value = "-ColorHexRGBValue">Color RGB Value
40 (Descending)</option>
41 </select>
42 </caption>
43
44 <thead>
45 <tr style = "background-color: mediumslateblue">
46 <th>Color Name</th>
47 <th>Color RGB Value</th>
48 </tr>
49 </thead>
50
51 <tbody>
52 <tr style = "background-color: lightsteelblue">
53 <td></td>

Fig. 16.7Fig. 16.7Fig. 16.7Fig. 16.7 Sorting data in a table (part 1 of 2).

iw3htp2_16.fm Page 531 Thursday, July 19, 2001 8:55 AM

532 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

Lines 31–32 sort our data by specifying the column by which to sort in the Sort prop-
erty of the TDC. This example sets property Sort to the value of the selected option tag
(this.value) when the onchange event is fired. JavaScript keyword this refers to
the element in which the statement resides (i.e., the select element). Therefore, the
value property refers to the currently selected option tag. After setting the Sort prop-
erty, we invoke the Reset method of the TDC to display our data in its new sort order.

Lines 33–36 set the value attributes of the option tags to the column names in our
data file. By default, a column is sorted in ascending order. To sort in descending order, the
column name is preceded with a minus sign (-).

54 <td><span datafld = "ColorHexRGBValue"
55 style = "font-family: monospace"></td>
56 </tr>
57 </tbody>
58
59 </table>
60
61 </body>
62 </html>

Fig. 16.7Fig. 16.7Fig. 16.7Fig. 16.7 Sorting data in a table (part 2 of 2).

iw3htp2_16.fm Page 532 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 533

16.7 Advanced Sorting and Filtering
The TDC can sort data containing multiple columns (Fig. 16.8). Combined with filtering
(i.e., selecting data that meets a specific criteria), this provides a powerful means of data
rendering (Fig. 16.9).

1 @Title:String@|@Authors:String@|@Copyright:String@|
2 @Edition:String@|@Type:String@
3 @C How to Program@|@Deitel,Deitel@|@1992@|@1@|@BK@
4 @C How to Program@|@Deitel,Deitel@|@1994@|@2@|@BK@
5 @C++ How to Program@|@Deitel,Deitel@|@1994@|@1@|@BK@
6 @C++ How to Program@|@Deitel,Deitel@|@1998@|@2@|@BK@
7 @Java How to Program@|@Deitel,Deitel@|@1997@|@1@|@BK@
8 @Java How to Program@|@Deitel,Deitel@|@1998@|@2@|@BK@
9 @Java How to Program@|@Deitel,Deitel@|@2000@|@3@|@BK@

10 @Visual Basic 6 How to Program@|@Deitel,Deitel,Nieto@|@1999@|
11 @1@|@BK@
12 @Internet and World Wide Web How to Program@|@Deitel,Deitel@|
13 @2000@|@1@|@BK@
14 @The Complete C++ Training Course@|@Deitel,Deitel@|@1996@|
15 @1@|@BKMMCD@
16 @The Complete C++ Training Course@|@Deitel,Deitel@|@1998@|
17 @2@|@BKMMCD@
18 @The Complete Java Training Course@|@Deitel,Deitel@|@1997@|
19 @1@|@BKMMCD@
20 @The Complete Java Training Course@|@Deitel,Deitel@|@1998@|
21 @2@|@BKMMCD@
22 @The Complete Java Training Course@|@Deitel,Deitel@|@2000@|
23 @3@|@BKMMCD@
24 @The Complete Visual Basic 6 Training Course@|
25 @Deitel,Deitel,Nieto@|@1999@|@1@|@BKMMCD@
26 @The Complete Internet and World Wide Web Programming Training
Course@|@Deitel,Deitel@|@2000@|@1@|@BKMMCD@

Fig. 16.8Fig. 16.8Fig. 16.8Fig. 16.8 DBPublications.txt data file for Fig. 16.9.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig 16.9: advancedsort.html -->
6 <!-- Sorting and filtering data -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Data Binding - Sorting and Filtering</title>
11

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Advanced sorting and filtering (part 1 of 7).

iw3htp2_16.fm Page 533 Thursday, July 19, 2001 8:55 AM

534 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

12 <object id = "Publications"
13 classid = "CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83">
14 <param name = "DataURL" value = "DBPublications.txt" />
15 <param name = "UseHeader" value = "TRUE" />
16 <param name = "TextQualifier" value = "@" />
17 <param name = "FieldDelim" value = "|" />
18 <param name = "Sort" value = "+Title" />
19 </object>
20
21 <style type = "text/css">
22
23 a { font-size: 9pt;
24 text-decoration: underline;
25 cursor: hand;
26 color: blue }
27
28 caption { cursor: hand; }
29
30 span { cursor: hand; }
31
32 </style>
33
34 <script type = "text/javascript">
35 <!--
36 var sortOrder;
37
38 function reSort(column, order)
39 {
40 if (order)
41 sortOrder = "";
42 else
43 sortOrder = "-";
44
45 if (event.ctrlKey) {
46 Publications.Sort += "; " + sortOrder + column;
47 Publications.Reset();
48 }
49 else {
50 Publications.Sort = sortOrder + column;
51 Publications.Reset();
52 }
53
54 spanSort.innerText = "Current sort: " +
55 Publications.Sort;
56 }
57
58 function filter(filterText, filterColumn)
59 {
60 Publications.Filter = filterColumn + "=" +
61 filterText;
62 Publications.Reset();

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Advanced sorting and filtering (part 2 of 7).

iw3htp2_16.fm Page 534 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 535

63 spanFilter.innerText =
64 "Current filter: " + Publications.Filter;
65 }
66
67 function clearAll()
68 {
69 Publications.Sort = " ";
70 spanSort.innerText = "Current sort: None";
71 Publications.Filter = " ";
72 spanFilter.innerText = "Current filter: None";
73 Publications.Reset();
74 }
75 // -->
76 </script>
77 </head>
78
79 <body>
80 <h1>Advanced Sorting</h1>
81 <p>Click the link next to a column head to sort by that
82 column. To sort by more than one column at a time, hold
83 down Ctrl while you click another sorting link. Click
84 any cell to filter by the data of that cell. To clear
85 filters and sorts, click the green caption bar.</p>
86
87 <table datasrc = "#Publications" border = "1"
88 cellspacing = "0" cellpadding = "2" style =
89 "background-color: papayawhip;">
90
91 <caption style = "background-color: lightgreen;
92 padding: 5" onclick = "clearAll()">
93 <span id = "spanFilter" style = "font-weight: bold;
94 background-color: lavender">Current filter: None
95
96 <span id = "spanSort" style = "font-weight: bold;
97 background-color: khaki">Current sort: None
98 </caption>
99
100 <thead>
101 <tr>
102 <th>Title

103 (
104 Ascending
105
106 Descending)
107 </th>
108
109 <th>Authors

110 (
111 Ascending
112
113 Descending)
114 </th>

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Advanced sorting and filtering (part 3 of 7).

iw3htp2_16.fm Page 535 Thursday, July 19, 2001 8:55 AM

536 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

115
116 <th>Copyright

117 (
118 Ascending
119
120 Descending)
121 </th>
122
123 <th>Edition

124 (
125 Ascending
126
127 Descending)
128 </th>
129
130 <th>Type

131 (
132 Ascending
133
134 Descending)
135 </th>
136 </tr>
137 </thead>
138
139 <tr>
140 <td><span datafld = "Title" onclick =
141 "filter(this.innerText, 'Title')">
142 </td>
143
144 <td><span datafld = "Authors" onclick =
145 "filter(this.innerText, 'Authors')">
146 </td>
147
148 <td><span datafld = "Copyright" onclick =
149 "filter(this.innerText, 'Copyright')">
150 </td>
151
152 <td><span datafld = "Edition" onclick =
153 "filter(this.innerText, 'Edition')">
154 </td>
155
156 <td><span datafld = "Type" onclick =
157 "filter(this.innerText, 'Type')">
158 </td>
159
160 </tr>
161
162 </table>
163
164 </body>
165 </html>

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Advanced sorting and filtering (part 4 of 7).

iw3htp2_16.fm Page 536 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 537

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Advanced sorting and filtering (part 5 of 7).

iw3htp2_16.fm Page 537 Thursday, July 19, 2001 8:55 AM

538 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Advanced sorting and filtering (part 6 of 7).

iw3htp2_16.fm Page 538 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 539

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Advanced sorting and filtering (part 7 of 7).

iw3htp2_16.fm Page 539 Thursday, July 19, 2001 8:55 AM

540 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

Line 18 sets the Sort property of the TDC using a param tag instead of scripting.
This provides the initial sorting order (in this case, alphabetically by Title). Line 30
introduces the cursor CSS attribute, which specifies what the mouse cursor looks like
when hovering over an object. In this case we set the property to hand (the same hand that
appears when you move your cursor over a link). This lets the user know that a span is
clickable when the cursor is moved over it.

When a user clicks the Ascending or Descending links in any of the column heads,
the table resorts by that column. To do this, each column head has an associated onclick
event that calls the reSort function, passing the name of the column to sort and a boolean
value that specifies the sort order (true for ascending, false for descending).

The user can sort by multiple columns by holding Ctrl while clicking a link. Line 45
checks the boolean value event.ctrlKey, which returns true if Ctrl was pressed
when the event was triggered. If the user did press Ctrl, line 46 adds another sort criterion
to property Sort, separated from the first with a semicolon ("; ").

The Filter property filters out all records that do not have a cell matching the spec-
ified text. We use the format ColumnName = FilterText. In this example, the user can click
any cell to filter by the text inside that cell. Any cell, when clicked, calls the filter func-
tion, passing as parameters the text of the cell (this.innerText) and the column by
which to filter. In the filter function, lines 60–61 set the Filter property of the TDC
to the column and text by which that column should be filtered. In this case, the filter tests
for equality using the equality operator = (which is different from the JavaScript equality
operator ==). Any of the normal equality operators (=, <>) and relational operators (>, <,
>=, <=) may be used for filtering.

16.8 Data Binding Elements
Exactly how a data source is displayed by the browser depends on the XHTML element to
which the data is bound—different elements may use the data for different purposes.
Figure 16.10 lists some elements that can be bound to data with the TDC, and the attributes
of those elements that reflect data changes.

Element Bindable Property/Attribute

a href

div Contained text

frame href

iframe href

img src

input type = "button" value (button text)

input type = "checkbox" checked (use a boolean value in the data)

input type = "hidden" value

input type = "password" value

Fig. 16.10Fig. 16.10Fig. 16.10Fig. 16.10 XHTML elements that allow data binding.

iw3htp2_16.fm Page 540 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 541

16.9 Internet and World Wide Web Resources
www.microsoft.com/data
The Microsoft Universal Data Access Technologies Web site provides information about Microsoft
database access strategies and data source objects.

www.msdn.microsoft.com/resources/schurmandhtml.asp
This Web site for the Microsoft Press book for Dynamic HTML in Action, Second Edition (by Eric M.
Schurman and William J. Pardi) provides information about Dynamic HTML and Microsoft database
access.

SUMMARY
• With data binding, data need no longer reside exclusively on the server. The data can be main-

tained on the client and in a manner that distinguishes that data from the XHTML code on the page.

• Once the data is available on the client, the Web application designer can provide various func-
tionality, especially the ability to sort and filter the data in various ways.

• The Tabular Data Control (TDC) is an ActiveX control that can be added to the page with an
object tag.

• When a Web page is loaded with data-bound elements, the client retrieves the data from the data
source specified by the TDC. The data is then formatted for display on the Web page and remains
accessible on the client.

• A header row in a data source specifies the names of the columns. The data in each field can be
encapsulated in text qualifiers and the fields are separated with a field delimiter.

• An object tag inserts an ActiveX Tabular Data Control. The classid attribute specifies the
ActiveX control identifier.

• The param tag specifies parameters for the object in the object tag. The name attribute is the
parameter name, and the value attribute is the value. The DataURL parameter is the URL of the
data source. The UseHeader parameter specifies that the first line of the data file have a header
row when set to true. The TextQualifier parameter sets the text qualifier of our data. The
FieldDelim parameter sets the field delimiter of our data.

• The datasrc attribute refers to the id of the TDC object, and the datafld attribute specifies
the name of the field to which it is bound.

input type = "radio" checked (use a boolean value in the data)

input type = "text" value

marquee Contained text

param value

select Selected option

span Contained text

table Cell elements (see Section 16.6)

textarea Contained text (value)

Element Bindable Property/Attribute

Fig. 16.10Fig. 16.10Fig. 16.10Fig. 16.10 XHTML elements that allow data binding.

iw3htp2_16.fm Page 541 Thursday, July 19, 2001 8:55 AM

542 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

• A recordset is simply a set of data—in our case, it is the current row of data from the data source.

• The MoveNext method moves the current recordset forward by one row, automatically updating
the bound element.

• The EOF property indicates whether the recordset has reached the end of the data source.

• The MoveFirst method moves the recordset to the first row in the file.

• The BOF property indicates whether the recordset points to the first row of the data source.

• When binding to an img element, changing the recordset updates the src attribute of the image.

• To bind to a table, add the datasrc attribute to the opening table tag. Then add the datafld
attribute to span tags that reside in the table cells. Internet Explorer iterates through the data file,
and creates a table row for each row it finds.

• The Sort property of the ActiveX control determines by what column the data is sorted. Once the
Sort property is set, call the Reset method to display the data in its new sort order. By default,
a column will be sorted in ascending order—to sort in descending order, the column name is pre-
ceded with a minus sign (-).

• Setting the Sort property of the TDC using a param tag instead of scripting is useful for provid-
ing an initial sorting order.

• The cursor CSS attribute specifies what the mouse cursor will look like when hovering over an
object. The value hand makes the mouse appear as the same hand that appears when you move
your cursor over a link.

• The boolean value event.ctrlKey returns true if Ctrl was held down when the event was
triggered.

• An additional sort criterion can be added to the Sort property, separated from the first with a
semicolon.

• The Filter property allows you to filter out all records that do not have a cell that matches the
text you specify.

• Any of the normal equality operators (=, <>) and relational operators (>, <, >=, <=) can be used
for filtering.

TERMINOLOGY
ActiveX control DSO (data source object)
ascending sort order EOF (end-of-file) property of recordset
binding field delimiter
BOF (beginning-of-file) property of recordset field of a record
bound elements FieldDelim property of Tabular Data Control
classid property filter data
column in a database Filter property of Tabular Data Control
current record of a recordset header row
data binding minus sign (-) for descending sort order
data source Move methods
data source object (DSO) MoveFirst method of recordset
database MoveLast method of recordset
data-bound elements MoveNext method of recordset
datafld attribute MovePrevious method of recordset
datasrc attribute multicolumn sort
DataURL property of Tabular Data Control record
descending sort order recordset

iw3htp2_16.fm Page 542 Thursday, July 19, 2001 8:55 AM

Chapter 16 Dynamic HTML: Data Binding with Tabular Data Control 543

SELF-REVIEW EXERCISES
16.1 State whether each of the following is true or false. If false, explain why.

a) A TDC recordset is one row of data.
b) You can bind any XHTML element to data sources.
c) The classid attribute for the TDC never changes.
d) span elements display bound data as inner text.
e) img elements display bound data as alt text.
f) You separate multiple sort criteria of the Sort property with a comma (,).
g) The equality operator (=) is the only operator that can be used in filtering data.
h) Calling MoveNext when EOF is true will move the recordset to the first row of data.
i) Calling MoveLast when EOF is true causes an error.

16.2 Fill in the blank for each of the following statements:
a) When binding data to a table, the attribute is placed in the opening

<table> tag and the attribute is placed inside the table cells.
b) The TDC is an control.
c) To sort in descending order, precede the sort criterion with a .
d) To display data with recently applied sorting, call the method.
e) The parameter specifies that the data source has a header row.
f) A encapsulates text in a data source and a separates fields in a

data source.
g) The CSS property changes the appearance of the mouse cursor.

ANSWERS TO SELF-REVIEW EXERCISES
16.1 a) True. b) False; only some XHTML elements may be bound to data. c) True. d) True. e)
False; data bound to img elements affects the src attribute of that img. f) False; you separate them
with a semicolon (;). g) False; any of the equality operators or relational operators can be used. h)
False; this causes an error. i) False; the recordset moves to the last row of data.

16.2 a) datasrc, datafld. b) ActiveX. c) minus sign, (-). d) Reset. e) UseHeader. f) text
qualifier, field delimiter. g) cursor.

EXERCISES
16.3 Create a data source file with two columns: one for URLs, and one for URL descriptions.
Bind the first column to an a element on a page and the second to a span element contained within
the a element.

16.4 Bind the data source file you created in Exercise 16.3 to a table to create a table of click-
able links.

16.5 Add a drop-down select list to Fig. 16.9 that allows you to choose the binary operator used
for filter matching, from any of =, >, <, >= or <=.

sort in ascending order Tabular Data Control (TDC) DSO of IE5.5
sort in descending order text qualifier
Sort property of Tabular Data Control TextQualifer property of TDC
Tabular Data Control (CLSID:333C7BC4-

460F-11D0-BC04-0080C7055A83)
UseHeader property of Tabular Data Control

iw3htp2_16.fm Page 543 Thursday, July 19, 2001 8:55 AM

544 Dynamic HTML: Data Binding with Tabular Data Control Chapter 16

16.6 Create a data source with a set of name/password pairs. Bind these fields to an
input type = "text" and input type = "password" and provide navigation buttons to al-
low the user to move throughout the data source.

16.7 Apply the transitions you learned in Chapter 15 to Fig. 16.5 to create a virtual slide show.

16.8 Modify the table binding example in Fig. 16.6 to store between 5 and 10 of your friends’
names and phone numbers. Change the text file’s name to friends.txt. The left column should
be titled “Friends” and the right column should be titled “Phone Numbers.”

iw3htp2_16.fm Page 544 Thursday, July 19, 2001 8:55 AM

17
Dynamic HTML:

Structured Graphics
ActiveX Control

Objectives
• To be able to use the Structured Graphics Control to

create various shapes.
• To understand the Structured Graphics Control

methods for modifying lines and borders.
• To understand the Structured Graphics Control

methods for modifying colors and fill styles.
• To be able to enable event capturing for the Structured

Graphics Control.
• To be able to import external lists of methods into the

Structured Graphics Control.
• To be able to scale, rotate and translate shapes in the

Structured Graphics Control.
One picture is worth ten thousand words.
Chinese proverb

Treat nature in terms of the cylinder, the sphere, the cone, all
in perspective.
Paul Cezanne

Nothing ever becomes real till it is experienced—even a
proverb is no proverb to you till your life has illustrated it.
John Keats

Capture its reality in paint!
Paul Cezanne

iw3htp2_17.fm Page 545 Thursday, July 19, 2001 9:40 AM

546 Dynamic HTML: Structured Graphics ActiveX Control Chapter 17

17.1 Introduction
Although high-quality content is what visitors to your site are usually looking for, it may
not be enough to hold their attention and keep them coming back. Eye-catching graphics
may help. This chapter explores the Structured Graphics ActiveX Control included with
Internet Explorer 5.5.

The Structured Graphics Control, like the Tabular Data Control we discussed in the
previous chapter, is an ActiveX control that you can add to your page with an object ele-
ment. Like the TDC, the Structured Graphics Control is easily accessible through scripting.
Unlike the TDC, the Structured Graphics Control is meant primarily for visual presenta-
tions, not for displaying data and content.

The Structured Graphics Control is a Web interface for the widely used DirectAnima-
tion subset of Microsoft’s DirectX software, used in many high-end video games and
graphical applications. To explore the Structured Graphics Control and DirectAnimation
further, visit Microsoft’s DirectAnimation reference site at

www.microsoft.com/directx/dxm/help/da/default.htm

17.2 Shape Primitives
The Structured Graphics Control allows you to create simple shapes by using methods that
can be called via scripting or through param tags inside object elements. Figure 17.1
demonstrates most of the shapes included in the Structured Graphics Control.

Lines 15–17 insert the Structured Graphics ActiveX Control. We give it an id of
shapes for reference purposes. Note that this id is a different classid than that of the
Tabular Data Control, introduced in Chapter 16.

The first param tag in lines 19–20 calls the SetLineColor method of the Struc-
tured Graphics Control. The name attribute determines the order in which the function
is called.

Common Programming Error 17.1
Forgetting to assign successive line numbers (i.e., name = "Line0001", name =
"Line0002", etc.) to method calls prevents the intended methods from being called. 17.1

Outline

17.1 Introduction
17.2 Shape Primitives
17.3 Moving Shapes with Translate
17.4 Rotation
17.5 Mouse Events and External Source Files
17.6 Scaling
17.7 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_17.fm Page 546 Thursday, July 19, 2001 9:40 AM

Chapter 17 Dynamic HTML: Structured Graphics ActiveX Control 547

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 17.1: shapes.html -->
6 <!-- Creating simple shapes -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Structured Graphics - Shapes</title>
11 </head>
12
13 <body>
14
15 <object id = "shapes" style = "background-color: #CCCCFF;
16 width: 500; height: 400"
17 classid = "CLSID:369303C2-D7AC-11d0-89D5-00A0C90833E6">
18
19 <param name = "Line0001"
20 value = "SetLineColor(0, 0, 0)" />
21 <param name = "Line0002"
22 value = "SetLineStyle(1, 1)" />
23 <param name = "Line0003"
24 value = "SetFillColor(0, 255, 255)" />
25 <param name = "Line0004"
26 value = "SetFillStyle(1)" />
27
28 <param name = "Line0005"
29 value = "Oval(0, -175, 25, 50, 45)" />
30 <param name = "Line0006"
31 value = "Arc(-200, -125, 100, 100, 45, 135, 0)" />
32 <param name = "Line0007"
33 value = "Pie(100, -100, 150, 150, 90, 120, 0)" />
34 <param name = "Line0008"
35 value = "Polygon(5, 0, 0, 10, 20, 0, -30,
36 -10, -10, -10, 25)" />
37 <param name = "Line0009"
38 value = "Rect(-185, 0, 60, 30, 25)" />
39 <param name = "Line0010"
40 value = "RoundRect(200, 100, 35, 60, 10, 10, 25)" />
41
42 <param name = "Line0011"
43 value = "SetFont('Arial', 65, 400, 0, 0, 0)" />
44 <param name = "Line0012"
45 value = "Text('Shapes', -200, 200 , -35)" />
46
47 <param name = "Line0013"
48 value = "SetLineStyle(2,1)" />
49 <param name = "Line0014"
50 value = "PolyLine(5, 100, 0, 120, 175, -150, -50,
51 -75, -75, 75, -75)" />
52 </object>
53

Fig. 17.1Fig. 17.1Fig. 17.1Fig. 17.1 Creating shapes with the Structured Graphics ActiveX Control (part 1 of 2).

iw3htp2_17.fm Page 547 Thursday, July 19, 2001 9:40 AM

548 Dynamic HTML: Structured Graphics ActiveX Control Chapter 17

The order of calls must be Line0001, Line0002, Line0003, and so on. Method
SetLineColor sets the color of lines and borders of shapes. It takes an RGB triplet in dec-
imal notation as its three parameters—in this case, we set the line color to black (0, 0, 0).

Lines 21–22 call method SetLineStyle. Its two parameters set the line style and line
width, respectively. Line-style value 1 creates a solid line (the default), 0 does not draw any
lines or borders and 2 creates a dashed line. The line width is specified in pixels. In order to
create a dashed line with the SetLineStyle method, you must set the line width to 1.

Method SetFillColor (lines 23–24) sets the foreground color with which to fill
shapes. Like method SetLineColor, it takes a decimal RGB triplet as its parameters.
We set the foreground color to cyan (0, 255, 255). The SetFillStyle method (lines
25–26) determines the style in which a shape is filled with color; a value of 1, as we set it
here, fills shapes with the solid color we declared with the method SetFillColor. There
are 14 possible fill styles, some of which we demonstrate later in this chapter. Figure 17.2
lists all the possible fill styles available with the Structured Graphics Control.

Lines 28–29 create a shape, using the Oval method. The first two parameters, (0, -
175), specify x–y coordinates at which to place the oval. All shapes in the Structured
Graphics Control effectively have a surrounding box—that is, when you place the image at
a certain x–y position, it is the upper left corner of that box which is placed at that position.
It is important to note that inside the control, the point (0, 0) (also known as the origin) is
at the center of the control, not at the upper left corner.

54 </body>
55 </html>

Fig. 17.1Fig. 17.1Fig. 17.1Fig. 17.1 Creating shapes with the Structured Graphics ActiveX Control (part 2 of 2).

iw3htp2_17.fm Page 548 Thursday, July 19, 2001 9:40 AM

Chapter 17 Dynamic HTML: Structured Graphics ActiveX Control 549

The next two parameters, (25, 50), specify the height and width of the oval, respec-
tively. The last parameter (45) specifies the clockwise rotation of the oval relative to the
x-axis, expressed in degrees.

 Lines 30–31 create another shape, an arc. The Arc method takes seven parameters:
The x–y coordinates of the arc; the height and width of the box that the arc encloses; the
starting angle of the arc, in degrees, the size of the arc relative to the starting angle, also in
degrees, and the rotation of the arc. The Pie method (lines 32–33) takes the same param-
eters as does the Arc method, but it fills the arc with the color of the foreground, thus cre-
ating a pie shape.

Lines 34–36 create a polygon, using the Polygon method. The first parameter spec-
ifies the number of vertices in the polygon; each successive pair of parameters specifies the
x–y coordinates of the next vertex of the polygon. The last point of the polygon is automat-
ically connected to the first, to close the polygon.

Lines 37–38 create a rectangle, using the Rect method. Here, the first two parameters
specify the coordinates, the next two specify height and width, respectively, and the last
parameter specifies rotation, in degrees.

Lines 39–40 add a rounded rectangle. The RoundRect method is almost identical to
the Rect method, but it adds two new parameters, which specify the width and height,
respectively, of the rounded arc at the corners of the rectangle—in this case, 10 pixels wide
and 10 pixels high (10, 10).

Lines 42–45 add text to our Structured Graphics Control, using methods, SetFont
and Text. The SetFont method sets the font style to use when we use the Text method
to place text. Here, we instruct SetFont to use a font face of Arial that is 65 points

Number Fill Style

0 None

1 Solid fill

2 None

3 Horizontal lines

4 Vertical lines

5 Diagonal lines

6 Diagonal lines

7 Cross-hatch

8 Diagonal cross-hatch

9 Horizontal Gradient

10 Vertical Gradient

11 Circular Gradient

12 Line Gradient

13 Rectangular Gradient

14 Shaped Gradient

Fig. 17.2Fig. 17.2Fig. 17.2Fig. 17.2 Fill styles available for the SetFillStyle method.

iw3htp2_17.fm Page 549 Thursday, July 19, 2001 9:40 AM

550 Dynamic HTML: Structured Graphics ActiveX Control Chapter 17

high, has a boldness of 400 (this attribute is similar to the CSS font-weight property,
with values ranging from 100 to 700) and is neither italic (0), underline (0) nor
strikethrough (0). Then, we use the Text method to place the text (Shapes) on the screen,
positioned at (-200, 200), with a rotation of -35 degrees.

In lines 47–50, we use the PolyLine method to draw a line with multiple line seg-
ments. Before we draw the line, we call the SetLineStyle method again to override the
settings we gave it before; in this case, we set the line style to dashed, with a width of 1
pixel (2, 1). The PolyLine method itself operates much like the Polygon method—the
first parameter declares the number of points in the line, and each successive pair declares
the x–y coordinates of the next vertex.

17.3 Moving Shapes with Translate
The Structured Graphics Control provides several scriptable methods that allow you to
move and transform shapes on the screen. Figure 17.3 provides an example of use of the
Translate function to move an oval.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 17.3: bounce.html -->
6 <!-- Textures and the Translate method -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Structured Graphics - Translate</title>
11
12 <script type = "text/javascript">
13 <!--
14 var x = 15;
15 var y = 15;
16 var upDown = -1;
17 var leftRight = 1;
18
19 function start()
20 {
21 window.setInterval("run()", 50);
22 }
23
24 function run()
25 {
26 // if the ball hits the top or bottom side...
27 if (y == -100 || y == 50)
28 upDown *= -1;
29
30 // if the ball hits the left or right side...
31 if (x == -150 || x == 100)
32 leftRight *= -1;
33

Fig. 17.3Fig. 17.3Fig. 17.3Fig. 17.3 Methods SetTextureFill and Translate (part 1 of 2).

iw3htp2_17.fm Page 550 Thursday, July 19, 2001 9:40 AM

Chapter 17 Dynamic HTML: Structured Graphics ActiveX Control 551

In this example, we create a ball that bounces around inside the Structured Graphics
Control box. Instead of the SetFillColor method, we use the SetTextureFill
method (line 52) to fill the oval we create with a texture. A texture is a picture that is placed
on the surface of a polygon. The first two parameters, (0, 0), specify the x–y coordinates
inside the shape at which the texture begins. The next parameter (’ball.gif’) specifies
the location of the texture to use, and the last parameter (0) specifies that the texture should

34 // Move the ball and increment our counters
35 ball.Translate(leftRight * 5, upDown * 5, 0);
36 y += upDown * 5;
37 x += leftRight * 5;
38 }
39 // -->
40 </script>
41 </head>
42
43 <body onload = "start()">
44
45 <object id = "ball" style = "background-color: ffffff;
46 width: 300; height: 200; border-style: groove;
47 position: absolute;"
48 classid = "CLSID:369303C2-D7AC-11d0-89D5-00A0C90833E6">
49
50 <param name = "Line0001" value = "SetLineStyle(0)" />
51 <param name = "Line0002"
52 value = "SetTextureFill(0, 0, 'ball.gif', 0)" />
53 <param name = "Line0003"
54 value = "Oval(15, 15, 50, 50)" />
55 </object>
56
57 </body>
58 </html>

Fig. 17.3Fig. 17.3Fig. 17.3Fig. 17.3 Methods SetTextureFill and Translate (part 2 of 2).

iw3htp2_17.fm Page 551 Thursday, July 19, 2001 9:40 AM

552 Dynamic HTML: Structured Graphics ActiveX Control Chapter 17

be stretched to fit inside the shape. A last parameter of 1 would instead tile the texture as
many times as necessary inside the shape.

Now that the shape is in place, we use the Translate method to translate the
shape—that is, to move the shape in coordinate space without deforming it. In every call to
function run, we determine whether the ball has reached the edge of the box (lines 27 and
31); if this is the case, we reverse the ball’s direction, to simulate a bounce. Then, in line
35, we call the Translate function, passing it three parameters, which determine the rel-
ative distance to move the ball along the x-, y- and z-axes, respectively. (The z- axis is
the third-demensional coordinate axix.)

17.4 Rotation
Another useful method for moving shapes is Rotate, which can rotate shapes in three-
dimensional space. Figure 17.4 demonstrates use of the Rotate method, along with some
new fill style effects.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 17.4: gradient.html -->
6 <!-- Gradients and rotation -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Structured Graphics - Gradients</title>
11
12 <script type = "text/javascript">
13 <!--
14 var speed = 5;
15 var counter = 180;
16
17 function start()
18 {
19 window.setInterval("run()", 100);
20 }
21
22 function run()
23 {
24 counter += speed;
25
26 // accelerate half the time...
27 if ((counter % 360) > 180)
28 speed *= (5 / 4);
29
30 // decelerate the other half.
31 if ((counter % 360) < 180)
32 speed /= (5 / 4);
33
34 pies.Rotate(0, 0, speed);
35 }

Fig. 17.4Fig. 17.4Fig. 17.4Fig. 17.4 Using gradients and Rotate (part 1 of 2).

iw3htp2_17.fm Page 552 Thursday, July 19, 2001 9:40 AM

Chapter 17 Dynamic HTML: Structured Graphics ActiveX Control 553

36 // -->
37 </script>
38
39 </head>
40
41 <body onload = "start()">
42
43 <object id = "pies" style = "background-color:blue;
44 width: 300; height: 200;"
45 classid = "CLSID:369303C2-D7AC-11d0-89D5-00A0C90833E6">
46
47 <param name = "Line0001"
48 value = "SetFillColor(255, 0, 0, 0, 0, 0)" />
49 <param name = "Line0002"
50 value = "SetFillStyle(13)" />
51 <param name = "Line0003"
52 value = "Pie(-75, -75, 150, 150, 90, 120, 300)" />
53
54 <param name = "Line0004"
55 value = "SetFillStyle(9)" />
56 <param name = "Line0005"
57 value = "Pie(-75, -75, 150, 150, 90, 120, 180)" />
58
59 <param name = "Line0006"
60 value = "SetFillStyle(11)" />
61 <param name = "Line0007"
62 value = "Pie(-75, -75, 150, 150, 90, 120, 60)" />
63 </object>
64
65 </body>
66 </html>

Fig. 17.4Fig. 17.4Fig. 17.4Fig. 17.4 Using gradients and Rotate (part 2 of 2).

iw3htp2_17.fm Page 553 Thursday, July 19, 2001 9:40 AM

554 Dynamic HTML: Structured Graphics ActiveX Control Chapter 17

In this example, we create three pie shapes that we place together to form a circle. Line
34 calls function Rotate to rotate the circle around the z-axis. (As with the Translate
method, the three parameters of the Rotate function specify rotation in the x-, y- and z-
coordinate planes, respectively.) Lines 26–32 in the JavaScript code provide a mechanism
for varying the speed of rotation about the z axis.

The gradient fills are set with the SetFillStyle method (lines 50, 55 and 60). A
parameter of 9 for SetFillStyle fills the shape with a linear gradient from the fore-
ground color to the background color. The background color is specified with the method
SetFillColor in lines 47–48 by adding a second RGB triplet; here, we set the fore-
ground color to white (255, 255, 255) and the background color to black (0,0,0). The
two other parameters we use for SetFillStyle, 11 and 13, fill the pies with circular
and rectangular gradients, respectively.

17.5 Mouse Events and External Source Files
To provide interaction with the user, the Structured Graphics Control can process the Dy-
namic HTML events onmouseup, onmousedown, onmousemove, onmouseover,
onmouseout, onclick and ondblclick (see Chapter 14). By default, the Structured
Graphics Control does not capture these mouse events, because doing so takes a small
amount of processing power. The MouseEventsEnabled property allows you to turn
on capturing for these events. In Fig. 17.5, we use mouse events to trigger another feature
of the Structured Graphics Control, one that allows you to keep a set of method calls in a
separate source file (Fig. 17.6) and invoke them by calling the SourceURL method.

We toggle the mouse-event capturing in line 59 by setting the MouseEvents-
Enabled property to a value of 1 (true) to enable event capturing.

Lines 12–17 designate a script for the onclick event of our Structured Graphics
Control object. This event sets property SourceURL to newoval.txt (Fig. 17.6)—the
new drawing instructions. Each command is on a separate line, consisting of only the
method call and its parameters.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 17.5: bounce2.html -->
6 <!-- SourceURL and MouseEventsEnabled -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Structured Graphics - Shapes</title>
11

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Using SourceURL and MouseEventsEnabled (part 1 of 3).

iw3htp2_17.fm Page 554 Thursday, July 19, 2001 9:40 AM

Chapter 17 Dynamic HTML: Structured Graphics ActiveX Control 555

12 <script for = "ball" event = "onclick" type =
13 "text/javascript">
14 <!--
15 ball.SourceURL = "newoval.txt";
16 // -->
17 </script>
18
19 <script type = "text/javascript">
20 <!--
21 var x = 20;
22 var y = 20;
23 var upDown = -1;
24 var leftRight = 1;
25
26 function start()
27 {
28 window.setInterval("run()", 50);
29 }
30
31 function run()
32 {
33 if (y == -100 || y == 50)
34 upDown *= -1;
35
36 if (x == -150 || x == 100)
37 leftRight *= -1;
38
39 ball.Translate(leftRight * 5, upDown * 5, 0);
40 y += upDown * 5;
41 x += leftRight *5;
42 }
43 // -->
44 </script>
45 </head>
46
47 <body onload = "start()">
48
49 <object id = "ball"
50 style = "width: 300; height: 200; border-style: groove;
51 position: absolute; top: 10; left: 10;"
52 classid = "clsid:369303C2-D7AC-11d0-89D5-00A0C90833E6">
53
54 <param name = "Line0001" value = "SetLineStyle(0)" />
55 <param name = "Line0002"
56 value = "SetTextureFill(0, 0, 'ball.gif', 0)" />
57 <param name = "Line0003"
58 value = "Oval(20, 20, 50, 50)" />
59 <param name = "MouseEventsEnabled" value = "1" />
60 </object>
61
62 </body>
63 </html>

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Using SourceURL and MouseEventsEnabled (part 2 of 3).

iw3htp2_17.fm Page 555 Thursday, July 19, 2001 9:40 AM

556 Dynamic HTML: Structured Graphics ActiveX Control Chapter 17

17.6 Scaling
The third type of shape transformation that the Structured Graphics Control provides is
scaling, which modifies the size of an object while retaining its position and shape.
Figure 17.7 provides an example of scaling, using the Scale method.

In this example, we use two separate controls—the first (lines 55–90) for our rotating
foreground, and the second (lines 92–101) for the oval in the background. We position
these objects over each other by using the position and z-index CSS attribute. We
then use the five buttons to the side of the Structured Graphics Controls to control rotation
and scaling of the upper layer. In line 27, the Scale method scales object drawing uni-
formly in the three dimensions, based on the variable scale.

1 SetLineStyle(1, 3)
2 SetFillStyle(1)
3 Oval(20, 20, 50, 50, 0)
4
5 SetLineStyle(1, 1)
6 PolyLine(2, 45, 20, 45, 70, 0)
7 PolyLine(2, 45, 20, 45, 70, 90)
8 PolyLine(2, 45, 20, 45, 70, 45)
9 PolyLine(2, 45, 20, 45, 70, 135)

10
11 SetFillColor(0, 255, 0)
12 Oval(30, 30, 30, 30, 0)
13 SetFillColor(255 ,0, 0)
14 Oval(35, 35, 20, 20, 0)

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 External source file newoval.txt for Fig. 17.5.

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Using SourceURL and MouseEventsEnabled (part 3 of 3).

iw3htp2_17.fm Page 556 Thursday, July 19, 2001 9:40 AM

Chapter 17 Dynamic HTML: Structured Graphics ActiveX Control 557

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 17.7: scaling.html -->
6 <!-- Scaling a shape -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Structured Graphics - Scaling</title>
11
12 <script type = "text/javascript">
13 <!--
14 var speedX = 0;
15 var speedY = 0;
16 var speedZ = 0;
17 var scale = 1;
18
19 function start()
20 {
21 window.setInterval("run()", 100);
22 }
23
24 function run()
25 {
26 drawing.Rotate(speedX, speedY, speedZ);
27 drawing.Scale(scale, scale, scale);
28 }
29
30 function rotate(axis)
31 {
32 axis = (axis ? 0 : 5);
33 }
34 // -->
35 </script>
36
37 </head>
38
39 <body onload = "start()">
40
41 <div style = "position: absolute; top: 25; left: 220">
42 <input type = "button" value = "Rotate-X"
43 onclick = "speedX = (speedX ? 0 : 5)" />

44 <input type = "button" value = "Rotate-Y"
45 onclick = "speedY = (speedY ? 0 : 5)" />

46 <input type = "button" value = "Rotate-Z"
47 onclick = "speedZ = (speedZ ? 0 : 5)" />

48

49 <input type = "button" value = "Scale Up"
50 onclick = "scale = (scale * 10 / 9)" />

51 <input type = "button" value = "Scale Down"
52 onclick = "scale = (scale * 9 / 10)" />
53 </div>

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 Rotating a shape in three dimensions and scaling up and down (part 1 of 3).

iw3htp2_17.fm Page 557 Thursday, July 19, 2001 9:40 AM

558 Dynamic HTML: Structured Graphics ActiveX Control Chapter 17

54
55 <object id = "drawing" style = " position: absolute;
56 z-index: 2; width: 200; height: 300;"
57 classid = "CLSID:369303C2-D7AC-11d0-89D5-00A0C90833E6">
58
59 <param name = "Line0001" value = "SetFillColor(0,0,0)" />
60 <param name = "Line0002" value = "SetFillStyle(0)" />
61 <param name = "Line0003" value = "SetLineStyle(1, 3)" />
62
63 <param name = "Line0004"
64 value = "Oval(-25, -100, 50, 50, 0)" />
65
66 <param name = "Line0005"
67 value = "PolyLine(2, 0, -50, 0, 50)" />
68
69 <param name = "Line0006"
70 value = "PolyLine(3, -30, -25, 0, -15, 30, -25)" />
71
72 <param name = "Line0007"
73 value = "PolyLine(3, -15, 90, 0, 50, 15, 90)" />
74
75 <param name = "Line0008"
76 value = "SetFillColor (255, 0, 0)" />
77 <param name = "Line0009"
78 value = "Oval(-15, -85, 7, 7, 0)" />
79 <param name = "Line0010"
80 value = "Oval(5, -85, 7, 7, 0)" />
81
82 <param name = "Line0011"
83 value = "SetLineStyle(1, 2)" />
84 <param name = "Line0012"
85 value = "SetLineColor(255, 0, 0)" />
86 <param name = "Line0013"
87 value = "SetFont('Courier', 25, 200, 0, 0, 0)" />
88 <param name = "Line0014"
89 value = "Text('Hello', -35, -115 , 0)" />
90 </object>
91
92 <object id = "background" style = " position:absolute;
93 z-index: 1; width: 200; height: 300;
94 background-color: none" classid =
95 "CLSID:369303C2-D7AC-11d0-89D5-00A0C90833E6">
96
97 <param name = "Line0001"
98 value = "SetFillColor(38, 250, 38)" />
99 <param name = "Line0002"
100 value = "Oval(-75, -125, 150, 250, 0)" />
101 </object>
102 </body>
103 </html>

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 Rotating a shape in three dimensions and scaling up and down (part 2 of 3).

iw3htp2_17.fm Page 558 Thursday, July 19, 2001 9:40 AM

Chapter 17 Dynamic HTML: Structured Graphics ActiveX Control 559

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 Rotating a shape in three dimensions and scaling up and down (part 3 of 3).

iw3htp2_17.fm Page 559 Thursday, July 19, 2001 9:40 AM

560 Dynamic HTML: Structured Graphics ActiveX Control Chapter 17

17.7 Internet and World Wide Web Resources
dec26.ncat.edu/~esterlin/c600s01/Notes/Ch19.pdf
This document discusses the Structured Graphics ActiveX Control’s methods. Translating, rotating
and scaling objects are also discussed.

obelix.dawsoncollege.qc.ca/~c811c02/project/dhtmltutorial.html
This Web site contains an animation created with the Structured Graphics ActiveX Control.

www.microsoft.com/windows/ie/press/whitepaper/iwhite/
white003.htm#E12E9
This technical document describes ActiveX controls. It also discusses how ActiveX technology and
ActiveX scripting work.

SUMMARY
• The Structured Graphics Control is an ActiveX control that you can add with an object tag. The

Structured Graphics Control is easily accessible through scripts and is used for creating dynamic
Web pages.

• The Structured Graphics Control is a Web interface for the widely used DirectAnimation subset
of Microsoft’s DirectX software, used in many high-end games and graphical applications.

• The Structured Graphics control allows you to create simple shapes by using functions that can be
called via scripting or through param tags inside object elements.

• The name attribute of the param tag method determines the order in which the function specified
in the value attribute is called. The order of calls must be Line0001, Line0002, Line0003,
and so on.

• The SetLineColor function sets the color of lines and borders of shapes that are drawn. It takes
an RGB triplet in decimal notation as its three parameters.

• The two parameters of the SetLineStyle function set the line style and line width, respective-
ly. A value of 1 for line style creates a solid line (the default). A value of 0 does not draw any lines
or borders, and a value of 2 creates a dashed line. The line width is specified in pixels.

• The SetFillColor method sets the foreground color with which to fill shapes.

• The SetFillStyle method determines the style in which a shape is filled with color; a value
of 1 fills shapes with the solid color declared with the SetFillColor method. There are 14 pos-
sible fill styles.

• The first two parameters of the Oval method specify x–y coordinates at which to place the oval.
The next two parameters specify the height and width of the oval, respectively. The last parameter
specifies the clockwise rotation of the oval relative to the x-axis, expressed in degrees.

• All shapes in the Structured Graphics control effectively have a surrounding box; when you place
the image at a certain x–y coordinate, it is the upper left corner of that box that is placed at that
coordinate. Inside the control, the point (0, 0) (also known as the origin) is at the center of the
control, not at the upper left corner.

• The Arc method takes seven parameters: The x–y coordinates of the arc; the height and width of
the box in which the arc is enclosed; the starting angle of the arc, in degrees; the size of the arc
relative to the starting angle, also in degrees, and the rotation of the arc.

• The Pie method takes the same parameters as the Arc method, but it fills in the arc with the fore-
ground color, thus creating a pie shape.

• The first parameter of method Polygon specifies the number of vertices in the polygon; each suc-
cessive pair of numbers specifies the x–y coordinates of the next vertex in the polygon.

iw3htp2_17.fm Page 560 Thursday, July 19, 2001 9:40 AM

Chapter 17 Dynamic HTML: Structured Graphics ActiveX Control 561

• The Rect method creates a rectangle. The first two parameters specify the coordinates, the next
two specify height and width, respectively, and the last parameter specifies rotation, in degrees.

• The RoundRect method is almost identical to the Rect method, but it adds two new parameters,
which specify the height and width, respectively, of the rounded arcs at the corners of the rectan-
gle.

• The SetFont method sets the font style to use when placing text with the Text method.

• The PolyLine method draws a line with multiple segments. The PolyLine method functions
much like the Polygon method—the first parameter declares the number of points in the line,
and each successive pair declares the x–y coordinates of another vertex.

• The SetTextureFill method fills a shape with a texture. A texture is a picture that is placed
on the surface of a polygon. The first two parameters specify the x–y coordinates inside the shape
of which the texture begins. The next parameter specifies the location of the texture to use. A last
parameter of 0 specifies that the texture should be stretched to fit inside the shape. A last parameter
of 1 would instead tile the texture as many times as necessary inside the shape.

• The Translate method moves a shape in coordinate space without deforming it. Its three pa-
rameters determine the relative distance to move along the x-, y- and z-axes, respectively. (The z-
axis is the third-dimensional coordinate axis.)

• The Rotate method rotates shapes in three-dimensional space. The three parameters of the Ro-
tate function specify rotation in the x-, y- and z-coordinate planes, respectively.

• A parameter of 9 for SetFillStyle fills the shape with a linear gradient from the foreground
color to the background color.

• A background color can be specified with the SetFillColor method by adding a second RGB
triplet to the parameters.

• Two other parameters for SetFillStyle, 11 and 13, fill shapes with circular and rectangular
gradients, respectively.

• To provide interaction with the user, the Structured Graphics Control can process the Dynamic
HTML mouse events onmouseup, onmousedown, onmousemove, onmouseover, on-
mouseout, onclick and ondblclick.

• By default, the Structured Graphics Control does not capture mouse events, because doing so takes
a small amount of processing power.

• The Structure Graphics Control allows you to keep a set of method calls in a separate source file
and to invoke those methods by calling the SourceURL function.

• Turn event capturing on by calling the MouseEventsEnabled method with a value of 1 (true).

• Each command in a file targeted by SourceURL is on a separate line and consists of only the
method call and its parameters.

TERMINOLOGY
arc onclick event
Arc method ondblclick event
DirectAnimation onmousedown event
DirectX onmousemove event
line style onmouseout event
line width onmouseover event
Line0001, (Line0002, etc.) onmouseup event
mouse events origin name
object tag oval

iw3htp2_17.fm Page 561 Thursday, July 19, 2001 9:40 AM

562 Dynamic HTML: Structured Graphics ActiveX Control Chapter 17

SELF-REVIEW EXERCISES
17.1 Fill in the blanks in each of the following statements:

a) The Structured Graphics Control is a subset of Microsoft’s software pack-
age.

b) The Structured Graphics Control captures only -related events.
c) The method allows you to draw a multisegmented line.
d) There are different styles for the SetFillStyle method.
e) The method allows you to import external lists of commands.
f) A is an image that is placed on the surface of a polygon.
g) The method moves shapes in the Structured Graphics Control without dis-

torting or rotating them.
h) To place text with the Text method, the method must first be called to set

the properties of the text to be placed.

17.2 State whether each of the following is true or false. If false, explain why.
a) By default, event capturing is turned on for the Structured Graphics Control.
b) The SetLineColor and SetLineStyle methods also apply to shape borders.
c) The Pie method has the same parameters as does the Arc method.
d) Calling SetFillStyle with an argument of 1 fills shapes with a solid color.
e) The dotted-line style may be used at any line width.
f) The SetFillTexture method specifies whether the texture is tiled or stretched.

ANSWERS TO SELF-REVIEW EXERCISES
17.1 a) DirectX. b) mouse. c) PolyLine. d) 15. e) SourceURL. f) texture. g) Translate.
h) SetFont.

17.2 a) False. It is off by default. b) True. c) True. d) True. e) False. It may be used only with
lines that are one pixel wide. f) True.

EXERCISES
17.3 Modify Fig. 17.5 to do the following:

a) Speed up when the ball is clicked;
b) change the ball’s shape when it hits a wall;
c) have the ball stop if the user moves the mouse cursor over the ball, and resume moving

if the user moves the mouse cursor off the ball.

Oval method SetFillColor method
param tag SetFillStyle method
pie SetFont method
Pie method SetLineColor method
polygon SetLineStyle method
Polygon method SetTextureFill method
PolyLine method SourceURL method
Rect method Structured Graphics Control
rectangle Text method
Rotate method texture
rounded rectangle translate
RoundRect method Translate method
Scale method

iw3htp2_17.fm Page 562 Thursday, July 19, 2001 9:40 AM

Chapter 17 Dynamic HTML: Structured Graphics ActiveX Control 563

17.4 Use the Structured Graphics Control to create several ovals in different sizes, shapes, loca-
tions, colors and fill styles.

17.5 Use the primitive shapes to create simple pictures of a person, a car, a house, a bicycle and a
dog.

17.6 Look up the Spline method mentioned in the documentation at the URL provided in Sec-
tion 17.1, and use it to create a figure-eight shape.

17.7 Draw a series of eight concentric circles, each separation being 10 pixels wide.

17.8 Draw four triangles of different sizes. Each triangle should be filled with a different color (or
fill style).

17.9 Create a Web page that uses JavaScript and the Structured Graphics Control to create an in-
teractive hangman game.

17.10 Use the Structured Graphics Control to draw a cube.

17.11 Modify Exercise 17.10 to rotate the cube continuously.

17.12 Modify Exercise 17.10 to rotate the cube in response to the user moving the mouse. The cube
should rotate in the direction in which the user drags the mouse. [Hint: Use the onmousedown event
to determine when the user begins a drag, and use the onmouseup event to determine when the drag
operation terminates.]

17.13 Modify Exercise 17.12 to determine the speed at which the cube rotates, by calculating the
distance between two consecutive onmousemove events.

iw3htp2_17.fm Page 563 Thursday, July 19, 2001 9:40 AM

18
Dynamic HTML:

Path, Sequencer and
Sprite ActiveX Controls

Objectives
• To be able to use the DirectAnimation multimedia

ActiveX controls, including the Path, Sequencer and
Sprite controls.

• To be able to add animation to Web pages with the
DirectAnimation ActiveX controls.

• To use the Path Control to specify the path along
which an animated Web page element moves.

• To use the Sequencer Control to control the timing
and synchronization of actions on a Web page.

• To use the Sprite Control to create animated images
for a Web page.

There is a natural hootchy-kootchy motion to a goldfish.
Walt Disney

Isn’t life a series of images that change as they repeat
themselves?
Andy Warhol

Between the motion and the act falls the shadow.
Thomas Stearns Eliot, The Hollow Men

Grass grows, birds fly, waves pound the sand.
Muhammad Ali

iw3htp2_18.fm Page 564 Thursday, July 19, 2001 9:43 AM

Chapter 18 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls 565

18.1 Introduction
In this chapter, we discuss the remaining three DirectAnimation ActiveX controls available
for use with Internet Explorer 5.5: The Path Control, the Sequencer Control and the Sprite
Control. Each one of these controls allows a Web page designer to add certain multimedia
effects to Web pages. When used with one another, with the Structured Graphics Control
we discussed in the previous chapter and with other Dynamic HTML effects, they help cre-
ate stunning visual presentations for your content.

Performance Tip 18.1
Multimedia is performance intensive. Internet bandwidth and processor speed are still pre-
cious resources. Multimedia-based Web applications must be carefully designed to use re-
sources wisely, or they may perform poorly. 18.1

18.2 DirectAnimation Path Control
The DirectAnimation Path Control allows you to control the position of elements on your
page. This mechanism is more advanced than dynamic CSS positioning, because it allows
you to define paths that the targeted elements follow. This capacity to define paths gives you
the ability to create professional presentations, especially when integrated with other Dynam-
ic HTML features such as filters and transitions. Figure 18.1 uses the Path Control to create
a short linear path for an h1 element.

Outline

18.1 Introduction
18.2 DirectAnimation Path Control
18.3 Multiple Path Controls
18.4 Time Markers for Path Control
18.5 DirectAnimation Sequencer Control
18.6 DirectAnimation Sprite Control
18.7 Animated GIFs
18.8 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 18.1: path1.html -->
6 <!-- Introducing the path control -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Path control</title>

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 Demonstrating the DirectAnimation Path Control (part 1 of 2).

iw3htp2_18.fm Page 565 Thursday, July 19, 2001 9:43 AM

566 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls Chapter 18

Lines 18–27 use the object element to place the Path Control on the page. The
classid attribute identifies the DirectAnimation Path Control. The param tags in the
object element specify certain properties of the control. Setting AutoStart to a non-
zero value (1 in this case) starts the element along the path as soon as the page loads (setting
a zero value would prevent it from starting, in which case a script would have to call the
Play method to start the path). The Repeat method specifies how many times the path
is traversed; setting the value to -1, as we do here, specifies that the path should loop con-
tinuously. The Duration parameter specifies the amount of time that it takes to traverse
the path, in seconds.

Parameter Bounce, when set to 1, reverses the element’s direction on the path when
it reaches the end. Setting the value to 0 would instead return the element to the beginning
of the path when the path has been traversed. The Shape parameter is what actually deter-
mines the path of the element; as we saw with the Structured Graphics Control, the
PolyLine value creates a path with multiple line segments. In this case, we declare a path
with 2 points, located at (0, 0) and (200, 50). Finally, the Target parameter specifies
the id of the element that is targeted by the path control. Line 15 sets the CSS attribute
position to absolute; this setting allows the Path Control to move the element

11 </head>
12
13 <body style = "background-color: wheat">
14
15 <h1 id = "headerText" style = "position: absolute">
16 Path animation:</h1>
17
18 <object id = "oval"
19 classid = "CLSID:D7A7D7C3-D47F-11D0-89D3-00A0C90833E6">
20 <param name = "AutoStart" value = "1" />
21 <param name = "Repeat" value = "-1" />
22 <param name = "Duration" value = "2" />
23 <param name = "Bounce" value = "1" />
24 <param name = "Shape"
25 value = "PolyLine(2, 0, 0, 200, 50)" />
26 <param name = "Target" value = "headerText" />
27 </object>
28
29 </body>
30 </html>

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 Demonstrating the DirectAnimation Path Control (part 2 of 2).

iw3htp2_18.fm Page 566 Thursday, July 19, 2001 9:43 AM

Chapter 18 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls 567

around the screen. Otherwise, the element is stationary, locked in the position determined
by the browser when the page loads.

18.3 Multiple Path Controls
The Path Control also allows you to set paths for multiple objects present on your page. To
set paths for multiple objects, you must add a separate object tag for each object you
wish to control. Figure 18.2 creates PolyLine paths for seven separate objects that create
a splash screen effect.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 18.2: path2.html -->
6 <!-- Controlling multiple paths -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Path Control - Multiple paths</title>
11
12 <style type = "text/css">
13
14 span { position: absolute;
15 font-family: sans-serif;
16 font-size: 2em;
17 font-weight: bold;
18 filter: shadow(direction = 225);
19 padding: 9px;
20 }
21
22 </style>
23 </head>
24
25 <body style = "background-color: lavender">
26
27 <img src = "icons2.gif"
28 style = "position: absolute; left: 30; top: 110" />
29
30 <span id = "titleTxt"
31 style = "left: 500; top: 500; color: white">
32 Multimedia Cyber Classroom

33 Programming Tip Icons
34
35 <span id = "CPEspan"
36 style = "left: 75; top: 500; color: red">
37 Common Programming Errors
38
39 <span id = "GPPspan"
40 style = "left: 275; top: 500; color: orange">
41 Good Programming Practices

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 Controlling multiple elements with the Path Control (part 1 of 4).

iw3htp2_18.fm Page 567 Thursday, July 19, 2001 9:43 AM

568 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls Chapter 18

42
43 <span id = "PERFspan"
44 style = "left: 475; top: 500; color: yellow">
45 Performance Tips
46
47 <span id = "PORTspan"
48 style = "left: 100; top: -50; color: green">
49 Portability Tips
50
51 <span id = "SEOspan"
52 style = "left: 300; top: -50; color: blue">
53 Software Engineering Observations
54
55 <span id = "TDTspan"
56 style = "left: 500; top: -50; color: violet">
57 Testing and Debugging Tips
58
59 <object id = "CyberPath"
60 classid = "CLSID:D7A7D7C3-D47F-11D0-89D3-00A0C90833E6">
61 <param name = "Target" value = "titleTxt" />
62 <param name = "Duration" value = "10" />
63 <param name = "Shape"
64 value = "PolyLine(2, 500, 500, 100, 10)" />
65 <param name = "AutoStart" value = "1" />
66 </object>
67
68 <object id = "CPEPath"
69 classid = "CLSID:D7A7D7C3-D47F-11D0-89D3-00A0C90833E6">
70 <param name = "Target" value = "CPEspan" />
71 <param name = "Duration" value = "4" />
72 <param name = "Shape"
73 value = "PolyLine(3, 75, 500, 300, 170, 35, 175)" />
74 <param name = "AutoStart" value = "1" />
75 </object>
76
77 <object id = "GPPPath"
78 classid = "CLSID:D7A7D7C3-D47F-11D0-89D3-00A0C90833E6">
79 <param name = "Target" value = "GPPspan" />
80 <param name = "Duration" value = "5" />
81 <param name = "Shape" value =
82 "PolyLine(3, 275, 500, 300, 340, 85, 205)" />
83 <param name = "AutoStart" value = "1" />
84 </object>
85
86 <object id = "PERFPath"
87 classid = "CLSID:D7A7D7C3-D47F-11D0-89D3-00A0C90833E6">
88 <param name = "Target" value = "PERFspan" />
89 <param name = "Duration" value = "6" />
90 <param name = "Shape" value =
91 "PolyLine(3, 475, 500, 300, 340, 140, 235)" />
92 <param name = "AutoStart" value = "1" />
93 </object>
94

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 Controlling multiple elements with the Path Control (part 2 of 4).

iw3htp2_18.fm Page 568 Thursday, July 19, 2001 9:43 AM

Chapter 18 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls 569

95 <object id = "PORTPath"
96 classid = "CLSID:D7A7D7C3-D47F-11D0-89D3-00A0C90833E6">
97 <param name = "Target" value = "PORTspan" />
98 <param name = "Duration" value = "7" />
99 <param name = "Shape" value =
100 "PolyLine(3, 600, -50, 300, 340, 200, 265)" />
101 <param name = "AutoStart" value = "1" />
102 </object>
103
104 <object id = "SEOPath"
105 classid = "CLSID:D7A7D7C3-D47F-11D0-89D3-00A0C90833E6">
106 <param name = "Target" value = "SEOspan" />
107 <param name = "Duration" value = "8" />
108 <param name = "Shape" value =
109 "PolyLine(3, 300, -50, 300, 340, 260, 295)" />
110 <param name = "AutoStart" value = "1" />
111 </object>
112
113 <object id = "TDTPath"
114 classid = "CLSID:D7A7D7C3-D47F-11D0-89D3-00A0C90833E6">
115 <param name = "Target" value = "TDTspan" />
116 <param name = "Duration" value = "9" />
117 <param name = "Shape" value =
118 "PolyLine(3, 500, -50, 300, 340, 310, 325)" />
119 <param name = "AutoStart" value = "1" />
120 </object>
121 </body>
122 </html>

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 Controlling multiple elements with the Path Control (part 3 of 4).

iw3htp2_18.fm Page 569 Thursday, July 19, 2001 9:43 AM

570 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls Chapter 18

Each object element in our program controls a separate span element. As the page
loads, these elements move separately into place, creating a visually pleasing effect. Note
that because we did not specify the z-index properties, the z-index of elements that
overlap each other is determined by their order of declaration in the XHTML source: ele-
ments declared later in the XHTML file are displayed above elements declared earlier.

18.4 Time Markers for Path Control
A useful feature of the Path Control is the ability to execute certain actions at any point
along an object’s path. This capability is implemented with the AddTimeMarker meth-
od, which creates a time marker that can be handled with simple JavaScript event handling.
Figure 18.3 has two separate time markers for an image that follows an oval path.

Lines 39–40 place the image with the id of largebug on an oval path, using the
Oval method. This method is similar to the Oval method from the Structured Graphics
Control, in that the first two parameters specify the x–y coordinates of the oval and the next
two parameters specify the width and height of the oval, respectively.

Line 42 introduces the AddTimeMarker method. The 1 appended to the AddTime-
Marker function is a sequential identifier—much as Line0001 is used in the Structured
Graphics Control. The first parameter in the value attribute determines the point at which
our time marker is placed along the path, specified in seconds; when this point is reached,
event onmarker is fired. The second parameter gives an identifying name to the event,
which is later passed on to the event handler for the onmarker function. The last param-
eter specifies whether to fire the onmarker event every time the object’s path loops past
the time marker (as we do here by setting the parameter to 0) or to fire the event just the
first time that the time marker is passed (by setting the parameter to 1).

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 Controlling multiple elements with the Path Control (part 4 of 4).

iw3htp2_18.fm Page 570 Thursday, July 19, 2001 9:43 AM

Chapter 18 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls 571

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 18.3: path3.html -->
6 <!-- Oval paths and time markers -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Path control - Advanced Paths</title>
11
12 <script type = "text/javascript" for = "oval"
13 event = "onmarker (marker)">
14 <!--
15 if (marker == "mark1")
16 pole.style.zIndex += 2;
17
18 if (marker == "mark2")
19 pole.style.zIndex -= 2;
20 // -->
21 </script>
22 </head>
23
24 <body style = "background-color: #9C00FF">
25
26 <img id = "pole" src = "pole.gif" style =
27 "position: absolute; left: 350; top: 80;
28 z-index: 3; height: 300" />
29
30 <img id = "largebug" src = "animatedbug_large.gif"
31 style = "position: absolute; z-index: 4" />
32
33 <object id = "oval"
34 classid = "CLSID:D7A7D7C3-D47F-11D0-89D3-00A0C90833E6">
35 <param name = "AutoStart" value = "-1" />
36 <param name = "Repeat" value = "-1" />
37 <param name = "Relative" value = "1" />
38 <param name = "Duration" value = "8" />
39 <param name = "Shape"
40 value = "Oval(100, 80, 300, 60)" />
41 <param name = "Target" value = "largebug" />
42 <param name = "AddTimeMarker1" value = "2, mark1, 0" />
43 <param name = "AddTimeMarker2" value = "6, mark2, 0" />
44 </object>
45
46 <object id = "swarmPath"
47 classid = "CLSID:D7A7D7C3-D47F-11D0-89D3-00A0C90833E6">
48 <param name = "AutoStart" value = "-1" />
49 <param name = "Repeat" value = "-1" />
50 <param name = "Relative" value = "1" />
51 <param name = "Duration" value = "15" />

Fig. 18.3Fig. 18.3Fig. 18.3Fig. 18.3 Adding time markers for script interaction (part 1 of 3).

iw3htp2_18.fm Page 571 Thursday, July 19, 2001 9:43 AM

572 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls Chapter 18

52 <param name = "Shape"
53 value = "Polygon(6, 0, 0, 400, 300, 450, 50, 320,
54 300, 150, 180, 50, 250)" />
55 <param name = "Target" value = "swarm" />
56 </object>
57
58 <span id = "swarm" style =
59 "position:absolute; top: 0; left: 0; z-index: 1">
60
61 <img src = "animatedbug_small.gif"
62 style = "position:absolute; top: 25; left: -30" />
63 <img src = "animatedbug_small.gif"
64 style = "position:absolute; top: 0; left: 0" />
65 <img src = "animatedbug_small.gif"
66 style = "position:absolute; top: 15; left: 70" />
67 <img src = "animatedbug_small.gif"
68 style = "position:absolute; top: 30; left: 5" />
69 <img src = "animatedbug_small.gif"
70 style = "position: absolute; top: 10; left: 30" />
71 <img src = "animatedbug_small.gif"
72 style = "position: absolute; top: 40; left: 40" />
73 <img src = "animatedbug_small.gif"
74 style = "position: absolute; top: 65; left: 15" />
75
76
77 </body>
78 </html>

Fig. 18.3Fig. 18.3Fig. 18.3Fig. 18.3 Adding time markers for script interaction (part 2 of 3).

iw3htp2_18.fm Page 572 Thursday, July 19, 2001 9:43 AM

Chapter 18 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls 573

Lines 12–21create an event handler for the onmarker event. The parameter that the
onmarker event receives (defined here as marker in line 13) identifies the marker that
fired the event. The if control structures that follow change the zIndex attribute of ele-
ment pole to correspond to the time marker in our Path Control that actually fired the
event. These events fire when the large image is at the leftmost and rightmost extremes of
its oval path, creating the appearance that the bee image is flying alternately behind and in
front of the image of the pole.

18.5 DirectAnimation Sequencer Control
Thus far, we have been using the JavaScript function window.setInterval to control
timed events on our Web pages. The Sequencer Control provides a simpler interface for
calling functions or performing actions, at time intervals that you can set easily. Figure 18.4
uses the Sequencer Control to display four lines of text sequentially; when the fourth line
of text has been displayed, the Sequencer Control then starts that fourth line on a
PolyLine path, using the Play method of the Path Control.

Lines 66–68 add the Sequencer Control to our Web page. Notice that we do not include
any param tags inside the object element; here, we set all the parameters for the
Sequencer Control via scripting.

Lines 19–28 use a JavaScript event handler for the oninit event that fires when the
sequencer loads. The Item object creates a grouping of events using a common name (in
this case, showThem). The at method of the Item object takes two parameters: How
many seconds to wait, and what action to perform when that period of time has expired. In
this case, we call the show function for specific lines in the text at two, four, six and seven
seconds after the oninit event fires, and we call the runPath function after eight sec-

Fig. 18.3Fig. 18.3Fig. 18.3Fig. 18.3 Adding time markers for script interaction (part 3 of 3).

iw3htp2_18.fm Page 573 Thursday, July 19, 2001 9:43 AM

574 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls Chapter 18

onds have elapsed. We then use the runPath function to initiate a Path Control by
scripting. Line 44 calls the Path Control’s Play method to start the targeted element
(line4) along the path.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 18.4: sequencer.html -->
6 <!-- Sequencer Control -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Sequencer Control</title>
11 <style type = "text/css">
12
13 div { font-size: 2em;
14 color: white;
15 font-weight: bold }
16
17 </style>
18
19 <script type = "text/javascript" for = "sequencer"
20 event = "oninit">
21 <!--
22 sequencer.Item("showThem").at(2.0, "show(line1)");
23 sequencer.Item("showThem").at(4.0, "show(line2)");
24 sequencer.Item("showThem").at(6.0, "show(line3)");
25 sequencer.Item("showThem").at(7.0, "show(line4)");
26 sequencer.Item("showThem").at(8.0, "runPath()");
27 // -->
28 </script>
29
30 <script type = "text/javascript">
31 <!--
32 function show(object)
33 {
34 object.style.visibility = "visible";
35 }
36
37 function start()
38 {
39 sequencer.Item("showThem").Play();
40 }
41
42 function runPath()
43 {
44 pathControl.Play();
45 }
46 // -->
47 </script>
48 </head>

Fig. 18.4Fig. 18.4Fig. 18.4Fig. 18.4 Using the DirectAnimation Sequencer Control (part 1 of 3).

iw3htp2_18.fm Page 574 Thursday, July 19, 2001 9:43 AM

Chapter 18 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls 575

49
50 <body style = "background-color: limegreen" onload = "start()">
51
52 <div id = "line1" style = "position: absolute; left: 50;
53 top: 10; visibility: hidden">
54 Sequencer DirectAnimation</div>
55
56 <div id = "line2" style = "position: absolute; left: 70;
57 top: 60; visibility: hidden">ActiveX Control</div>
58
59 <div id = "line3" style = "position: absolute; left: 90;
60 top: 110; visibility: hidden">
61 Controls time intervals</div>
62
63 <div id = "line4" style = "position: absolute; left: 110;
64 top:160; visibility: hidden">For dynamic effects</div>
65
66 <object id = "sequencer" classid =
67 "CLSID:B0A6BAE2-AAF0-11d0-A152-00A0C908DB96">
68 </object>
69
70 <object id = "pathControl"
71 classid = "CLSID:D7A7D7C3-D47F-11D0-89D3-00A0C90833E6">
72 <param name = "AutoStart" value = "0" />
73 <param name = "Repeat" value = "1" />
74 <param name = "Relative" value = "1" />
75 <param name = "Duration" value = "2" />
76 <param name = "Shape" value =
77 "PolyLine(2, 0, 0, 250, 0)" />
78 <param name = "Target" value = "line4" />
79 </object>
80
81 </body>
82 </html>

Fig. 18.4Fig. 18.4Fig. 18.4Fig. 18.4 Using the DirectAnimation Sequencer Control (part 2 of 3).

iw3htp2_18.fm Page 575 Thursday, July 19, 2001 9:43 AM

576 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls Chapter 18

18.6 DirectAnimation Sprite Control
The images we have been using thus far have all been static. Some standards exist for stan-
dardized animation (the most common of which is an animated GIF), but none provides the
dynamic control over animation that the Sprite Control provides. It allows you to control
the rate of playback for images or even for individual frames. An animation is composed
of many individual frames that create the illusion of motion. Figure 18.5 shows the image
frames animated in Fig. 18.6.

Fig. 18.5Fig. 18.5Fig. 18.5Fig. 18.5 Source image for Sprite Control (walking.gif).

Fig. 18.4Fig. 18.4Fig. 18.4Fig. 18.4 Using the DirectAnimation Sequencer Control (part 3 of 3).

iw3htp2_18.fm Page 576 Thursday, July 19, 2001 9:43 AM

Chapter 18 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls 577

The object tag (lines 15–23) inserts the Sprite Control into a Web page. CSS prop-
erties width and height specify the image width and height, respectively. Setting the
Repeat attribute to a nonzero value (-1) loops the animation continuously. The next
attribute, NumFrames, specifies how many frames are present in the animation source
image (Fig. 18.5). The next two attributes—NumFramesAcross and NumFrames-

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig 18.6: sprite.html -->
6 <!-- Sprite Control -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Sprite Control</title>
11 </head>
12
13 <body>
14
15 <object id = "walking" style = "width: 150; height: 250"
16 classid = "CLSID:FD179533-D86E-11d0-89D6-00A0C90833E6">
17 <param name = "Repeat" value = "-1" />
18 <param name = "NumFrames" value = "5" />
19 <param name = "NumFramesAcross" value = "3" />
20 <param name = "NumFramesDown" value = "2" />
21 <param name = "SourceURL" value = "walking.gif" />
22 <param name = "AutoStart" value = "-1" />
23 </object>
24
25 </body>
26 </html>

Fig. 18.6Fig. 18.6Fig. 18.6Fig. 18.6 Simple animation with the Sprite Control.

iw3htp2_18.fm Page 577 Thursday, July 19, 2001 9:43 AM

578 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls Chapter 18

Down—specify how many rows and columns of frames there are in the animation file. The
SourceURL property gives a path to the file containing all the frames of the animation,
and setting the AutoStart property to a nonzero value starts the animation automati-
cally when the page loads.

What distinguishes the Sprite Control from other animation formats is that it can do
much more than simply loop through frames repeatedly; it can, through Dynamic HTML,
respond to user actions, as we demonstrate in Fig. 18.7.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 18.7: sprite2.html -->
6 <!-- Events with Sprite Control -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Sprite Control</title>
11
12 <script type = "text/javascript" for = "bounce"
13 event = "onmouseover">
14 <!--
15 bounce.Stop();
16 bounce.PlayRate = -3;
17 bounce.Play();
18 // -->
19 </script>
20
21 <script type = "text/javascript" for = "bounce"
22 event = "onmouseout">
23 <!--
24 bounce.Stop();
25 bounce.PlayRate = 1;
26 bounce.Play();
27 // -->
28 </script>
29 </head>
30
31 <body>
32
33 <h1>Sprite Control</h1>
34
35 <object id = "bounce" style =
36 "width:75; height:75" classid =
37 "CLSID:FD179533-D86E-11d0-89D6-00A0C90833E6">
38 <param name = "Repeat" value = "-1" />
39 <param name = "PlayRate" value = "1" />
40 <param name = "NumFrames" value = "22" />
41 <param name = "NumFramesAcross" value = "4" />
42 <param name = "NumFramesDown" value = "6" />
43 <param name = "SourceURL" value = "bounce.jpg" />

Fig. 18.7Fig. 18.7Fig. 18.7Fig. 18.7 Responding to mouse events with the Sprite Control (part 1 of 2).

iw3htp2_18.fm Page 578 Thursday, July 19, 2001 9:43 AM

Chapter 18 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls 579

This example introduces several new aspects of the Sprite Control. The PlayRate
method controls the rate at which frames are displayed; 1 is the default value. Method
MouseEventsEnabled, as with the Structured Graphics Control, allows the object to
capture certain mouse events.

 In lines 12–19 and 21–28, we provide event handlers for the events onmouseover
and onmouseout, respectively. When the user moves the mouse over the Sprite Control,
the event handler calls the Stop method, which stops the animation in place, and sets the
PlayRate method to -3. The PlayRate method is writable only at runtime or when the
animation is stopped. This action plays the animation in reverse at three times the normal
speed. The script then calls the Play function to restart the animation. The onmouseout
event handler sets the PlayRate back to the default of 1 when the user moves the mouse
cursor off the animation.

18.7 Animated GIFs
Although the Sprite Control is useful for adding animation to Web pages, it is a proprietary
format specific to Internet Explorer. The most popular method of creating animated graph-
ics is a format known as animated GIF. As with the Sprite Control, animated GIFs are com-
posed frames. Each frame contains a GIF image. However, unlike the images used with
Sprite Control, GIF images must be inserted into animated GIFs by using graphics applica-
tions such as Adobe's PhotoShop Elements (see Chapter 3). Figure 18.8 shows the file
animatedbug_large.gif loaded into PhotoShop Elements.

Each frame of a GIF animation is a separate image that, when shown in a particular
sequence, gives the effect of motion. PhotoShop Elements combines the separate images
into one image file by using layers, which allow the image’s author to maintain separate
images that are linked together.

44 <param name = "MouseEventsEnabled" value = "True" />
45 <param name = "AutoStart" value = "-1" />
46 </object>
47
48 </body>
49 </html>

Fig. 18.7Fig. 18.7Fig. 18.7Fig. 18.7 Responding to mouse events with the Sprite Control (part 2 of 2).

iw3htp2_18.fm Page 579 Thursday, July 19, 2001 9:43 AM

580 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls Chapter 18

The animation effect is created from the Save for Web feature, located under the File
menu in PhotoShop Elements. The Save for Web dialog is where the image’s author
determines the best file format and range of colors to use for an image.

Set the file type to GIF, and make sure that the Animate checkbox is checked (other-
wise, the animation options remain inactive). The primary animation option is the Frame
Delay (the amount of time that elapses before the image is switched). The Loop option,
when checked, animates the GIF. Clicking the arrow buttons causes the animation to move
forward and backward.

Animated GIFs can have transparent (i.e., “see-through”) backgrounds. PhotoShop
Elements uses a checkerboard pattern to represent transparency. This option is enabled by
clicking the Transparency checkbox in the Save for Web dialog.

The GIF animation may be previewed in a Web browser before saving the file.
Clicking the browser preview button in the Save for Web dialog opens the default Web
browser. Photoshop Elements creates a temporary document with the GIF animation
embedded into it. Return to the Save for Web dialog by closing the browser window.
Save the image as an animated GIF.
A Performance Tip 18.2

Animated GIFs with a large number of frames can become extremely large. Use small images
when possible, and minimize the number of frames used. 18.2

Fig. 18.8Fig. 18.8Fig. 18.8Fig. 18.8 Viewing an animated GIF in Photoshop® Elements. (Adobe and
Photoshop are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States and/or other countries.)

File Type

Forward
One
Frame

Goto
Last
Frame

Browser
Preview
Button

Back
One
Frame

Goto First
Frame

Original File Optimized
Version

iw3htp2_18.fm Page 580 Thursday, July 19, 2001 9:43 AM

Chapter 18 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls 581

18.8 Internet and World Wide Web Resources
www.dhtmlzone.com/articles/iemmcontrols.html
This Dynamic HTML Zone article introduces Internet Explorer’s ActiveX controls related to multi-
media. In particular, the article discusses the Transition and the Structured Graphics controls.

www.dhtmlzone.com/articles/ie4cont/ie4controls.html
This Dynamic HTML Zone article discusses Internet Explorer multimedia controls. The article in-
cludes sections on the Sequencer, the Sprite, the Structured Graphics and the Path Controls. Each sec-
tion includes an example, the code and a description of the example.

hotwired.lycos.com/webmonkey/97/52/index0a.html?tw=authoring
This WebMonkey tutorial discusses several Active X controls, which include the Sprite, Structured
Graphics and Path Controls. The tutorial includes links to articles related to Dynamic HTML.

SUMMARY
• The DirectAnimation Path Control allows you to control the positions of elements on your page.

• Setting AutoStart to a nonzero value starts the element along a path as soon as the page loads.
Setting a zero value prevents it from starting automatically, in which case a script would have to
call the Play method to start the path. The Repeat method determines how many times the path
will be traversed; setting the value to -1 specifies that the path should loop continuously.

• The Duration method specifies the amount of time that it takes to traverse the path, in seconds.
The Bounce method, when set to 1, reverses the element’s direction on the path when it reaches
the end. Setting the value to 0 returns the element to the beginning of the path when the path has
been traversed.

• The PolyLine method creates a path with multiple line segments.

• The Target method specifies the id of the element that is targeted by the Path Control.

• Setting the CSS attribute position to absolute allows the Path Control to move an element
around the screen. Otherwise, the element would be static, locked in the position determined by
the browser when the page loads.

• The Path Control also allows you to set paths for multiple objects present on your page. To set paths
for multiple objects, you must add a separate object tag for each object you wish to control.

• The z-index of elements that overlap is determined by their order of declaration in the XHTML
source (elements declared later in the XHTML file are displayed above elements declared earlier).

• A useful feature of the Path Control is the ability to execute certain actions at any point along an
object’s path. This capability is implemented with the AddTimeMarker method, which creates
a time marker that can be handled with simple JavaScript event handling.

• The number appended to the AddTimeMarker function is a sequential identifier, much as
Line0001 is used in the Structured Graphics Control. The first parameter in the value attribute
determines the point at which our time marker is placed along the path, specified in seconds; when
this point is reached, the onmarker event is fired. The second parameter gives an identifying
name to the event, which is later passed on to the event handler for the onmarker event. The last
parameter specifies whether to fire the onmarker event every time the object’s path loops past
the time marker (by setting the parameter to 0) or to fire the event just the first time that the time
marker is passed (by setting the parameter to 1).

• The parameter received by the onmarker event identifies which marker fired the event.

• The Sequencer Control provides a simpler interface for calling functions or performing actions at
time intervals that you can set easily.

iw3htp2_18.fm Page 581 Thursday, July 19, 2001 9:43 AM

582 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls Chapter 18

• The oninit event fires when the Sequencer Control has loaded.

• The Item object of the Sequencer Control creates a grouping of events using a common name.

• The at method of the Item object takes two parameters: How many seconds to wait, and what
action to perform when that period of time has expired.

• The Play method of the Path Control starts the targeted element along the path.

• The Sprite Control allows you to display animated images composed of individual frames.

• The object tag inserts the Sprite Control. The height and width CSS properties are needed to
display the image correctly; they should be equal to the size of one frame in your file. Setting attribute
Repeat to a nonzero value loops the animation indefinitely. NumFrames specifies how many
frames are present in the animation source image. Attributes NumFramesAcross and Num-
FramesDown specify how many rows and columns of frames there are in the animation file, respec-
tively. Property SourceURL gives a path to the file containing the frames of the animation. Setting
property AutoStart to a nonzero value starts the animation automatically when the page loads.

• Sprite Control method PlayRate controls the rate at which frames are displayed (1 is the default
value). The MouseEventsEnabled method, as with the Structured Graphics Control, allows
the object to capture certain mouse events. The Stop method stops the animation in place. Method
PlayRate is writable only at runtime or when the animation is stopped.

• The most popular method of creating animated graphics is a format known as animated GIF. As
with the Sprite Control, animated GIFs are composed frames in the GIF image format. GIF images
must be inserted into animated GIF files by using graphics applications such as Adobe PhotoShop
Elements.

TERMINOLOGY

SELF-REVIEW EXERCISES
18.1 State whether each of the following is true or false. If false, explain why.

a) The z-index of elements in which the z-index property is not declared specifically
is determined by the order of their appearance in the XHTML document.

b) The parameters for the Path Control PolyLine method are the same as those for the
Structured Graphics Control PolyLine.

AddTimeMarker method PlayRate method of the Sprite Control
animated GIF PolyLine method
at method of Item object position: absolute
AutoStart Relative method
Bounce method Repeat attribute
classid Repeat method
Duration method Sequencer Control
Item object of the Sequencer Control Shape method
MouseEventsEnabled SourceURL
NumFrames splash screen effect
NumFramesAcross Sprite Control
NumFramesDown Stop method
oninit event Target method
onmarker event time marker
Oval method visibility: hidden
Path Control window.setInterval
Play method z-index

iw3htp2_18.fm Page 582 Thursday, July 19, 2001 9:43 AM

Chapter 18 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls 583

c) A time marker will fire the onmarker event only once.
d) You can control multiple paths with a single Path Control object.
e) The oninit event fires when the Sequencer Control has finished loading.
f) The PlayRate method of the Sprite Control is always writable.
g) All ActiveX controls use the same classid attribute.

18.2 Fill in the blanks in each of the following statements:
a) The Control allows you to perform scripted actions on your Web page at

timed intervals.
b) The Control allows you to place animated images on your Web page.
c) The Control can move elements around your page dynamically.
d) The method is used to create a time marker for the Path Control.
e) An element’s CSS position property must be set to for the Path Control

to target that object successfully.
f) The method determines the number of iterations for which the Path Control

continues on a certain path.

ANSWERS TO SELF-REVIEW EXERCISES
18.1 a) True. b) True. c) False; the number of time it is fired depends on the last parameter of the
AddTimeMarker method, and it may be set to fire every time the time marker is reached. d) False;
multiple controls are needed if you want to control multiple paths. e) True. f) False; it is writable only
at runtime or when the animation is stopped. g) False; each uses a unique classid.

18.2 a) Sequencer. b) Sprite. c) Path. d) AddTimeMarker. e) absolute. f) Repeat.

EXERCISES
18.3 Use the Path Control to have the logo on your Web page follow an Oval path around the page.

18.4 Use the Path Control to simulate the motion of text inside a marquee tag.

18.5 Modify Exercise 18.4 by adding time markers that change the color of the text with every
loop.

18.6 Use the Sequencer Control to create a slideshow of images.

18.7 Use Photoshop Elements to create a sprite that simulates a rotating planet. Modify Fig. 18.3 so
that the sprite, animated with the Sprite control, rotates around a larger planet in the center of the page.

18.8 Create your own animated GIF with Photoshop Elements.

iw3htp2_18.fm Page 583 Thursday, July 19, 2001 9:43 AM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

19
Macromedia® Flash™:

Building Interactive
Animations

Objectives
• To learn Flash 5 multimedia development.
• To learn Flash animation techniques.
• To learn ActionScript, the Flash programming

language.
• To create an animation that preloads objects into a

Flash movie.
• To add sound to Flash movies.
• To embed a Flash movie into a Web page.
A flash and where previously the brain held a dead fact, the
soul grasps a living truth! At moments we are all artists.
Arnold Bennett

All the world’s a stage and all the men and women merely
players; they have their exits and their entrances; and one
man in his time plays many parts…
William Shakespeare

Science and technology and the various forms of art, all
unite humanity in a single and interconnected system.
Zhores Aleksandrovich Medvedev

Music hath charms to soothe a savage breast, To soften
rocks, or bend a knotted oak.
William Congreve

The true art of memory is the art of attention.
Samuel Johnson

iw3htp2_19.fm Page 584 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 585

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

19.1 Introduction
Macromedia Flash 5 is an application that developers use to produce interactive, animated
movies. Flash can be used to create Web-based banner advertisements, interactive Web
sites and Web-based applications with stunning graphics and multimedia effects. An ad-
vantage Flash has over other multimedia development applications is that Flash has pro-
vides for drawing graphics, generating animation and adding sound and video. Flash
movies can be embedded in Web pages, placed on CD-ROMs as independent applications
or converted into standalone, executable programs.

Another advantage of using Flash to produce interactive content is that Flash includes
tools for writing its scripting language, ActionScript. ActionScript, which is similar to Jav-
aScript, is the enabling technology for Flash interactivity.

Outline

19.1 Introduction

19.2 Flash™ Movie Development
19.3 Learning Flash with Hands-on Examples

19.3.1 Creating a Shape With the Oval Tool
19.3.2 Adding Text to a Button
19.3.3 Converting a Shape into a Symbol
19.3.4 Editing Button Symbols
19.3.5 Adding Keyframes
19.3.6 Adding Sound to a Button
19.3.7 Verifying Changes with Test Movie
19.3.8 Adding Layers to a Movie
19.3.9 Animating Text with Tweening
19.3.10 Adding a Text Field
19.3.11 Adding ActionScript

19.4 Creating a Projector (.exe) File With Publish
19.5 Manually Embedding a Flash Movie in a Web Page
19.6 Creating Special Effects with Flash

19.6.1 Importing and Manipulating Bitmaps
19.6.2 Create an Advertisement Banner with Masking
19.6.3 Adding Online Help to Forms

19.7 Creating a Web-Site Introduction
19.8 ActionScript
19.9 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Works Cited

iw3htp2_19.fm Page 585 Saturday, July 21, 2001 1:58 PM

586 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

To play Flash movies, the Flash Player plug-in must be installed in a Web browser.
This plug-in has several versions, the most recent of which is version 5. In addition to the
full Flash application, Netscape Communicator versions 4.02 and higher and Microsoft
Internet Explorer versions 4 and higher include the Flash Player plug-in. Other products
with which the plug-in is bundled include Microsoft Windows® 98, NT, Me and 2000,
AOL 5.0 and higher and various Macintosh software products. According to Macromedia’s
statistics, 96 percent of Web users (approximately 334 million) can view Flash movies with
the Flash Player 4 plug-in. Of those users, 51 percent never had to download the plug-in
because it was bundled with software that they already owned.1 The plug-in can be down-
loaded from www.macromedia.com/downloads. There are ways to detect if a user
does not have the appropriate plug-in to view Flash content. Macromedia provides a tool
called the Flash Deployment Kit which contains files that work together to detect whether
a suitable version of Macromedia Flash Player is installed in a user's Web browser. This
kit, which is available at Macromedia’s Web site, may be downloaded from

www.macromedia.com/support/flash/player/
flash_deployment_readme

This chapter provides an introduction to the construction of Flash movies, including
the creation of interactive buttons, the addition of sound to movies, the creation of special
graphic effects and the integration of ActionScript in movies. Other Deitel & Associates,
Inc. Flash publications are currently under development. Visit www.deitel.com for
more information.

It is necessary to install Flash 5 on a computer before proceeding with this chapter. A
30-day trial version of Flash 5 can be downloaded for free from Macromedia’s Web site:

www.macromedia.com/software/flash/trial

Follow Macromedia’s detailed installation instructions. The Flash 5 system require-
ments are available at

www.macromedia.com/software/flash/productinfo/systemreqs

[Note: Do not change the computer clock settings after installing Flash. Doing so
causes the 30-day trial to expire, immediately disabling the program. Reinstalling Flash
will not reactivate the program.]

19.2 Flash™ Movie Development
Once the program is installed, begin by opening Flash 5. Flash creates a new file called
Movie1 when the program opens. Figure 19.1 shows the Flash development environment.

The largest element in the development environment is the movie stage. The stage is
the white area in which a developer places graphic elements during movie development.
Directly above the stage is the movie timeline. The timeline represents a time period over
which a movie runs. Timelines are divided into increments called frames, which are repre-
sented by gray and white rectangles. Each frame depicts a moment in time during the
movie, into which the developer can insert movie elements.

iw3htp2_19.fm Page 586 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 587

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The development environment contains several windows that provide options and
tools for the creation of Flash movies. Many of these tools are located in the toolbox, the
vertical window located along the left side of the development environment. The toolbox
is divided into four sections, each containing tools and functions that help the developer
create Flash movies (Fig. 19.2). The Tools section contains tools that select, add and
remove graphics from Flash movies. The View section contains the two tools that modify
the appearance of the stage. The Colors section provides colors for shapes, lines and filled
areas. The last section, Options, contains settings for the active tool (i.e., the tool that is
highlighted and is in use). A developer can make a tool behave differently by selecting a
new mode with the tool options.

Application windows called panels organize frequently used movie options
(Fig. 19.3). Panel options modify the size, shape, color, alignment and effects added to a
movie’s graphic elements. Panels may be placed anywhere in the development environ-
ment by clicking and dragging them with the mouse.

Fig. 19.1Fig. 19.1Fig. 19.1Fig. 19.1 Flash 5 development environment.

TimelineToolbox

Stage

Layers Panel windowsMain menu

Zoom percentage Panels

Frames

iw3htp2_19.fm Page 587 Saturday, July 21, 2001 1:58 PM

588 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Although the Info, Mixer, Instance and Character panels appear by default, a
developer can access different panels by clicking the panel window tabs. Click a panel tab
and drag it out of its panel window to create a new window for only that panel. Developers
can save customized panel layouts by selecting Save Panel Layout... from the Window

Fig. 19.2Fig. 19.2Fig. 19.2Fig. 19.2 Flash 5 Toolbox.

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 Flash 5 panels.

Arrow tool

Line tool

Pen tool

Oval tool

Pencil tool

Ink bottle tool

Dropper tool

Hand tool

Subselect tool

Lasso tool

Text tool

Rectangle tool

Brush tool

Paint bucket tool

Eraser tool

Zoom tool

Stroke color

Fill color

Tool Options

Info Transform Stroke Fill

Instance Effect Frame Sound

SwatchesMixer

ParagraphCharacter Text Options

iw3htp2_19.fm Page 588 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 589

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

menu to save the panel arrangement. Select Panel Sets from the Window menu to load
a saved panel layout or to restore the default panel layout. [Note: Pressing the Tab key tem-
porarily hides all panels. Pressing Tab again displays them. This shortcut is helpful in man-
aging the editing area of the screen.]

19.3 Learning Flash with Hands-on Examples
The best way to learn Flash is to create complete Flash movies. The first example demon-
strates how to create an executable program by building an interactive, animated button.
The addition of a basic script causes the button to produce a random string each time. The
following steps describe how to create a Flash movie file and customize the movie settings.
Open a new Flash movie by selecting New from the File menu. Next, choose Save As...
from the File menu and save the movie as CeoAssistant.fla. The .fla file exten-
sion is a Flash-specific extension for editable movies.

Good Programming Practice 19.1
Save each project with a meaningful name in its own folder. Saving early and often is impor-
tant for any work that you do. Creating a new folder for each movie helps keep projects or-
ganized. 19.1

Right click the stage to open a menu containing different movie options. Select Movie
Properties... to display the Movie Properties dialog (this dialog also can be accessed
through the Modify menu under Movie...). Settings such as the Frame Rate, Dimen-
sions and Background Color are established in this dialog (Fig. 19.4).

Frame Rate is the speed at which movie frames display. A higher frame rate causes
more frames to be displayed in a given unit of time (the standard measurement is seconds)
and creates a faster movie. The Frame Rate for Flash movies on the Web is generally
between 5 and 15 frames per second (fps). For this example set the Frame Rate to 10
frames per second.

Fig. 19.4Fig. 19.4Fig. 19.4Fig. 19.4 Flash 5 Movie Properties dialog.

Background Color

iw3htp2_19.fm Page 589 Saturday, July 21, 2001 1:58 PM

590 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Performance Tip 19.1
Greater frame rates increase the amount of information to be processed, thus increasing the
file size. 19.1

The Background Color is the stage color. Click the Background Color box
(called a swatch) to select the background color. A new dialog opens presenting a Web-safe
palette. Web-safe palettes and color selection are discussed in detail in Chapter 3, Photo-
shop® Elements. Notice that the mouse pointer has changed into an eyedropper. This eye-
dropper indicates that the developer may select a color. Choose a light blue color with the
color selection eyedropper (Fig. 19.5).

The box in the upper left corner of the dialog displays the new background color. The
hexadecimal notation for the selected color is beside this box. The hexadecimal notation is
the color code that a Web browser uses to render color. Hexadecimal notation is discussed
in detail in Appendix D, Number Systems.

Dimensions define the size of the movie as it displays on the screen. For this
example, set the movie width to 200 pixels and the movie height to 180 pixels. Click OK
to apply the changes in the movie settings.

Software Engineering Observation 19.1
The number of pixels per unit measure is called the resolution. The resolution of a Flash mov-
ie is always equal to the resolution of the monitor on which the movie displayed. 19.1

Software Engineering Observation 19.2
A movie’s contents are not resized by changing the size of the movie stage. 19.2

With the new dimensions setting, the stage appears smaller. Select the zoom tool from
the toolbox and click the stage once to enlarge it to 200% of its display size. Editing a movie
with small dimensions is easier when the stage is enlarged. Press the Alt key while clicking
the zoom tool to reduce the size of the work area. Select the hand tool from the toolbox, and
drag the stage to the center of the editing area. The hand tool may be accessed at any time
by holding down the spacebar key.

19.3.1 Creating a Shape With the Oval Tool

Graphics are created using the variety of editing tools and options Flash provides. Flash has
an advantage over other graphic applications because it creates shapes using vectors. Vec-
tors are mathematical equations which Flash uses to define size, shape and color. Some
graphic applications create raster graphics or bitmapped graphics.

Fig. 19.5Fig. 19.5Fig. 19.5Fig. 19.5 Selecting a background color.

Color selection eyedropper

New background color Hexadecimal color notation

iw3htp2_19.fm Page 590 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 591

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

When vector graphics are saved, they are stored using these equations. Raster graphics
are defined by areas of colored pixels—the unit of measurement for most computer moni-
tors. Raster graphics typically have larger file sizes because the computer saves the infor-
mation for every pixel. Vector and raster graphics also differ in their portability. Vector
graphics can be resized without losing clarity whereas raster graphics lose clarity as they
are enlarged or reduced. Chapter 3, Photoshop® Elements provides a detailed discussion of
vector and raster graphics.

The next step is to create the interactive button out of a circular shape. A developer cre-
ates shapes by clicking and dragging with the shape tools. Select the oval tool from the
toolbox to specify the button area. Every shape has a stroke color and a fill color. The stroke
color is the color of a shape’s outline and the fill color is the color that fills the shape. Click
the swatches in the toolbar to set the fill color to red and the stroke color to black by
selecting the colors from the Web-safe palette or by entering their hexadecimal values (Fig
19.6).

Clicking the default colors button resets the stroke color to black and the fill color to
white. A shape can be created without a fill or stroke color by selecting the no stroke or fill
option while either the stroke or fill swatch is selected. Selecting the swap stroke and fill
colors option switches the stroke and fill colors.

Create the oval anywhere on the stage by clicking and dragging with the oval tool
while pressing the Shift key. The Shift key constrains the oval’s proportions to have equal
height and width (i.e., a circle). The same technique creates a square with the rectangle tool
or draws a straight line with the pencil tool. Drag the mouse until the circle is approximately
the size of a dime, then release the mouse button.

Notice that when the shape was drawn, a dot appeared in frame 1, the first frame of the
timeline. This dot signifies a keyframe (Fig. 19.7). Keyframes indicate points of change in
a timeline. Whenever a shape is drawn in an empty frame, a keyframe is created. Adding
keyframes is discussed later in this chapter.

The shape’s fill and stroke may be edited individually. Click the red area with the
arrow tool (black arrow) to select the circle fill. A grid of white dots appears over an object
when it is selected (Fig. 19.8). Click the black stroke around the circle while pressing the
Shift key to add to this selection. A developer also can make multiple selections by clicking
and dragging with the arrow tool to draw a selection box around specific items.

A shape’s size can be modified with the Info panel while the shape is selected
(Fig. 19.9). Open the Info panel by clicking its panel tab or by selecting Info from the
Panels submenu of the Window menu. The Panels submenu provides options to open
every Flash panel.

Fig. 19.6Fig. 19.6Fig. 19.6Fig. 19.6 Setting the fill and stroke colors.

Stroke color

Default colors (black and white)

No stroke or fill Fill color

Swap stroke and fill colors

iw3htp2_19.fm Page 591 Saturday, July 21, 2001 1:58 PM

592 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Set the width and height of the circle by typing 30 into the W: text field and 30 into
the H: text field. Entering an equal height and width maintains a constrained aspect ratio
while enlarging the circle. A constrained aspect ratio maintains an object’s proportions as
it is resized. Press Enter to apply these values.

The next step is to modify the shape’s color. Click outside the circle with the arrow
tool to deselect the circle. Now, select only the red fill with the arrow tool. Click the fill
swatch in the toolbox, and change the fill color to red radial gradient fill. The gradient fills
are located at the bottom of the color palette (Fig. 19.10).

Gradient fills are gradual progressions of color. Flash provides four radial gradients
and three linear gradients, although a developer also can create and edit gradients with the
Fill panel. The circle should now have a red radial gradient fill with a black stroke sur-
rounding it.

Fig. 19.7Fig. 19.7Fig. 19.7Fig. 19.7 Keyframe added to the timeline.

Fig. 19.8Fig. 19.8Fig. 19.8Fig. 19.8 Making multiple selections with the arrow tool.

Fig. 19.9Fig. 19.9Fig. 19.9Fig. 19.9 Modifying the size of a shape with the Info panel.

Keyframe

Selection width

Selection height

Color Cursor location

Selection location

iw3htp2_19.fm Page 592 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 593

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

19.3.2 Adding Text to a Button
Button titles communicate the button function to the user. The easiest way to create a title
is with the text tool. This tool is used to add text to Flash movies. Create a button title by
selecting the text tool and left clicking in the center of the button and typing GO in capital
letters. Select the text with the text tool. Once text is selected, a developer can change the
font, text size and font color with the Character panel (Fig. 19.11). Select a sans-serif font,
such as Arial or Verdana, from the Font drop-down list.

Look-and-Feel Observation 19.1
Sans-serif fonts, such as Arial, Helvetica and Verdana are easier to read on a computer mon-
itor, and therefore ensure better usability. 19.1

Set the font size to 14 pt either by typing the size into the font height field or by
pressing the arrow button next to the font height field revealing the size selection slider. The
size selection slider is a vertical slider that, when moved, changes the font size. Set the font
weight to bold by clicking the bold button. Finally, change the font color by clicking the
text color swatch and selecting white from the palette.

If the text did not appear in the correct location drag the text to the center of the button
with the arrow tool. The button is almost finished and should now look similar to
Fig. 19.12.

Fig. 19.10Fig. 19.10Fig. 19.10Fig. 19.10 Choosing a gradient fill.

Gradient fills

Red radial
gradient fill

Fig. 19.11Fig. 19.11Fig. 19.11Fig. 19.11 Setting the font face, size, weight and color with the Character panel.

Font name

Font height
Font tracking

Character position
Font kerning

Linked URL

Text (fill) color

Bold Italic

iw3htp2_19.fm Page 593 Saturday, July 21, 2001 1:58 PM

594 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

19.3.3 Converting a Shape into a Symbol

A Flash movie consists of a parent movie and symbols. The parent movie, sometimes called
a scene, is the entire movie including all graphics and symbols. The parent movie may con-
tain several symbols, which are reusable movie elements, such as graphics, buttons and
movie clips. A parent movie timeline can contain numerous symbols, each with its own
timeline and properties. A Flash movie also may have several instances of a particular sym-
bol (i.e., the same symbol appears several times). A developer can edit symbols separately
from the parent movie by using the symbol’s editing stage. This editing stage is separate
from the parent movie stage and only contains one symbol.

For this example, we must convert the button into a button symbol so that it can be
made interactive. On the parent stage, the button consists of text, color fill and stroke. These
items are combined and treated as one object when converted into a symbol. Use the arrow
tool to drag a selection box around the button, selecting the button fill, the button stroke and
the text all at one time (Fig. 19.13).

Select Convert to Symbol… from the Insert menu or use the shortcut F8 on the
keyboard. This opens the Symbol Properties dialog, in which a developer sets a new
symbol’s properties (Fig. 19.14).

Every symbol in a Flash movie must have a unique name. It is a good idea to name
symbols by their contents or function, making them easier to reuse. Enter the name go
button into the Name field of the Symbol Properties dialog. The symbol behavior
determines what function a symbol has in a movie.

The behavior of a movie clip symbol is similar so that of the parent movie and ideal for
recurring animations. Graphic symbols are ideal for static images and basic animations.
Button symbols are objects that perform button actions such as rollovers and hyperlinking.
A rollover is an action that changes the appearance of a button when the mouse passes over
it. For this example, select Button as the type of symbol and click OK. The button should
have a blue box surrounding it with a crosshairs in the center indicating that it is a symbol.
Use the arrow tool to drag the button to the lower-right corner of the stage.

The Library panel stores every symbol in a movie, and is accessed through the
Window menu or by the shortcut Ctrl+L (Fig. 19.15). Multiple instances of a symbol can
be placed in a movie by dragging and dropping the symbol from the Library panel onto
the stage.

Good Programming Practice 19.2
Proper symbol use can drastically reduce file size, thereby allowing faster downloads. 19.2

Fig. 19.12Fig. 19.12Fig. 19.12Fig. 19.12 Adding text to the button.

iw3htp2_19.fm Page 594 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 595

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The Movie Explorer displays the movie structure and is accessed by right clicking
the stage and selecting Movie Explorer... from the resulting menu or by selecting Movie
Explorer from the Window menu (Fig. 19.16). The Movie Explorer dialog illustrates
the relationship between the parent movie, Scene 1, and its symbols.

19.3.4 Editing Button Symbols

The next step is to make the button symbol interactive. The different components of a but-
ton symbol, such as its fill and type, may be edited in the editing stage. The developer may
access a symbol’s editing stage by double clicking the symbol in the parent movie or by
pressing the edit symbols button and selecting the symbol name (Fig. 19.17). The separate
pieces that make up the button (i.e., the text, the color fill and the stroke) can all be changed
in the editing stage. A button symbol’s timeline contains four frames, one for each of the
button states (up, over and down) and one for the hit area.

Fig. 19.13Fig. 19.13Fig. 19.13Fig. 19.13 Selecting an object with the arrow tool.

Fig. 19.14Fig. 19.14Fig. 19.14Fig. 19.14 Creating a new symbol with the Symbol Properties dialog.

Fig. 19.15Fig. 19.15Fig. 19.15Fig. 19.15 Library panel.

Symbol list

Delete symbol

iw3htp2_19.fm Page 595 Saturday, July 21, 2001 1:58 PM

596 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The up state is the default state before the user presses the button or rolls over it with
the mouse. The over state activates when the user rolls over the button with the mouse. The
down state of the button occurs when a user presses a button, and the hit state defines the
active area of the button.

Fig. 19.16Fig. 19.16Fig. 19.16Fig. 19.16 Movie Explorer for ceoassist.fla.

Fig. 19.17Fig. 19.17Fig. 19.17Fig. 19.17 Modifying button states with a button’s editing stage.

Edit symbols

Button states

Edit scene

Active symbol

Return to main scene

Keyframe

Current frame

Zoom percentage

iw3htp2_19.fm Page 596 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 597

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

By default, buttons only have the up state activated when they are created. The devel-
oper may activate other states by adding keyframes to the other frames. Keyframes, dis-
cussed in the next section, determine how a button reacts when it is rolled over or clicked
with the mouse.

19.3.5 Adding Keyframes

Keyframes determine different points of change in a Flash movie and appear as gray with
a black dot in the timeline. By adding keyframes to a button symbol’s timeline, the devel-
oper can control how the button reacts to user input. The following step shows how to cre-
ate a button rollover. A rollover is added by inserting a keyframe in the button’s Over
frame, then changing the button’s appearance in that frame. Right click the Over frame and
select Insert Keyframe from the resulting menu or press F6 (Fig. 19.18).

Select the Over frame and click outside the button area with the move tool to deselect
the button’s components. Change the color of the button in the over state from red gradient
fill to green gradient fill by reselecting only the fill portion of the button with the arrow tool.
Click the fill color swatch in the toolbox, and select the green gradient fill to change the
color of the button in the over state. Changing the color of the button in the over state does
not affect the color of the button in the up state. Now the button will change from red to
green when the user rolls over the button with the mouse.

19.3.6 Adding Sound to a Button

The next step is to add a sound effect that plays when a user clicks the button. Several but-
ton sounds are available free for download from sites such as Flashkit (www.flash-
kit.com) and Muinar (www.sounds.muinar.com). Flash imports sounds in the
WAV (Windows), AIFF (Macintosh), or MP3 formats. For this example, we downloaded
the cash register sound in WAV format from

www.flashkit.com/soundfx/Industrial_Commercial/Cash

Fig. 19.18Fig. 19.18Fig. 19.18Fig. 19.18 Inserting a keyframe.

Frame options

Insert Keyframe

Selected Over frame

iw3htp2_19.fm Page 597 Saturday, July 21, 2001 1:58 PM

598 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Click the Download link to download the sound from this site. This link opens a new
Web page from which the user chooses the sound format. Choose WAV as the file format
by clicking the WAV link. This link begins the download process. Select Save to Disk in
the File Download dialog and save the file to the same folder as CeoAssistant.fla.
Downloaded sound files usually are compressed as ZIP archive files. An archiving program
such as WinZip can extract the sound file from the archive. WinZip is available as a trial
download from www.winzip.com. Once WinZip is installed on a computer, extract a
ZIP file by right clicking the file name in Windows Explorer and selecting Extract To
Folder from the resulting menu. This menu item extracts the sound file and saves it in the
same folder as the ZIP archive. The WinZip Web site also provides detailed instructions on
how to use WinZip to compress and extract files.

Once the sound file is extracted, it can be imported into Flash. Import the sound into
Flash by choosing Import from the File menu. Select All Formats in the Files of Type
field of the Import dialog so that all available files are displayed. Select the sound file and
press the Open button. This imports the sound file and places it in the movie’s library,
making it available to use in the movie.

A developer can add sound to a movie by placing the sound clip in a keyframe or over
a series of frames. For this example, we are going to add the sound to the button’s down
state so that the sound plays when the user presses the button. Select the button’s Down
frame and press F6 to add a keyframe.

The Sound panel selects sounds from the Library and defines their properties before
adding them to the movie. Open the Sound panel either by selecting Sound from the
Panels submenu of the Window menu or by clicking the Sound panel tab in the
Instance panel window.

Choose a sound file name from the Sound drop-down list to add sound to the button.
This list contains only sounds that have been added to the movie library. Make sure the
Sync field is set to Event so that when the user clicks the button, the sound plays. If the
Down frame has a blue wave or line through it, the sound effect as been added to the button
(Fig. 19.19).

The next step is to optimize the sound for the Web. Double click the sound icon in the
Library panel to open the Sound Properties dialog (Fig. 19.20). The settings in this
dialog change the way that the sound is saved in the final movie. Different settings are
optimal for different sounds and different audiences. For this example, set the Compres-
sion type to Raw. Raw compression uses no sound compression, making it ideal for short
sound clips. If the sound clip is long, choose APDCM (Adaptive Differential Pulse Code
Modulation) as the compression type because this setting reduces file size. When a devel-
oper changes the Compression type from default, the Sample Rate and Prepro-
cessing options appear in the dialog.

The Sample Rate of a sound clip is the sound’s frequency, which controls the sound
playback quality. Set the Sample Rate to 11 or 22kHz to lower the size of the sound file
while maintaining sound clarity. The Preprocessing option converts stereo to mono
sound. For low-quality sounds, it is a good idea to select this option because it reduces the
audio file size. Press OK to apply these settings.

The sound clip is now optimized for use on the Web. Return to the parent movie by
pressing the Edit Scene button and selecting Scene 1 or by clicking Scene 1 at the top
of the movie window.

iw3htp2_19.fm Page 598 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 599

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Performance Tip 19.2
A sample rate of 11kHz or more is good for voice audio. Music should have a sample rate of
22kHz or higher to maintain sound quality. 19.2

Fig. 19.19Fig. 19.19Fig. 19.19Fig. 19.19 Adding sound to a button.

Fig. 19.20Fig. 19.20Fig. 19.20Fig. 19.20 Optimizing sound for wireless devices with the Sound Properties dialog.

Sound

Sync

Sound added to the Down frame

Sound name

Compression

Sample Rate

Preprocessing

Sound clip size
and compression

iw3htp2_19.fm Page 599 Saturday, July 21, 2001 1:58 PM

600 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

19.3.7 Verifying Changes with Test Movie
It is a good idea to make sure that movie components function correctly before proceeding
further with development. Movies can be viewed in their published state with the Flash
Player. The published state of a movie is how it would appear if viewed over the Web or
with the Flash Player. Published Flash movies have the Shockwave Flash extension .swf
(pronounced “swiff”). SWF files can be viewed but not edited. The site www.open-
swf.org/SWFfileformat.html provides a description of the SWF specification.
Other Flash file extensions are discussed in Section 19.4.

Select Test Movie from the Control menu to export the movie into the Flash Player
(Ctrl+Enter is the shortcut for this action). A new window opens with the movie in its pub-
lished state. Move the cursor over the GO button to view the color change, then click the
button to play the sound (Fig. 19.21). Close the test window to return to the stage. If the
button’s color did not change, return to the button’s editing stage to make sure that the cor-
rect steps were followed.

19.3.8 Adding Layers to a Movie

The next step in this example is to create the movie’s title animation. It is a good idea for a
developer to create a new layer for new movie items. Layers organize different movie ele-
ments so that they can be edited separately, making composing complex movies easier. A
movie can be composed of many layers, each having its own attributes and effects. Layers
make composing complex movies easier. Each element of a movie can be animated and ed-
ited independently if kept in its own layer.

Before creating a new title layer, double click Layer 1 next to the timeline. Rename
the layer by entering the name Button into the name field (Fig. 19.22).

Fig. 19.21Fig. 19.21Fig. 19.21Fig. 19.21 GO button in its up and over states.

Fig. 19.22Fig. 19.22Fig. 19.22Fig. 19.22 Renaming a layer.

Over stateUp state

Rename a layer by
double clicking its name

Insert a new layer Delete layer

iw3htp2_19.fm Page 600 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 601

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Create a new layer for the title animation by clicking the Insert Layer button or by
selecting Insert Layer from the Insert menu. The Insert Layer button places a layer
named Layer 2 above the selected layer. Change the name of Layer 2 to Title. Activate
the new layer by clicking its name.

Good Programming Practice 19.3
Always give movie layers descriptive names. Descriptive names are especially helpful when
working with many layers. 19.3

Select the type tool to create the title text. Use the Character panel to set the font face
to Arial, the font color to navy blue (hexadecimal value #000099) and the font size to 20 pt.
Open the Paragraph panel, which is found in the same panel window as the Character
panel (Fig. 19.23). Set the text alignment to center by clicking the center justify button.

Click with the type tool in the center of the stage towards the top and type the title CEO
Assistant 1.0 (Fig. 19.24). The text may appear to have jagged edges, which can be rem-
edied by selecting Antialias Text from the View menu. Anti-aliasing smooths edges on
scalable fonts and other graphics by blending the color of the edge pixels with the color of
the background on which the text is placed. Chapter 3, Photoshop® Elements provides a
detailed discussion of anti-aliasing.

After applying anti-aliasing, select the arrow tool. A blue box should appear around
the text, indicating that it is a grouped object. This text is a grouped object because each
letter is a part of a text string and cannot be edited independently. Text can be ungrouped
or regrouped for color editing, shape modification or animation. However, once text has
been ungrouped, it may not be edited with the text tool.

Fig. 19.23Fig. 19.23Fig. 19.23Fig. 19.23 Setting text alignment with the Paragraph panel.

Fig. 19.24Fig. 19.24Fig. 19.24Fig. 19.24 Creating a title with the text tool.

Left justify

Center justify Right justify

Full justify

Left margin

Indentation

Right margin

Line spacing

iw3htp2_19.fm Page 601 Saturday, July 21, 2001 1:58 PM

602 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

19.3.9 Animating Text with Tweening
Animations in Flash are created by inserting keyframes into the timeline. Each keyframe
represents a significant change in the position or appearance of the animated object.

A developer may use several methods to animate objects in Flash. One method is to
create a series of successive keyframes in the timeline. Modifying the animated object in
each keyframe creates an animation as the movie plays. Another method is to insert a key-
frame later in the timeline representing the final position and change in the object, then
create a tween between the two keyframes. Tweening is an automated process in which
Flash creates all the intermediate steps of the animation between two keyframes.

Performance Tip 19.3
Tweened animations have smaller file sizes because Flash stores only the keyframe informa-
tion. The file size of frame-by-frame animations reflect the information contained in every key-
frame. 19.3

Flash provides two methods to tween objects. The first, shape tweening morphs an object
from one shape to another shape. For instance, the word “star” could morph into the shape of
a star. Only ungrouped objects can have shape tweens applied to them. Shape tweening
cannot be applied to symbols or grouped objects. The second type of tween, motion, moves
objects around the stage. Motion tweening can be applied to symbols or grouped objects.

At this point in the movie development, only frame 1 is occupied in each layer. Key-
frames must be designated in the timeline before adding the motion tween. Click frame 15
in the Title layer and press F6 to add a new keyframe. All the intermediate frames in the
timeline should turn gray, indicating that they are active (Fig. 19.25). Each active frame
contains the same image as the first and last frames until the motion tween is added.

The button disappears from the movie because there are no active frames for the button
layer after the first frame. Before the movie is completed, we will move the button to frame
15 of its layer so that it appears once the animation stops.

Select frame 1 of the Title layer to change the title position at the beginning of the ani-
mation. Select the title with the arrow tool and drag it to the upper left corner, just off the
stage. When the motion tween is added, the title will move onto the stage. Change the width
and height of the title to 1 with the Info panel. After adding the motion tween, the size of
the text grows from a small size in the first frame to full size in the final frame. Add the
motion tween by right clicking frame 1 in the Title layer. Then select Create Motion
Tween. Tweens also can be added with the Frame panel. Frames 2–14 should turn blue,
with an arrow pointing from the keyframe in frame 1 to the keyframe in frame 15
(Fig. 19.26).

Fig. 19.25Fig. 19.25Fig. 19.25Fig. 19.25 Adding a keyframe to create an animation.

iw3htp2_19.fm Page 602 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 603

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Test the movie with the Flash Player by pressing Ctrl+Enter to view the new anima-
tion. Notice that the animation continues to loop—all Flash movies loop by default. Adding
ActionScript to the last frame in the movie stops the movie from looping. For this example,
right click frame 15 of the Title layer, and select Action from the menu. Actions are added
to symbols and frames using the Frame Actions dialog (Fig. 19.27).

Any actions added to a particular frame appear in the ActionScript window. Press the
Basic Actions button in the actions menu to reveal the list of basic actions. Double click
the Stop action. The new action appears in the scripting window. Please note that the
Movie Explorer may be accessed from this dialog by clicking the Movie Explorer tab
at the top of the window. The Movie Explorer, as discussed in Section 19.3.3, contains
the symbol hierarchy as well as frame and symbol actions.

Close the Frame Actions dialog to return to the movie. The small letter a in frame
15 of the Title layer indicates the new action. Test the movie again in the Flash Player. The
animation should play only once.

The next step is to move the button to frame 15 so that it appears at the end of the
movie. Hover the mouse pointer over the first frame in Button layer until the cursor turns
into a hand. The hand indicates that the active frame can be moved by dragging and drop-
ping it. Click and drag frame 1 to frame 15 of the Button layer (Fig. 19.28). Test the movie
again with the Flash Player. The button should now appear at the end of the movie.

Fig. 19.26Fig. 19.26Fig. 19.26Fig. 19.26 Creating a motion tween.

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 Adding ActionScript to a frame with the Frame Actions dialog.

Motion tween

Action added
to frame

ActionScript
window

Action applied
to frame

Basic Actions

Add new item
to the script

Actions menu
Stop action

Delete selected action
Movie
Explorer

iw3htp2_19.fm Page 603 Saturday, July 21, 2001 1:58 PM

604 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

19.3.10 Adding a Text Field

The last component to the movie is the text field, which contains a string that changes every
time the user presses the button. A variable name is given to the text field so that the Ac-
tionScript can control its contents. This ActionScript is added to the button.

Create a new layer named Advice for the new text field. Set the text font to Courier
New, 12 pt, bold in the Character panel. Click the Text Options tab in the Character
panel to open the Text Options panel (Fig. 19.29).

This panel presents several options for creating text fields. The top field, text type, con-
tains the different types of text fields. Static Text, the default setting for this panel, is used
for text that is unchanging. The second option, Dynamic Text, is text that can be changed
or determined by outside variables. When a developer selects this text type, new options
appear below this field. The line type specifies the text field size to either a single line or
multiple lines of text. The variable field allows the developer to give the text field a variable
name. By incorporating this variable into a script, the developer can control the text box
contents. For example, if the text field variable name is newText, the developer could
write a script setting newText equal to a string or a function output. The third text type,
Input Text, creates a text field in which the movie viewer can input their own text.

For this example, select Dynamic Text as the text type. Set the line type to Single
Line and enter advicefield as the Variable name. This variable will be incorporated
into a script later in this example. Make sure that the Border/BG box is unchecked so the
text field will not have a border or background color.

Create the text field using the text tool by clicking and dragging with the mouse
(Fig. 19.30). Place the text field directly below the title. The developer can alter text field by
clicking it with the move tool and dragging the anchor that appears in the lower-right corner.

Fig. 19.28Fig. 19.28Fig. 19.28Fig. 19.28 Moving a keyframe.

Fig. 19.29Fig. 19.29Fig. 19.29Fig. 19.29 Creating a dynamic text field with the Text Options panel.

Border and
Background

Text type

Line type

Variable
name

iw3htp2_19.fm Page 604 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 605

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

19.3.11 Adding ActionScript

All movie objects are in place, so CEO Assistant 1.0 is almost complete. The final step
is to add ActionScript to the button, enabling the script to change the contents of the text
field every time a user clicks the button. Our script calls a built-in Flash function to generate
a random number. This random number corresponds to a message in a list of possible mes-
sages to display. [Note: The ActionScript in this chapter has been formatted to conform
with the code layout conventions of this book. The Flash application produces code that its
formatted differently.]

Make sure that you are working in frame 15 of the Button layer. Right-click the GO
button on the stage and select Actions from the resulting menu to open the Object
Actions dialog. The Object Actions dialog provides the same options as the Frame
Actions dialog, except that the actions are specific to objects and not frames.

We want the action to occur when the user clicks the button. To achieve this, press the
add action button, labeled +. Select Actions from the pop-up menu, then select on from
the fly-out sub-menu. The ActionScript window contains the code

on (release) {
}

Release is the default event for the on function. Change release to press by
unchecking the box labeled Release and checking the box labeled Press in the Events
section below the ActionScript window (Fig. 19.31). The available options in this section
change depending on the selected action.

The on (press) action specifies that an action is performed when the user presses
the mouse button. The next step is to add the code to define the result of the press event.
Add another action by pressing the + button and selecting Actions. Select set variable,
changing the code to

on (press) {
<not set yet> = "";
}

When this line is added, the code options change below the ActionScript window.
There should be two new fields, one titled Variable and the other titled Value. Create a
new variable named randomNumber by typing the name into the Variable field. Check

Fig. 19.30Fig. 19.30Fig. 19.30Fig. 19.30 Creating a text field.

iw3htp2_19.fm Page 605 Saturday, July 21, 2001 1:58 PM

606 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

the Expression box next to the Value field to set the value of variable randomNumber
equal to an expression.

The expression assigned to randomNumber is a function that chooses a random
number from 0–4. The generated number corresponds to a text string that displays in the
text field created earlier. To enter the function, click inside the Value field. Then press the
+ button and select Functions from the list. Choose random as the type of function.
Replace the word number in the Value text field with 5 to set the argument for function
random. The code should now read:

on (press) {
 randomNumber = random (5);
}

Common Programming Error 19.1
ActionScript is case sensitive. Be aware of the case when entering arguments or variable
names. 19.1

Each time a user presses the button, the value of the variable randomNumber is set
to a new random number between zero and four. This random number determines the text
string that appears in the text field. An if/else statement sets the text field’s value
according to the value of randomNumber. Be sure that the line randomNumber =
random (5); is highlighted, and select If from the Actions list four times. Your code
should now appear as follows:

on (press) {
 randomNumber = random(5);
 if (<not set yet>) {
 }
}

Nested if statements cause different text to appear in the advicefield text field,
depending on the value of the variable randomNumber in the if condition. In the text
box labeled Condition, type the statement

Fig. 19.31Fig. 19.31Fig. 19.31Fig. 19.31 Adding an action to a button with the Object Actions dialog.

Add action

iw3htp2_19.fm Page 606 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 607

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

randomNumber == 0

This causes an action to be performed only if randomNumber is equal to zero.

Common Programming Error 19.2
When testing equality, use the == operator. The = operator modifies the value of the vari-
able; it does not test equality. 19.2

Highlight the if statement and add four else if statements by selecting else if
from the Actions list. Five equality tests are needed to perform five (from 0 to 4) different
actions. The code should appear as follows:

on (press) {
 randomNumber = random (5);

 if (randomNumber == 0) {
 } else if (<not set yet>) {
 } else if (<not set yet>) {
 } else if (<not set yet>) {
 } else if (<not set yet>) {
 }
}

Click the top else if in the code window and set the condition to

randomNumber == 1

This condition determines which action the random function performs when random-
Number is set to 1. Repeat this process for each of the else if statements, increasing the
value of randomNumber by one each time:

on (press) {
 randomNumber = random (5)

 if (randomNumber == 0) {
 } else if (randomNumber == 1) {
 } else if (randomNumber == 2) {
 } else if (randomNumber == 3) {
 } else if (randomNumber == 4) {
 }
}

For these numbers to produce text in the text field, actions must be added to each state-
ment. Highlight the original statement code—If (randomNumber == 0)—and select
set variable from the Actions list. The name of the text field is important for this state-
ment. The text field in this example is named advicefield, so set value of the Variable
attribute to advicefield. Verify that the Expression checkbox next to the Value field
is unchecked, identifying the field’s contents as a string. Now enter the string Hire
Someone! into the Value field. Each time randomNumber is set to zero, the advice-
field text field will read Hire Someone!. Highlight each else if statement and add
the setVariable function to each. Give the variable advicefield a new string value
for each else if statement. The code should now resemble the following, though the
advice may vary:

iw3htp2_19.fm Page 607 Saturday, July 21, 2001 1:58 PM

608 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

on (press) {
 randomNumber = random (5)

 if (randomNumber == 0) {
 advice = "Hire Someone!";
 } else if (randomNumber == 1) {
 advice = "Buy a Yacht!";
 } else if (randomNumber == 2) {
 advice = "Buy Stock!";
 } else if (randomNumber == 3) {
 advice = "Go Golfing!";
 } else {
 advice = "Hold A Meeting!";
 }
}

If you feel ambitious, increase the number of advice statements by making the argu-
ment for the random function larger and adding more else if statements. Close the
Object Actions window to continue.

Congratulations! You have now completed building CEO Assistant 1.0. After
testing the movie with the Flash Player, return to the main window and save the file.

19.4 Creating a Projector (.exe) File With Publish
Flash movies must be published for users to view them outside the program. This section
discusses the more common methods of publishing Flash movies. The Flash Publish func-
tion is similar to the Export command in other programs; however, it has more advanced
features. For this example, we want to publish in two formats, Flash and Windows Projec-
tor. Publishing as a Windows Projector generates a standard Windows executable file.
Select Publish Settings… from the File menu, opening the Publish Settings dialog.

Select the Flash and Windows Projector checkboxes and uncheck all others. Then
click the Flash tab at the top of the dialog. This section of the dialog allows the developer
to choose the Flash settings. Flash movies may be published in a different Flash version to
enable support by older Flash players. It is important to note that some Flash 5 ActionScript
is not supported by older players, so choose a version with care. Click OK to enable the
new publishing settings. Publish the movie in both formats by selecting Publish from the
File menu. When the publish function is complete, the directory in which you saved the
movie will have two new files (Fig. 19.32).

Fig. 19.32Fig. 19.32Fig. 19.32Fig. 19.32 Published Flash files.

Windows Executable (.exe)
Flash (.fla)
Flash Player Movie (.swf)

iw3htp2_19.fm Page 608 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 609

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

As we see in the ceoassistant example, Flash is a feature-rich program. We have
only begun to use Flash to its full potential. ActionScript can create sophisticated programs
and interactive movies. It also enables Flash to interact with Active Server Pages (Chapters
25–26), CGI (Chapter 27) and JavaScript (Chapters 7–12), making it a program that inte-
grates smoothly into a Web environment.

19.5 Manually Embedding a Flash Movie in a Web Page
One of the most important aspects of Web development is ensuring browser compatibility.
Flash movies have the same appearance in any browser with the Flash Player plug-in. By
embedding a Flash SWF file into an XHTML Web document, Web browsers can display
Flash content. However, to ensure that a Flash movie is visible in both Microsoft Internet
Explorer and Netscape Communicator, two different tags must be placed in the Web doc-
ument to embed the Flash movie. Like video and audio, Flash movies are added to a Web
site with the <object> and <embed> tags. The <object> tag allows the movie to be
viewed with Internet Explorer, and <embed> makes the movie viewable in Netscape.
Figure 19.33 is an example of source code to embed a Flash movie in a Web document so
it displays in both Internet Explorer and Netscape Communicator.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 19.33: ceoassist.html -->
6 <!-- Embedding a Flash movie into a Web site -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9

10 <head>
11 <title>Adding Flash to your Web site</title>
12 </head>
13
14 <body>
15
16 <!-- the following object tag tells the -->
17 <!-- Microsoft Internet Explorer browser to -->
18 <!-- play the Flash movie and where to find -->
19 <!-- the Flash Player plug-in if it is not -->
20 <!-- installed -->
21
22 <object classid =
23 "clsid:D27CDB6E-AE6D-11cf-96B8-4445540000"
24 codebase = "http://active.macromedia.com/flash5/cabs
25 /swflash.cab#version=5,0,0,0">
26 <param name = "Movie" value = "ceoassist.swf" />
27
28 <!-- the following embed tag tells the Netscape -->
29 <!-- Navigator browser to play the Flash movie -->
30 <!-- and where to find the Flash Player plug-in -->
31 <!-- if it is not installed -->

Fig. 19.33Fig. 19.33Fig. 19.33Fig. 19.33 Embedding a Flash Movie into a Web site (part 1 of 2).

iw3htp2_19.fm Page 609 Saturday, July 21, 2001 1:58 PM

610 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

 The <object> tag in Fig. 19.33 has several attributes. For a developer to properly
embed the movie, the classid and codebase attributes must appear exactly as shown.
The codebase attribute prompts users to download the plug-in if they do not have it. It is
also important to place the <embed> tag inside the <object> tag. Microsoft Internet
Explorer ignores tags placed inside the <object> tag. Netscape reads only the <embed>
tag; it ignores the <object> information. The <noembed> tag in lines 38–42 provides
alternative content for those without the Flash Player. Any XHTML elements can be placed
within the <noembed> section of the site.

Common Programming Error 19.3
It is a good idea to save SWF files and their corresponding XHTML pages in the same file
directory, to reduce the number of lost files. 19.3

Good Programming Practice 19.4
It is not necessary to transfer the .fla version of your Flash movie to a Web server unless
you want other users to be able to download the editable version of the movie. 19.4

19.6 Creating Special Effects with Flash
The following sections introduce a variety of special effects using more advanced Flash ca-
pabilities. By completing the previous example, you should understand basic movie devel-
opment. The next sections cover many additional topics, from importing bitmaps to
creating animations that preload Web pages.

19.6.1 Importing and Manipulating Bitmaps

Some of the examples in this chapter require importing bitmap images and other media into
a Flash movie. The importing process is similar for all types of media, including images,
sound and video. The following example shows how to import an image into a Flash movie.

Begin by opening a new movie in Flash. The image we are going to import is located
on the CD-ROM included with this book. Once the CD-ROM is loaded, return to Flash and

32
33 <embed src = "ceoassist.swf" plug-inspage =
34 "http://www.macromedia.com/shockwave/download/
35 index.cgi?P1_Prod_Version=ShockwaveFlash">
36 </embed>
37
38 <noembed>
39 This Web site contains the CEO Assistant 1.0
40 Flash movie. You must have the Flash Player
41 plug-in to view the Flash movie.
42 </noembed>
43
44 </object>
45
46 </body>
47 </html>

Fig. 19.33Fig. 19.33Fig. 19.33Fig. 19.33 Embedding a Flash Movie into a Web site (part 2 of 2).

iw3htp2_19.fm Page 610 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 611

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

select Import… from the File menu. Open the Chapter 19 Examples directory. Finally,
open the folder labeled images and select bug.bmp. Click OK to continue. A bug image
should appear on the stage. The Library panel stores imported images. Developers can
convert imported images into editable shapes by selecting the image and pressing Ctrl+B
or by choosing Break Apart from the Modify menu. Once an imported image is broken
apart, it may be shape tweened or edited with editing tools such as the lasso, paint bucket,
eraser and paintbrush. The editing tools apply changes to a shape and are found in the
toolbox.

Clicking and dragging to draw with the lasso tool selects areas of shapes. The color of
a selected area may be changed or moved. Click and drag with the lasso tool to draw the
boundaries of the selection. As with the button in the last example, when a developer selects
a shape area, a mesh of white dots covers the selection. Once an area is selected, its color
may be changed by selecting a new fill color with the fill swatch, or by clicking the selec-
tion with the paint bucket tool. The lasso tool has different options (located in the Options
section of the toolbox) including magic wand and polygonal lasso. The magic wand option
changes the lasso tool into the magic wand tool, which selects areas of similar colors. The
polygonal lasso selects straight-edged areas. Clicking selection corners draws a straight
selection boundary between the corners.

The eraser tool shape areas by clicking and dragging the tool across an area. A devel-
oper can change the eraser size using the tool options. Other options include settings which
make the tool erase only fills or strokes.

The paintbrush tool applies color in the same way that the eraser removes color. The
paintbrush color is selected with the fill swatch. The paintbrush tool options include
painting behind, which sets the tool to only paint in areas void of color information; paint
selection, which paints only areas that have been selected; and paint inside, which paints
inside a line boundary.

Each of these tools can create original graphics. Experiment with the different tools to
change the shape and color of the imported bug graphic.

19.6.2 Create an Advertisement Banner with Masking

Masking hides portions of layers, much like stenciling. A masking layer hides objects in the
layers beneath it, revealing only the areas that can be seen through the shape of the mask.
Items drawn on a masking layer define the mask’s shape and cannot be seen in the final
movie. The next example, which builds a Web site banner, shows how to use masking to
add animation and color effects to text.
 Portability Tip 19.1

When building Flash movies, try to use the smallest possible file size and Web-safe colors,
ensuring that most people can view the movie regardless of bandwidth, processor speed or
monitor resolution. 19.1

Open a new movie and set the size of the movie to 470 pixels wide by 60 pixels high.
Create three new layers named top, middle and bottom according to their positions in
the layer hierarchy. These names helps track the masked layer and the visible layers. The
top layer contains the mask, the middle layer becomes the masked animation and the
bottom layer contains an imported bitmapped logo. Import the graphic
bug_apple.bmp (found on the CD-ROM in the Images folder of the Chapter 19 exam-

iw3htp2_19.fm Page 611 Saturday, July 21, 2001 1:58 PM

612 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

ples directory) into the first frame of the top layer, using the method described in the pre-
vious section. This image will appear too large to fit in the stage area. Select the image with
the arrow tool and align it with the upper left corner of the stage. Then select the move
tool’s scale option, found in the Options section of the toolbox (Fig. 19.34).

The scale option is used to resize an image. When this option is selected, anchors
appear around the corners and sides of the image. Click and drag an anchor to resize the
image in any direction. Hold down the Shift key while clicking and dragging the lower right
anchor upwards, until the image fits on the stage. Holding down the Shift key while drag-
ging a corner anchor ensures that the image is resized proportionately.

Use the text tool to add text to frame 1 of the top layer. Use Verdana, 28 pt bold as the
font. Type in the banner text, making sure that the text fits inside the banner and use the
arrow tool to position the text next to the image. This text becomes the object which masks
an animation.

The text must be converted into a shape before creating the mask. Click the text field
with the arrow tool to ensure that it is active and select Break Apart from the Modify
menu. Breaking apart text converts the letters into shapes that cannot be edited with the text
tool.

Copy the contents of the top layer to the bottom layer before creating the mask, so
that when the mask is added, the text remains visible. Right click frame 1 of the top layer
and select Copy Frames from the resulting menu. Paste the contents of the top layer into
frame 1 of the bottom layer by right clicking frame 1 and selecting Paste Frames from
the menu. This shortcut pastes the frame’s contents in the exact position as the original
frame. Delete the extra copy of the bug image by selecting the bug image in the top layer
with the arrow tool and pressing the Delete key.

The next step is to create the animated graphic that the type in the top layer masks.
Click in the first frame of the middle layer and use the oval tool to draw an oval that is
taller than the text (it does not have to fit inside the banner area). Set the oval stroke to no
color by clicking the stroke swatch and selecting the no color option (Fig. 19.35). Set the
fill color to rainbow gradient.

Fig. 19.34Fig. 19.34Fig. 19.34Fig. 19.34 Resizing an image with the move tool scale option.

anchor

iw3htp2_19.fm Page 612 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 613

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Select the circle by clicking it with the arrow tool and convert the circle to a symbol
by pressing F8. Name the symbol oval and set the behavior to Graphic. When the banner
is complete, the oval will move across the stage; however, it will be visible only through
the text mask in the top layer. Move the circle just outside the left edge of the stage, indi-
cating the point at which the circle begins its animation. Create a keyframe in frame 20 of
the middle layer and another in frame 40. These keyframes indicate the different locations
of the oval symbol during the animation. Click frame 20 and move the circle just outside
the right side of the banner to indicate the animation’s next key position. Do not move the
position of the oval graphic in frame 40 because the circle returns to its original position.
Create the first part of the animation by right clicking frame 1 of the middle layer and
choosing Create Motion Tween from the menu. Repeat this step for frame 20 of the
middle layer, making the oval symbol move from left to right and back. Add keyframes
to frame 40 of both the top and bottom layers so that the other movie elements appear
throughout the movie.

Now that all supporting movie elements are in place, the next step is the application of
the masking effect. This is accomplished by right clicking the top layer and selecting
Mask from the resulting menu (Fig. 19.36). The addition of a mask to the top layer masks
only the items in the layer directly beneath it (middle layer), causing the bug logo in the
bottom layer to be visible while obscuring the animation in the middle layer.

Now that the movie is complete, test it with the Flash Player. The rainbow oval is vis-
ible through the text as it animates from left to right. The text in the bottom layer is visible
in the portions not containing the rainbow (Fig. 19.37).

19.6.3 Adding Online Help to Forms
In this section, we build on Flash techniques introduced earlier in this chapter, including
tweening, masking, the importation of bitmapped images and the writing of ActionScript.
We apply these various techniques to the creation of an online form that offers interactive

Fig. 19.35Fig. 19.35Fig. 19.35Fig. 19.35 Creating the Circle graphic.

rainbow
gradient fill

no stroke

iw3htp2_19.fm Page 613 Saturday, July 21, 2001 1:58 PM

614 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

help. The interactive help consists of animations that appear when a user presses buttons
located next to the form fields. Each button contains a script that triggers an animation, and
each animation provides the user with information regarding the form field that corre-
sponds to the button pressed.

Each animation is a movie clip symbol that is placed in a separate frame and layer of
the parent movie. The addition of a stop action to frame 1 pauses the movie until the user
presses a button. The press event makes the movie skip ahead in the timeline so that the
corresponding animation plays.

Fig. 19.36Fig. 19.36Fig. 19.36Fig. 19.36 Creating a mask layer.

Fig. 19.37Fig. 19.37Fig. 19.37Fig. 19.37 Completed banner.

Mask
layer

Masked
layer

Locked for
editing

iw3htp2_19.fm Page 614 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 615

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Begin by creating a new movie, using default movie size settings. The first layer con-
tains the site name, form title and the form captions. Change the name of Layer 1 to text.
Add a stop action to frame 1 of the text layer. Create the site name as static text in the text
layer using a large, bold font, and place the title at the top of the page. Next, place the form
name Registration Form beneath the site name, using the same font, but in a smaller size
in a different color. The final text elements added to this layer are the form captions. Create
the captions as one text box with three lines by pressing Enter after each caption. Name
these captions Name:, Member #: and Password:. Adjust the line spacing (the amount
of space between lines of text) with the Paragraph panel. Change the form field caption
line spacing to 22 and set the text alignment to right justify (Fig. 19.38).

This example does not involve the creation of actual form fields, but rather graphic rep-
resentations of form fields in an actual Web page. The first step in the production of these
form fields is to create a new layer named form. In the form layer, draw a rectangle that
is roughly the same height as the caption text. The Round Rectangle Radius option,
found in the Options section of the toolbox, can be employed to round the corners of the
rectangle; in this example, the corner radius should be set to 5 (Fig. 19.39). Feel free to
experiment with other shapes and colors.

Fig. 19.38Fig. 19.38Fig. 19.38Fig. 19.38 Adjusting the line spacing with the Paragraph panel.

Fig. 19.39Fig. 19.39Fig. 19.39Fig. 19.39 Creating a rectangle with rounded corners.

Line-spacing
adjustment

Right justify

iw3htp2_19.fm Page 615 Saturday, July 21, 2001 1:58 PM

616 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The next step is to convert the rectangle into a symbol to that it may be reused in the
movie. Select the rectangle fill and stroke with the arrow tool and press F8 to convert the
selection to a symbol. Set the symbol behavior to Graphic and name the symbol form
field. This symbol should be positioned next to the Name: caption. When the symbol is in
place, open the Library panel by pressing Ctrl+L, select the form layer and drag two
copies of the form field symbol from the Library onto the stage. This will create two new
instances. Use the arrow tool to align the fields with their corresponding captions. At this
point, the movie should resemble Fig. 19.40.

Now that the form fields are in place, we can create the help associated with each field.
Add a new layer to the movie, and call it buttons. Create a small button in frame 1 of the
buttons layer next to the Name field. When the button is complete, select all the button’s
pieces with the arrow tool, and press F8 to convert the shape into a button symbol named
helpButton. Drag two more copies of the helpButton symbol from the Library panel
onto the stage next to each of the form fields.

These buttons trigger animations that provide information about their corresponding
form fields. A script is added to each button, which causes the playhead to jump to a par-
ticular frame when a user presses the button. The playhead is a counter that detects the
movie’s frame position during the play cycle. Right click the helpButton symbol asso-
ciated with the name field and select Actions from the menu, opening the Object
Actions dialog. Add the on action to the button, leaving the event for the action as
release. Click the new script line so that it is highlighted blue and add a goto action.
This action causes the movie playhead to skip to a particular frame based on the button
release event. Uncheck the box at the bottom of the scripting window titled Go to
and Play. This changes the action to gotoAndStop. Enter 2 into the Frame field. The
script should now read

on (release) {
 gotoAndStop(2);
}

Fig. 19.40Fig. 19.40Fig. 19.40Fig. 19.40 Creating multiple instances of a symbol with the Library panel.

iw3htp2_19.fm Page 616 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 617

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

This script causes the playhead to advance to frame 2 and stop when a user presses the
button. Add the same actions to the buttons associated with the member# field and the
password field, changing the frame numbers to 3 and 4 respectively. All three buttons
now have actions that point to frames 2, 3 and 4, even though these frames have not been
activated. When activated, these frames will contain the interactive help animations.

To facilitate smooth navigation through the movie, each of the buttons’ animations is cre-
ated as a movie clip symbol that is inserted into the parent movie at the correct frame. For
instance, the animation associated with the Password field is placed in frame 4 so that when
the button is pressed, the goto action skips to the frame containing the correct animation.)

The movie clip should be created as a new symbol so that it can be edited without
affecting the parent movie. Select New Symbol… from the Insert menu (or use the
shortcut Ctrl+F8), name the symbol nameWindow and set the behavior to Movie Clip.
When creating a new symbol, press OK to open that symbol’s stage and timeline.

The next step is to create the interactive help animation. Begin by changing the name
of Layer 1 to Background. This animation contains text that describes the form field.
Before adding the text, we are going to create a small background animation behind the
text. Draw a dark blue rectangle with no border. This rectangle can be of any size because
we will customize its proportions with the Info panel. Select the rectangle with the arrow
tool and then open the Info panel. Set the w field in the Info panel to 230 and the h field
to 120, to define the rectangle’s size. Next click the center dot on the Registration
Selection in the Info panel and set both the x and y fields to 0.0 (Fig. 19.41). The regis-
tration selection and the x- and y-coordinates align the rectangle with the stage center (indi-
cated by the crosshairs).

Now that the rectangle is correctly positioned we can begin to create the animation.
Add keyframes to frames 5 and 10 of the background layer. Use the Info panel to change
the size of the rectangle in frame 5, setting its height to 5.0. Next right click frame 5 and
select Copy Frames. Then right click frame 1 and select Paste Frames. While in frame
1, change the width of the rectangle to 5.

The animation is created by applying shape tweening to frames 1 and 5. Recall that
shape tweening morphs one shape into another. The shape tween causes the dot in frame 1
to grow into a line by frame 5 and then into a rectangle in frame 10. Select frame 1 and
apply the shape tween by selecting Shape from the Tweening drop-down list in the
Frame panel. Shape tweens appear green in the timeline (Fig. 19.42). Follow the same pro-
cedure for frame 5.

Fig. 19.41Fig. 19.41Fig. 19.41Fig. 19.41 Centering an image on the stage with the Info panel.

Center alignmentRegistration selection

iw3htp2_19.fm Page 617 Saturday, July 21, 2001 1:58 PM

618 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Now that this portion of the animation is complete, it may be tested on the stage by
pressing Enter. The animation should portray the dot from frame 1 growing into a line by
frame 5 and subsequently into a rectangle by frame 10.

The next step is to add a mock form field to this animation which demonstrates what
the user would type in the actual field. Add two new layers above the background layer,
named field and text. The field layer contains a mock form and the text layer contains
the help information.

First we will create a similar animation to the growing rectangle for the mock form
field. Add a keyframe to frame 10 in both the field and text layers. When a keyframe is
added to an empty layer, the keyframe in the timeline appears blank (with no dot). When a
developer adds contents to the frame, a dot will appear in the keyframe.

Fortunately we have a form field already created as a symbol. Select frame 10 of the
field layer, and drag the form field symbol from the Library panel onto the stage, placing
the form field symbol within the current movie clip. Symbols may be embedded in one
another; however, they cannot be placed within themselves (i.e., an instance of the form
field symbol cannot be dragged onto the form field symbol editing stage). Align the form
field symbol with the upper-left corner of the background rectangle, as shown in
Fig. 19.43.

Next, determine the end of this movie clip by adding keyframes to the background
and field layers in frame 40. Also add keyframes to frames 20 and 25 of the field layer.
These keyframes define intermediate points in the animation. Refer to Fig. 19.44 for cor-
rect keyframe position.

Fig. 19.42Fig. 19.42Fig. 19.42Fig. 19.42 Creating a shape tween.

Fig. 19.43Fig. 19.43Fig. 19.43Fig. 19.43 Adding the field symbol to the nameWindow movie clip.

Shape tween

Frame 1 Frame 5 Frame 10

iw3htp2_19.fm Page 618 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 619

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The next step in creating the animation is to make the form field symbol grow in size.
Select frame 20 of the field layer, which contains only the form field symbol. Next open
the Transform panel. The Transform panel, like the Info panel, can be used to change
an object’s size. Check the Constrain checkbox to constrain the object’s proportions as it
is resized. Selecting this option causes the scale factor to be equal in both the height and
width fields. The scale factor measures the change in proportion. Set the scale factor for
the width and height to 150%, and press Enter to apply the changes. Repeat the previous
step for frame 10 of the field layer, but scale the form field symbol down to 0%.

 The symbol’s animation is created by adding a motion tween. The addition of the
tween to field layer frames 10 and 20 will cause the form field symbol to grow from 0 per-
cent of the original size to 150 percent, then to 100 percent. Figure 19.44 illustrates this por-
tion of the animation.

It is necessary to add text to the movie clip which conveys to the user the purpose of
the corresponding text field. Text appears over the form field symbol as an example to the
user. The text that appears below the form field symbol directs the user as to what should
be typed in the text field.

The next step is to add the description text. First insert a keyframe in frame 25 of the
text layer. Then use the text tool with Arial, 14 pt font with the font color set to white, to
type information for the Name field, indicating the purpose of the field in the help window.
For instance, our example gives the following directions for the Name field: Enter your
name in this field. First name, Last name. Align this text with the left side of the rect-
angle. Next, add a keyframe to frame 40 of this layer, causing the text to appear throughout
the animation.

The next step is to duplicate this movie clip so that it may be customized and reused
for the other two help buttons animations. Open the Library panel and right click the
nameWindow movie clip. Select Duplicate from the menu, and name the new clip
passwordWindow. Repeat this step once more and name the third clip member-
Window (Fig. 19.45).

Fig. 19.44Fig. 19.44Fig. 19.44Fig. 19.44 Creating an animation with the form field symbol.

iw3htp2_19.fm Page 619 Saturday, July 21, 2001 1:58 PM

620 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

It is necessary to customize the duplicated movie clips so their text reflects the corre-
sponding form fields. To begin, open the memberWindow editing stage by pressing the
edit symbols button, which is found in the upper right corner of the movie window, and
selecting memberWindow from the list of available symbols (Fig. 19.45). Select frame
25 of the text layer and change the directions with the text tool so that the box contains the
directions for the member # form field. Copy the text in frame 25 by selecting it with the
text tool and using the shortcut Ctrl+C. This shortcut copies the selected text to the clip-
board, an area of the computer’s temporary memory in which text and graphics can be
stored for immediate reuse. Click frame 40 of the text layer which contains the old text.
Highlight the old text with the text tool and use the shortcut Ctrl+V to paste the copied text
into this frame. Repeat these steps for the passwordWindow movie clip so that each clip
contains the necessary information to help the user to fill out the form. Please note that
changing a symbol’s function or appearance with its editing stage updates that symbol in
the parent movie.

The following steps further customize the help boxes for each form field. Open the
nameMovie symbol’s editing stage by pressing the edit symbols button. Add a new layer
to this symbol called typedText above text layer. This layer contains an animation that
simulates the typing of text into the form field. Insert a keyframe in frame 25. Select this
frame and use the text tool to create a text box on top of the form field symbol. Set the
text box type to Static using the Text Options panel and type the name John Doe in
the text box.

The following frame-by-frame animation creates the appearance of the name being
typed into the field. Add a keyframe to frame 40 to indicate the end of the animation. Then
add new keyframes to frames 26–31. Each keyframe contains a new letter being typed in
the sequence, so when the playhead advances, new letters appear. Select the Jon Doe text
in frame 25 and delete everything except the first J with the text tool. Next, select frame 26
and delete all of the characters except the J and the o. This step must be repeated for all
subsequent keyframes up to frame 31, each keyframe containing one more letter than the
last (Fig. 19.46). Frame 31 should show the entire name. When this process is complete,
press Enter to preview the frame-by-frame typing animation.

Fig. 19.45Fig. 19.45Fig. 19.45Fig. 19.45 Duplicating movie clip symbols with the Library panel.

Current symbol

Symbols to edit

Edit scene Edit symbols

iw3htp2_19.fm Page 620 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 621

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Create the same type of animation for both the passwordWindow and the mem-
berWindow movie clips, using suitable words. For example, we use asterisks for the
passwordWindow movie clip and six numbers for the memberWindow movie clip.
Add a Stop action to frame 40 of all three movie clips so that the animations play only
once.

The movie clips are now ready to be added to the parent movie. Click the edit scene
button next to the edit symbol button, and select Scene 1 to return to the parent movie
(Fig. 19.45). Before inserting the movie clips, add the following layers to the timeline:
nameMovie, memberMovie and passwordMovie, one for each of the movie clips.
Add a keyframe in frame 2 of every layer, including the form, text and helpButtons
layers.

Now we will place the movie clips in the correct position in the parent movie. Select
frame 2 of the nameMovie layer. Recall that the ActionScript for each help button con-
tains the script

on (release) {
 gotoAndStop(frame#);
}

in which frame# is 2, 3 or 4, depending on the button. This script causes the playhead to
skip to the specified frame and stop. The placement of the movie clips in the correct frames,
causes the playhead to skip to the desired frame, play the animation and stop. This effect is
created by selecting frame 2 of the nameMovie layer and dragging the nameWindow
movie clip onto the stage. Align the movie clip with the button next to the Name field,
placing it halfway between the button and the right edge of the stage.

The previous step is repeated twice for the other two movie clips so that they appear in
the correct frames. Add a keyframe to frame 3 of the memberMovie layer and drag the
memberWindow movie clip onto the stage. Position this clip in the same manner as the
previous clip. Repeat this step for the passwordWindow movie clip dragging it into
frame 4 of the passwordMovie layer.

When all of the movie clips are placed, the parent movie is almost complete. Finish the
movie by adding keyframes to frame 4 of the form, text and buttons layers, ensuring that
the fields, field names, buttons and titles appear after a help button is pressed.

The movie is now complete. Press Ctrl+Enter to preview it with the Flash Player. If
the triggered animations do not appear in the correct locations, return to the parent movie
and adjust their position. The final movie is displayed in Fig. 19.47.

Fig. 19.46Fig. 19.46Fig. 19.46Fig. 19.46 Creating a frame-by-frame animation.

Deleting a letter
from each
subsequent frame

Frames for animation

iw3htp2_19.fm Page 621 Saturday, July 21, 2001 1:58 PM

622 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

In our example, we have added a picture beneath the text layer. Movies can be
enhanced in many ways, such as by changing colors and fonts or by adding pictures. Our
movie (bug2bug.fla) can be found in the Chapter 19 examples directory on the CD-
ROM that accompanies this book. If you want to use our symbols to recreate the movie,
select Open as Library… from the File menu and open bug2bug.fla. The option
Open as Library... allows a developer to reuse symbols from another movie.

19.7 Creating a Web-Site Introduction
Flash is becoming an important tool for e-Businesses. Many organizations use Flash to cre-
ate Web-site introductions, product demos and Web applications. Others use Flash to build
games and interactive entertainment in an effort to attract new visitors. However, these
types of applications can take a long time to load, causing visitors—especially those with
slow connections—to leave the site. One way to alleviate this problem is to provide visitors
with a Flash animation introduction that draws and keeps their attention. Flash animations
are ideal for amusing visitors while conveying information as the rest of a page downloads
“behind the scenes.”

Several methods are used to create animation preloaders. The following example
explains the creation of an animation preloader that uses ActionScript to pause the movie
at a particular frame until all the movie elements have loaded.

To start building the animation preloader, open a new movie, maintaining the default
size and color settings. The first step involves the construction of the movie pieces that will
be loaded later in the process. Create three new layers, one for each of the loaded objects.
Place a keyframe in frame 2 of each of the new layers. Rename Layer 2 to C++, Layer 3
to IW3 and Layer 4 to Java. Because Layer 1 contains the introductory animation,
rename this layer animation.

The pre-loaded objects we use in this example are animated movie clip symbols.
Create the first symbol by clicking frame 2 of the C++ layer and creating a new movie clip

Fig. 19.47Fig. 19.47Fig. 19.47Fig. 19.47 Bug2Bug.com help form.

iw3htp2_19.fm Page 622 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 623

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

symbol named cbook. When the symbol’s editing stage opens, import the image
chtp.gif (found in the images folder in the Chapter 19 examples directory). Place a
keyframe in frame 20 of Layer 1 and add a stop action to this frame. The type of anima-
tion in this example is produced with the motion tween rotate option, which causes an
object to spin on its axis. Create a motion tween in frame 1 with the Frame panel, setting
the Rotate option to CCW (counter-clockwise) and the Times field to 5 (Fig. 19.48). This
setting causes the image chtp.gif to spin five times counter-clockwise over a period of
20 frames.

After returning to the parent movie, drag and drop a copy of the cbook symbol onto
the stage in frame 2 of the C++ layer. Move this symbol to the left side of the stage.

Build a similar movie clip for the Java and IW3 layers, using the file java.gif and
iw3.gif to create the symbols. Name the symbol for the Java layer jbook and the IW3
symbol ibook to identify the symbols with their contents. Place the jbook symbol in frame
2 of the Java layer, positioning it in the center of the stage. Insert the ibook symbol in
frame 2 of the IW3 layer and position it to the right of the jbook symbol. Make sure to
leave some space between these symbols so that when they spin, they will not overlap
(Fig. 19.49).

Now that the preloading objects have been placed, it is time to create the preloading
animation. By placing the preloading animation in the frame preceding the frame that con-
tains the objects, we can use ActionScript to pause the movie until the objects have loaded.
Begin by inserting a keyframe in frame 1 of the animation layer. Select this frame and
create another new movie-clip symbol named loader. Use the text tool with a medium
sized sans-serif font and place the word Loading in the center of the symbol’s editing
stage. This title indicates to the user that objects are loading. Insert a keyframe into frame
14 and rename this layer load.

Fig. 19.48Fig. 19.48Fig. 19.48Fig. 19.48 Creating a rotating object with the motion tween Rotate option.

Fig. 19.49Fig. 19.49Fig. 19.49Fig. 19.49 Inserted movie clips.

TimesRotate

iw3htp2_19.fm Page 623 Saturday, July 21, 2001 1:58 PM

624 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Create a new layer called orb to contain the animation. Draw a circle about the size of
a quarter above the word Loading. Give the circle a green radial gradient fill by selecting
the radial gradient swatch for the fill color. The colors of this gradient can be edited with
the Fill panel (Fig. 19.50).

The block furthest to the left indicates the innermost color of the radial gradient,
whereas the block furthest to the right indicates the outermost color of the radial gradient.
Click the green block to reveal the gradient color swatch. Click the swatch and select a
medium blue as the inner color of the gradient. Then click the black, outer color box and
change the outer color to white. Changing the gradient’s outer color to the background
color causes the gradient blend gradually into the background.

The rate of progression in a gradient can be changed by sliding the inner or outer color
boxes. Slide the inner color box to the right so that the gradient contains more blue than
white. Intermediate colors may be added to the gradient range by clicking beneath the bar,
next to one of the existing color boxes. Click to the left of the blue, inner color box to add
a new color box (Fig. 19.51). Slide the new color box to the left and change its color to dark
blue. Any color may be removed from a gradient by clicking and dragging it downward off
the gradient range.

Insert keyframes into frame 7 and 14 of the orb layer. Then select the circle in frame
7 with the arrow tool. Open the Fill panel and change the colors of the gradient to different
shades of green, maintaining white as the outer color. By adding shape tweens to frames 1
and 7, the circle’s colors gradually shift between blues and greens. The animation is now
complete and may be previewed by pressing Enter.

Fig. 19.50Fig. 19.50Fig. 19.50Fig. 19.50 Changing gradient colors with the Fill panel.

Fig. 19.51Fig. 19.51Fig. 19.51Fig. 19.51 Adding an intermediate color to a gradient.

Gradient color swatch

Outer color

Save gradient

Fill type

Gradient range

Gradient preview
Inner color

Click and drag to remove a color

Resulting gradient

iw3htp2_19.fm Page 624 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 625

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Before inserting the movie clip into the parent movie, we are going to create a hyper-
text linked button that will enable the user to skip over the animations to the final destina-
tion. Add a new layer called link to the loader symbol with keyframes in frames 1 and 14.
Using the text tool, place the words skip directly to Deitel Web site below Loading
in a smaller font size. Select the words with the arrow tool, and convert them into a button
symbol named skip. The conversion of the text into a button simulates a text hyperlink cre-
ated with XHTML. Double click the words to open the skip button’s editing stage. For this
example, we are going to edit only the hit state. When a button is created from a shape, the
button’s hit area is, by default, the area of the shape. It is important to change the hit state
of a button created from text so that it includes the spaces between the letters; otherwise,
the link will work only when the user hovers over one letter’s area. Place a keyframe in the
hit state. Use the rectangle tool to draw the hit area of the button, covering the entire length
and height of the text. This rectangle is not visible in the final movie, because it defines only
the hit area (Fig. 19.52).

The button is activated by giving it an action that links it to another Web page. After
returning to the loader movie clip editing stage, right click the skip button to open the
Actions dialog. Add an on action to the button and set the event to release. When this
line of script is highlighted in the dialog, add the action getURL, which creates a hyperlink
which directs the user to a new page or site. The code now reads

on (release) {
 getURL ("");
}

The URL is defined in the lower part of the Actions dialog. Enter http://
www.deitel.com into the URL field and choose _blank from the list in the Window
field. These parameters cause a new browser window displaying the Deitel Web site when
the user presses the button. The code now reads

on (release) {
 getURL ("http://www.deitel.com", "_blank");
}

Return to the parent movie by clicking Scene 1 directly above the timeline, next to
the name of the current symbol. Drag and drop a copy of the Loading movie clip from the
Library panel into frame 1 of the animation layer, centering it on the stage.

Now, the process is nearly complete. Right click the Loading movie clip and open the
Actions dialog. The following actions direct the movie clip to play until all of the parent
movie’s objects are loaded. Select onClipEvent as the first action and set its event to
enterFrame. The onClipEvent action responds to particular events that occur when
the movie is played with the Flash Player. The enterFrame event specifies the position
of the movie’s playhead when the movie is playing. The code now reads:

onClipEvent (enterFrame) {
}

The next action added to this sequence is an if statement. The if statement condi-
tions determine what the current frame position and how many frames are loaded. Flash
movies load frame by frame. Frames that contain complex images take longer to load. If

iw3htp2_19.fm Page 625 Saturday, July 21, 2001 1:58 PM

626 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

the number of frames loaded is greater than two (remember frame 2 contains the objects to
be loaded), then the movie moves to frame 3 and continues to play. If the number of frames
loaded is less than 2, then the current movie clip continues to play. Add the if statement
by highlighting the first line of code and selecting if from the list of actions. The condition
for an if statement is blank by default. Flash has several built-in properties that can be
added to a conditional statement. Press the + button, then select Properties. Select
_framesloaded as the property. The _framesloaded property determines the number
of frames that have been loaded in a movie. Use > as the operator and 2 as the comparative
value to determine if the number of frames loaded is greater than two. Add another condi-
tion to the if statement by adding the && operator. The second condition determines
whether the number of frames loaded is equal to the number of the current frame. The code
that performs this is _framesloaded == _currentframe. The _currentframe
property is found in the same place as the _framesloaded property. The code now reads

onClipEvent (enterFrame) {
 if (_framesloaded > 2 && _framesloaded == _current frame)
}

Highlight this line of code and add a goto action. Leave the action set to gotoAnd-
Play. Choose Scene 1 from the list in the Scene field, directing the program to the
parent movie. Then, set the Frame field to 2 so that, when the previous statement is true,
the movie will begin playing the loaded images. The final script for this movie clip reads

onClipEvent (enterFrame) {
 if (_framesloaded > 2 && _framesloaded == _current frame)

{gotoAndPlay ("Scene 1", 2);}
}

Create one more layer in the parent movie and title the layer title. Add a keyframe to
frame 2 of this layer, and use the text tool to create a title for the rotating text books. Below
the title, create another text hyperlink button to the Deitel Web site. The simplest way to do
this is to duplicate the existing skip button and modify the text. Right click the skip
symbol in the Library panel and select Duplicate. Rename the new button visit by right
clicking skip copy in the Library panel and selecting Rename. Place the visit symbol
in frame 2 of the title layer. Double click the visit button and edit the text to say Visit the
Deitel Web site.

The final step is to add a stop action to frame 2 of the title layer to prevent the movie
from repeating. Once the stop action is added, the movie is complete. Test the movie with
the Flash Player (Fig. 19.53). If the player appears to skip the introductory animation, it is
because the objects have already been loaded. However, it is possible to reload the movie
and play the animation by pressing Ctrl+Enter.

Fig. 19.52Fig. 19.52Fig. 19.52Fig. 19.52 Defining the hit area of a button.

Hit stateUp state

iw3htp2_19.fm Page 626 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 627

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

19.8 ActionScript
Figure 19.54 lists common Flash ActionScript functions. By attaching these functions to
frames and symbols, you can build some fairly complex Flash movies.

Fig. 19.53Fig. 19.53Fig. 19.53Fig. 19.53 Creating an animation to preload images.

Action Description

goto Jump to a frame or scene in another part of the movie.

play Start a movie at certain points at which the movie may have been
stopped.

stop Stop a movie.

toggleHighQuality Turn anti-aliasing on and off. By turning it off, the movie is able to
play faster, but renders with rough edges.

stopAllSounds Stop the soundtrack without affecting the movie.

getURL Load a URL into a new or existing browser window.

FSCommand Insert JavaScript or other scripting languages into a Flash movie.

loadMovie/
unloadMovie

Load an SWF into the Flash Player from the current movie. Can also
load another movie into the current movie.

ifFrameLoaded Check whether certain frames have been loaded.

Fig. 19.54Fig. 19.54Fig. 19.54Fig. 19.54 Additional ActionScript functions (part 1 of 2).

Rotating counter-
clockwise

Text hyper-linked
buttons

iw3htp2_19.fm Page 627 Saturday, July 21, 2001 1:58 PM

628 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

19.9 Internet and World Wide Web Resources
www.macromedia.com
Macromedia specializes in tools for creating multimedia-rich Web sites. Free 30-day trial versions of
its multimedia authoring tools are available at this site.

www.actionscripts.org
This site is an online community that offers Flash tutorials for all levels. The community also provides
free sounds, fonts and open source code for Flash developers. Their forums provide open discussions
about Flash topics between developers.

www.flashkit.com
This site is geared towards Flash developers and enthusiasts. They have several forums covering var-
ious Flash topics.

www.moock.org
This site provides helpful information on ActionScript and links to other ActionScript resources. This
site also offers professional Flash production tips and sample .fla files which may be downloaded
for learning purposes.

www.virtual-fx.net
This site offers tutorials, news, discussion boards and other resources for Flash developers. The tuto-
rials on this site are some of the most helpful on the Web.

www.openswf.org
This site provides discussion about SWF tools and open source SWF creation links to SWF resources.

www.webmonkey.com/multimedia/shockwave_flash
WebMonkey offers information on many facets of Web design and development including Flash and
Shockwave.

onClipEvent Assigns actions to a movie clip based on specific events. The events
include load, unLoad, enterFrame, Mouse up, Mouse down,
key up, key down and data.

on Assign actions such as Press, Release and RollOver to a button.

if Set up condition statements that run only when that condition is true.

while/do while Run a collection of statements while a condition statement is true.

call Give multiple buttons or frames the same action.

setProperty Change the attributes of a movie clip while the movie plays.

setVariable Assign a value to a variable within a Flash movie.

duplicate/
removeMovieClip

Dynamically add or remove a movie clip to or from a movie.

start/stopDrag Move a movie clip while the movie is running.

trace Display programming notes or variable values while testing a movie.

// (comment) Keep track of personal notes in a frame or action for future reference.

Action Description

Fig. 19.54Fig. 19.54Fig. 19.54Fig. 19.54 Additional ActionScript functions (part 2 of 2).

iw3htp2_19.fm Page 628 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 629

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

www.shockwave.com
The Shockwave Web site contains a variety of Web-based games, cartoons and music. The site was
created with Macromedia authoring tools.

www.deitel.com
The Deitel Web site provides information about our latest publications. Check our site for updates on
new uses of Flash technology and announcements about our upcoming Flash publications.

SUMMARY
• Macromedia Flash 5 is an application for creating interactive, animated movies.

• Flash movies may be embedded in Web pages, placed on CD-ROMs as independent applications
or converted into standalone, executable programs.

• Web users need the Flash Player plug-in to view Flash movies.

• When the program first opens, Flash creates a new file called Movie1, by default.

• The tools are located in the vertical window (called the toolbox) along the left side of the devel-
opment environment.

• Panels modify the attributes for symbols, tools and shapes.

• The .fla file extension is a Flash specific extension for editable movies.

• The Movie Properties dialog sets properties such as the Frame Rate, Dimensions and
Background Color.

• The Frame Rate of a movie is a movie’s speed.

• The Dimensions define the size of the movie as it appears on the screen.

• The Background Color is the color of the movie background and is selected by clicking the
background color box (called a swatch).

• Every movie in Flash is composed as a grid of dots called pixels, each storing color information
based on its location.

• Shapes are created by clicking and dragging with the shape tools. Every shape is created with a
stroke (border) and a fill. A shape’s fill and stroke may be edited individually.

• Gradient fills are gradual progressions of color.

• Use the text tool in conjunction with the Character panel to create text.

• The arrow tool selects and moves objects.

• Symbols are the reusable elements of a Flash movies, such as graphics, buttons and movie clips,
that make the movies interactive.

• Flash movies consist of a parent movie and symbols. The parent movie is the main movie.

• Editing stages for symbols are separate from the parent movie and may be accessed separately.

• The timeline for the parent movie may contain several symbols, each of which has its own time-
lines and properties.

• A Flash movie may have several instances of a particular symbol, meaning that the same symbol
may appear several times.

• Every symbol in a Flash movie must have a unique name. The symbol behavior determines how
a symbol performs in a movie.

• The Library panel stores every symbol in the movie. Multiple instances of a certain symbol can
be placed in a movie by dragging and dropping a symbol from the Library panel on to the stage.

• The timeline for a button symbol contains four frames, one for each of the button’s states (up, over
and down) and one for the hit area.

iw3htp2_19.fm Page 629 Saturday, July 21, 2001 1:58 PM

630 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• Keyframes indicate points of change in an object.

• Movies can be viewed in their published state with the Flash Player. Published Flash movies have
the file extension .swf, which stands for Shockwave file.

• Shockwave files are read-only, meaning that they can be viewed but not edited.

• A movie can be composed of many layers, each having its own attributes and effects. Tweening is a
process in which Flash creates all the intermediate steps of the animation between two keyframes.

• Shape tweening morphs an object from one shape to another. Shape tweening cannot be performed
on symbols or grouped objects, only ungrouped objects.

• Motion tweening moves objects on the stage and can only be performed on symbols or grouped
objects.

• ActionScript, the programming language of Flash, is similar to JavaScript.

• The Text Type determines a text field’s interaction.

• A text field is created with the text tool by clicking and dragging with the mouse.

• Imported images are graphic symbols and can be accessed from the Library panel.

• Editable shapes may be shape tweened or edited with editing tools.

• When the scale option is selected, anchors appear around the corners and sides of the image which
when clicked and dragged, resize an image.

• Breaking apart text converts the letters into shapes, causing them to be uneditable with the text tool.

• Adding a mask to a layer masks the items in the layer directly beneath it.

• Interactive help forms may be created with Flash.

• The Go to and Play action causes the movie to advance to a particular frame and play.

• Shape tweens appear green in the timeline.

• Frame-by-frame animations are created as a succession of keyframes.

• Preloading animations use ActionScript to pause the movie at a particular frame until all of the
elements of the movie have loaded.

• The Rotate option for motion tweening spins a object on its axis in a particular direction over the
length of the animation.

• The rate of progression in a gradient may be changed by sliding the inner or outer color boxes in
the Fill panel.

• Converting text into a button simulates a text hyperlink created with XHTML.

• The getURL action creates a hyperlink directing the user to a new page or site.

TERMINOLOGY
ActionScript dynamic text
active tool editing stage
arrow tool embed tag
Background Color eraser tool
break apart event
button state export to Flash Player
button symbol expression
Character panel file size
constrained proportions fill color
convert to symbol Flash Player plug-in
Copy Frames frame

iw3htp2_19.fm Page 630 Saturday, July 21, 2001 1:58 PM

Chapter 19 Macromedia® Flash™: Building Interactive Animations 631

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

SELF-REVIEW EXERCISES
19.1 Fill in the blanks in each of the following statements:

a) Macromedia Flash’s feature draws the in-between frames of an animation.
b) Graphics, buttons and movie clips are all types of .
c) The two types of tweening in Macromedia Flash are tweening and

 tweening.
d) Macromedia Flash’s scripting language is called .
e) The area in which the movie is created is called the .
f) Holding down the Shift key while drawing with the oval tool draws a perfect .
g) “Morphing” one shape into another over a period of time requires .
h) Every shape in Flash is created with a and a .
i) The feature provides help when drawing by aligning items with each other

and with the scene grid.
j) tell Flash how a shape or symbol should look at the beginning and end of an

animation.

19.2 State whether each of the following is true or false. If false, explain why.
a) A Macromedia Flash button’s hit state is entered when the button is clicked.
b) To draw a straight line in Flash, hold down the Shift key while drawing with the pencil

tool.
c) Motion tweening moves objects on the stage.
d) The more frames that you give to an animation, the slower it is.
e) Setting the argument of Flash’s random function to 5 tells the function to generate a

number between 1 and 5, inclusive.
f) The maximum number of layers allowed in a movie is ten.
g) Flash does not provide for text larger then 72 pt.
h) Flash can shape-tween only one shape per layer.
i) When a new layer is created, it is placed above the selected layer.

Frame Rate noembed tag
function object tag
getURL oval tool
goto parent movie
gradient Paste Frames
graphic symbol playhead
grouped object Publish
hand tool random
If/Else rectangle tool
Import scale option
insert layer scene
instance shape tween
keyframe stage
layer stop
Library panel symbol
masking Test Movie
motion tween text field
movie text tool
movie clip symbol timeline
Movie Explorer tweening
Movie Properties dialog zoom tool

iw3htp2_19.fm Page 631 Saturday, July 21, 2001 1:58 PM

632 Macromedia® Flash™: Building Interactive Animations Chapter 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

j) The lasso tool selects objects by drawing free-hand or straight-edge selection areas.

ANSWERS TO SELF-REVIEW EXERCISES
19.1 a) Tweening. b) symbols. c) shape, motion. d) ActionScript. e) stage. f) circle. g) shape
tweening. h) fill, stroke. i) snap. j) Keyframes.

19.2 a) False. The down state is when the button is clicked. b) True. c) True. d) True. e) False.
Setting the argument of Flash’s random function to 5 tells the function to generate a number between
0 and 4, inclusive. f) False. Flash allows an unlimited number of layers for each movie. g) False. Al-
though 72 pt is the highest you can select from the drop-down menu, you can enter up to 999 with the
keyboard. h) False. Flash can tween as many shapes as there are on a layer. The effect is usually better
when the shapes are placed on their own layers. i) True. j) True.

EXERCISES
19.3 Using the combination of one movie clip symbol and one button symbol to create a naviga-
tion bar that contains four buttons, make the buttons trigger an animation (contained in the movie clip)
when the user rolls over the buttons with the mouse. Link the four buttons to www.nasa.gov,
www.w3c.org, www.flashkit.com, and www.cnn.com.

19.4 Download and import five WAV files from www.coolarchive.com. Create five but-
tons, each activating a different sound when it is pressed.

19.5 Create an animated mask, which acts as a spotlight on an image. Import the file arch-
es.jpg from the images folder in the Chapter 19 examples directory. Change the background
color of the movie to black. Animate the mask in the layer above to create a spotlight effect.

19.6 Create a text “morph” animation using a shape tween. Make the text that appears in the first
frame of the animation change into a shape in the last frame. Make the text and the shape different
colors.

19.7 Give a brief description of the following terms:
a) playhead.
b) symbol.
c) Flash Player plug-in.
d) tweening.
e) ActionScript.
f) Frame Rate.
g) Library panel.
h) masking.

19.8 Describe what the following file extensions are used for related to Flash movie development.
a) .fla.
b) .swf.
c) .exe.
d) .html.

WORKS CITED
The notation <www.domain-name.com> indicates that the citation is for information found at that
Web site.
1. <www.macromedia.com>

iw3htp2_19.fm Page 632 Saturday, July 21, 2001 1:58 PM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

20
Extensible Markup
Language (XML)

Objectives
• To understand XML.
• To be able to mark up data using XML.
• To become familiar with the types of markup

languages created with XML.
• To understand the relationships among DTDs,

Schemas and XML.
• To understand the fundamentals of DOM-based and

SAX-based parsing.
• To understand the concept of an XML namespace.
• To be able to create simple XSL documents.
Knowing trees, I understand the meaning of patience.
Knowing grass, I can appreciate persistence.
Hal Borland

Like everything metaphysical, the harmony between thought
and reality is to be found in the grammar of the language.
Ludwig Wittgenstein

iw3htp2_20.fm Page 633 Friday, July 20, 2001 1:18 PM

634 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

20.1 Introduction
The World Wide Web Consortium’s (W3C’s) XML Working Group developed XML (Ex-
tensible Markup Language), which is related to Standard Generalized Markup Language
(SGML), in 1996. XML is a widely supported open technology (i.e., nonproprietary tech-
nology) for data exchange.

XML documents contain only data, not formatting instructions, so applications that
process XML documents must decide how to display the document’s data. For example, a
PDA (personal digital assistant) may render an XML document differently than a wireless
phone or desktop computer would render that document.

XML permits document authors to create markup for virtually any type of information.
This extensibility enables document authors to create entirely new markup languages for
describing specific types of data, including mathematical formulas, chemical molecular
structures, music, recipes, etc. Some XML-based markup languages include XHTML
(Chapters 4 and 5), MathML (for mathematics), VoiceXML™ (for speech), SMIL™ (the
Synchronous Multimedia Integration Language—for multimedia presentations), CML
(Chemical Markup Language—for chemistry) and XBRL (Extensible Business Reporting
Language—for financial data exchange).

Outline

20.1 Introduction
20.2 Structuring Data
20.3 XML Namespaces
20.4 Document Type Definitions (DTDs) and Schemas

20.4.1 Document Type Definitions
20.4.2 W3C XML Schema Documents

20.5 XML Vocabularies
20.5.1 MathML™
20.5.2 Chemical Markup Language (CML)
20.5.3 Other Markup Languages

20.6 Document Object Model (DOM)
20.7 DOM Methods
20.8 Simple API for XML (SAX)
20.9 Extensible Stylesheet Language (XSL)
20.10 Microsoft BizTalk™
20.11 Simple Object Access Protocol (SOAP)
20.12 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_20.fm Page 634 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 635

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

XML elements describe the data contained in those elements, so XML-processing pro-
grams can search, sort, manipulate and render XML documents using technologies such as
the Extensible Stylesheet Language (XSL), which we discuss later in this chapter.

XML documents are highly portable. Viewing or modifying an XML document—
which typically ends with the .xml filename extension—does not require special software.
Any text editor that supports ASCII/Unicode characters can open XML documents for
viewing and editing. One important characteristic of XML is that it is both human readable
and machine readable.

Processing an XML document requires a software program called an XML parser (or
an XML processor). Most XML parsers are available at no charge and for a variety of pro-
gramming languages (such as Java™, Python, C++, etc.). Parsers check an XML docu-
ment’s syntax and enable software programs to process marked-up data. XML parsers can
support the Document Object Model (DOM) or the Simple API for XML (SAX).

DOM-based parsers build tree structures containing XML document data in memory.
DOM-based parsers enable software programs to manipulate data in an XML document.
SAX-based parsers process XML documents and generate events when the parser encoun-
ters tags, text, comments, etc. These events contain data from the XML document. Software
programs can “listen” for these events to obtain data from the XML document. Several
Independent Software Vendors (ISVs) have developed XML parsers, which can be found
at www.xml.com/xml/pub/Guide/XML_Parsers. In Sections 20.6 and 20.8 we
discuss DOM and SAX, respectively.

An XML document optionally can reference a document that defines that XML docu-
ment’s structure. This document is either a Document Type Definition (DTD) or a schema.
When an XML document references a DTD or schema, some parsers (called validating
parsers) can read the DTD/schema and check that the XML document follows the structure
that the DTD/schema defines. If the XML document conforms to the DTD/schema (i.e., the
document has the appropriate structure), the XML document is valid. Parsers that cannot
check for document conformity against DTDs/schemas are nonvalidating parsers. If an
XML parser (validating or non-validating) can process an XML document successfully,
that XML document is well formed (i.e., it is syntactically correct). By definition, a valid
XML document also is well-formed. We discuss DTDs and schemas in Section 20.4.

20.2 Structuring Data
In this section and throughout this chapter, we create our own XML markup. With XML,
a document author can create elements that describe data precisely. Tags delimit the start
and end of each element.

Common Programming Error 20.1
XML is case sensitive. Using the wrong case for an XML tag is a syntax error. 20.1

Common Programming Error 20.2
In an XML document, each start tag must have a matching end tag. 20.2

Common Programming Error 20.3
Not enclosing attribute values in either double quotes ("") or single quotes (’’) is an error. 20.3

iw3htp2_20.fm Page 635 Friday, July 20, 2001 1:18 PM

636 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

In Fig. 20.1, we mark up a simple news article using XML tags. We begin with the
optional XML declaration on line 1. Value version indicates the XML version to which the
document conforms. The current XML standard is version 1.0. The World Wide Web Con-
sortium may release new versions as XML evolves to meet the requirements of many fields.

Good Programming Practice 20.1
Always include an XML declaration. 20.1

Common Programming Error 20.4
Placing whitespace characters before the XML declaration is an error. 20.4

Comments (lines 3–4) in XML use the same syntax as XHTML. Every XML docu-
ment must contain exactly one root element, which contains every other element. In Fig.
20.1, article (line 6) is the root element. The lines that precede the root element are the
XML prolog. XML element and attribute names can be of any length and may contain let-
ters, digits, underscores, hyphens and periods. However, XML names must begin with
either a letter or an underscore.
s. Common Programming Error 20.5

Using either a space or a tab in an XML element or attribute name is an error. 20.5

Good Programming Practice 20.2
XML element and attribute names should be meaningful and human readable. For example,
use <address> instead of <adr>. 20.2

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 20.1: article.xml -->
4 <!-- Article structured with XML -->
5
6 <article>
7
8 <title>Simple XML</title>
9

10 <date>September 19, 2001</date>
11
12 <author>
13 <firstName>Tem</firstName>
14 <lastName>Nieto</lastName>
15 </author>
16
17 <summary>XML is pretty easy.</summary>
18
19 <content>Once you have mastered XHTML, XML is easily
20 learned. You must remember that XML is not for
21 displaying information but for managing information.
22 </content>
23
24 </article>

Fig. 20.1Fig. 20.1Fig. 20.1Fig. 20.1 News article marked up with XML.

iw3htp2_20.fm Page 636 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 637

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Common Programming Error 20.6
Attempting to create more than one root element is an error. 20.6

Element title (line 8) contains text that describes the article’s title. Similarly, date
(line 10), summary (line 17) and content (line 19) each contain text that describes the
date, summary and content of the document, respectively.

Any element (such as article and author) that contains other elements is a con-
tainer element. Elements inside a container element are child elements (or children) of that
container element.

Note that the XML document of Fig. 20.1 does not contain formatting information for
the letter. This is because XML is a technology only for structuring data. Formatting and
displaying data from an XML document is application specific. For example, when Internet
Explorer 5.5 (IE5.5) loads an XML document, IE5.5’s parser msxml parses and displays the
document. Figure 20.2 shows article.xml (Fig. 20.1) displayed in IE5.5. Notice that
what IE5.5 displays is virtually identical to the listing of Fig. 20.1—because, again, an
XML document does not contain formatting information. We will discuss how to format
data in an XML document when we study the Extensible Stylesheet Language (XSL) later
in this chapter.

Notice the minus sign (–) and plus sign (+) in Fig. 20.2. IE5.5 places these symbols
next to all container elements. A minus sign indicates that IE5.5 is displaying that container
element’s child elements. Clicking the minus sign next to an element causes IE5.5 to hide
that container element’s children and replaces the minus sign with a plus sign. Clicking the
plus sign next to an element causes IE5.5 to display that container element’s children and
replaces the plus sign with a minus sign.

Now that we have seen a simple XML document, let us examine a slightly more com-
plex XML document that marks up a business letter (Fig. 20.3). As with the previous
example, we begin the document with the XML declaration on line 1. This explicitly states
the XML version to which the document conforms.

Line 6 specifies that this XML document references a document type definition (DTD).
DTDs define the grammatical rules for an XML document. An XML document does not
require a DTD, but validating XML parsers can use a DTD to ensure that an XML docu-
ment has the proper structure. The DTD reference (line 6) contains three items: the name
of the root element (letter) that the DTD specifies, the keyword SYSTEM (which
denotes an external DTD—a DTD declared in a separate file), and the DTD’s name and
location (i.e., letter.dtd in the current directory). DTD documents typically end with
the .dtd extension. We discuss DTDs and letter.dtd in detail in Section 20.4.

The output of Fig. 20.3 shows the results of validating the document using Microsoft’s
XML Validator. Several tools (many of which are free) exist that check a document’s con-
formity to DTDs and schemas (discussed in Section 20.4). Visit www.w3.org/XML/
Schema.html for a list of validating tools. Microsoft’s XML Validator is available free
of charge from msdn.microsoft.com/downloads/samples/Internet/xml/
xml_validator/sample.asp.

Common Programming Error 20.7
Overlapping XML tags is a syntax error. For example, <x><y>hello</x><y> is illegal. 20.7

iw3htp2_20.fm Page 637 Friday, July 20, 2001 1:18 PM

638 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Root element letter contains child elements contact, salutation, para-
graph, closing and signature. The first contact element (lines 10–19) has
attribute type with value from, which indicates that this contact element identifies the
letter’s sender. The second contact element (lines 21–30) has attribute type with value
to, which indicates that this contact element identifies the letter’s recipient. A con-
tact element stores the contact's name, address and phone number. Element saluta-
tion (line 32) marks up the letter’s salutation. A paragraph element (lines 34–38)

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 IE5.5 displaying article.xml.

iw3htp2_20.fm Page 638 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 639

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

marks up the letter’s body. Elements closing (line 39) and signature (line 40) mark
up the closing sentence and the author’s signature, respectively.

Line 18 introduces empty element flag, which does not contain any text. Empty ele-
ment flag indicates contact’s gender. This attribute allows us to address the recipient cor-
rectly either as Mr. (if gender is "M") or Ms. (if gender is "F"). Document authors can
close an empty element either by placing a slash at the end of the element (as shown on line
18) or by writing a closing tag explicitly, as in

<flag gender = "F"></flag>

Common Programming Error 20.8
Not terminating an empty element with a closing tag or a forward slash (/) is a syntax error. 20.8

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 20.3: letter.xml -->
4 <!-- Business letter formatted with XML -->
5
6 <!DOCTYPE letter SYSTEM "letter.dtd">
7
8 <letter>
9

10 <contact type = "from">
11 <name>John Doe</name>
12 <address1>123 Main St.</address1>
13 <address2></address2>
14 <city>Anytown</city>
15 <state>Anystate</state>
16 <zip>12345</zip>
17 <phone>555-1234</phone>
18 <flag gender = "M"/>
19 </contact>
20
21 <contact type = "to">
22 <name>Joe Schmoe</name>
23 <address1>Box 12345</address1>
24 <address2>15 Any Ave.</address2>
25 <city>Othertown</city>
26 <state>Otherstate</state>
27 <zip>67890</zip>
28 <phone>555-4321</phone>
29 <flag gender = "M"/>
30 </contact>
31
32 <salutation>Dear Sir:</salutation>
33
34 <paragraph>It is our privilege to inform you about our new
35 database managed with XML. This new system allows
36 you to reduce the load of your inventory list server by
37 having the client machine perform the work of sorting
38 and filtering the data.</paragraph>

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 Business letter marked up as XML (part 1 of 2).

iw3htp2_20.fm Page 639 Friday, July 20, 2001 1:18 PM

640 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

39 <closing>Sincerely</closing>
40 <signature>Mr. Doe</signature>
41
42 </letter>

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 Business letter marked up as XML (part 2 of 2).

iw3htp2_20.fm Page 640 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 641

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

20.3 XML Namespaces
XML allows document authors to create custom elements. This can result in naming colli-
sions (i.e., multiple different elements that each have the same name) among elements in
an XML document. For example, we may use the element book to mark up data about a
Deitel publication. A stamp collector may use an element book to mark up data about a
book of stamps. Using both of these elements in the same document would create a naming
collision, making it difficult to determine which kind of data each element contained.

Namespaces provide a means for document authors to prevent collisions. For example,

<subject>Math</subject>

and

<subject>Thrombosis</subject>

use element subject to mark up a piece of data. However, in the first case the subject is
something one studies in school, whereas in the second case the subject is in the field of
medicine. Namespaces can differentiate these two subject elements. For example

<school:subject>Math</school:subject>

and

<medical:subject>Thrombosis</medical:subject>

Both school and medical are namespace prefixes. A document author prepends a
namespace prefix to an element or attribute name to specify the namespace for that element
or attribute. Each namespace prefix has a corresponding uniform resource identifier (URI)
that uniquely identifies the namespace. A URI is simply a series of characters for differen-
tiating names. For example, the string urn:deitel:book could be a URI for a
namespace that contains elements and attributes related to Deitel & Associates, Inc. publi-
cations. Document authors can create their own namespace prefixes using virtually any
name, except the reserved namespace xml.

Common Programming Error 20.9
Attempting to create a namespace prefix xml in any mixture of case is an error. 20.9

Figure 20.4 demonstrates namespaces. In this document, namespaces differentiate two
distinct file elements.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 20.4 : namespace.xml -->
4 <!-- Demonstrating Namespaces -->
5
6 <text:directory xmlns:text = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 Listing for namespace.xml (part 1 of 2).

iw3htp2_20.fm Page 641 Friday, July 20, 2001 1:18 PM

642 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Software Engineering Observation 20.1
Attributes do not require namespace prefixes, because each attribute has a corresponding
element that specifies the namespace prefix. 20.1

Lines 6–7 use the XML namespace keyword xmlns to create two namespace pre-
fixes—text and image—and assign URIs to those namespace prefixes.

Document authors must provide a unique URI to ensure that a namespace is unique.
Here, we use urn:deitel:textInfo and urn:deitel:imageInfo as URIs for
the text and image namespace prefixes, respectively. Document authors commonly use
Universal Resource Locators (URLs) for URIs, because the domain names (e.g.,
deitel.com) in URLs must be unique. For example, lines 6–7 could have used the
namespace URIs

<text:directory xmlns:text =
 "http://www.deitel.com/xmlns-text"
 xmlns:image = "http://www.deitel.com/xmlns-image">

where URLs related to the Deitel & Associates, Inc. Web site (www.deitel.com) serve
as URIs for the text and image namespace prefixes. The parser does not visit these
URLs, nor do these URLs represent actual Web pages. These URLs simply represent
unique series of characters for differentiating names.

Lines 9–11 use the namespace prefix text for elements file and description.
Notice that the end tags also specify the namespace prefix text. Lines 13–16 apply
namespace prefix image to elements file, description and size.

To eliminate the need to place namespace prefixes in each element, document authors
may specify a default namespace for an element and that element’s children. Figure 20.5
demonstrates using a default namespace (urn:deitel:textInfo) for element
directory.

9 <text:file filename = "book.xml">
10 <text:description>A book list</text:description>
11 </text:file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100"/>
16 </image:file>
17
18 </text:directory>

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 Listing for namespace.xml (part 2 of 2).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 20.5 : defaultnamespace.xml -->
4 <!-- Using Default Namespaces -->
5

Fig. 20.5Fig. 20.5Fig. 20.5Fig. 20.5 Using default namespaces (part 1 of 2).

iw3htp2_20.fm Page 642 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 643

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

We declare a default namespace by using keyword xmlns and by specifying the
namespace URI (line 6). Once this default namespace is in place, the element that declared
the default namespace and that element’s children do not need namespace prefixes to be
part of the default namespace. Any element that does specify a namespace prefix is not part
of the default namespace. Element file (lines 9–11) is in the urn:deitel:textInfo
namespace, which is the default namespace. Compare this to Fig. 20.4, where we prefixed
the file and description elements with the namespace prefix text (lines 9–11).

Element file (lines 13–16) uses the namespace prefix image to indicate that this
element is in the urn:deitel:imageInfo namespace, not the default namespace.

XML-based languages such as XML Schema (Section 20.4.2), Extensible Stylesheet
Language (Section 20.9), BizTalk (Section 20.10) and SOAP (Section 20.11) often use
namespaces.

20.4 Document Type Definitions (DTDs) and Schemas
In this section, we discuss two types of documents for specifying XML document structure:
Document Type Definitions (DTDs) and schemas. In Section 20.4.1, we present DTDs and
in Section 20.4.2 we present schemas.

Software Engineering Observation 20.2
Because XML documents can have many different structures, an application cannot tell if a
particular document it receives is complete, missing data or ordered properly. DTDs and Sche-
mas solve this problem by providing an extensible means of describing XML document struc-
ture. Applications can use DTDs or schemas to perform validity checks on XML documents. 20.2

20.4.1 Document Type Definitions
In Fig. 20.3, we presented a simple business letter marked up with XML. The DTD of Fig
20.6 specifies the business letter’s list of element types, attributes and their relationships to
one another. A DTD enables an XML parser to verify whether an XML document is valid
(i.e., its elements contain the proper attributes, are in the proper sequence, etc.). A DTD ex-
presses the set of rules for document structure using an EBNF (Extended Backus-Naur
Form) grammar—not XML syntax. Line 6 of Fig. 20.3 references this DTD.

6 <directory xmlns = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8
9 <file filename = "book.xml">

10 <description>A book list</description>
11 </file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100"/>
16 </image:file>
17
18 </directory>

Fig. 20.5Fig. 20.5Fig. 20.5Fig. 20.5 Using default namespaces (part 2 of 2).

iw3htp2_20.fm Page 643 Friday, July 20, 2001 1:18 PM

644 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Line 4’s ELEMENT element type declaration defines the rules for element letter. In
this case, letter contains one or more contact elements, one salutation element,
one or more paragraph elements, one closing element and one signature ele-
ment, in that sequence. The plus sign (+) occurrence indicator specifies that the DTD
allows one or more occurrences of an element. Other occurrence indicators include the
asterisk (*), which indicates an optional element that can occur any number of times and
the question mark (?), which indicates an optional element that can occur at most once. If
an element does not have an occurrence indicator, the DTD allows exactly one occurrence.

The contact element definition (line 7) specifies that element contact contains
child elements name, address1, address2, city, state, zip, phone and flag—
in that order. The DTD requires exactly one occurrence of each element.

Line 9 uses the ATTLIST element type declaration to define an attribute (i.e., type)
for the contact element. Keyword #IMPLIED specifies that if the parser finds a con-
tact element without a type attribute, the parser can choose an arbitrary value for the
attribute or ignore the attribute and the document will be valid. The XML document also is
valid if a contact element does not have a type attribute. Other types of default values
include #REQUIRED and #FIXED. Keyword #REQUIRED specifies that the attribute
must be present in the element, and keyword #FIXED specifies that the attribute (if
present) must have the given fixed value. For example,

<!ATTLIST address zip #FIXED "01757">

indicates that attribute zip must have the value 01757 for the document to be valid. If the
attribute is not present, the parser, by default, uses the fixed value that the ATTLIST dec-

1 <!-- Fig. 20.4: letter.dtd -->
2 <!-- DTD document for letter.xml -->
3
4 <!ELEMENT letter (contact+, salutation, paragraph+,
5 closing, signature)>
6
7 <!ELEMENT contact (name, address1, address2, city, state,
8 zip, phone, flag)>
9 <!ATTLIST contact type CDATA #IMPLIED>

10
11 <!ELEMENT name (#PCDATA)>
12 <!ELEMENT address1 (#PCDATA)>
13 <!ELEMENT address2 (#PCDATA)>
14 <!ELEMENT city (#PCDATA)>
15 <!ELEMENT state (#PCDATA)>
16 <!ELEMENT zip (#PCDATA)>
17 <!ELEMENT phone (#PCDATA)>
18 <!ELEMENT flag EMPTY>
19 <!ATTLIST flag gender (M | F) "M">
20
21 <!ELEMENT salutation (#PCDATA)>
22 <!ELEMENT closing (#PCDATA)>
23 <!ELEMENT paragraph (#PCDATA)>
24 <!ELEMENT signature (#PCDATA)>

Fig. 20.6Fig. 20.6Fig. 20.6Fig. 20.6 Business letter DTD.

iw3htp2_20.fm Page 644 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 645

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

laration specifies. Flag CDATA specifies that attribute type contains character data,
which indicates that the parser will not process the data, but will pass the data to the appli-
cation without modification.

Software Engineering Observation 20.3
DTD syntax does not provide any mechanism for describing an element’s (or attribute’s)
data type. For example, a DTD cannot specify that a particular element or attribute can con-
tain only integer data. 20.3

Flag #PCDATA (line 11) specifies that the element can contain parsed character data
(i.e., text). Parsable character data should not contain markup characters, such as less than
(<), greater than (>) and ampersand (&). The document author should replace any markup
character with its corresponding entity (i.e., <, > or &).

Line 18 creates an empty element named flag. Keyword EMPTY specifies that the
element does not contain any data. Attributes commonly contain data that the empty ele-
ment describes (e.g., the gender attribute of empty element flag).

Common Programming Error 20.10
If a document references a DTD and that document contains any element or attribute that the
DTD does not define, the document is invalid. 20.10

Common Programming Error 20.11
Using markup characters (e.g., <, > and &) in attribute values is an error. Attribute values
can contain ampersands (&) only for inserting entities (e.g., <). 20.11

20.4.2 W3C XML Schema Documents

In this section, we introduce schemas for validating XML documents. Many developers in
the XML community believe DTDs are not flexible enough to meet today’s programming
needs. For example, programs cannot manipulate DTDs (e.g., search, transform into differ-
ent representations such as XHTML, etc.) in the same manner as XML documents because
DTDs are not themselves XML documents. These and other limitations have led to the de-
velopment of schemas.

Unlike DTDs, schemas do not use EBNF grammar. Instead, schemas use XML syntax
and are actually XML documents that programs can manipulate like other XML docu-
ments. Like DTDs, schemas require validating parsers. In the near future, schemas likely
will replace DTDs as the primary means of describing XML document structure.

In this section, we focus on XML Schema—the schema vocabulary that the W3C cre-
ated. XML Schema is a Recommendation (i.e., a stable release suitable for use in industry).
For the latest on W3C XML Schema, visit www.w3.org/XML/Schema. [Note: Because
XML Schema became a Recommendation at the time of this writing, few validating parsers
exist. Now that XML Schema is a recommendation, parser support should follow quickly.]

A DTD describes an XML document’s structure, not the content of that document’s
elements. For example,

<quantity>5</quantity>

contains character data. If the document that contains element quantity references a
DTD, an XML parser can validate the document to confirm that this element indeed does

iw3htp2_20.fm Page 645 Friday, July 20, 2001 1:18 PM

646 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

contains PCDATA content, but the parser cannot validate that the content is numeric; DTDs
do not provide such capability. So, unfortunately, the parser also considers markup such as

<quantity>hello</quantity>

to be valid. The application that uses the XML document that contains this markup would
need to test that the data in element quantity is numeric and take appropriate action if it
is not.

Software Engineering Observation 20.4
XML Schema defines a DTD to which schemas must conform. Validating parsers include this
DTD for validating schemas. 20.4

Software Engineering Observation 20.5
Many organizations and individuals are creating DTDs and schemas for a broad range of
applications (e.g., financial transactions, medical prescriptions, etc.). These collections—
called repositories—often are available free for download from the Web (e.g.,
www.dtd.com). 20.5

XML Schema enables schema authors to specify that element quantity’s data must
be numeric. When a parser validates the XML document against this schema, the parser can
determine that 5 conforms and that hello does not. An XML document that conforms to
a schema document is schema valid and a document that does not conform is invalid.

Software Engineering Observation 20.6
Because schemas are XML documents that reference DTDs, schemas themselves must be valid. 20.6

Figure 20.7 shows a schema-valid XML document named book.xml and Fig. 20.8
shows the XML Schema document (book.xsd) that defines the structure for book.xml.
Although schema authors can use virtually any filename extension, schemas commonly use
the .xsd extension. [Note: At the time of this writing, XML Schema was a new W3C Rec-
ommendation, so there were few validators available. We used Oracle’s Java-based XML
Schema validator to produce the output shown. Please visit www.deitel.com, for
updates on XML Schema and available validator software.]

1 <?xml version = "1.0"?>
2 <!-- Fig. 20.7 : book.xml -->
3 <!-- Book list marked up as XML -->
4
5 <deitel:books xmlns:deitel = "http://www.deitel.com/booklist">
6 <book>
7 <title>XML How to Program</title>
8 </book>
9 <book>

10 <title>C How to Program</title>
11 </book>
12 <book>
13 <title>Java How to Program</title>
14 </book>

Fig. 20.7Fig. 20.7Fig. 20.7Fig. 20.7 Schema-valid XML document (part 1 of 2).

iw3htp2_20.fm Page 646 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 647

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

XML Schema uses the namespace URI http://www.w3.org/2000/10/
XMLSchema and namespace prefix xsd (line 6 in Fig. 20.8). Root element schema con-
tains elements that define the XML document structure. Line 7 binds the URI http://
www.deitel.com/booklist to namespace prefix deitel. Line 8 specifies the
targetNamespace, which is the namespace for elements and attributes that this schema
defines.

In XML Schema, element element (line 10) defines an element to be included in the
XML document structure. Attributes name and type specify the element’s name and
data type, respectively. In this case, the name of the element is books and the data type is
deitel:BooksType. Any element (e.g., books) that contains attributes or child ele-
ments must define a complex type, which defines each attribute and child element. Type
deitel:BooksType (lines 12–15) is an example of a complex type. We prefix Book-

15 <book>
16 <title>C++ How to Program</title>
17 </book>
18 <book>
19 <title>Perl How to Program</title>
20 </book>
21 </deitel:books>

java -classpath .;..\lib\xmlparserv2.jar;..\lib\xschema.jar
XSDSetSchema book.xsd book.xml
The input file <book.xml> parsed without errors

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 20.8 : book.xsd -->
4 <!-- Simple W3C XML Schema document -->
5
6 <xsd:schema xmlns:xsd = "http://www.w3.org/2000/10/XMLSchema"
7 xmlns:deitel = "http://www.deitel.com/booklist"
8 targetNamespace = "http://www.deitel.com/booklist">
9

10 <xsd:element name = "books" type = "deitel:BooksType"/>
11
12 <xsd:complexType name = "BooksType">
13 <xsd:element name = "book" type = "deitel:BookType"
14 minOccurs = "1" maxOccurs = "unbounded"/>
15 </xsd:complexType>
16
17 <xsd:complexType name = "BookType">
18 <xsd:element name = "title" type = "xsd:string"/>
19 </xsd:complexType>
20
21 </xsd:schema>

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 XML Schema document for books.xml.

Fig. 20.7Fig. 20.7Fig. 20.7Fig. 20.7 Schema-valid XML document (part 2 of 2).

iw3htp2_20.fm Page 647 Friday, July 20, 2001 1:18 PM

648 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

sType with deitel, because this is a complex type that we have created, not an existing
XML Schema complex type.

Lines 12–15 use element complexType to define an element type that has a child
element named book. Because book contains a child element, its type must be a complex
type (e.g., BookType). Attribute minOccurs specifies that books must contain a min-
imum of one book element. Attribute maxOccurs, with value unbounded (line 14)
specifies that books may have any number of book child elements.

Lines 17–19 define the complexType BookType. Line 18 defines element title
with type xsd:string. When an element has a simple type such as xsd:string, it
is prohibited from containing attributes and child elements. XML Schema provides a large
number of data types such as xsd:date for dates, xsd:int for integers, xsd:double
for floating-point numbers and xsd:time for time.

Good Programming Practice 20.3
By convention, W3C XML Schema authors use namespace prefix xsd when referring to the
URI www.w3.org/2000/10/XMLSchema. 20.3

20.5 XML Vocabularies
XML allows authors to create their own tags to describe data precisely. People and organi-
zations in various fields of study have created many different kinds of XML for structuring
data. Some of these markup languages are: MathML (Mathematical Markup Language),
Scalable Vector Graphics (SVG), Wireless Markup Language (WML), Extensible Business
Reporting Language (XBRL), Extensible User Interface Language (XUL) and Product
Data Markup Language (PDML). Two other examples of XML vocabularies are W3C
XML Schema and the Extensible Stylesheet Language (XSL), which we discuss in Sec-
tions 20.4 and 20.9, respectively. The following subsections describe MathML, XBRL and
other custom markup languages.

20.5.1 MathML™

Until recently, computers typically have required specialized software packages such as
TeX and LaTeX for displaying complex mathematical expressions. This section introduces
MathML, which the W3C developed for describing mathematical notations and expres-
sions. One application that can parse and render MathML is the W3C’s Amaya™ browser/
editor, which can be downloaded at no charge from

www.w3.org/Amaya/User/BinDist.html

This Web page contains download links for the Windows 95/98/NT/2000, Linux® and So-
laris™ platforms. Amaya documentation and installation notes also are available at the
W3C Web site.

MathML markup describes mathematical expressions for display. Figure 20.9 uses
MathML to mark up a simple expression.

We embed the MathML content into an XHTML file by using a math element with
the default namespace http://www.w3.org/1998/Math/MathML (line 14). The
mrow element (line 16) is a container element for expressions that contains more than one
element. In this case, the mrow element contains five children. The mn element (line 17)

iw3htp2_20.fm Page 648 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 649

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

marks up a number. The mo element (line 18) marks up an operator (e.g., +). Using this
markup, we define the expression: 2+3=5, which a software program that supports
MathML could display.

Let us now consider using MathML to mark up an algebraic equation that uses expo-
nents and arithmetic operators (Fig. 20.10).

1 <?xml version="1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 20.9: mathml1.html -->
6 <!-- Simple MathML -->
7
8 <html xmlns="http://www.w3.org/1999/xhtml">
9

10 <head><title>Simple MathML Example</title></head>
11
12 <body>
13
14 <math xmlns = "http://www.w3.org/1998/Math/MathML">
15
16 <mrow>
17 <mn>2</mn>
18 <mo>+</mo>
19 <mn>3</mn>
20 <mo>=</mo>
21 <mn>5</mn>
22 </mrow>
23
24 </math>
25
26 </body>
27 </html>

Fig. 20.9Fig. 20.9Fig. 20.9Fig. 20.9 Expression marked up with MathML. (Courtesy of World Wide Web
Consortium (W3C).)

1 <?xml version="1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Fig. 20.10Fig. 20.10Fig. 20.10Fig. 20.10 Algebraic equation marked up with MathML (part 1 of 2). (Courtesy of
World Wide Web Consortium (W3C).)

iw3htp2_20.fm Page 649 Friday, July 20, 2001 1:18 PM

650 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Element mrow behaves like parentheses, which allows the document author to group
related elements properly. Line 18 uses entity reference ⁢ to indi-
cate a multiplication operation without a symbolic representation (i.e., the multiplication

4 <!-- Fig. 20.10: mathml2.html -->
5 <!-- Simple MathML -->
6
7 <html xmlns="http://www.w3.org/1999/xhtml">
8
9 <head><title>Algebraic MathML Example</title></head>

10
11 <body>
12
13 <math xmlns = "http://www.w3.org/1998/Math/MathML">
14 <mrow>
15
16 <mrow>
17 <mn>3</mn>
18 <mo>⁢</mo>
19
20 <msup>
21 <mi>x</mi>
22 <mn>2</mn>
23 </msup>
24
25 </mrow>
26
27 <mo>+</mo>
28 <mi>x</mi>
29 <mo>-</mo>
30
31 <mfrac>
32 <mn>2</mn>
33 <mi>x</mi>
34 </mfrac>
35
36 <mo>=</mo>
37 <mn>0</mn>
38
39 </mrow>
40 </math>
41
42 </body>
43 </html>

Fig. 20.10Fig. 20.10Fig. 20.10Fig. 20.10 Algebraic equation marked up with MathML (part 2 of 2). (Courtesy of
World Wide Web Consortium (W3C).)

iw3htp2_20.fm Page 650 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 651

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

symbol does not appear between the 3 and x). For exponentiation, line 20 uses the msup
element, which represents a superscript. This msup element has two children: the expres-
sion to be superscripted (i.e., the base) and the superscript (i.e., the exponent). Correspond-
ingly, the msub element represents a subscript. To display variables such as x, line 21 uses
identifier element mi.

To display a fraction, line 31 uses element mfrac. Lines 32–33 specify the numerator
and the denominator for the fraction. If either the numerator or the denominator contains
more than one element, it must appear in an mrow element.

Figure 20.11 marks up a calculus expression that contains an integral symbol and a
square-root symbol.

1 <?xml version="1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4 <!-- Fig. 20.11 mathml3.html -->
5 <!-- Calculus example using MathML -->
6
7 <html xmlns="http://www.w3.org/1999/xhtml">
8
9 <head><title>Calculus MathML Example</title></head>

10
11 <body>
12
13 <math xmlns = "http://www.w3.org/1998/Math/MathML">
14 <mrow>
15 <msubsup>
16
17 <mo>∫</mo>
18 <mn>0</mn>
19
20 <mrow>
21 <mn>1</mn>
22 <mo>-</mo>
23 <mi>y</mi>
24 </mrow>
25
26 </msubsup>
27
28 <msqrt>
29 <mrow>
30
31 <mn>4</mn>
32 <mo>⁢</mo>
33
34 <msup>
35 <mi>x</mi>
36 <mn>2</mn>
37 </msup>
38

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 Calculus expression marked up with MathML (part 1 of 2). (Courtesy of
World Wide Web Consortium (W3C).)

iw3htp2_20.fm Page 651 Friday, July 20, 2001 1:18 PM

652 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

The entity ∫ (line 17) represents the integral symbol, while the msubsup
element (line 15) specifies the superscript and subscript. Element mo marks up the integral
operator. Element msubsup requires three child elements: an operator (e.g., the integral
entity), the subscript expression (line 18) and the superscript expression (lines 20–24). Ele-
ment mn (line 18) marks up the number (i.e., 0) that represents the subscript. Element mrow
marks up the expression (i.e., 1-y) that specifies the superscript expression

Element msqrt (lines 28–43) represents a square root expression. Line 29 uses element
mrow to group the expression contained in the square root. Line 45 introduces entity
δ for representing a delta symbol. Delta is an operator, so line 45 places this entity
in element mo. To see other operations and symbols in MathML, visit www.w3.org/Math.

20.5.2 Chemical Markup Language (CML)
Chemical Markup Language (CML) is an XML vocabulary for representing molecular and
chemical information. Many previous methods for storing this type of information (e.g., spe-
cial file types) inhibited document reuse. CML takes advantage of XML’s portability to en-
able document authors to use and reuse molecular information without corrupting important
data in the process. Although many of our readers will not know the chemistry required to
understand the example in this section fully, we feel that CML so beautifully illustrates the
purpose of XML that we chose to include the example for the readers who wish to see XML
“at its best.” Document authors can edit and view CML using the Jumbo browser, which is
available at www.xml-cml.org. [Note: At the time of this writing, Jumbo did not allow
users to load documents for rendering. For illustration purposes, we have created the image
shown in Fig. 20.12.] Fig. 20.12 shows an ammonia molecule marked up in CML.

39 <mo>+</mo>
40 <mi>y</mi>
41
42 </mrow>
43 </msqrt>
44
45 <mo>δ</mo>
46 <mi>x</mi>
47 </mrow>
48 </math>
49 </body>
50 </html>

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 Calculus expression marked up with MathML (part 2 of 2). (Courtesy of
World Wide Web Consortium (W3C).)

Integral
symbol

Delta symbol

iw3htp2_20.fm Page 652 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 653

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Lines 1–2 contain a processing instruction (PI), which is application-specific informa-
tion embedded in an XML document. The characters <? and ?> delimit a processing
instruction. The processing instruction of lines 1–2 provides application-specific informa-
tion to the Jumbo CML browser. Processing instructions consist of a PI target (e.g.,

1 <?jumbo:namespace ns = "http://www.xml-cml.org"
2 prefix = "C" java = "jumbo.cmlxml.*Node" ?>
3
4 <!-- Fig. 20.12 : ammonia.xml -->
5 <!-- Structure of ammonia -->
6
7 <C:molecule id = "Ammonia">
8
9 <C:atomArray builtin = "elsym">

10 N H H H
11 </C:atomArray>
12
13 <C:atomArray builtin = "x2" type = "float">
14 1.5 0.0 1.5 3.0
15 </C:atomArray>
16
17 <C:atomArray builtin = "y2" type = "float">
18 1.5 1.5 0.0 1.5
19 </C:atomArray>
20
21 <C:bondArray builtin = "atid1">
22 1 1 1
23 </C:bondArray>
24
25 <C:bondArray builtin = "atid2">
26 2 3 4
27 </C:bondArray>
28
29 <C:bondArray builtin = "order" type = "integer">
30 1 1 1
31 </C:bondArray>
32
33 </C:molecule>

Fig. 20.12Fig. 20.12Fig. 20.12Fig. 20.12 CML markup for ammonia molecule .

iw3htp2_20.fm Page 653 Friday, July 20, 2001 1:18 PM

654 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

jumbo:namespace) and a PI value (e.g., ns = "http://www.xml-cml.org"
prefix = "C" java = "jumbo.cmlxml.*Node").

Portability Tip 20.1
Processing instructions allow document authors to embed application-specific information
in an XML document, without affecting that document’s portability. 20.1

Line 7 defines an ammonia molecule using element molecule. Attribute id identi-
fies this molecule as Ammonia. Lines 9–11 use element atomArray and attribute
builtin to specify the molecule’s atoms. Ammonia contains one nitrogen atom and three
hydrogen atoms.

Lines 13–15 show element atomArray with attribute builtin assigned the value
x2 and type float. This specifies that the element contains a list of floating-point num-
bers, each of which indicates the x-coordinate of an atom. The first value (1.5) is the x-
coordinate of the first atom (nitrogen), the second value (0.0) is the x-coordinate of the
second atom (the first hydrogen atom) and so forth.

Lines 17–19 show element atomArray with attribute builtin assigned the value
y2 and type float. This specifies that the element contains a list of y-coordinate values.
The first value (1.5) is the y-coordinate of the first atom (nitrogen), the second value
(1.5) is the y-coordinate of the second atom (the first hydrogen atom) and so forth.

Lines 21–23 show element bondArray with attribute builtin assigned the value
atid1. Element bondArray defines the bonds between atoms. This element has a
builtin value of atid1, so the values this element specifies compose the first atom in
a pair of atoms. We are defining three bonds, so we specify three values. For each value we
specify the first atom in the atomArray, the nitrogen atom.

Lines 25–27 show element bondArray with attribute builtin assigned the value
atid2. The values of this element compose the second atom in a pair of atoms and denote
the three hydrogen atoms.

Lines 29–31 show element bondArray with the attribute builtin assigned the
value order and type integer. The values of this element are integers that represent
the number of bonds between the pairs of atoms. Thus, the bond between the nitrogen atom
and the first hydrogen is a single bond, the bond between the nitrogen atom and the second
hydrogen atom is a single bond, and the bond between the nitrogen atom and the third
hydrogen atom is a single bond.

20.5.3 Other Markup Languages
Literally hundreds of markup languages derive from XML. Everyday developers find new
uses for XML. In Fig. 20.13, we summarize some of these markup languages.

20.6 Document Object Model (DOM)
Although an XML document is a text file, retrieving data from the document using traditional
sequential-file access techniques is neither practical nor efficient, especially for adding and
removing elements dynamically. As mentioned earlier, when a DOM parser successfully
parses an XML document, the parser creates a tree structure in memory that contains the doc-
ument’s data. Figure 20.14 shows the tree structure for the document article.xml dis-

iw3htp2_20.fm Page 654 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 655

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

cussed in Fig. 20.1. This hierarchical tree structure is a Document Object Model (DOM) tree.
Each name (e.g., article, date, firstName, etc.) represents a node. A node that con-
tains other nodes (called child nodes or children) is called a parent node (e.g., author). A
parent node can have many children, but a child node can have only one parent node. Nodes
that are peers (e.g., firstName and lastName) are called sibling nodes. A node’s descen-
dent nodes include that node’s children, its children’s children and so on. A node’s ancestor
nodes include that node’s parent, its parent’s parent and so on.

The DOM has a single root node, which contains all other nodes in the document. For
example, the root node for article.xml (Fig. 20.1) contains a node for the XML declara-
tion (line 1), two nodes for the comments (lines 3–4) and a node for the root element (line 6).

Each node is an object that has properties, methods and events. Properties associated
with a node include names, values, child nodes, etc. Methods enable programs to create,
delete and append nodes, load XML documents, etc. The XML parser exposes these
methods as a programmatic library—called an Application Programming Interface (API).

20.7 DOM Methods
To introduce document manipulation with the XML Document Object Model, we provide
a simple scripting example that uses JavaScript and Microsoft’s msxml parser. This exam-
ple takes an XML document (Fig. 20.1) that marks up an article and uses the DOM API to
display the document’s element names and values. Figure 20.15 lists the JavaScript code
that manipulates this XML document and displays its content in an XHTML page.

Markup Language Description

VoiceXML™ The VoiceXML forum founded by AT&T, IBM, Lucent and Motorola
developed VoiceXML. It provides interactive voice communication
between humans and computers through a telephone, PDA (Personal
Digital Assistant) or desktop computer. IBM’s VoiceXML SDK can
process VoiceXML documents. Visit www.voicexml.org for more
information on VoiceXML. We introduce VoiceXML in Chapter 34,
Accessibility.

Synchronous
Multimedia
Integration
Language (SMIL™)

SMIL is an XML vocabulary for multimedia presentations. The W3C
was the primary developer of SMIL, with contributions from other
companies. Visit www.w3.org/AudioVideo for more on SMIL.
We introduce SMIL in Chapter 33, Multimedia.

Research Information
Exchange Markup
Language (RIXML)

RIXML, which a consortium of brokerage firms developed, marks up
investment data. Visit www.rixml.org for more information on
RIXML.

ComicsML A language developed by Jason MacIntosh for marking up comics. Visit
www.jmac.org/projects/comics_ml for more information on
ComicsML.

Fig. 20.13Fig. 20.13Fig. 20.13Fig. 20.13 Various markup languages derived from XML (part 1 of 2).

iw3htp2_20.fm Page 655 Friday, July 20, 2001 1:18 PM

656 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Geography Markup
Language (GML)

The OpenGIS developed the Geography Markup Language to describe
geographic information. Visit www.opengis.org for more informa-
tion on GML.

Extensible User
Interface Language
(XUL)

The Mozilla project created the Extensible User Interface Language for
describing graphical user interfaces in a platform-independent way. For
more information visit:
 www.mozilla.org/xpfe/language-Spec.html

Fig. 20.14Fig. 20.14Fig. 20.14Fig. 20.14 Tree structure for article.xml.

1 <?xml version="1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml">
5
6 <!-- Fig. 20.15 : DOMExample.html -->
7 <!-- DOM with JavaScript -->
8
9 <head>

10 <title>A DOM Example</title>
11 </head>
12
13 <body>

Fig. 20.15Fig. 20.15Fig. 20.15Fig. 20.15 Traversing article.xml with JavaScript (part 1 of 3).

Markup Language Description

Fig. 20.13Fig. 20.13Fig. 20.13Fig. 20.13 Various markup languages derived from XML (part 2 of 2).

firstName

lastName

contents

summary

author

date

title

article

iw3htp2_20.fm Page 656 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 657

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

14
15 <script type = "text/javascript" language = "JavaScript">
16 <!--
17 var xmlDocument = new ActiveXObject("Microsoft.XMLDOM");
18
19 xmlDocument.load("article.xml");
20
21 // get the root element
22 var element = xmlDocument.documentElement;
23
24 document.writeln(
25 "<p>Here is the root node of the document: " +
26 "" + element.nodeName + "" +
27 "
The following are its child elements:" +
28 "</p>");
29
30 // traverse all child nodes of root element
31 for (var i = 0; i < element.childNodes.length; i++) {
32 var curNode = element.childNodes.item(i);
33
34 // print node name of each child element
35 document.writeln("" + curNode.nodeName
36 + "");
37 }
38
39 document.writeln("");
40
41 // get the first child node of root element
42 var currentNode = element.firstChild;
43
44 document.writeln("<p>The first child of root node is: " +
45 "" + currentNode.nodeName + "" +
46 "
whose next sibling is:");
47
48 // get the next sibling of first child
49 var nextSib = currentNode.nextSibling;
50
51 document.writeln("" + nextSib.nodeName +
52 ".
Value of " +
53 nextSib.nodeName + " element is: ");
54
55 var value = nextSib.firstChild;
56
57 // print the text value of the sibling
58 document.writeln("" + value.nodeValue + "" +
59 "
Parent node of " + nextSib.nodeName +
60 " is: " +
61 nextSib.parentNode.nodeName + ".</p>");
62 -->
63 </script>
64
65 </body>
66 </html>

Fig. 20.15Fig. 20.15Fig. 20.15Fig. 20.15 Traversing article.xml with JavaScript (part 2 of 3).

iw3htp2_20.fm Page 657 Friday, July 20, 2001 1:18 PM

658 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Line 17 instantiates (i.e., creates) a Microsoft XML Document Object Model object
and assigns it to reference xmlDocument. This object represents an XML document
DOM tree and provides methods for manipulating its data. The statement creates the object,
which does not yet refer to any specific XML document.

Line 19 calls method load to load article.xml (Fig. 20.1) into memory. The
msxml parser parses the XML document and stores the document in memory as a tree struc-
ture.

Line 22 assigns the root element node (i.e., article) to variable element. Property
documentElement corresponds to the root element in the document (e.g., article),
which is important because this element is the reference point for retrieving all other nodes
in the document.

Line 26 places the name of the root element in XHTML element strong and writes
this string to the browser for rendering. Property nodeName corresponds to the name of
an element, attribute, etc. In this particular case, element refers to the root node named
article.

Line 31 iterates through the root node’s children using property childNodes. Prop-
erty length returns the number of children in the root element.

Calling method item accesses individual child nodes. Each node has an integer index
(starting at zero) based on the order in which the node occurs in the XML document. For
example, in Fig. 20.1, title has index 0, date has index 1, etc. Line 32 calls method
item to obtain the child node at index i. Line 32 assigns this node to reference curNode.

Line 42 retrieves the root node’s first child node (i.e., title) using property first-
Child. The expression on line 42 is a more concise alternative to

var currentNode = element.childNodes.item(0);

Fig. 20.15Fig. 20.15Fig. 20.15Fig. 20.15 Traversing article.xml with JavaScript (part 3 of 3).

iw3htp2_20.fm Page 658 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 659

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Elements title, date, author, summary and content are all sibling nodes.
Property nextSibling returns a node’s next sibling. Line 49 assigns currentNode’s
(i.e., title’s) next sibling node (i.e., date) to reference nextSib.

In addition to elements and attributes, text (e.g., Simple XML in line 8 of Fig. 20.1)
also is a node. Line 55 assigns nextSib’s (i.e., date’s) first child node to value. In this
case, the first child node is a text node. On line 58, method nodeValue retrieves the value
of this text node. A text node’s value is simply the text that the node contains. Element
nodes have a value of null (i.e., the absence of a value). Line 61 retrieves and displays
nextSib’s (i.e., date’s) parent node (i.e., article). Property parentNode returns
a node’s parent node.

The following tables list key DOM methods. The primary DOM interfaces are Node
(which represents any node in the tree), NodeList (which represents an ordered set of
nodes), NamedNodeMap (which represents an unordered set of nodes), Document
(which represents the document), Element (which represents an element node), Attr
(which represents an attribute node), Text (which represents a text node) and Comment
(which represents a comment node). Figures 20.16–20.22 describe some methods of these
objects.

Method Description

getNodeType Returns an integer representing the node type.

getNodeName Returns the name of the node. If the node does not have a name, a
string consisting of # followed by the type of the node is
returned.

getNodeValue Returns a string or null depending on the node type.

getParentNode Returns the parent node.

getChildNodes Returns a NodeList (Fig. 20.17) with all the children of the
node.

getFirstChild Returns the first child in the NodeList.

getLastChild Returns the last child in the NodeList.

getPreviousSibling Returns the node preceding this node, or null.

getNextSibling Returns the node following this node, or null.

getAttributes Returns a NamedNodeMap (Fig. 20.18) containing the attributes
for this node.

insertBefore Inserts the node passed as the first argument before the existing
node passed as the second argument. If the new node is already in
the tree, it is removed before insertion. The same behavior is true
for other methods that add nodes.

replaceChild Replaces the second argument node with the first argument node.

removeChild Removes the child node passed to it.

appendChild Appends the node passed to it to the list of child nodes.

Fig. 20.16Fig. 20.16Fig. 20.16Fig. 20.16 Some Node object methods (part 1 of 2).

iw3htp2_20.fm Page 659 Friday, July 20, 2001 1:18 PM

660 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

getElementsByTagName Returns a NodeList of all nodes in the subtree with the name
specified as the first argument ordered as they would be encoun-
tered in a preorder traversal. An optional second argument speci-
fies either the direct child nodes (0) or any descendant (1).

getChildAtIndex Returns the child node at the specified index in the child list.

addText Appends the string passed to it to the last Node if it is a Text
node, otherwise creates a new Text node for the string and adds
it to the end of the child list.

isAncestor Returns true if the node passed is a parent of the node, or is the
node itself.

Method Description

item Passed an index number, returns the element node at that index. Indices range
from 0 to length – 1.

getLength Returns the total number of nodes in the list.

Fig. 20.17Fig. 20.17Fig. 20.17Fig. 20.17 Some NodeList methods.

Method Description

getNamedItem Returns either a node in the NamedNodeMap with the specified name
or null.

setNamedItem Stores a node passed to it in the NamedNodeMap. Two nodes with the
same name cannot be stored in the same NamedNodeMap.

removeNamedItem Removes a specified node from the NamedNodeMap.

getLength Returns the total number of nodes in the NamedNodeMap.

getValues Returns a NodeList containing all nodes in the
NamedNodeMap.

Fig. 20.18Fig. 20.18Fig. 20.18Fig. 20.18 Some NamedNodeMap methods.

Method Description

getDocumentElement Returns the root node of the document.

Fig. 20.19Fig. 20.19Fig. 20.19Fig. 20.19 Some Document methods (part 1 of 2).

Method Description

Fig. 20.16Fig. 20.16Fig. 20.16Fig. 20.16 Some Node object methods (part 2 of 2).

iw3htp2_20.fm Page 660 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 661

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

createElement Creates and returns an element node with the specified tag name.

createAttribute Creates and returns an attribute node with the specified name and
value.

createTextNode Creates and returns a text node that contains the specified text.

createComment Creates a comment to hold the specified text.

Method Description

getTagName Returns the name of the element.

setTagName Changes the name of the element to the specified name.

getAttribute Returns the value of the specified attribute.

setAttribute Changes the value of the attribute passed as the first argument to the
value passed as the second argument.

removeAttribute Removes the specified attribute.

getAttributeNode Returns the specified attribute node.

setAttributeNode Adds a new attribute node with the specified name.

Fig. 20.20Fig. 20.20Fig. 20.20Fig. 20.20 Some Element methods.

Method Description

getValue Returns the specified attribute’s value.

setValue Changes the value of the attribute to the specified value.

getName Returns the name of the attribute.

Fig. 20.21Fig. 20.21Fig. 20.21Fig. 20.21 Some Attr methods.

Method Description

getData Returns the data contained tin the node (text or comment).

setData Sets the node’s data.

getLength Returns the number of characters contained in the node.

Fig. 20.22Fig. 20.22Fig. 20.22Fig. 20.22 Some Text and Comment methods.

Method Description

Fig. 20.19Fig. 20.19Fig. 20.19Fig. 20.19 Some Document methods (part 2 of 2).

iw3htp2_20.fm Page 661 Friday, July 20, 2001 1:18 PM

662 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

20.8 Simple API for XML (SAX)
Members of the XML-DEV mailing list developed the Simple API for XML (SAX), which
they released in May, 1998. SAX is an alternate method for parsing XML documents that
uses an event-based model—SAX-based parsers generate notifications called events as the
parser parses the document. Software programs can “listen” for these events to retrieve par-
ticular data from the document. For example, a program that builds mailing lists might read
name and address information from an XML document that contains much more than just
mailing address information (e.g., birthdays, phone numbers, email addresses, etc.). Such
a program could use a SAX parser to parse the document, and might listen only for events
that contain name and address information. If this program used a DOM parser, the parser
would load every element and attribute into memory, and the program would have to
traverse the DOM tree to locate the relevant address information.

SAX and DOM provide dramatically different APIs for accessing XML document
information; each API has advantages and disadvantages. DOM is a tree-based model that
stores the document’s data in a hierarchy of nodes. Programs can access data quickly,
because all the document’s data is in memory. DOM also provides facilities for adding or
removing nodes, which enables programs to modify XML documents easily.

SAX-based parsers invoke listener methods when the parser encounters markup. With
this event-based model, the SAX-based parser does not create a tree structure to store the
XML document’s data—instead, the parser passes data to the application from the XML
document as the parser finds that data. This results in greater performance and less memory
overhead than with DOM-based parsers. In fact, many DOM parsers use SAX parsers
“under the hood” to retrieve data from a document for building the DOM tree in memory.
Many programmers find it easier to traverse and manipulate XML documents using the
DOM tree structure. As a result, programs typically use SAX parsers for reading XML doc-
uments that the program will not modify. SAX-based parsers are available for a variety of
programming languages such as Java, Python, C++, etc.

Performance Tip 20.1
SAX-based parsing often is more efficient than DOM-based parsing when processing large
XML documents, because SAX-based parsers do not load entire XML documents into mem-
ory at once. 20.1

Performance Tip 20.2
SAX-based parsing is an efficient means of parsing documents that only need parsing once. 20.2

Performance Tip 20.3
DOM-based parsing often is more efficient than SAX-based parsing when a program must
retrieve specific information from the document quickly. 20.3

Performance Tip 20.4
Programs that must conserve memory commonly use SAX-based parsers. 20.4

Software Engineering Observation 20.7
Members of the XML-DEV mailing list developed SAX independently of the W3C, although
SAX has wide industry support. DOM is the official W3C recommendation. 20.7

iw3htp2_20.fm Page 662 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 663

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

20.9 Extensible Stylesheet Language (XSL)1

Extensible Stylesheet Language (XSL) documents specify how programs should render
XML document data. The relationship between XML and XSL is similar to the relationship
between XHTML and Cascading Style Sheets (CSS), although XSL is much more power-
ful than CSS. Document authors also can use CSS to specify formatting information for
XML documents. A subset of XSL— XSL Transformations (XSLT)—provides elements
that define rules for transforming data from one XML document to produce a different
XML document (e.g., XHTML). By convention, XSL documents have the filename exten-
sion .xsl.

Software Engineering Observation 20.8
XSL enables document authors to separate data presentation from data description. 20.8

Transforming an XML document using XSLT involves two tree structures: the source
tree (i.e., the XML document to transform) and the result tree (i.e., the XML document to
create).

Figure 20.23 lists an XML document that marks up various sports. The output shows
the results of the transformation rendered in Internet Explorer 5.5. We discuss the specific
XSL document that performs the transformation in Fig. 20.24.

1. The examples in this section require msxml 3.0 or higher to run. For more information on down-
loading and installing msxml 3.0, visit www.deitel.com.

1 <?xml version = "1.0"?>
2 <?xml:stylesheet type = "text/xsl" href = "games.xsl"?>
3
4 <!-- Fig. 20.23 : games.xml -->
5 <!-- Sports Database -->
6
7 <sports>
8
9 <game id = "783">

10 <name>Cricket</name>
11
12 <paragraph>
13 More popular among commonwealth nations.
14 </paragraph>
15 </game>
16
17 <game id = "239">
18 <name>Baseball</name>
19
20 <paragraph>
21 More popular in America.
22 </paragraph>
23 </game>
24

Fig. 20.23Fig. 20.23Fig. 20.23Fig. 20.23 XML document containing a list of sports (part 1 of 2).

iw3htp2_20.fm Page 663 Friday, July 20, 2001 1:18 PM

664 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Line 2 is a processing instruction that references the XSL stylesheet games.xsl.
Value type specifies that games.xsl is a text/xsl file. Internet Explorer uses this
processing instruction to determine the XSL transformation to apply to the XML document.

Figure 20.24 shows an XSLT document for transforming the XML document of Fig.
20.23 into an XHTML document.

25 <game id = "418">
26 <name>Soccer (Football)</name>
27
28 <paragraph>
29 Most popular sport in the world.
30 </paragraph>
31 </game>
32
33 </sports>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 20.24 : elements.xsl -->
4 <!-- A simple XSLT transformation -->
5
6 <!-- reference XSL stylesheet URI -->
7 <xsl:stylesheet version = "1.0"
8 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
9

10 <xsl:output method = "html" omit-xml-declaration = "no"
11 doctype-system =
12 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
13 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>
14
15 <xsl:template match = "/">
16

Fig. 20.24Fig. 20.24Fig. 20.24Fig. 20.24 Using XSLT to create elements and attributes (part 1 of 2).

Fig. 20.23Fig. 20.23Fig. 20.23Fig. 20.23 XML document containing a list of sports (part 2 of 2).

iw3htp2_20.fm Page 664 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 665

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Lines 7–8 are the stylesheet start tag—which begins the XSL stylesheet. Line 8
binds namespace prefix xsl to the URI http://www.w3.org/1999/XSL/Trans-
form, which uniquely identifies the XSL namespace.

Lines 10–13 use element xsl:output to write an XHTML document type declara-
tion to the result tree. Attribute omit-xml-declaration specifies whether the trans-
formation should write the XML declaration to the result tree. Attributes doctype-
system and doctype-public specify the DTD system and public values for the
resulting document, respectively.

17 <html xmlns="http://www.w3.org/1999/xhtml">
18
19 <head>
20 <title>Sports</title>
21 </head>
22
23 <body>
24
25 <table border = "1" bgcolor = "cyan">
26
27 <thead>
28
29 <tr>
30 <th>ID</th>
31 <th>Sport</th>
32 <th>Information</th>
33 </tr>
34
35 </thead>
36
37 <!-- insert each name and paragraph element value -->
38 <!-- into a table row. -->
39 <xsl:for-each select = "sports/game">
40
41 <tr>
42 <td><xsl:value-of select = "@id"/></td>
43 <td><xsl:value-of select = "name"/></td>
44 <td><xsl:value-of select = "paragraph"/></td>
45 </tr>
46
47 </xsl:for-each>
48
49 </table>
50
51 </body>
52
53 </html>
54
55 </xsl:template>
56
57 </xsl:stylesheet>

Fig. 20.24Fig. 20.24Fig. 20.24Fig. 20.24 Using XSLT to create elements and attributes (part 2 of 2).

iw3htp2_20.fm Page 665 Friday, July 20, 2001 1:18 PM

666 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

XSLT documents consist of templates. Each template describes how to transform a
particular node from the source tree into the result tree. Line 15 uses the match attribute
to select the document root (i.e., the conceptual part of the document that contains the root
element and everything above it) of the source document (i.e., game.xml). In Fig. 20.23,
the child nodes of the document root are the processing instruction node (line 2), the two
comment nodes (lines 4–5) and the sports element node (line 7).

The msxml processor writes lines 17–35 (Fig. 20.24) to the result tree exactly as those
lines appear in the XSLT document. Line 39 uses element xsl:for-each to iterate
through the source XML document and search for game elements. The xsl:for-each
element is similar to JavaScript’s for/in repetition structure. Attribute select speci-
fies the node (called the context node) on which the xsl:for-each operates. The for-
ward slash between sports and game indicates that game is a child node of sports.
When the msxml processor encounters a game element, msxml processes the elements on
lines 41–45 and places those elements in the result tree.

Line 42 uses element value-of to retrieve attribute id’s value and place it in a td
element in the result tree. The symbol @ specifies that id is an attribute node. Lines 43–44
also place the name and paragraph element values in td elements and insert those ele-
ments in the result tree.

Figure 20.25 presents an XML document (sorting.xml) that marks up information
about a book. Line 6 references the XSL stylesheet sorting.xsl (Fig. 20.26).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 20.25 : sorting.xml -->
4 <!-- Usage of elements and attributes -->
5
6 <?xml:stylesheet type = "text/xsl" href = "sorting.xsl"?>
7
8 <book isbn = "999-99999-9-X">
9 <title>Deitel's XML Primer</title>

10
11 <author>
12 <firstName>Paul</firstName>
13 <lastName>Deitel</lastName>
14 </author>
15
16 <chapters>
17 <frontMatter>
18 <preface pages = "2"/>
19 <contents pages = "5"/>
20 <illustrations pages = "4"/>
21 </frontMatter>
22
23 <chapter number = "3" pages = "44">
24 Advanced XML</chapter>
25 <chapter number = "2" pages = "35">
26 Intermediate XML</chapter>
27 <appendix number = "B" pages = "26">
28 Parsers and Tools</appendix>

Fig. 20.25Fig. 20.25Fig. 20.25Fig. 20.25 XML document containing book information.

iw3htp2_20.fm Page 666 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 667

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Figure 20.26 presents an XSL document (sorting.xsl) that transforms
sorting.xml (Fig. 20.25) to XHTML. Line 17 specifies that the msxml processor
should apply xsl:templates to the document root’s children. Line 21 specifies a tem-
plate that matches element book.

Lines 23–24 create the title for the XHTML document. We use the book ISBN from
attribute isbn and the contents of element title to create the title string (ISBN 999-
99999-9-X - Deitel’s XML Primer).

Lines 30–31 create a header element that displays the book’s author. The context node
is book, so the expression author/lastName selects the author’s last name, and the
expression author/firstName selects the author’s first name.

29 <appendix number = "A" pages = "7">
30 Entities</appendix>
31 <chapter number = "1" pages = "28">
32 XML Fundamentals</chapter>
33 </chapters>
34
35 <media type = "CD"/>
36 </book>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 20.26 : sorting.xsl -->
4 <!-- Transformation of Book information into XHTML -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:output method = "html" omit-xml-declaration = "no"

10 doctype-system =
11 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
12 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>
13
14 <xsl:template match = "/">
15
16 <html xmlns = "http://www.w3.org/1999/xhtml">
17 <xsl:apply-templates/>
18 </html>
19 </xsl:template>
20
21 <xsl:template match = "book">
22 <head>
23 <title>ISBN <xsl:value-of select = "@isbn"/> -
24 <xsl:value-of select = "title"/></title>
25 </head>
26
27 <body>
28 <h1><xsl:value-of select = "title"/></h1>

Fig. 20.26Fig. 20.26Fig. 20.26Fig. 20.26 XSL document that transforms sort.xml into XHTML (part 1 of 3).

Fig. 20.25Fig. 20.25Fig. 20.25Fig. 20.25 XML document containing book information.

iw3htp2_20.fm Page 667 Friday, July 20, 2001 1:18 PM

668 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

29
30 <h2>by <xsl:value-of select = "author/lastName"/>,
31 <xsl:value-of select = "author/firstName"/></h2>
32
33 <table border = "1">
34 <xsl:for-each select = "chapters/frontMatter/*">
35 <tr>
36 <td align = "right">
37 <xsl:value-of select = "name()"/>
38 </td>
39
40 <td>
41 (<xsl:value-of select = "@pages"/> pages)
42 </td>
43 </tr>
44 </xsl:for-each>
45
46 <xsl:for-each select = "chapters/chapter">
47 <xsl:sort select = "@number" data-type = "number"
48 order = "ascending"/>
49 <tr>
50 <td align = "right">
51 Chapter <xsl:value-of select = "@number"/>
52 </td>
53
54 <td>
55 (<xsl:value-of select = "@pages"/> pages)
56 </td>
57 </tr>
58 </xsl:for-each>
59
60 <xsl:for-each select = "chapters/appendix">
61 <xsl:sort select = "@number" data-type = "text"
62 order = "ascending"/>
63 <tr>
64 <td align = "right">
65 Appendix <xsl:value-of select = "@number"/>
66 </td>
67
68 <td>
69 (<xsl:value-of select = "@pages"/> pages)
70 </td>
71 </tr>
72 </xsl:for-each>
73 </table>
74
75
Pages:
76 <xsl:variable name = "pagecount"
77 select = "sum(chapters//*/@pages)"/>
78 <xsl:value-of select = "$pagecount"/>
79
Media Type: <xsl:value-of select = "media/@type"/>
80 </body>
81 </xsl:template>

Fig. 20.26Fig. 20.26Fig. 20.26Fig. 20.26 XSL document that transforms sort.xml into XHTML (part 2 of 3).

iw3htp2_20.fm Page 668 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 669

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Performance Tip 20.5
Using Internet Explorer 5.5 to process XSL documents conserves server resources. 20.5

Line 34 selects each element (indicated by an asterisk) that is a child of front-
Matter. Line 37 calls node-set function name to retrieve the current node’s element name
(e.g., preface). The current node is the context node specified in the xsl:for-each
element (line 34).

Lines 47–48 use element xsl:sort to sort chapters by number in ascending
order. Attribute select selects the value of attribute number in context node chapter.
Attribute data-type specifies a numeric sort and attribute order specifies
ascending order. Attribute data-type also accepts the value text (line 61) and
attribute order also accepts the value descending.

Lines 76–78 use an XSL variable to store the value of the book’s page count and output
the page count to the result tree. Attribute name specifies the variable’s name and attribute
select assigns a value to the variable. Function sum totals the values for all page
attribute values. The two slashes between chapters and * indicate a recursive descent—
the msxml processor will search all descendant nodes of chapters for elements that con-
tain an attribute named pages.

82
83 </xsl:stylesheet>

Fig. 20.26Fig. 20.26Fig. 20.26Fig. 20.26 XSL document that transforms sort.xml into XHTML (part 3 of 3).

iw3htp2_20.fm Page 669 Friday, July 20, 2001 1:18 PM

670 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

20.10 Microsoft BizTalk™
Increasingly, organizations are using the Internet to exchange data. Sending data between
organizations is difficult, because organizations use different platforms, applications and
data specifications. XML simplifies sharing data among businesses. However, businesses
need an easy method for transmitting and translating XML documents with partners, sup-
pliers, etc. Microsoft developed BizTalk for managing and facilitating business transactions
using XML.

BizTalk consists of three parts: The BizTalk Server, the BizTalk Framework and the
BizTalk Schema Library. The BizTalk Server (BTS) parses and translates all inbound and
outbound messages (or documents) going to and from a business. The BizTalk Framework
is a schema for structuring those messages. The BizTalk Schema Library is a collection of
Framework schemas. Businesses can design their own schema or choose one from the Biz-
Talk Schema Library. Figure 20.27 summarizes BizTalk terminology.

Figure 20.28 is an example of a BizTalk message for a product offer from a retail com-
pany. The message schema (lines 15–46) for this example is for Microsoft online shopping.
We use this schema for a fictitious company named ExComp.

BizTalk Description

Framework A specification that defines message formats.

Schema library A repository of Framework XML schemas.

Server An application that helps vendors convert their messages to BizTalk format.
For more information visit: www.microsoft.com/biztalkserver.

JumpStart Kit A set of tools for developing BizTalk applications.

Fig. 20.27Fig. 20.27Fig. 20.27Fig. 20.27 BizTalk Terminologies.

1 <?xml version = "1.0"?>
2 <BizTalk
3 xmlns = "urn:schemas-biztalk-org:BizTalk/biztalk-0.81.xml">
4
5 <!-- Fig. 20.28: BizTalkexample.xml -->
6 <!-- BizTalk example -->
7 <Route>
8 <From locationID = "8888888" locationType = "DUNS"
9 handle = "23" />

10
11 <To locationID = "454545445" locationType = "DUNS"
12 handle = "45" />
13 </Route>
14
15 <Body>
16 <Offers xmlns =
17 "x-schema:http://schemas.biztalk.org/eshop_msn_com/t7ntoqnq.xml">

Fig. 20.28Fig. 20.28Fig. 20.28Fig. 20.28 BizTalk markup using an offer schema (part 1 of 2).

iw3htp2_20.fm Page 670 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 671

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

All Biztalk documents have root element BizTalk. Line 3 defines a default
namespace for the BizTalk framework elements. Element Route contains the routing
information, which is mandatory for all BizTalk documents. Element Route also contains
elements To and From. Element To specifies the document’s destination and element
From specifies the document’s source. This makes it easier for the receiving application to
communicate with the sender. Attributes locationType and locationID specify the
type of business sending or receiving the information and a business identity (the unique
identifier for a business) for the source and destination organizations. Attribute handle
provides information to routing applications that manipulate the document.

Element Body contains the actual message, whose schema the businesses define. It
contains the Offers element. Lines 16–17 specify the default namespace for the
Offers. Each offer is marked up using an Offer element which contains elements that
describe the offer. For additional information on BizTalk, visit www.biztalk.com.

20.11 Simple Object Access Protocol (SOAP)
Many applications use the Internet to transfer data. Some of these applications run on cli-
ents with little processing power, so these applications invoke methods on other machines

18 <Offer>
19 <Model>12-a-3411d</Model>
20 <Manufacturer>ExComp, Inc.</Manufacturer>
21 <ManufacturerModel>DCS-48403</ManufacturerModel>
22 <MerchantCategory>Clothes | Sports wear</MerchantCategory>
23 <MSNClassId></MSNClassId>
24 <StartDate>2000-06-05 T13:12:00</StartDate>
25 <EndDate>2000-12-05T13:12:00</EndDate>
26 <RegularPrice>89.99</RegularPrice>
27 <CurrentPrice>25.99</CurrentPrice>
28 <DisplayPrice value = "3" />
29 <InStock value = "15" />
30 <ReferenceImageURL>
31 http://www.Example.com/clothes/index.jpg
32 </ReferenceImageURL>
33 <OfferName>Clearance sale</OfferName>
34 <OfferDescription>This is a clearance sale</OfferDescription>
35 <PromotionalText>Free Shipping</PromotionalText>
36 <Comments>Clothes that you would love to wear.</Comments>
37 <IconType value = "BuyNow" />
38 <ActionURL>http://www.example.com/action.htm</ActionURL>
39 <AgeGroup1 value = "Infant" />
40 <AgeGroup2 value = "Adult" />
41 <Occasion1 value = "Birthday" />
42 <Occasion2 value = "Anniversary" />
43 <Occasion3 value = "Christmas" />
44 </Offer>
45 </Offers>
46 </Body>
47 </BizTalk>

Fig. 20.28Fig. 20.28Fig. 20.28Fig. 20.28 BizTalk markup using an offer schema (part 2 of 2).

iw3htp2_20.fm Page 671 Friday, July 20, 2001 1:18 PM

672 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

to process data. Many of these applications use proprietary data specifications and proto-
cols, which makes communication with other applications difficult. The majority of these
applications also reside behind network firewalls, which often restrict data communication
to and from the application. The. IBM, Lotus Development Corporation, Microsoft, Devel-
opMentor and Userland Software developed the Simple Object Access Protocol (SOAP) to
address these problems. SOAP is an XML-based protocol that allows applications to com-
municate easily over the Internet using XML documents called SOAP messages.

A SOAP message contains an envelope, which is a structure that describes a method
call. A SOAP message’s body contains either a request or a response. A request message’s
body contains a Remote Procedure Call (RPC), which is a request for another machine to
run a task. The RPC specifies the method to be invoked and any parameters the method
takes. The application sends the SOAP message via an HTTP POST. A SOAP-response
message is an HTTP response document that contains the results from the method call (e.g.,
return values, error messages, etc.). For more information on SOAP, visit
msdn.microsoft.com/xml/general/soaptemplate.asp.

20.12 Internet and World Wide Web Resources
www.w3.org/xml
The W3C (World Wide Web Consortium) works to develop common protocols to ensure interopera-
bility on the Web. Their XML page includes information about upcoming events, publications, soft-
ware and discussion groups. Visit this site to read about the latest developments in XML.

www.xml.org
xml.org is a reference for XML, DTDs, schemas and namespaces.

www.w3.org/style/XSL
Provides information on XSL, including what is new in XSL, learning XSL, XSL-enabled tools, XSL
specification, FAQs, XSL history, etc.

www.w3.org/TR
W3C technical reports and publications page. Contains links to working drafts, proposed recommen-
dations, recommendations, etc.

xml.apache.org
The Apache XML Web site provides many resources related to XML, which include tools and down-
loads.

www.xmlbooks.com
Contains a list of recommended XML books by Charles Goldfarb—one of the original designers of
GML (General Markup Language) from which SGML was derived.

www.xmlsoftware.com
The site contains links for downloading XML-related software. Downloads include XML browsers,
conversion tools, database systems, DTD editors, XML editors, etc.

www.xml-zone.com
The Development Exchange XML Zone is a complete resource for XML information. This site in-
cludes FAQ, news, articles, links to other XML sites and newsgroups.

wdvl.internet.com/Authoring/Languages/XML
Web Developer's Virtual Library XML site includes tutorials, FAQ, the latest news and extensive links
to XML sites and software downloads.

iw3htp2_20.fm Page 672 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 673

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

www.xml.com
Visit XML.com for the latest news and information about XML, conference listings, links to XML
Web resources organized by topic, tools and more.

msdn.microsoft.com/xml/default.asp
The MSDN Online XML Development Center features articles on XML, Ask the Experts chat ses-
sions, samples and demos, newsgroups and other helpful information.

www.oasis-open.org/cover/xml.html
The SGML/XML Web Page is an extensive resource that includes links to FAQs, online resources,
industry initiatives, demos, conferences and tutorials.

www.gca.org/whats_xml/default.htm
The GCA site has an XML glossary, list of books, brief descriptions of the draft standards for XML
and links to online drafts.

www.xmlinfo.com
XMLINFO is a resource site with tutorials, a list of recommended books, documentation, discussion
forums and more.

xdev.datachannel.com
The title of this site is xDev: The Definitive Site for Serious XML Developers. This Web site includes
several short tutorials with code examples, toolkits, downloads and a reference library.

www.ibm.com/developer/xml
The IBM XML Zone site is a great resource for developers. You will find news, tools, a library, case
studies, events and information about standards.

developer.netscape.com/tech/xml/index.html
The XML and Metadata Developer Central site has demos, technical notes and news articles related
to XML.

www.projectcool.com/developer/xmlz
The Project Cool Developer Zone site includes several tutorials covering introductory through ad-
vanced XML.

www.poet.com/products/cms/xml_library/xml_lib.html
POET XML Resource Library includes links to white papers, tools, news, publications and Web links.

www.ucc.ie/xml
This site is a detailed XML FAQ with responses to some popular questions. Submit your own ques-
tions through the site.

www.xml-cml.org
This site is a resource for the Chemical Markup Language (CML). It includes a FAQ list, documen-
tation, software and XML links.

www.textuality.com/xml
Contains FAQ and the Lark nonvalidating XML parser.

www.zvon.org
Provides an XML tutorial.

SUMMARY
• XML is a widely-supported, open technology (i.e., nonproprietary technology) for data exchange.

• XML permits document authors to create their own markup for virtually any type of information.
This extensibility enables document authors to create entirely new markup languages to describe

iw3htp2_20.fm Page 673 Friday, July 20, 2001 1:18 PM

674 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

specific types of data, including mathematical formulas, chemical molecular structures, music and
recipes.

• XML documents are highly portable. Opening an XML document does not require special soft-
ware—any text editor that supports ASCII/Unicode characters will suffice. One important charac-
teristic of XML is that it is both human readable and machine readable.

• Processing an XML document—which typically ends in the .xml extension—requires a software
program called an XML parser (or an XML processor). Parsers check an XML document’s syntax
and can support the Document Object Model (DOM) or the Simple API for XML (SAX) API.

• DOM-based parsers build a tree structure containing the XML document’s data in memory. This
allows programs to manipulate the document’s data. SAX-based parsers process the document and
generate events as the parser encounters tags, text, comments, etc. These events contain data from
the XML document.

• An XML document can reference an optional document that defines the XML document’s struc-
ture. This optional document can be either a Document Type Definition (DTD) or a schema.

• If the XML document conforms to its DTD or schema, then the XML document is valid. Parsers
that cannot check for document conformity against the DTD/Schema are nonvalidating parsers. If
an XML parser (validating or nonvalidating) can process an XML document that does not have a
DTD/Schema successfully, the XML document is well formed (i.e., it is syntactically correct). By
definition, a valid XML document also is a well-formed document.

• The ATTLIST element type declaration in a DTD defines an attribute. Keyword #IMPLIED
specifies that if the parser finds an element without the attribute, the parser can choose an arbitrary
value or to ignore the attribute. Keyword #REQUIRED specifies that the attribute must be in the
document, and keyword #FIXED specifies that the attribute must have the given fixed value. Flag
CDATA specifies that an attribute contains a string that the parser should not process as markup.
Keyword EMPTY specifies that the element does not contain any text.

• Flag #PCDATA specifies that the element can store parsed character data (i.e., text). Parsable char-
acter data should not contain markup. Document authors should replace the characters less than
(<), greater than (>) and ampersand (&) with their corresponding entities (i.e., <, > and
&).

• Schemas do not use the Extended Backus-Naur Form (EBNF) grammar. Instead, schemas use
XML syntax and are XML documents that programs can manipulate (e.g., add elements, remove
elements, etc.) like any other XML document.

• In XML Schema, element element defines an element. Attributes name and type specify the
element’s name and data type, respectively. Any element that contains attributes or child ele-
ments must define a type—called a complex type—that defines each attribute and child element.

• Attribute minOccurs specifies the minimum number of occurrences for an element. Attribute
maxOccurs specifies the maximum number of occurrences for an element.

• When an element is a simple type, such as xsd:string, that element cannot contain attributes
and child elements.

• XML allows document authors to create their own tags, so naming collisions (i.e., different ele-
ments that have the same name) can occur. Namespaces enable document authors to prevent col-
lisions among elements in an XML document.

• Namespace prefixes prepended to element and attribute names specify the namespace in which the
element or attribute can be found. Each namespace prefix has a corresponding uniform resource
identifier (URI) that uniquely identifies the namespace. By definition, a URI is a series of charac-
ters that differentiates names. Document authors can create their own namespace prefixes. Docu-
ment authors can use virtually any namespace prefix, except the reserved namespace prefix xml.

iw3htp2_20.fm Page 674 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 675

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

• To eliminate the need to place a namespace prefix in each element, authors may specify a default
namespace for an element and all of its child elements.

• MathML markup describes mathematical expressions.

• Chemical Markup Language (CML) marks up molecular and chemical information.

• The characters <? and ?> delimit processing instructions (PIs), which are application-specific in-
formation embedded in an XML document. A processing instruction consists of a PI target and a
PI value.

• A DOM tree has a single root node that contains all other nodes in the document. Each node is an
object that has properties, methods and events. Properties associated with a node provide access
to the node’s name, value, child nodes, etc. Methods allow developers to create, delete and append
nodes, load XML documents, etc. The XML parser exposes these methods and properties as a pro-
grammatic library—called an Application Programming Interface (API).

• A node that contains other nodes (called child nodes) is a parent node. Nodes that are peers are
sibling nodes. A node’s descendent nodes include that node’s children, its children’s chil-
dren and so on. A node’s ancestor nodes include that node’s parent, its parent’s parent
and so on.

• SAX is an alternate method for parsing XML documents that uses an event-based model—SAX-
based parsers generate notifications called events as the parser parses the document. Software pro-
grams can “listen” for these events to retrieve particular data from the document.

• Extensible Stylesheet Language (XSL) documents specify how programs should render an XML
document data. A subset of XSL—XSL Transformations (XSLT)—provides elements that define
rules for transforming data from one XML document to produce another XML document (e.g.,
XHTML).

• Transforming an XML document using XSLT involves two tree structures: the source tree (i.e.,
the XML document being transformed) and the result tree (i.e., the XML document to create).

• BizTalk consists of three parts: The BizTalk Server, the BizTalk Framework and the BizTalk
Schema Library. The BizTalk Server (BTS) parses and translates all inbound and outbound mes-
sages (or documents) going to and from a business. The BizTalk Framework is a schema for struc-
turing those messages. The BizTalk Schema Library is a collection of Framework schemas.
Businesses can design their own schema or choose one from the BizTalk Schema Library.

• The Simple Object Access Protocol (SOAP) is an XML-based protocol that allows applications to
communicate easily over the Internet using XML documents called SOAP messages. A SOAP
message contains an envelope—a structure for describing a method call. A SOAP message’s body
contains either a request or a response.

TERMINOLOGY
#IMPLIED flag attribute node
#PCDATA flag BizTalk Framework
.xml file extension BizTalk Schema Library
.xsd extension BizTalk Server (BTS)
.xsl extension CDATA flag
addText method child node
ancestor node childNodes property
appendChild method complexType element
asterisk (*) occurrence indicator container element
atomArray element context node
ATTLIST element createAttribute method

iw3htp2_20.fm Page 675 Friday, July 20, 2001 1:18 PM

676 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

createComment method isbn attribute
createElement method item method (childNodes)
createTextNode method language attribute (script)
data-type attribute length property
default namespace load method (xmlDocument)
descendent node match attribute
doctype-public attribute maxOccurs attribute
doctype-system attribute minOccurs attribute
document reuse mn element
document root molecule element
Document Type Definition (DTD) mrow element
DOM (Document Object Model) msqrt element
DOM API (Application Programming Interface) msub element
DOM-based XML parser msubsup element
EBNF (Extended Backus-Naur Form) grammar msxml parser
ELEMENT element name attribute
element type declaration name node-set function
empty element namespace prefix
EMPTY keyword nextSibling property
event node
Extensible Stylesheet Language (XSL) nodeName property
external DTD node-set function
firstChild property nodeValue property
foreach repetition structure nonvalidating XML parser
forward slash null
getAttribute method occurrence indicator
getAttributes method order attribute
getChildAtIndex method parent node
getChildNodes method parentNode property
getData method parsed character data
getDocumentElement method parser
getElementsByTagName method PI (processing instruction)
getFirstChild method PI target
getLastChild method PI value
getLength method plus sign (+) occurrence indicator
getName method processing instruction
getNamedItem method prolog
getNextSibling method question mark (?) occurrence indicator
getNodeName method recursive descent
getNodeType removeAttribute method
getNodeValue removeChild method
getParentNode removeNamedItem method
getPreviousSibling replaceChild method
getTagName method request message (SOAP)
getValue method response message (SOAP)
getValues method result tree
Independent Software Vendor (ISV) root element
insertBefore method root node
invalid document SAX (Simple API for XML)
isAncestor SAX-based parser

iw3htp2_20.fm Page 676 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 677

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

SELF-REVIEW EXERCISES
20.1 Which of the following are valid XML element names?

a) yearBorn
b) year.Born
c) year Born
d) year-Born1
e) 2_year_born
f) --year/born
g) year*born
h) .year_born
i) _year_born_
j) y_e-a_r-b_o-r_n

20.2 State whether the following are true or false. If false, explain why.
a) XML is a technology for creating markup languages.
b) Forward and backward slashes (/ and \) delimit XML markup text.
c) All XML start tags must have corresponding end tags.
d) Parsers check an XML document’s syntax and may support the Document Object Model

or the Simple API for XML.
e) URIs are strings that identify resources such as files, images, services, electronic mail-

boxes and more.
f) When creating new XML tags, document authors must use the set of XML tags that the

W3C provides.
b) The pound character (#), the dollar sign ($), ampersand (&), greater-than (>) and less-

than (<) are examples of XML reserved characters.

20.3 Fill in the blanks for each of the following statements:
a) MathML element defines a mathematical operator.

schema element unbounded value
schema valid validating XML parser
select attribute well-formed document
setAttribute method XML (Extensible Markup Language)
setAttributeNode method XML declaration
setData method xml namespace
setNamedItem method XML node
setTagName method XML parser
setValue method XML processor
sibling node XML root
simple type XML Schema
single-quote character (’) XML Validator
SOAP (Simple Object Access Protocol) XML version
source tree xmlns keyword
stylesheet element XSL (Extensible Stylesheet Language)
sum function XSL Transformations (XSLT)
SYSTEM flag XSL variable
targetNamespace attribute xsl:apply-templates
TeX software package xsl:for-each element
text node xsl:output
tree-based model xsl:sort
type attribute xsl:value-of element

iw3htp2_20.fm Page 677 Friday, July 20, 2001 1:18 PM

678 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

b) help avoid naming collisions.
c) embed application-specific information into an XML document.
d) is Microsoft’s XML parser.
e) XSL element inserts a DOCTYPE in the result tree.
f) XML Schema documents have root element .
g) Element marks up the ∫ MathML symbol.
h) defines element attributes in a DTD.
i) XSL element is the root element in an XSL document.
j) XSL element selects specific XML elements using repetition.

20.4 State which of the following statements are true and which are false. If false, explain why.
a) XML is not case sensitive.
b) An XML document may contain only one root element.
c) XML displays information.
d) A DTD/Schema defines the style of an XML document.
e) Element xsl:for-each is similar to JavaScript’s for/in structure.
f) MathML is an XML vocabulary.
g) XSL is an acronym for XML Stylesheet Language.
h) The <!ELEMENT list (item*)> defines element list as containing one or more

item elements.
b) XML documents must have the .xml extension.

20.5 Find the error(s) in each of the following and explain how to correct it (them).
a) <job>

 <title>Manager</title>
 <task number = "42">
</job>

b) <mfrac>
 <mi>x</mi>
 <mo>+</mo>
 <mn>4</mn>
 <mi>y</mi>
</mfrac>

c) <company name = "Deitel & Associates, Inc." />

20.6 In Fig. 20.1 we subdivided the author element into more detailed pieces. How would you
subdivide the date element?

20.7 What is the #PCDATA flag used for?

20.8 Write a processing instruction that includes the stylesheet wap.xsl.

ANSWERS TO SELF-REVIEW EXERCISES
20.1 a, b, d, i, j.

20.2 a) True. b) False. In an XML document, markup text is delimited by angle brackets (< and
>) with a forward slash being used in the end tag. c) True. d) True. e) True. f) False. When creating
new tags, document authors may use any valid name except the reserved word xml (also XML, Xml,
etc.). g) False. XML reserved characters include the ampersand (&), the left-angle bracket (<) and the
right-angle bracket (>) but not # and $.

20.3 a) mo. b) namespaces. c) processing instructions. d) msxml. e) xsl:output. f) schema.
g) mo. h) !ATTLIST. i) xsl:stylesheet. j) xsl:for-each.

iw3htp2_20.fm Page 678 Friday, July 20, 2001 1:18 PM

Chapter 20 Extensible Markup Language (XML) 679

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

20.4 a) False. XML is case sensitive. b) True. c) False. XML is used to organize material in a
structured manner. d) False. A DTD/schema defines the structure of an XML document. e) True. f)
True. g) False. XSL is an acronym for Extensible Stylesheet Language. h) False. (item*) defines
a list element containing any number of optional item elements. i) False. An XML document can
have any extension.

20.5 a) The closing / in the empty element is missing:
<task number = "42"/>

b) <mrow> tag is needed to contain x + 2.
c) A character entity needs to be used to represent the ampersand:

<company name = "Deitel & Associates, Inc." />

20.6 <date>
 <month>September</month>
 <day>19</day>
 <year>2001</year>

</date>

20.7 Flag #PCDATA denotes that parsed character data is contained in the element.

20.8 <?xsl:stylesheet type = "text/xsl" href = "wap.xsl"?>

EXERCISES
20.9 Create an XML document that marks up the nutrition facts for a package of Grandma Deitel’s
Cookies. A package of Grandma Deitel’s Cookies has a serving size of 1 package and the following
nutritional value per serving: 260 calories, 100 fat calories, 11 grams of fat, 2 grams of saturated fat,
5 milligrams of cholesterol, 210 milligrams of sodium, 36 grams of total carbohydrates, 2 grams of
fiber, 15 grams of sugar and 5 grams of protein. Load the XML document in Internet Explorer 5.5.
[Hint: Your markup should contain elements that describe the product name, serving size/amount,
calories, sodium, cholesterol, protein, etc. Mark up each nutrition fact/ingredient listed above.]

20.10 Write an XSL stylesheet for your solution to Exercise 20.9 that displays the nutritional facts
in an XHTML table.

20.11 Write a DTD for Fig 20.1.

20.12 Using Amaya and MathML, generate the following mathematical expressions:

a)

b)

c)

20.13 Write an XML document that marks up the following information in Fig. 20.29.

20.14 Write a DTD for the XML document in Exercise 20.13.

20.15 Modify your solution to Exercise 20.13 to qualify each person with a namespace prefix cor-
responding to their job. Your solution should not have the job as either an element or attribute.

20.16 Write an XSLT document that transforms the XML document of Exercise 20.13 into an
XHTML sorted list.

20.17 Modify Fig. 20.26 (sorting.xsl) to sort by page number, rather than by chapter number.

20.18 Write the DTD for Fig. 20.28.

5yδx
1
2
---–

0
∫

y 2x b
3

– 6cy
kx

– 9+=

x 2y
3–() 8y– y

3
-------+=

iw3htp2_20.fm Page 679 Friday, July 20, 2001 1:18 PM

680 Extensible Markup Language (XML) Chapter 20

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

20.19 Write JavaScript code that uses the DOM to replace every job description (from Exercise
20.13) that matches “Programmer” with “Developer.”

Name Job Department

Cubicle

Joe Programmer Engineering 5E

Erin Designer Marketing 9M

Melissa Designer Human Resources 8H

Craig Administrator Engineering 4E

Eileen Project Coordinator Marketing 3M

Danielle Programmer Engineering 12E

Frank Salesperson Marketing 17M

Corinne Programmer Technical Support 19T

Fig. 20.29Fig. 20.29Fig. 20.29Fig. 20.29 Data for Exercise 20.13.

iw3htp2_20.fm Page 680 Friday, July 20, 2001 1:18 PM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

21
Web Servers (IIS, PWS

and Apache)

Objectives
• To understand a Web server’s functionality.
• To introduce client-side scripting and server-side

scripting.
• To introduce Microsoft Internet Information Services

(IIS), Microsoft Personal Web Server (PWS) and
Apache Web Server.

• To learn how to request documents from a Web server.
In fact, a fundamental interdependence exists between the
personal right to liberty and the personal right to property.
Potter Stewart

Stop abusing my verses, or publish some of your own.
Marcus Valerius Martialis

There are three difficulties in authorship: to write anything
worth the publishing, to find honest men to publish it, and to
get sensible men to read it.
Charles Caleb Colton

When your Daemon is in charge, do not try to think
consciously. Drift, wait and obey.
Rudyard Kipling

iw3htp2_21.fm Page 681 Friday, July 20, 2001 1:26 PM

682 Web Servers (IIS, PWS and Apache) Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

21.1 Introduction
In this chapter, we discuss specialized software—called a Web server—that responds to cli-
ent (e.g., Web browser) requests by providing resources (e.g., XHTML documents). For
example, when users enter a Uniform Resource Locator (URL) address, such as www.de-
itel.com, into a Web browser, they are requesting a specific document from a Web serv-
er. The Web server maps the URL to a file on the server (or to a file on the server’s network)
and returns the requested document to the client. During this interaction, the Web server
and the client communicate using the platform-independent HyperText Transfer Protocol
(HTTP), a protocol for transferring requests and files over the Internet (i.e., between Web
servers and Web browsers).

Our Web-server discussion introduces Microsoft Internet Information Services (IIS),
Microsoft Personal Web Server (PWS) and the open source Apache Web Server. Sections
21.6, 21.7 and 21.8 discuss IIS, PWS and Apache, respectively. Figure 21.1 overviews
these Web servers.

 For illustration purposes, we use Internet Explorer to request various documents—
XHTML, Active Server Pages (ASP), Perl, Python and PHP. We discuss the specifics of
ASP (Chapter 25), Perl (Chapter 27), Python (Chapter 28) and PHP (Chapter 29). This
chapter concentrates on the steps for requesting documents from a Web server.

Outline

21.1 Introduction

21.2 HTTP Request Types

21.3 System Architecture

21.4 Client-Side Scripting versus Server-Side Scripting

21.5 Accessing Web Servers

21.6 Microsoft Internet Information Services (IIS)

21.7 Microsoft Personal Web Server (PWS)

21.8 Apache Web Server

21.9 Requesting Documents

21.9.1 XHTML

21.9.2 ASP

21.9.3 Perl

21.9.4 Python

21.9.5 PHP

21.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_21.fm Page 682 Friday, July 20, 2001 1:26 PM

Chapter 21 Web Servers (IIS, PWS and Apache) 683

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

21.2 HTTP Request Types
The two most common HTTP request types (also known as request methods) are get and
post. These request types retrieve and send client form data to a Web server. A get request
sends form content as part of the URL (e.g., www.searchsomething.com/
search?query=userquery) and retrieves the appropriate resource from the Web
server. In this request, the information following the ? (query=userquery) indicates
the user-specified input. For example, if the user performs a search on “Massachusetts,” the
last part of the URL would be ?query=Massachusetts. A get request limits the
userquery to 1024 characters. If userquery exceeds this limit, the post request is
used. Also, the post request updates the contents of a Web server (e.g., posting a new mes-
sage to a forum).

Software Engineering Observation 21.1
The data sent in a post request is not part of the URL and cannot be seen by the user. Forms
that contain many fields are submitted most often by a post request. Sensitive form fields,
such as passwords, usually are sent using this request type. 21.1

An HTTP request often posts data to a server-side form handler that processes the data.
For example, when a user participates in a Web-based survey, the Web server receives the
information specified in the XHTML form as part of the request.

Browsers often cache (save on a local disk) Web pages for quick reloading, to reduce
the amount of data that the browser needs to download. However, browsers typically do not
cache the server’s response to a post request, because the next post request may not contain
the same information. For example, several users participating in a Web-based survey may

IIS PWS Apache

Company Microsoft
Corporation

Microsoft
Corporation

Apache Software
Foundation

Version 5.0 4.0 1.3.20

Released 2/17/00 12/4/97 5/21/01

Platforms Windows 2000 Windows 95/98/
Millennium Edition
(Me)/NT

UNIX, Windows NT/2000,
experimentally supports
Windows 95/98

Brief
description

The most popular
Web server for
Windows 2000.

A basic Web server for
publishing
personal Web pages.

Currently the most
popular Web server.

Price Included with
Windows 2000.

Freeware. Packaged with
Microsoft IIS in NT 4.0
Option Pack. Also
included in
Windows 98.

Freeware.

Fig. 21.1Fig. 21.1Fig. 21.1Fig. 21.1 Web servers discussed in this chapter.

iw3htp2_21.fm Page 683 Friday, July 20, 2001 1:26 PM

684 Web Servers (IIS, PWS and Apache) Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

request the same Web page. Each user’s response changes the overall results of the survey,
thus the data on the Web server is changed.

On the other hand, Web browsers cache the server’s responses to a get request. With a
Web-based search engine, a get request normally supplies the search engine with the infor-
mation specified in the XHTML form. The search engine then performs the search and returns
the results as a Web page. These pages are cached in the event that the user performs the same
search again.

21.3 System Architecture
A Web server is part of a multi-tier application, sometimes referred to as an n-tier applica-
tion. Multi-tier applications divide functionality into separate tiers (i.e., logical groupings
of functionality). Tiers can be located on the same computer or on separate computers.
Figure 21.2 presents the basic structure of a three-tier application.

The information tier (also called the data tier or the bottom tier) maintains data for the
application. This tier typically stores data in a relational database management system
(RDBMS). We discuss RDBMS in further detail in Chapter 22, Database: SQL, MySQL,
DBI and ADO. For example, a retail store may have a database for product information,
such as descriptions, prices and quantities in stock. The same database also may contain
customer information, such as user names, billing addresses and credit-card numbers.

Fig. 21.2Fig. 21.2Fig. 21.2Fig. 21.2 Three-tier application model.

ApplicationMiddle tier

Information tier

Client tier

Database

iw3htp2_21.fm Page 684 Friday, July 20, 2001 1:26 PM

Chapter 21 Web Servers (IIS, PWS and Apache) 685

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

The middle tier implements business logic and presentation logic to control interac-
tions between application clients and application data. The middle tier acts as an interme-
diary between data in the information tier and the application clients. The middle-tier
controller logic processes client requests from the top tier (e.g., a request to view a product
catalog) and retrieves data from the database. The middle-tier presentation logic then pro-
cesses data from the information tier and presents the content to the client.

Business logic in the middle tier enforces business rules and ensures that data are reli-
able before updating the database or presenting data to a user. Business rules dictate how
clients can and cannot access application data and how applications process data.

The middle tier also implements the application’s presentation logic. Web applications
typically present information to clients as XHTML documents (older applications present
information as HTML). XHTML is discussed in Chapter 4, Introduction to XHTML: Part
1 and Chapter 5, Introduction to XHTML: Part 2. Many Web applications present informa-
tion to wireless clients as Wireless Markup Language (WML) documents. We discuss
WML in further detail in Chapter 23, Wireless Internet and m-Business.

The client tier, or top tier, is the application’s user interface. Users interact directly
with the application through the user interface. The client interacts with the middle tier to
make requests and to retrieve data from the information tier. The client then displays the
data retrieved from the middle tier to the user.

21.4 Client-Side Scripting versus Server-Side Scripting
In earlier chapters, we focused on client-side scripting with JavaScript. Client-side script-
ing validates user input, accesses the browser and enhances Web pages with ActiveX® con-
trols, Dynamic HTML and Java applets (i.e., client-side Java programs that execute in a
browser). Client-side validation reduces the number of requests that need to be passed to
the server. Interactivity allows users to make decisions, click buttons, play games, etc.—
making a Web site experience more interesting. ActiveX controls, Dynamic HTML and
Java applets enhance a Web page’s functionality. Client-side scripts can access the brows-
er, use features specific to that browser and manipulate browser documents.

Client-side scripting does have limitations, such as browser dependency; the browser
or scripting host must support the scripting language. Another limitation is that client-side
scripts are viewable (e.g., by using the View menu’s Source command in Internet
Explorer) to the client. Some Web developers do not advocate this because users potentially
can view proprietary scripting code. Sensitive information, such as passwords, should not
be stored or validated on the client.

Software Engineering Observation 21.2
JavaScript is the most popular client-side scripting language and is supported by both Mi-
crosoft Internet Explorer and Netscape Communicator. 21.2

Performance Tip 21.1
To conserve server resources and minimize Internet traffic and delays, perform as much pro-
cessing as possible on the client side. 21.1

Programmers have greater flexibility when using server-side scripts. Scripts executed
on the server usually generate custom responses for clients. For example, a client might

iw3htp2_21.fm Page 685 Friday, July 20, 2001 1:26 PM

686 Web Servers (IIS, PWS and Apache) Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

connect to an airline’s Web server and request a list of all flights from Boston to San
Antonio between September 19th and November 5th. The server queries the database,
dynamically generates XHTML content containing the flight list and sends the XHTML to
the client. This technology allows clients to obtain the most current flight information from
the database by connecting to an airline’s Web server.

Server-side scripting languages have a wider range of programmatic capabilities than
their client-side equivalents. For example, server-side scripts can access the server’s file
directory structure, whereas client-side scripts cannot access the client’s file directory.

Server-side scripts also have access to server-side software that extends server func-
tionality. These pieces of software are called ActiveX components for Microsoft Web
servers and modules for Apache Web servers. Components and modules range from pro-
gramming language support to counting the number of Web page hits. We discuss some of
these components and modules in Chapters 25–33.

Software Engineering Observation 21.3
Server-side scripts are not visible to the client; only XHTML (plus any client-side) scripts are
visible to the client. 21.3

21.5 Accessing Web Servers
To request documents from Web servers, users must know the machine names (called host
names) on which Web server software resides. Users can request documents from local
Web servers (i.e, ones residing on users’ machines) or remote Web servers (i.e., ones resid-
ing on different machines).

Local Web servers can be accessed in two ways: through the machine name or through
localhost—a host name that references the local machine. We use localhost in this
book. To determine the machine name in Windows 98, right-click Network Neighbor-
hood, and select Properties from the context menu to display the Network dialog. In
the Network dialog, click the Identification tab. The computer name displays in the
Computer name: field. Click Cancel to close the Network dialog. In Windows 2000,
right click My Network Places and select Properties from the context menu to display
the Network and Dialup Connections explorer. In the explorer, click Network Iden-
tification. The Full Computer Name: field in the System Properties window dis-
plays the computer name.

To request a document from a remote Web server in Windows 98, double click Net-
work Neighborhood, which lists all the machine names in the network. From this list,
select the name of the machine running the remote Web server. In Windows 2000, double
click My Network Places, and double click Computers Near Me. This, too, lists all
the machine names in the network. From this list, select the name of the machine running
the remote Web server.

A domain name (e.g., deitel or yahoo) and an Internet Protocol (IP) address also
can request documents. A domain name represents a group of hosts on the Internet; it com-
bines with a host name (i.e, www—World Wide Web) and a top-level domain (TLD) to form
a fully qualified host name, which provides a user-friendly way to identify a site on the
Internet. In a fully qualified host name, the TLD often describes the type of organization
that owns the domain name. For example, the com TLD usually refers to a commercial
business, whereas the org TLD usually refers to a non-profit organization. In addition,

iw3htp2_21.fm Page 686 Friday, July 20, 2001 1:26 PM

Chapter 21 Web Servers (IIS, PWS and Apache) 687

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

each country has its own TLD, such as cn for China, et for Ethiopia, om for Oman and us
for the United States.

Each fully qualified host name is assigned a unique address called an IP address,
which is much like the street address of a house. Just as people use street addresses to locate
houses or businesses in a city, computers use IP addresses to locate other computers on the
Internet. The domain name server (DNS), a computer that maintains a database of host
names and their corresponding IP addresses, translates the fully qualified host name to an
IP address. The translation operation is referred to as a DNS lookup. For example, to access
the Deitel Web site, type either www.deitel.com or 207.60.134.230 into a Web
browser. The DNS translates www.deitel.com into the IP address of the Deitel Web
server (i.e., 207.60.134.230). The IP address of localhost is always 127.0.0.1.

21.6 Microsoft Internet Information Services (IIS)1

Microsoft Internet Information Services (IIS) 5.0 is an enterprise-level Web server that is
included with Windows 2000. Installing IIS on a machine allows that computer to serve
documents. For instructions on how to install IIS, visit www.deitel.com.

After installation, start IIS by opening the Control Panel, double clicking the
Administrative Tools icon and double clicking the Internet Services Manager icon.
This opens the Internet Services Manager dialog (Fig. 21.3)—the administration program
for IIS. Place the documents that will be requested from IIS either in the default directory
(i.e., C:\Inetpub\Wwwroot) or in a virtual directory. A virtual directory is an alias for
an existing directory that resides on the local machine (e.g., C:\) or on the network.

1. This section applies to Windows 2000 users.

Fig. 21.3Fig. 21.3Fig. 21.3Fig. 21.3 Internet Services Manager dialog of Internet Information Services.

iw3htp2_21.fm Page 687 Friday, July 20, 2001 1:26 PM

688 Web Servers (IIS, PWS and Apache) Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

In the Internet Services Manager dialog, the left pane contains the Web server’s direc-
tory structure. The name of the machine running IIS (e.g., carpenterant) is listed under
Internet Information Services. Clicking the + symbol to the left of the machine name
displays Default FTP Site, Default Web Site and Default SMTP Virtual Server.

The Default FTP Site is a File Transfer Protocol (FTP) site; the Default Web Site
is an HTTP site. Although FTP and HTTP permit transferring documents between a com-
puter and a Web server, FTP provides a faster and more persistent connection between the
client and the Web server than HTTP. HTTP is used most frequently to request documents
from Web servers. The Default SMTP Virtual Server allows for the creation of a Simple
Mail Transfer Protocol (SMTP) server, which sends and receives electronic mail (e-mail).

Expand the Default Web Site directory by clicking the + to the left of it. In this direc-
tory we will create a virtual directory for the HTTP Web site. The Default Web Site subdi-
rectories are virtual directories. Most Web documents are placed in the Web server’s
Webpub (Web publishing) directory. For this example, we create our virtual directory in the
Webpub virtual directory. To create a virtual directory within this directory, right-click
Webpub, select New and then Virtual Directory. This starts the Virtual Directory Cre-
ation Wizard (Fig. 21.4), which guides users through the virtual directory creation process.

To begin, click Next in the Virtual Directory Creation Wizard welcome dialog. In
the Virtual Directory Alias dialog (Fig. 21.5), enter a name for the virtual directory and
click Next. We use the name Chapter21Test, although the virtual directory may have any
name provided that the name does not conflict with an existing virtual directory name.

In the Web Site Content Directory dialog (Fig. 21.6), enter the path for the direc-
tory containing the documents that clients will view. We created a directory named
C:\Chapter21Examples that serves our documents, although any existing directory
would be appropriate. If necessary, select the Browse button to navigate to the desired
directory. Click Next.

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Virtual Directory Creation Wizard welcome dialog.

iw3htp2_21.fm Page 688 Friday, July 20, 2001 1:26 PM

Chapter 21 Web Servers (IIS, PWS and Apache) 689

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

The Access Permissions dialog (Fig. 21.7) presents the virtual directory security
level choices. Choose the access level appropriate for a Web document. The Read option
allows users to read and download files located within the directory. The Run scripts
(such as ASP) option allows scripts to run in the directory. The Execute (such as
ISAPI applications or CGI) option allows applications to run in the directory. The
Write option allows a Web page to accept user input (e.g., users enter their credit-card
number to order a book). The Browse option allows users to navigate from one Web doc-

Fig. 21.5Fig. 21.5Fig. 21.5Fig. 21.5 Virtual Directory Alias dialog of Virtual Directory Creation Wizard.

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 Web Site Content Directory dialog of Virtual Directory Creation
Wizard.

iw3htp2_21.fm Page 689 Friday, July 20, 2001 1:26 PM

690 Web Servers (IIS, PWS and Apache) Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

ument to another through hyperlinks. By default, Read and Run scripts are enabled.
Click Next.

Click Finish to complete the creation of the virtual directory and exit the Virtual
Directory Creation Wizard. The newly created virtual directory, Chapter21Test, is
now located under the Webpub virtual directory. To stop IIS, right click Default Web
Site (or Default FTP Site or Default SMTP Virtual Server) and select Stop.

21.7 Microsoft Personal Web Server (PWS)2

Microsoft Personal Web Server (PWS) is a scaled-down version of IIS for a personal com-
puter (PC). PWS is ideal for educational institutions, small businesses and individuals be-
cause PWS does not require the PC on which it is installed to be used exclusively as a Web
server.

To install PWS, visit www.microsoft.com/msdownload/ntoptionpack/
askwiz.asp. For instructions on installing PWS, visit the Deitel & Associates, Inc. Web
site at www.deitel.com.

After installation, start PWS by opening the Control Panel. Double click the
Administration Tools icon and double click the Personal Web Manager icon. To
serve documents using PWS, place the files that will be requested in the default directory
(i.e., C:\Inetpub\Wwwroot) or in a virtual directory. A virtual directory is an alias for
an existing directory that resides on the local machine (e.g., C:\) or on the network.
Figure 21.8 shows the Personal Web Manager dialog.

2. This section applies to Windows 95/98/Me users.

Fig. 21.7Fig. 21.7Fig. 21.7Fig. 21.7 Access Permissions dialog of Virtual Directory Creation Wizard.

iw3htp2_21.fm Page 690 Friday, July 20, 2001 1:26 PM

Chapter 21 Web Servers (IIS, PWS and Apache) 691

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

On the Main screen, double click the Advanced icon at the bottom of the left pane.
In the screen that appears, click the Add button. In the Directory field of the Edit Direc-
tory dialog (Fig. 21.9), enter the directory path that contains the documents available to cli-
ents. We created a directory named C:\Chapter21Examples to serve our documents.
You may choose any existing directory. If necessary, select the Browse button to navigate
to the directory. In the Alias field, provide the virtual directory name (e.g.,
Chapter21Test). Next, select the security level of the virtual directory. The Read
option allows users to read and download files residing in the virtual directory. The Exe-
cute option allows an application to run in the directory. The Scripts option allows scripts
to run in the directory. By default, Read and Scripts are enabled. When finished, click
OK to create the directory. To stop PWS, select the Stop button from the Personal
Web Manager dialog.

Fig. 21.8Fig. 21.8Fig. 21.8Fig. 21.8 Personal Web Manager dialog.

Fig. 21.9Fig. 21.9Fig. 21.9Fig. 21.9 Creating a virtual directory in PWS in Edit Directory.

iw3htp2_21.fm Page 691 Friday, July 20, 2001 1:26 PM

692 Web Servers (IIS, PWS and Apache) Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

On the Main screen, double click the Advanced icon at the bottom of the left pane. In the screen that appears, click the Add button. In the Directory field of the Edit Directory d ialog (Fig. 21.9), enter the directory path that contains the documents available to clients. We created a directory named C:\Chapter21Examples to serve our documents. You may choose any existing directory. If necessary, select the Browse button to navigate to the directory. In the Alias field, provide the virtual-directory name (e.g., Chapter21Test). Next,select the security level of the virtual directory. The Read option allows users to read and download files residing in the virtual directory. The Execute option allows an application to run in the directory. The Scripts option allows scripts to run in the directory. By default, Read and Scripts are enabled. When finished, click OK to create the directory. To stop PWS, select the Stop button from the Personal Web Manager dialog.21.8 Apache Web Server3

The Apache Web server, maintained by the Apache Software Foundation, is currently the
most popular Web server because of its stability, efficiency and portability. It is an open
source product (i.e., software that can be freely obtained and customized) that runs on
UNIX, Linux and Windows platforms.

To install the Apache Web server, visit www.apache.org. For instructions on
installing Apache, visit www.deitel.com. After installing the Apache Web server, start
the application to serve Web pages. From the Start menu, successively select Programs,
Apache httpd Server, Control Apache Server and Start. If the server starts success-
fully, a command-prompt window opens stating that the service is starting (Fig. 21.10). To
stop the Apache Web server, from the Start menu, successively select Programs,
Apache httpd Server, Control Apache Server and Stop.

21.9 Requesting Documents
This section demonstrates how to request five different documents—XHTML, Active
Server Pages (ASP), Perl, Python and PHP. We discuss serving these documents using IIS,
PWS and Apache Web server. We start with XHTML documents. [Note: This section dis-
cusses how to serve documents using a Web server; we discuss how to create ASP, Perl,
Python and PHP documents in Chapters 25, 27, 28 and 29, respectively. To render ASP,
Perl, Python and PHP documents, the respective programming languages must be installed
on your computer. Visit the Deitel & Associates, Inc. Web site (www.deitel.com) to
obtain installation instructions for these various programming languages.]

21.9.1 XHTML

This section shows how to request an XHTML document from the IIS, PWS and Apache
Web servers. If you are using IIS or PWS, copy test.html from the Chapter 21 exam-
ples directory on the CD-ROM accompanying this book into C:\Chapter21Examples
(or to the directory you created in Sections 21.6 or 21.7). We copy the XHTML document
into the directory that references our virtual directory (Chapter21Test). [Note: A file
cannot be copied directly to a virtual directory.] To request the document from IIS, launch
Internet Explorer and enter the XHTML document’s location in the Address field (i.e.,
http://localhost/Webpub/Chapter21Test/test.html). Figure 21.11 dis-
plays the result of requesting test.html.

3. This section applies to Windows NT/2000, Unix and Linux users.

Fig. 21.10Fig. 21.10Fig. 21.10Fig. 21.10 Starting the Apache Web server. (Courtesy of The Apache Software
Foundation)

iw3htp2_21.fm Page 692 Friday, July 20, 2001 1:26 PM

Chapter 21 Web Servers (IIS, PWS and Apache) 693

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

To request test.html from PWS, launch Internet Explorer and enter the XHTML
document’s location in the Address field (i.e., http://localhost/
Chapter21Test/test.html). Figure 21.12 displays the result of requesting
test.html.

In the Apache Web server, XHTML documents need to be saved in the htdocs
default directory. On a Windows platform, the htdocs directory resides in C:\Program
Files\Apache Group\Apache; on a Linux platform, the htdocs directory resides
in the /usr/local/httpd directory. Copy the test.html document from the
Chapter 21 examples directory on the CD-ROM into the htdocs directory; all XHTML
files need to reside in this directory. To request the document, launch Internet Explorer (or
your UNIX/Linux equivalent browser) and enter the XHTML document’s location in the
Address field (i.e., http://localhost/test.html). Figure 21.13 shows the
result of requesting test.html. [Note: In Apache, localhost refers to the default
directory, htdocs, so we do not enter the directory name in the Address field.]

Fig. 21.11Fig. 21.11Fig. 21.11Fig. 21.11 Requesting test.html from IIS.

Fig. 21.12Fig. 21.12Fig. 21.12Fig. 21.12 Requesting test.html from PWS.

Fig. 21.13Fig. 21.13Fig. 21.13Fig. 21.13 Requesting test.html from Apache.

iw3htp2_21.fm Page 693 Friday, July 20, 2001 1:26 PM

694 Web Servers (IIS, PWS and Apache) Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

21.9.2 ASP
In addition to XHTML documents, IIS and PWS can serve Active Server Pages (ASP) doc-
uments. Currently, the Apache Web server does not provide support for ASP.

To request an ASP document, copy the test.asp file from the Chapter 21 examples
directory on the CD-ROM into C:\Chapter21Examples (or the directory created in
Sections 21.6 or 21.7). We copy the ASP document into the directory that references our
virtual directory (Chapter21Test). To request the document from IIS, launch Internet
Explorer and enter the ASP document’s location in the Address field (i.e., http://
localhost/Webpub/Chapter21Test/test.asp). Figure 21.14 displays the
result of requesting test.asp.

To request test.asp from PWS, launch Internet Explorer and enter the ASP docu-
ment’s location in the Address field (i.e., http://localhost/Chapter21Test/
test.asp). Figure 21.15 displays the result of requesting test.asp.

21.9.3 Perl
IIS, PWS and Apache Web servers can request Perl documents. To request a Perl document,
copy the file test.pl from the Chapter 21 examples directory on the CD-ROM to
C:\Chapter21Examples (or the directory you created in Sections 21.6 or 21.7). We
copy the Perl document into the directory that references our virtual directory
(Chapter21Test). To request the document from IIS, launch Internet Explorer and enter
the Perl document’s location in the Address field (i.e., http://localhost/Webpub/
Chapter21Test/test.pl). Figure 21.16 displays the result of requesting test.pl.

Fig. 21.14Fig. 21.14Fig. 21.14Fig. 21.14 Requesting test.asp from IIS.

Fig. 21.15Fig. 21.15Fig. 21.15Fig. 21.15 Requesting test.asp from PWS.

iw3htp2_21.fm Page 694 Friday, July 20, 2001 1:26 PM

Chapter 21 Web Servers (IIS, PWS and Apache) 695

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

To request test.pl from PWS, launch Internet Explorer and enter the Perl docu-
ment’s location in the Address field (i.e., http://localhost/Chapter21Test/
test.pl). Figure 21.17 displays the result of requesting test.pl.

To request Perl documents on the Apache Web server, copy the test.pl file from
the Chapter 21 examples directory on the CD-ROM to the cgi-bin directory. On a Win-
dows platform, the cgi-bin directory resides in C:\Program Files\Apache
Group\Apache; on a Linux platform, it resides in the /usr/local/httpd directory.
All Perl documents must reside in the cgi-bin directory, because certain environment
variables have been registered that recognize the document. To request the document,
launch Internet Explorer (or your UNIX/Linux equivalent browser) and enter the Perl doc-
ument’s location in the Address field (i.e., http://localhost/cgi-bin/
test.pl). Figure 21.18 displays the result of requesting test.pl.

21.9.4 Python
IIS, PWS and Apache Web servers can request Python documents. To request a Python
document, copy the file test.py from the Chapter 21 examples directory on the CD-
ROM to C:\Chapter21Examples (or the directory you created in Sections 21.6 or
21.7). We copy the Python document into the directory that references our virtual directory
(Chapter21Test). To request the document from IIS, launch Internet Explorer and en-
ter the Python document’s location in the Address field (i.e., http://localhost/
Webpub/Chapter21Test/test.py). Figure 21.19 displays the result of requesting
test.py.

Fig. 21.16Fig. 21.16Fig. 21.16Fig. 21.16 Requesting test.pl from IIS.

Fig. 21.17Fig. 21.17Fig. 21.17Fig. 21.17 Requesting test.pl from PWS.

iw3htp2_21.fm Page 695 Friday, July 20, 2001 1:26 PM

696 Web Servers (IIS, PWS and Apache) Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

To request test.py from PWS, launch Internet Explorer and enter the Python doc-
ument’s location in the Address field (i.e., http://localhost/Chapter21Test/
test.py). Figure 21.20 displays the result of requesting test.py.

To request Python documents on the Apache Web server, copy the file test.py from
the Chapter 21 examples directory on the CD-ROM to the cgi-bin directory. On a Win-
dows platform, the cgi-bin directory resides in C:\Program Files\Apache
Group\Apache; on a Linux platform, it resides in the /usr/local/httpd directory.
All Python documents must reside in the cgi-bin directory, because certain environment
variables have been registered that recognize the document. To request the document,
launch Internet Explorer (or the UNIX/Linux equivalent browser) and enter the Python
document’s location in the Address field (i.e., http://localhost/cgi-bin/
test.py). Figure 21.21 displays the result of requesting test.py.

Fig. 21.18Fig. 21.18Fig. 21.18Fig. 21.18 Requesting test.pl from Apache.

Fig. 21.19Fig. 21.19Fig. 21.19Fig. 21.19 Requesting test.py from IIS.

Fig. 21.20Fig. 21.20Fig. 21.20Fig. 21.20 Requesting test.py from PWS.

iw3htp2_21.fm Page 696 Friday, July 20, 2001 1:26 PM

Chapter 21 Web Servers (IIS, PWS and Apache) 697

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

21.9.5 PHP

IIS, PWS and Apache Web servers can request PHP documents. To request a PHP docu-
ment, copy the file test.php from the Chapter 21 examples directory on the CD-ROM
into C:\Chapter21Examples (or the directory you created in Sections 21.6 or 21.7).
We copy the PHP document into the directory that references our virtual directory
(Chapter21Test). [Note: A file cannot be copied directly to a virtual directory.] To re-
quest the document from IIS, launch Internet Explorer and enter the PHP document’s loca-
tion in the Address field (i.e., http://localhost/Webpub/Chapter21Test/
test.php). Figure 21.22 displays the result of requesting test.php.

To request test.php from PWS, launch Internet Explorer and enter the PHP docu-
ment’s location in the Address field (i.e., http://localhost/Chapter21Test/
test.php). Figure 21.23 displays the result of requesting test.php.

Fig. 21.21Fig. 21.21Fig. 21.21Fig. 21.21 Requesting test.py from Apache.

Fig. 21.22Fig. 21.22Fig. 21.22Fig. 21.22 Requesting test.php from IIS.

Fig. 21.23Fig. 21.23Fig. 21.23Fig. 21.23 Requesting test.php from PWS.

iw3htp2_21.fm Page 697 Friday, July 20, 2001 1:26 PM

698 Web Servers (IIS, PWS and Apache) Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

To request PHP documents on the Apache Web server, copy the file test.php from
the Chapter 21 examples directory on the CD-ROM to the htdocs directory. On a Win-
dows platform, the htdocs directory resides in C:\Program Files\Apache
Group\Apache; on a Linux platform, it resides in the /usr/local/httpd directory.
Save PHP documents in the htdocs directory. To request the document, launch Internet
Explorer (or a UNIX/Linux equivalent browser) and enter the PHP document’s location in
the Address field (i.e., http://localhost/test.php). Figure 21.24 displays the
result of requesting test.php.

21.10 Internet and World Wide Web Resources
This section lists several URLs for downloading Web servers, Option Packs, etc.

www.microsoft.com/msdownload/ntoptionpack/askwiz.asp
Visit this site to download the Windows NT 4.0 Option Pack, which can be installed on Windows 95/
2000/NT.

www.w3.org/Protocols
The World Wide Web Consortium (W3C) Web site contains information on the HTTP specification.
The site contains links to news, mailing lists and published articles.

www.apache.org/
The Apache Software Foundation was created to protect the use of Apache software products. This is
the product home page for the Apache Web server.

www.apacheweek.com/
The online magazine Apache Week contains articles about Apache jobs, product reviews and other
information concerning Apache software.

linuxtoday.com/stories/18780.html
This site contains an article discussing the widespread use of the Apache Web server. It contains links
to other articles that discuss Apache.

g-lea.tamu.edu/Getstart.htm
Users can download Microsoft PWS from this Web site and receive help installing and configuring
PWS.

www.iisanswers.com
The IIS Answers Web site provides links to articles that discuss IIS topics. The articles cover issues
from installation to security.

Fig. 21.24Fig. 21.24Fig. 21.24Fig. 21.24 Requesting test.php from Apache.

iw3htp2_21.fm Page 698 Friday, July 20, 2001 1:26 PM

Chapter 21 Web Servers (IIS, PWS and Apache) 699

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

www.iisadministrator.com
The IIS Administrator Web site is a technical newsletter that provides tips and techniques for main-
taining IIS.

www.alphasierra.com/iisdev
The IIS Development Web site provides information on how to publish ASP documents using IIS. The
site contains links to various ASP components, code and resources.

dynamicnet.net/support/fp/perlwithPWS.htm
The Dynamic Net Web site provides instructions for executing Perl scripts on PWS.

msdn.microsoft.com/library/officedev/office97/settinguppersonal-
webserver.htm
This Web page lists the installation requirements of PWS, explains how to install PWS and discusses
how to request ASP documents using PWS.

www.studiodeluxe.net/pws/
This Web site is dedicated to PWS. It contains links to installation instructions, publishing applica-
tions (Perl, Miva, PHP, etc.) and FAQs.

SUMMARY
• Web servers respond to client requests by providing resources, such as XHTML documents.

• Web servers and clients communicate with each other via the platform-independent HyperText
Transfer Protocol (HTTP).

• The most common HTTP request types are get and post; these requests send client form data to a
Web server.

• The get request sends form content as part of the URL; the post request attaches form contents to
the end of an HTTP request. The data sent in a post request are not part of the URL and cannot be
seen by the user.

• Browsers often cache Web pages for quick reloading. However, browsers typically do not cache
the server’s response to a post request, because the information may have changed.

• A Web server is part of a multi-tier application—sometimes referred to as an n-tier application. A
multi-tier application divides functionality into separate tiers. The three-tier application contains
an information tier, a middle tier and a client tier.

• The information tier maintains data for the application in a database.

• The middle tier implements business logic and presentation logic to control interactions between
application clients and application data. A Web server is a middle-tier application.

• The client tier is the application’s user interface. The client interacts with the middle tier to make
requests and to retrieve data from the information tier. The client then displays data retrieved from
the middle tier to the user.

• Client-side scripting often is used for validation, interactivity, accessing the browser and enhanc-
ing a Web page with ActiveX controls, Dynamic HTML and Java applets.

• Client-side scripting has some limitations—such as browser dependency, where the browser must
support the scripting language.

• Microsoft Internet Information Services (IIS) is an enterprise-level Web server.

• Microsoft Personal Web Server (PWS) is a scaled-down version of the IIS.

• The Apache Web server, developed by the Apache Group, is the most popular Web server in use
today. It runs on Windows and non-Windows platforms.

• A virtual directory is an alias for an existing directory on a local machine.

iw3htp2_21.fm Page 699 Friday, July 20, 2001 1:26 PM

700 Web Servers (IIS, PWS and Apache) Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

• In its default configuration, Apache only supports Perl and Python documents stored in the cgi-
bin directory, whereas XHTML and PHP documents are stored in the htdocs directory (also
the default directory in Apache).

• The Apache Web server does not serve ASP documents. ASP is a Microsoft-specific technology,
so use IIS and PWS to serve such documents.

TERMINOLOGY

SELF-REVIEW EXERCISES
21.1 State whether each of the following is true or false. If false, explain why.

a) Web servers and clients communicate with each other through the platform-independent
HTTP.

b) Web servers often cache the most popular Web pages for quick reloading.
c) The information tier implements business logic to control the type of information that is

presented to a particular client.
d) Client-side scripts can access the browser, use features specific to that browser and ma-

nipulate browser documents.
e) Internet Information Services (IIS) is a scaled-down version of Personal Web Server

(PWS) that is intended for universities and small businesses.
f) A virtual directory is an alias for an existing directory on a remote machine.

ActiveX control localhost
ActiveX server component middle tier
Apache Web server module
bottom tier multi-tier application
Browse access n-tier application
business logic open source
business rule Personal Web Server (PWS)
cache post (HTTP request)
cgi-bin directory presentation logic
client tier RDBMS
client-side scripting Read access
controller logic remote Web server
data tier request method
DNS lookup request type
domain name Run scripts (such as ASP) access
domain name server (DNS) scripting host
Execute access security level
File Transfer Protocol (FTP) server-side form handler
fully qualified host name server-side script
get (HTTP request) Simple Mail Transfer Protocol (SMTP)
host name top tier
htdocs directory top-level domain (TLD)
HTTP request type Uniform Resource Locator (URL)
HyperText Transfer Protocol (HTTP) validation
information tier virtual directory
Internet Information Services (IIS) Web server
Internet Protocol (IP) address Web server
Java applet Wireless Markup Language (WML)
local Web server Write access

iw3htp2_21.fm Page 700 Friday, July 20, 2001 1:26 PM

Chapter 21 Web Servers (IIS, PWS and Apache) 701

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

g) The Apache Web server is said to be platform-independent because it runs on various op-
erating systems, such as Unix, Linux and Windows.

h) In Apache, Perl and PHP, documents are stored in the cgi-bin directory.
i) IIS, PWS and Apache can request ASP, Perl, Python and PHP documents.

21.2 Fill in the blanks in each of the following statements:
a) The two most common HTTP request types are and .
b) Browsers often Web pages for quick reloading.
c) In a three-tier application, a Web server is typically part of the tier.
d) Client-side validation reduces the number of requests passed to the .
e) The most popular client-side scripting language is .
f) A translates a fully qualified host name to an IP address.
g) In a Web address, is a host name that references the local computer.
h) A directory references an existing directory on a local machine.
i) The Web Server is intended for educational institutions and small businesses.
j) In the Apache Web server, Python documents are stored in the directory.

ANSWERS TO SELF-REVIEW EXERCISES
21.1 a.) True. b) False. Web browsers often cache Web pages for quick reloading. c) False. The
middle tier implements business logic and presentation logic to control interactions between applica-
tion clients and application data. d) True. e) False. Personal Web Server (PWS) is a scaled-down ver-
sion of Internet Information Services (IIS) that is intended for universities and small businesses. f)
False. A virtual directory is an alias for an existing directory on the local machine. g) True. h) False.
In Apache, Perl and Python, documents are stored in the cgi-bin directory. PHP documents are
stored in the htdocs directory. i) False. IIS, PWS and Apache can request XHTML, Perl, Python
and PHP documents. The Apache Web server does not serve ASP documents.

21.2 a) get, post. b) cache. c) middle. d) server. e) JavaScript. f) domain name server (DNS). g)
localhost. h) virtual. i) Personal. j) cgi-bin.

EXERCISES
21.3 Define the following terms:

a) HTTP.
b) Multi-tier application.
c) Request method.

21.4 Define the following terms:
a) Top-level domain (TLD).
b) Virtual directory.
c) Web server.

21.5 In a three-tier application, explain how the middle tier (e.g., Web server) interacts with the
client tier (e.g., Web browser).

21.6 Explain the difference between the get request type and the post request type. When is it ideal
to use the post request type?

21.7 Explain how to determine the machine names of remote Web servers (in your local network).

21.8 Given that you have a document, sample.php, in the C:\Exercises\Webservers
directory, explain how to request the document using

a) IIS.
b) PWS.
c) Apache.

iw3htp2_21.fm Page 701 Friday, July 20, 2001 1:26 PM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

22
Database: SQL, MySQL,

DBI and ADO

Objectives
• To understand the relational database model.
• To be able to write database queries using the

Structured Query Language (SQL).
• To understand the MySQL database server.
• To learn various database interfaces.
• To understand Microsoft’s ActiveX Data Object

(ADO) Technology.
Now go, write it before them in a table, and note it in a book,
that it may be for the time to come for ever and ever.
The Holy Bible: The Old Testament

True art selects and paraphrases, but seldom gives a
verbatim translation.
Thomas Bailey Aldrich

Get your facts first, and then you can distort them as much
as you please.
Mark Twain

I like two kinds of men: domestic and foreign.
Mae West

iw3htp2_22.fm Page 702 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 703

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

22.1 Introduction
A database is an integrated collection of data. Many companies maintain databases to or-
ganize employee information, such as names, addresses and phone numbers. Many strate-
gies exist for organizing data to facilitate access and manipulation. A database
management system (DBMS) provides mechanisms for storing and organizing data in a
manner consistent with the database’s format. Database management systems allow users
to access and store data without addressing the internal representation of databases.

Relational databases—composed of data that correspond to one another—are the most
popular database systems in use. Almost all relational database systems use a language
called Structured Query Language (SQL—pronounced as its individual letters or as
“sequel”) to create queries (i.e., requests information that satisfy given criteria) and manip-
ulate data. Some popular enterprise-level relational database systems include Oracle,
Microsoft SQL Server, MySQL, Sybase, DB2 and Informix.

In this chapter, we present basic SQL queries that manipulate a database containing
several of our books. We introduce MySQL—a robust and scalable relational database

Outline

22.1 Introduction
22.2 Relational Database Model
22.3 Relational Database Overview
22.4 Structured Query Language

22.4.1 Basic SELECT Query
22.4.2 WHERE Clause
22.4.3 GROUP BY Clause
22.4.4 ORDER BY Clause
22.4.5 Merging Data from Multiple Tables
22.4.6 Inserting a Record
22.4.7 Updating a Record
22.4.8 DELETE FROM Statement
22.4.9 TitleAuthor Query from Books.mdb

22.5 MySQL
22.6 Introduction to DBI

22.6.1 Perl Database Interface
22.6.2 Python DB-API
22.6.3 PHP dbx module

22.7 ActiveX Data Objects (ADO)
22.8 Internet and World Wide Web Resources

 Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_22.fm Page 703 Friday, July 20, 2001 3:52 PM

704 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

management system—and present various database interfaces that interact with MySQL.
We also discuss a Microsoft technology—ActiveX Data Objects (ADO)—that provides
access to database contents and to data sources.

22.2 Relational Database Model
The relational database model is a logical representation of data that allows users to con-
sider the relationships between the data separate from the physical structure of the data. A
relational database consists of tables. Figure 22.1 illustrates a sample table named Em-
ployee that might be in a personnel system. The table illustrates the attributes of employ-
ees and how those attributes relate to specific employees. A table row is called a record,
and a table column is called a field. This table consists of six records and five fields.

In the Employee table, the Number field of each record is the primary key for refer-
encing data. A primary key is a field (or a set of fields) that contains unique data that cannot
be duplicated in other records. Each record has a unique value in the primary key field to
identify the record. Examples of primary fields include social security numbers and
employee ID numbers.

Multiple records within a table are normally unique because of the primary key field.
However, the remaining fields can contain duplicate values. For example, three records in
the Employee table’s Department field contain number 413. The records of Fig. 22.1
are ordered by primary key. In this case, the records are in increasing order—we also could
use decreasing order.

Often, database users are interested in different data and different data relationships.
Some users want only certain subsets of the table columns. To obtain table subsets, we use
SQL statements to specify the data to select from the table. SQL provides a complete set of
keywords that enable programmers to define complex queries. The results of a query are
commonly called result sets (or record sets). For example, we might select data from the
table in Fig. 22.1 to create a new result set that provides the geographic location of several
departments. Figure 22.2 shows this result set. We discuss SQL queries in Section 22.4,
Structured Query Language.

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Relational database structure.

Number Name Department Salary Location

23603 Jones 413 1100 New Jersey

24568 Kerwin 413 2000 New Jersey

34589 Larson 642 1800 Los Angeles

35761 Myers 611 1400 Orlando

47132 Neumann 413 9000 New Jersey

78321 Stephens 611 8500 Orlando

Row/Record

Column/FieldPrimary key

iw3htp2_22.fm Page 704 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 705

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Software Engineering Observation 22.1
Tables in a database normally have primary keys. 22.1

22.3 Relational Database Overview
In this section, we overview Structured Query Language (SQL) in the context of a sample
database we created, Books.mdb. The Chapter 22 examples directory on the CD-ROM
that accompanies this book contains the database. Before we discuss SQL, we overview the
tables of this Microsoft Access database.

The database consists of four tables—Authors, Publishers, AuthorISBN and
Titles. [Note: The figures containing the descriptions of the columns and the figures
showing the contents of the tables display the primary key field for each table in italics.]

Figure 22.3 describes the Authors table, which consists of four fields that maintain
each author’s unique ID number, first name, last name and the author’s year of birth.
Figure 22.4 shows the data from the Authors table. Notice that the last record in the table
contains a null value (i.e., the record contains no value) for the YearBorn field. This field,
in addition to FirstName and LastName, is not a primary key field and therefore can
contain null values.

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Result set formed by selecting data from a table.

Department Location

413 New Jersey

642 Los Angeles

611 Orlando

Field Description

AuthorID An integer representing the author’s ID number in the database. This
field is the primary key field for this table.

FirstName A string representing the author’s first name.

LastName A string representing the author’s last name.

YearBorn A string representing the author’s year of birth.

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 Authors table from Books.mdb.

AuthorID FirstName LastName YearBorn

1 Harvey Deitel 1946

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Data from the Authors table of Books.mdb (part 1 of 2).

iw3htp2_22.fm Page 705 Friday, July 20, 2001 3:52 PM

706 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Figure 22.5 describes the Publishers table, which consists of two fields repre-
senting each publisher’s unique ID and name. Figure 22.6 shows the data from the Pub-
lishers table of the Books.mdb database.

Figure 22.7 describes the Titles table, which consists of six fields that maintain gen-
eral information about each book in the database. These fields include the ISBN number,
title, edition number, year published, a description of the book and the publisher’s ID
number. Figure 22.8 shows a portion of the data from the Titles table. [Note: We did not
have space for the Description field of the Titles table in Fig. 22.8.]

2 Paul Deitel 1968

3 Tem Nieto 1969

4 Kate Steinbuhler

Field Description

PublisherID An integer representing the publisher’s ID number in the database. This
is the primary key field for this table.

PublisherName A string representing the abbreviated name for the publisher.

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 Publishers table from Books.mdb.

PublisherID PublisherName

1 Prentice Hall

2 Prentice Hall PTR

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 Data from the Publishers table of Books.mdb.

Field Description

ISBN A string representing the ISBN number of the book.

Title A string representing the title of the book.

EditionNumber A string representing the edition number of the book.

Fig. 22.7Fig. 22.7Fig. 22.7Fig. 22.7 Titles table from Books.mdb (part 1 of 2).

AuthorID FirstName LastName YearBorn

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Data from the Authors table of Books.mdb (part 2 of 2).

iw3htp2_22.fm Page 706 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 707

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Figure 22.9 describes the AuthorISBN table, which consists of two fields that main-
tain each book’s ISBN number and the corresponding author ID number for that book. This
table links the names of the authors with their respective book titles. Figure 22.10 shows a
portion of the data from the AuthorISBN table.

Figure 22.11 illustrates the relationships among the tables in the Books.mdb data-
base. We created this diagram in Microsoft Access when we designed the database. A bold
field name in a table is that table’s primary key. Every record must have a value in the pri-
mary key field, and the value must be unique, according to the Rule of Entity Integrity.

Common Programming Error 22.1
Not providing a value for a primary key field in every record breaks the Rule of Entity Integ-
rity and causes the DBMS to report an error. 22.1

YearPublished A string representing the publication year.

Description A string representing the description of the book.

PublisherID An integer representing the publisher’s ID number. This value must
correspond to an ID number in the Publishers table.

ISBN Title
Edition
Number

Year
Published

Publisher
ID

0-13-012507-5 Java How to Program 3 1999 1

0-13-013249-7 Getting Started with Visual C++
6 with an Introduction to MFC

1 1999 1

0-13-016143-8 Internet and World Wide Web
How to Program

1 1999 1

0-13-020522-2 Visual Basic 6 How to
Program Instructor's Manual
with Solution Disk

1 1999 1

0-13-028417-3 XML How to Program 1 2001 1

0-13-089571-1 C++ How to Program 3 2001 1

0-13-089572-5 C How to Program 3 2001 1

0-13-271974-6 Java Multimedia Cyber Class-
room

1 1996 2

0-13-456955-5 Visual Basic 6 How to
Program

1 1998 1

0-13-899394-7 Java How to Program 2 1997 1

Fig. 22.8Fig. 22.8Fig. 22.8Fig. 22.8 Portion of the data from the Titles table of Books.mdb.

Field Description

Fig. 22.7Fig. 22.7Fig. 22.7Fig. 22.7 Titles table from Books.mdb (part 2 of 2).

iw3htp2_22.fm Page 707 Friday, July 20, 2001 3:52 PM

708 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

The lines between the tables represent relationships. Consider the line between the
Publishers and Titles tables. On the Publishers end of the line there is a 1 and
on the Titles end there is an infinity symbol (∞), to indicate a one-to-many relationship
between the two tables. A single publisher in the Publishers table can have many books
in the Titles table. The relationship line links the PublisherID field in the Pub-
lishers table to the PublisherID field in the Titles table.

Field Description

ISBN A string representing the ISBN number for a book. The ISBN number
in this field also must appear in the Titles table.

AuthorID An integer representing the author’s ID number, which allows the data-
base to connect each book to a specific author. The ID number in this
field must also appear in the Authors table.

Fig. 22.9Fig. 22.9Fig. 22.9Fig. 22.9 AuthorISBN table from Books.mdb.

ISBN AuthorID

0-13-010671-2 1

0-13-010671-2 2

0-13-012507-5 1

0-13-013249-7 2

0-13-016143-8 2

0-13-020522-2 3

0-13-032364-0 2

0-13-032364-0 4

0-13-082928-5 3

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 Portion of the data from the AuthorISBN table of Books.mdb.

Fig. 22.11Fig. 22.11Fig. 22.11Fig. 22.11 Table relationships in Books.mdb.

iw3htp2_22.fm Page 708 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 709

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Common Programming Error 22.2
Providing duplicate values for the primary key field in multiple records causes the DBMS to
report an error. 22.2

The PublisherID field in the Titles table is a foreign key—a field which refer-
ences the primary key field in another table. Foreign keys (sometimes called constraints)
are specified when creating a table, and they help maintain the Rule of Referential Integ-
rity—every foreign key field value must appear in another table’s primary key field. For
example, PublisherID in the Titles table is a foreign key to PublisherID in the
Publishers table. Foreign keys enable information from multiple tables to be joined for
analysis purposes. The line between the tables represents the link between the foreign key
in one table and the primary key in another table. To maintain referential integrity,
Microsoft Access ensures that every record in the Titles table refers to a record in the
Publishers table (this was configured when we first created the database in Access).

 The line between the AuthorISBN and Authors tables indicates that for each
author in the Authors table there can be an infinite number of ISBNs for books written
by that author in the AuthorISBN table. The AuthorID field in the AuthorISBN table
is a foreign key of the AuthorID field (the primary key) of the Authors table. The
AuthorISBN table links information in the Titles and Authors tables.

Finally, the line between the Titles and AuthorISBN tables indicates a one-to-
many relationship—a title can be written by any number of authors.

22.4 Structured Query Language
In this section we provide an overview of Structured Query Language (SQL) in the context
of the Books.mdb sample database. The SQL queries discussed here will appear again in
the examples later in the chapter.

The next several subsections discuss some SQL keywords (Fig. 22.12) in the context
of complete SQL queries. For more information on SQL, refer to Section 22.8, Internet and
World Wide Web Resources.

SQL keyword Description

SELECT Select (retrieve) fields from one or more tables.

FROM Tables from which to get fields. Required in every SELECT.

WHERE Criteria for selection that determine the rows to be retrieved.

GROUP BY Criteria for grouping records.

ORDER BY Criteria for ordering (sorting) records.

INSERT INTO Insert values into one or more tables. Some databases do not require the
SQL keyword INTO.

UPDATE Update existing data in one or more tables.

DELETE FROM Delete data from a specified table.

Fig. 22.12Fig. 22.12Fig. 22.12Fig. 22.12 Some SQL query keywords.

iw3htp2_22.fm Page 709 Friday, July 20, 2001 3:52 PM

710 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

22.4.1 Basic SELECT Query
Let us consider several SQL queries that extract information from the Books.mdb data-
base. A typical SQL query selects information from one or more tables in a database by us-
ing the SELECT command. The simplest form of a SELECT query is

SELECT * FROM TableName

The asterisk (*) indicates that the query selects all rows and columns (fields) from
TableName, which specifies a table in the database. For example, to select the contents of
the Authors table (i.e., all the data in Fig. 22.4), use the query

SELECT * FROM Authors

To select specific fields from a table, replace the asterisk (*) with a comma-separated
list of field names. For example, to select only the fields AuthorID and LastName for
all rows in the Authors table, use the query

SELECT AuthorID, LastName FROM Authors

The preceding query returns the data shown in Fig. 22.13.

Common Programming Error 22.3
When performing SELECT queries using the asterisk (*) do not assume that the query al-
ways returns the fields in the same order in the result set. 22.3

Software Engineering Observation 22.2
To ensure that fields are returned in the same order, specify the field names in the desired
order. 22.2

Performance Tip 22.1
An application receiving a result set can process the result set more efficiently if the field
names are specified. This technique retrieves only the necessary fields and processes the
fields by column number, which is more efficient than processing fields by field name. 22.1

Common Programming Error 22.4
SQL field names cannot contain blank spaces. Combine a field name containing spaces with
an underscore (_). For example, the field name First Name is incorrect; instead, this field
name must appear as First_Name. 22.4

AuthorID LastName

1 Deitel

2 Deitel

3 Nieto

4 Steinbuhler

Fig. 22.13Fig. 22.13Fig. 22.13Fig. 22.13 AuthorID and LastName from the Authors table.

iw3htp2_22.fm Page 710 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 711

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Good Programming Practice 22.1
For readability, it is best to create queries using multiple lines and indentation. 22.1

22.4.2 WHERE Clause

Many queries locate records in a database according to certain selection criteria. For exam-
ple, a user may wish to query all books published after 1995. To specify the selection cri-
teria for the query, SQL uses the optional WHERE clause in a SELECT query. The query
selects only those records that match the selection criteria defined by the WHERE clause.
The basic form of a SELECT query containing a selection criteria is

SELECT fieldName1, fieldName2, … FROM TableName WHERE criteria

For example, to select all fields from the Authors table in which the author’s YearBorn
is greater than 1960, use the query

SELECT AuthorID, FirstName, LastName, YearBorn
 FROM Authors
 WHERE YearBorn > 1960

Our database contains only four authors in the Authors table. Two of the authors have
listed dates of birth after 1960, so Fig. 22.14 shows the two records that the preceding que-
ry selects.

Performance Tip 22.2
Using selection criteria improves performance by searching for a portion of the data, which
is easier and faster than working with the entire set of data stored in the database. 22.2

The WHERE clause condition may contain the operators <, >, <=, >=, =, <> and LIKE.
Operator LIKE performs pattern matching with wildcard characters asterisk (*) and ques-
tion mark (?). Pattern matching allows SQL to search for a particular character or a string
of characters. An asterisk character (*) indicates that the string can have zero or more char-
acters at the asterisk character’s position in the pattern. For example, the following query
locates the records of all the authors whose last names start with the letter D:

SELECT AuthorID, FirstName, LastName, YearBorn
 FROM Authors
 WHERE LastName LIKE 'D*'

Figure 22.15 shows that the preceding query selects the two records because two of the
four authors in the database have last names starting with the letter D (followed by zero or
more characters). The * in the WHERE clause’s LIKE pattern indicates that any number of
characters can follow the letter D in the LastName field. Notice that the pattern string is
surrounded by single-quote characters.

Portability Tip 22.1
Refer to the database system documentation to determine if SQL on your system is case sen-
sitive (i.e., all uppercase letters, all lowercase letters or some combination of the two) and to
determine the syntax for SQL keywords. 22.1

iw3htp2_22.fm Page 711 Friday, July 20, 2001 3:52 PM

712 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Portability Tip 22.2
Not all database systems support the LIKE operator, so read the database system’s docu-
mentation carefully. 22.2

Good Programming Practice 22.2
To emphasize SQL keywords in a query, capitalize the keywords on systems that are case in-
sensitive. 22.2

Good Programming Practice 22.3
In database systems that support uppercase and lowercase letters for table and field names,
use an uppercase first letter for every word in a table name or field name (e.g., LastName).
This makes SQL statements more readable. 22.3

A question mark (?) indicates that a single character can occupy the question mark’s
position in the pattern string. For example, the following query locates the records of all the
authors whose last names start with any character (specified with ?) followed by the letter
i, followed by any number of additional characters (specified with *):

SELECT AuthorID, FirstName, LastName, YearBorn
 FROM Authors
 WHERE LastName LIKE '?i*'

The preceding query produces the result in Fig. 22.16 because only one author’s last name
has the letter i as its second letter.

Portability Tip 22.3
Most databases use the underscore (_) and the percent (%) characters in place of ? and * in
a LIKE expression. 22.3

A query can specify a range of characters that occupy one position in the pattern string.
A range of characters can be specified as follows:

[startValue-endValue]

AuthorID FirstName LastName YearBorn

2 Paul Deitel 1968

3 Tem Nieto 1969

Fig. 22.14Fig. 22.14Fig. 22.14Fig. 22.14 Authors from the Authors table born after 1960.

AuthorID FirstName LastName YearBorn

1 Harvey Deitel 1946

2 Paul Deitel 1968

Fig. 22.15Fig. 22.15Fig. 22.15Fig. 22.15 Authors from the Authors table whose last names start with D.

iw3htp2_22.fm Page 712 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 713

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

in which startValue is the first character in the range and endValue is the last character in
the range. For example, the following query locates the records of all the authors whose last
names start with any letter (specified with the ?), followed by any letter in the range a to i
(specified with [a-i]), followed by any number of characters (specified with *):

SELECT AuthorID, FirstName, LastName, YearBorn
 FROM Authors
 WHERE LastName LIKE '?[a-i]*'

The preceding query selects three records from the Authors table (Fig. 22.4) because
“Harvey Deitel,” “Paul Deitel” and “Tem Nieto” have last names that contain a second
letter in the range a to i.

22.4.3 GROUP BY Clause

In certain situations, it is necessary to group a result set by a particular column. To group a
result set, use the optional GROUP BY clause. The simplest form of a GROUP BY clause is

SELECT fieldName1, COUNT(*) FROM TableName
GROUP BY fieldName

where the GROUP BY clause groups the result set by a specified fieldName. The COUNT
keyword returns the number of records that the query selects. For example, to obtain the
number of ISBN values associated with an author, group the ISBNs by the author’s ID
number using the query

SELECT AuthorID, COUNT(*) AS Count
 FROM AuthorISBN
 GROUP BY AuthorID

Figure 22.17 shows the results of the preceding query.

AuthorID FirstName LastName YearBorn

3 Tem Nieto 1969

Fig. 22.16Fig. 22.16Fig. 22.16Fig. 22.16 Authors from the Authors table whose last names contain i as the
second letter.

AuthorID Count

1 28

2 28

3 11

4 1

Fig. 22.17Fig. 22.17Fig. 22.17Fig. 22.17 Number of ISBN values associated with each author.

iw3htp2_22.fm Page 713 Friday, July 20, 2001 3:52 PM

714 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

In this particular query, the COUNT(*) AS Count clause assigns the name Count to
the column that contains the value of the total count. If we do not use the AS Count clause,
the database generates its own field name. In the current database, AuthorID 1 and 2
(“Harvey Deitel” and “Paul Deitel,” respectively) each have 28 ISBN values associated with
their names. AuthorID 3 (“Tem Nieto”) has 11 ISBN values associated with his name and
AuthorID 4 (“Kate Steinbuhler”) has one ISBN value associated with her name. [Note: In
the COUNT function, a fieldName can be substituted in place of the asterisk (*).]

A query can combine the WHERE and GROUP BY clauses. The query

SELECT AuthorID, COUNT(*) AS Count
 FROM AuthorISBN
 WHERE AuthorID <= 3
 GROUP BY AuthorID

selects all records from the AuthorISBN table in which AuthorID is less than or equal
to 3 and groups the results by AuthorID (Fig. 22.18).

22.4.4 ORDER BY Clause

In certain situations, it is necessary to sort the result set by a given criteria. For example,
we may want to organize our data in ascending order by last name. The result set also can
be sorted in descending order. The optional ORDER BY clause sorts data. The simplest
forms of an ORDER BY clause are

SELECT fieldName1, fieldName2, … FROM TableName ORDER BY fieldName ASC
SELECT fieldName1, fieldName2, … FROM TableName ORDER BY fieldName
DESC

in which ASC specifies ascending (lowest to highest) order, DESC specifies descending
(highest to lowest) order and fieldName represents the field (the column of the table) that
the query uses for sorting purposes.

For example, to obtain the list of authors in ascending order by last name (Fig. 22.19),
use the query

SELECT AuthorID, FirstName, LastName, YearBorn
 FROM Authors
 ORDER BY LastName ASC

The default sorting order is ascending, so the ASC keyword is optional.

AuthorID Count

1 28

2 28

3 11

Fig. 22.18Fig. 22.18Fig. 22.18Fig. 22.18 Combining WHERE and GROUP BY to retrieve the number of ISBN values
associated with each author.

iw3htp2_22.fm Page 714 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 715

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

To obtain the same list of authors in descending order by last name (Fig. 22.20), use
the query

SELECT AuthorID, FirstName, LastName, YearBorn
 FROM Authors
 ORDER BY LastName DESC

The ORDER BY can also order multiple fields using the form

ORDER BY fieldName1 SortingOrder, fieldName2 SortingOrder, ...

in which SortingOrder is either ASC or DESC. Note that the SortingOrder does not have to
be identical for each field. The query

SELECT AuthorID, FirstName, LastName, YearBorn
 FROM Authors
 ORDER BY LastName, FirstName

sorts authors in ascending order by last name, then by first name (Fig. 22.21). In the set of
selected records, the query sorts the records for authors with the same last name in ascend-
ing order by their first names.

Users can combine the WHERE and ORDER BY clauses in one query. The query

SELECT ISBN, Title, EditionNumber,
 YearPublished, PublisherID
 FROM Titles
 WHERE Title LIKE '*How to Program'
 ORDER BY Title ASC

selects records from the Titles table that have a Title ending in “How to Program”
and sorts them in ascending order by Title. A portion of the query results is shown in
Fig. 22.22 (we did not have space to show the Description field of the Titles table
in Fig. 22.22).

22.4.5 Merging Data from Multiple Tables

A user performing a query often needs to merge information spread over multiple tables.
Merging data is referred to as joining the tables and is achieved using a comma-separated
list of tables in the FROM clause of a SELECT query. This operation merges records from
two or more tables and extracts values common to both tables with the WHERE clause. The
simplest form of this query is

AuthorID FirstName LastName YearBorn

1 Harvey Deitel 1946

2 Paul Deitel 1968

3 Tem Nieto 1969

4 Kate Steinbuhler

Fig. 22.19Fig. 22.19Fig. 22.19Fig. 22.19 Authors from the Authors table in ascending order by LastName.

iw3htp2_22.fm Page 715 Friday, July 20, 2001 3:52 PM

716 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

SELECT fieldName1, fieldName2, …
 FROM TableName1, TableName2
 HERE TableName1.fieldName = TableName2.fieldName

AuthorID FirstName LastName YearBorn

4 Kate Steinbuhler

3 Tem Nieto 1969

1 Harvey Deitel 1946

2 Paul Deitel 1968

Fig. 22.20Fig. 22.20Fig. 22.20Fig. 22.20 Authors from the Authors table in descending order by LastName.

AuthorID FirstName LastName YearBorn

1 Harvey Deitel 1946

2 Paul Deitel 1968

3 Tem Nieto 1969

4 Kate Steinbuhler

Fig. 22.21Fig. 22.21Fig. 22.21Fig. 22.21 Authors from the Authors table in ascending order by LastName
and by FirstName.

ISBN Title
EditionN
umber

Year
Published

Publisher
ID

0-13-089572-5 C How to Program 3 2001 1

0-13-089571-7 C++ How to Program 3 2001 1

0-13-528910-6 C++ How to Program 2 1997 1

0-13-028419-X e-Business and e-Commerce
How to Program

1 2001 1

0-13-016143-8 Internet and World Wide Web
How to Program

1 1999 1

0-13-012507-5 Java How to Program 3 1999 1

0-13-028418-1 Perl How to Program 1 2001 1

0-13-456955-5 Visual Basic 6 How to Program 1 1998 1

0-13-028417-3 XML How to Program 1 2001 1

Fig. 22.22Fig. 22.22Fig. 22.22Fig. 22.22 Portion of the books from the Titles table whose titles end with How
to Program, sorted in ascending order by Title.

iw3htp2_22.fm Page 716 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 717

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

The WHERE clause of the query specifies the fields to be compared from each table. These
fields normally represent the primary key in one table and the corresponding foreign key in
the other table. For example, the following query produces a list of authors and the ISBN
numbers of the books that each author wrote:

SELECT FirstName, LastName, ISBN
 FROM Authors, AuthorISBN

WHERE Authors.AuthorID = AuthorISBN.AuthorID
 ORDER BY LastName, FirstName

The query merges the FirstName and LastName fields from the Authors table with
the ISBN field from the AuthorISBN table. The query then sorts the results in ascending
order by LastName and FirstName. The query syntax TableName.fieldName in the
WHERE clause—called a fully qualified name—specifies the fields that should be compared
to join the tables. Fields with the same name in both tables require the “TableName.” syn-
tax. Fully qualified names that include the database name can perform cross-database que-
ries. Figure 22.23 shows the results of the preceding query.

Software Engineering Observation 22.3
If an SQL statement uses fields with the same name from multiple tables, the field name must
be fully qualified with its table name and a dot operator (.), as in Authors.AuthorID. 22.3

Common Programming Error 22.5
When performing a query on two or more tables that contain identical field names, it is nec-
essary to include fully qualified names. Not doing so results in an error. 22.3

FirstName LastName ISBN

Harvey Deitel 0-13-226119-7

Harvey Deitel 0-13-016143-8

Harvey Deitel 0-13-085609-6

Harvey Deitel 0-13-013249-7

Harvey Deitel 0-13-899394-7

Paul Deitel 0-13-899394-7

Paul Deitel 0-13-226119-7

Paul Deitel 0-13-118043-6

Paul Deitel 0-13-028418-1

Paul Deitel 0-13-083055-0

Tem Nieto 0-13-016143-8

Tem Nieto 0-13-456955-5

Tem Nieto 0-13-020522-2

Fig. 22.23Fig. 22.23Fig. 22.23Fig. 22.23 Portion of the result set containing authors and ISBN numbers sorted in
ascending order by LastName and FirstName (part 1 of 2).

iw3htp2_22.fm Page 717 Friday, July 20, 2001 3:52 PM

718 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

22.4.6 Inserting a Record
Users can insert data into a table (e.g., add a new record) with an INSERT INTO operation.
The simplest form for an INSERT INTO statement is

INSERT INTO TableName (fieldName1, fieldName2, …, fieldNameN)
 VALUES (value1, value2, …, valueN)

where TableName is the table into which the record will be inserted. The TableName is fol-
lowed by a comma-separated list of field names in parentheses. This list is not required if
the INSERT INTO operation specifies a value for every column of the table definition in
the proper order (the first value corresponds to the first column, the second value corre-
sponds to the second column, and so on).

The SQL keyword VALUES and a comma-separated list of values in parentheses
follow the list of field names. The values specified should correspond in order and type to
the field names specified after the table name (i.e., for the Authors table, fieldName1 cor-
responds to the FirstName field, so value1 should be a string in single quotes, repre-
senting a first name). The INSERT INTO statement

INSERT INTO Authors (FirstName, LastName, YearBorn)
 VALUES ('Sue', 'Smith', 1960)

inserts a record into the Authors table. The statement indicates that values will be insert-
ed for the FirstName, LastName and YearBorn fields. The corresponding values to
insert are 'Sue', 'Smith' and 1960. [Note: We do not specify an AuthorID in this
example, because the AuthorID field is set up in the Microsoft Access database as an
auto-numbered field. Every new record added to this table will automatically be assigned
a unique AuthorID, which is the next value in the auto-numbered sequence (i.e., 1, 2, 3,
etc.). In this case, Sue Smith would be assigned AuthorID number 5.] Figure 22.24 shows
the Authors table after the INSERT INTO operation.

Tem Nieto 0-13-904947-9

Tem Nieto 0-13-028419-X

Kate Steinbuhler 0-13-0323-64-0

FirstName LastName ISBN

Fig. 22.23Fig. 22.23Fig. 22.23Fig. 22.23 Portion of the result set containing authors and ISBN numbers sorted in
ascending order by LastName and FirstName (part 2 of 2).

AuthorID FirstName LastName YearBorn

1 Harvey Deitel 1946

Fig. 22.24Fig. 22.24Fig. 22.24Fig. 22.24 Authors table after an INSERT INTO operation to add a record
(part 1 of 2).

iw3htp2_22.fm Page 718 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 719

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Good Programming Practice 22.4
To avoid data corruption or data mismatch, list field names in an INSERT INTO operation. If
the inserted values do not correspond to the fields, incorrect data may be inserted into the
wrong columns (data corruption), or field definitions may not correspond (data mismatch). For
example, inserting a numeric value in a field that can only contain string literals produces data
mismatch. This situation is less severe because most databases give notification of the error. 22.4

Common Programming Error 22.6
The single quote (') character is used as a delimiter for strings inserted in the database. There-
fore, to insert a name containing quotes (such as O’Malley) into a database, the name must
have two single quotes in the position where the quote character appears in the name (e.g.,
'O''Malley'). 22.6

22.4.7 Updating a Record
An UPDATE operation modifies data in a table (e.g., updates a record). The simplest form
for an UPDATE statement is

UPDATE TableName
 SET fieldName1 = value1, fieldName2 = value2, …, fieldNameN = valueN
 WHERE criteria

where TableName specifies the table that will be updated. The SET keyword and a comma-
separated list of paired field names and values in the format fieldName = value follow the
TableName. The WHERE clause specifies the criteria that determines which record(s) to up-
date. The UPDATE statement

UPDATE Authors
 SET YearBorn = '1969'
 WHERE LastName = 'Deitel' AND FirstName = 'Paul'

updates a record in the Authors table. The statement assigns the value 1969 to the
YearBorn field for the record in which LastName equals Deitel and FirstName
equals Paul. The AND keyword indicates that all components of the selection criteria must
be satisfied. If we know the AuthorID for “Paul Deitel” (possibly because we searched
for the record previously), we can simplify the WHERE clause as follows:

WHERE AuthorID = 2

Figure 22.25 shows the Authors table after the UPDATE operation.

2 Paul Deitel 1968

3 Tem Nieto 1969

4 Kate Steinbuhler

5 Sue Smith 1960

AuthorID FirstName LastName YearBorn

Fig. 22.24Fig. 22.24Fig. 22.24Fig. 22.24 Authors table after an INSERT INTO operation to add a record
(part 2 of 2).

iw3htp2_22.fm Page 719 Friday, July 20, 2001 3:52 PM

720 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

22.4.8 DELETE FROM Statement
An SQL DELETE statement removes data from a table. A simple form of the DELETE
statement is

DELETE FROM TableName WHERE criteria

where TableName specifies the table from which to delete a record. The WHERE clause
specifies the criteria that determines which record to delete. The DELETE statement

DELETE FROM Authors
 WHERE LastName = 'Smith' AND FirstName = 'Sue'

deletes the record for Sue Smith from the Authors table. If we know the AuthorID in
advance of the DELETE operation, we can simplify the WHERE clause as follows:

WHERE AuthorID = 5

Figure 22.26 shows the Authors table after the DELETE operation.

22.4.9 TitleAuthor Query from Books.mdb

The Books.mdb database contains one predefined query (TitleAuthor) that produces
a table containing the book title, ISBN number, author’s first name, author’s last name,
book’s year published and publisher’s name for each book in the database. For books with
multiple authors, the query produces a separate composite record for each author.

AuthorID FirstName LastName YearBorn

1 Harvey Deitel 1946

2 Paul Deitel 1969

3 Tem Nieto 1969

4 Kate Steinbuhler

5 Sue Smith 1960

Fig. 22.25Fig. 22.25Fig. 22.25Fig. 22.25 Authors table after an UPDATE operation to modify a record.

AuthorID FirstName LastName YearBorn

1 Harvey Deitel 1946

2 Paul Deitel 1969

3 Tem Nieto 1969

4 Kate Steinbuhler

Fig. 22.26Fig. 22.26Fig. 22.26Fig. 22.26 Table Authors after a DELETE operation to remove a record.

iw3htp2_22.fm Page 720 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 721

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

 Figure 22.27 shows the TitleAuthor query, and Fig. 22.28 shows a portion of the
query results.

Good Programming Practice 22.5
Fully qualify the names of the fields used in an SQL query to ensure that the query references
fields from the proper tables. 22.5

Software Engineering Observation 22.4
Many database programs that automatically generate SQL statements use fully-qualified
field names for every field reference. 22.4

For the purpose of this query, we fully qualify each field name with its table name (e.g.,
Titles.ISBN). The query of Fig. 22.27 has several parts. Lines 1–3 indicate the fields
that the query selects and their order in the result set from left to right. This query selects
Title and ISBN fields from the Titles table, FirstName and LastName fields
from the Authors table, YearPublished field from the Titles table and Pub-
lisherName field from the Publishers table.

1 SELECT Titles.Title, Titles.ISBN, Authors.FirstName,
2 Authors.LastName, Titles.YearPublished,
3 Publishers.PublisherName
4 FROM Publishers, Titles, Authors, AuthorISBN
5 WHERE Publishers.PublisherID = Titles.PublisherID
6 AND Authors.AuthorID = AuthorISBN.AuthorID
7 AND Titles.ISBN = AuthorISBN.ISBN
8 ORDER BY Titles.Title

Fig. 22.27Fig. 22.27Fig. 22.27Fig. 22.27 TitleAuthor query from the Books.mdb database.

Title ISBN
First
Name

Last
Name

Year
Published

Publisher
Name

C How to Program 0-13-226119-7 Paul Deitel 1994 Prentice Hall

C How to Program 0-13-089572-5 Harvey Deitel 2001 Prentice Hall

C++ How to
Program

0-13-089571-7 Paul Deitel 2001 Prentice Hall

e-Business and e-
Commerce for
Managers

0-13-032364-0 Kate Stein-
buhler

2001 Prentice Hall

e-Business and e-
Commerce How to
Program

0-13-028419-X Harvey Deitel 2001 Prentice Hall

Internet and World
Wide Web How to
Program

0-13-016143-8 Paul Deitel 1999 Prentice Hall

Fig. 22.28Fig. 22.28Fig. 22.28Fig. 22.28 Portion of the query results from the TitleAuthor query (part 1 of 2).

iw3htp2_22.fm Page 721 Friday, July 20, 2001 3:52 PM

722 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

Line 4 of the query

FROM Publishers, Titles, Authors, AuthorISBN

uses a comma-separated list of table names in the FROM clause to merge data from each of
these tables.

Line 5 of the query

WHERE Publishers.PublisherID = Titles.PublisherID

joins the Publishers table and the Titles table, provided that the PublisherID
number in the Publishers table matches the PublisherID number in the Titles
table. The temporary result set from this operation contains all the information about each
book and its publisher.

Line 6 of the query

AND Authors.AuthorID = AuthorISBN.AuthorID

joins the tables Authors and AuthorISBN on the condition that the AuthorID field in
the Authors table matches the AuthorID field from the AuthorISBN table. Remem-
ber that the AuthorISBN table may have multiple entries for an ISBN number if the book
has more than one author.

Line 7 of the query

AND Titles.ISBN = AuthorISBN.ISBN

combines the two preceding result sets on the condition that the ISBN field in the Titles
table matches the ISBN field in the AuthorISBN table. These operations result in a tem-
porary table from which the appropriate fields are selected for the query results. Finally,
line 8 of the query

ORDER BY Titles.Title

indicates that all rows should be sorted by their titles in ascending order (the default).

Java How to
Program

0-13-899394-7 Paul Deitel 1997 Prentice Hall

Perl How to
Program

0-13-028418-1 Tem Nieto 2001 Prentice Hall

Visual Basic 6 How
to Program

0-13-456955-5 Tem Nieto 1998 Prentice Hall

XML How to
Program

0-13-028417-3 Harvey Deitel 2001 Prentice Hall

XML How to
Program

0-13-028417-3 Paul Deitel 2001 Prentice Hall

Title ISBN
First
Name

Last
Name

Year
Published

Publisher
Name

Fig. 22.28Fig. 22.28Fig. 22.28Fig. 22.28 Portion of the query results from the TitleAuthor query (part 2 of 2).

iw3htp2_22.fm Page 722 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 723

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

22.5 MySQL
In 1994, TcX, a Swedish consulting firm, needed a fast and flexible way to access their ta-
bles. Unable to find a database server that could accomplish the required task adequately,
Michael Widenius, the principal developer at TcX, decided to create his own database serv-
er. The resulting product was called MySQL (pronounced “My Ess Que Ell”), a robust and
scalable relational database management system (RDBMS).

MySQL is a multiuser, multithreaded (i.e., allows multiple simultaneous connections)
RDBMS server that uses SQL to interact with and manipulate data. [Note: The Deitel &
Associates, Inc. Web site (www.deitel.com) provides step-by-step instructions for
installing MySQL and helpful MySQL commands for creating, populating and deleting
tables.]

The MySQL Manual (www.mysql.com/doc) lists numerous features that charac-
terize MySQL. A few important features include:

1. Multithreading capabilities that enable the database to perform multiple tasks con-
currently, allowing the server to process client requests efficiently.

2. Support for various programming languages (C, C++, Java, Python, Perl, PHP,
etc.). We demonstrate how to access a MySQL database in Chapters 27, 28 and 29.

3. Implementations of MySQL are available for Windows, Linux and Unix.

4. Full support of functions and operators within the SELECT and WHERE clauses of
an SQL query that allow users to manipulate data.

5. The ability to access tables from different databases by using a single query, in-
creasing the efficiency of retrieving accurate and necessary information.

6. The ability to handle large databases (e.g., tens of thousands of tables with mil-
lions of rows).

For these reasons, MySQL is becoming the database of choice for many businesses,
universities and individuals. MySQL’s rising popularity benefits from the open source soft-
ware movement. The term open source refers to software that can be freely obtained and
customized to fulfill corporate, educational or personal requirements. [Note: Under certain
situations, a commercial license is required for MySQL.]

22.6 Introduction to DBI
Databases have become a crucial part of distributed applications—programs that divide
work across multiple computer systems. For instance, one computer might be responsible
for managing a Web site and another for a database management system. A distributed ap-
plication uses both computers to retrieve a result set from a database and display those re-
sults on another computer—typically called a client.

Relational databases (e.g., MySQL, Microsoft Access, Oracle, etc.) have many dif-
ferent implementations. A software program, called a driver, helps programs access a data-
base. Each database implementation requires its own driver and each driver can have a
different syntax. To simplify the use of multiple databases, an interface provides uniform
access to all database systems. Various programming languages provide programmatic
libraries (called database interfaces) for accessing relational databases. This section pro-

iw3htp2_22.fm Page 723 Friday, July 20, 2001 3:52 PM

724 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

vides a brief overview of database interfaces for Perl (Chapter 27), Python (Chapter 28) and
PHP (Chapter 29). Each chapter demonstrates the manipulation of MySQL databases.

22.6.1 Perl Database Interface
The Perl Database Interface (DBI) enables users to access relational databases from Perl
programs. Database vendors create drivers that can receive interactions through DBI and
process those interactions in a database-specific manner. DBI is database independent, so
it allows for easy migration from one DBMS to another. DBI is the most widely used inter-
face available for database connectivity in Perl.

DBI uses object-oriented interfaces, known as handles. Figure 22.29 describes three
different handle types—driver handles, database handles and statement handles. A driver
handle creates any number of database handles and a database handle creates any number
of statement handles.

22.6.2 Python DB-API

In Python, the database interface is referred to as DB-API (database application program-
ming interface). The DB-API, which consists of Connection data objects and Cursor
data objects, is portable (i.e., requires little modification of the source code) across several
databases. Connection data objects access the database through four methods: close,
commit, rollback and cursor. Figure 22.30 describes these methods.

Data Object Handles Description

Driver Handles Encapsulates the driver for the database; rarely used in a Perl script.

Database Handles Encapsulates a specific connection to a database; can send SQL state-
ments to a database.

Statement Handles Encapsulates specific SQL statements and the results returned from
them.

Fig. 22.29Fig. 22.29Fig. 22.29Fig. 22.29 Data object handles for Perl DBI.

Connection Data Objects Description

close Closes the connection to the database.

commit Commits (saves) a transaction (i.e., interaction with a database
through SQL keywords and commands).

rollback Exits a pending transaction without saving changes. Returns the
user to the beginning of the transaction.

cursor Returns a new Cursor object or the current connection.

Fig. 22.30Fig. 22.30Fig. 22.30Fig. 22.30 Connection data objects for Python DB-API.

iw3htp2_22.fm Page 724 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 725

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

The cursor method invokes the Cursor data objects, which manipulate and retrieve
data. Figure 22.31 lists some of the methods and attributes that constitute Cursor data
objects.

22.6.3 PHP dbx module
In PHP, an XHTML-embedded scripting language, the database interface is referred to as
a dbx module. The dbx module consists of seven functions that interface to database mod-
ules rather than to the database. Currently, the dbx module supports MySQL, PostgreSQL
and ODBC databases. The seven dbx functions are listed in Fig. 22.32.

22.7 ActiveX Data Objects (ADO)
The architecture of Microsoft Universal Data Access (UDA) can support high-performance
data access to relational data sources, non-relational data sources and mainframe/legacy
data sources. The UDA architecture (Fig. 22.33) consists of three primary components. The
OLE DB is the core of the UDA architecture that provides low-level access to any data
source. The Open Database Connectivity (ODBC) is a C programming-language library
that uses SQL to access data. ActiveX Data Objects (ADO) are simple object models
(Fig. 22.34) that provide uniform access to any data source by interacting with OLE DB.
[Note: OLE DB implements a minimum set of data access services for ADO.]

Cursor Data Objects Description

rowcount Returns the number of rows retrieved by the last execute method
call.

close Closes the Cursor object.

execute(operation) Executes a database query or command. Return values not
defined.

executemany(operation,
parameters)

Executes a database query or command against a set of parame-
ters. Return values not defined.

fetchone Returns the next row of a query result.

fetchmany(size) Returns a set of rows—defined in the parameter—for a query
result set.

fetchall Returns all the rows of a query result set.

Fig. 22.31Fig. 22.31Fig. 22.31Fig. 22.31 Some Cursor data objects for Python-API.

dbx functions Description

dbx_close Closes an open connection/database.

Fig. 22.32Fig. 22.32Fig. 22.32Fig. 22.32 Data objects for PHP dbx modules (part 1 of 2).

iw3htp2_22.fm Page 725 Friday, July 20, 2001 3:52 PM

726 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

More specifically, the ADO object model provides objects and collections (i.e., con-
tainers that hold one or more objects of a specific type). Figure 22.35 briefly describes
some ADO objects and collections. In Chapter 25, Active Server Pages, we show live-
code™ examples using ADO and VBScript to access a database.

dbx_connect Opens a connection/database.

dbx_error Reports any error messages from the last function call in the module.

dbx_query Executes a query and returns the results.

dbx_sort Sorts a result by a custom sort function.

dbx_cmp_asc Compares two rows and sorts them in ascending order.

dbx_cmp_desc Compares two rows and sorts them in descending order.

Fig. 22.33Fig. 22.33Fig. 22.33Fig. 22.33 Microsoft’s UDA architecture.

Fig. 22.34Fig. 22.34Fig. 22.34Fig. 22.34 Portion of the ADO object model.

dbx functions Description

Fig. 22.32Fig. 22.32Fig. 22.32Fig. 22.32 Data objects for PHP dbx modules (part 2 of 2).

 ADO

 OLE DB

 Legacy dataRelational data sources

 Application or Browser

Non-relational data sources

 ODBC

Field

Parameter

Fields

Error

Parameters

RecordSet

Errors

Command

Connection

iw3htp2_22.fm Page 726 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 727

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

22.8 Internet and World Wide Web Resources
Many database-related resources are available on the Internet and World Wide Web. This
section lists a variety of databases resources for SQL, MySQL, ADO and ODBC. This sec-
tion also provides a brief description of each database resource.

www.sql.org
The sql.org site is an online resource that provides a tutorial on the SQL programming language.
It offers links to news groups, discussion forums, free software and various database vendors.

www.mysql.com
The MySQL site is maintained by MySQL AB, a company that promotes and provides the MySQL
database. The site contains product information on the MySQL database, downloads, MySQL news
and future development plans.

msdn.microsoft.com/workshop/c-frame.htm#/workshop/database/
default.asp
This is the Microsoft Developer Network (MSDN) Online Web Workshop on Data Access and Data-
bases. This page is an excellent starting point for information from Microsoft on databases. The in-
formation focuses on ADO, ODBC, OLE DB, SQL, data binding and the Tabular Data Control.

www.microsoft.com/sql
The Microsoft SQL Server 2000 Web Site contains product information, technical support, SQL news
and tips on using the SQL Server to solve business problems.

Object/Collection Description

Connection object Connects to the data source.

Command object Contains the query that interacts with the database (the data source) to
manipulate data.

Parameter object Contains information needed by a Command object to query the data
source.

Parameters collection Contains one or more Parameter objects.

Error object Created when an error occurs while accessing data.

Errors collection Contains one or more Error objects.

Recordset object Contains zero or more records that match the database query. Collec-
tively, this group of records is called a recordset.

Field object Contains the value (and other attributes) of one data source field.

Fields collection Contains one or more Field objects.

Property object Contains a characteristic of an ADO object.

Properties collection Contains one or more Property objects.

Record object Contains a single row of a Recordset.

Stream object Contains a stream of binary data.

Fig. 22.35Fig. 22.35Fig. 22.35Fig. 22.35 Some ADO object and collection types.

iw3htp2_22.fm Page 727 Friday, July 20, 2001 3:52 PM

728 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

www.microsoft.com/sql/downloads/default.htm
This page offers tools for Microsoft’s SQL Server.

www.postgresql.org
The PostgreSQL site discusses the history of the PostgreSQL database server. It contains HTTP and
FTP mirror sites, technical support, a mailing list and a download page for this open source database.

www.interbase.com
This site discusses InterBase, an open source database server developed by Borland. The site provides
product downloads, technical support, InterBase news and certification programs.

www.maverick-dbms.org
This site discusses the open source database product, MaVerick. From this site, you can download the
product, register for a mailing list and read recent articles pertaining to MaVerick.

www.devshed.com
The Developer Shed Web site provides numerous resources on open source products, such as
MySQL, Perl, Python and PHP. It also provides news, discussion forums and tutorials for server-side
and client-side technologies.

www.cql.com
The CQL++ site provides information on the CQL++ open source database product and offers the
product for download.

leap.sourceforge.net
LEAP is an open source RDBMS, commonly used by students and teachers as an educational tool.
The site contains a mailing list, forum, downloads and LEAP news.

www.voicenet.com/~gray/Home.html
This is the site for the SQSH database, which is an SQL shell for UNIX and Windows platforms. You
can download the latest version of the product from this site.

www.deja.com
Deja.com is a newsgroup search engine that indexes the Microsoft newsgroup servers (e.g.,
msnews.microsoft.com) and other public newsgroup servers. Typing error messages into the
search engine may help find information about how to solve a variety of programming problems.

msdn.microsoft.com/library/devprods/vs6/vstudio/mdac200/
mdac3sc7.htm
The Microsoft Data Access Components (MDAC) SDK Overview site offers references to ADO,
ODBC and other database-related technologies.

w3.one.net/~jhoffman/sqltut.htm
This is a tutorial that teaches data manipulation using standard SQL. The tutorial contains explana-
tions of SQL statements with code examples.

www.w3schools.com/sql
The SQL School Web site provides a tutorial on basic to advanced SQL commands. The site contains
a short quiz that reinforces SQL concepts.

clubs.yahoo.com/clubs/structuredquerylanguage
The Yahoo SQL Club is an online forum with a chat room, a message board, SQL news and links to
SQL information sites.

www.sqlmag.com
SQL Server Magazine is an excellent SQL resource for those who subscribe. Subscribers receive
monthly issues filled with articles on SQL design and information on current developments involving
SQL. Certain articles are available for free at the Web site.

iw3htp2_22.fm Page 728 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 729

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

SUMMARY
• Database systems provide file-processing capabilities but organize data in a manner to facilitate

sophisticated queries.

• The most popular style of database system on personal computers is the relational database.

• Structured Query Language (SQL) performs relational database queries.

• A database is an integrated collection of centrally controlled data.

• A database management system (DBMS) controls the storage and retrieval of data in a database.

• A distributed database is a database that is spread throughout a network’s computer systems.

• A relational database is composed of tables that can be manipulated as result sets.

• A table row is called a record or a row.

• Each table column represents a different field.

• Select data from the table (SELECT in SQL) to create subsets. Table data can be combined with
join operations.

• A table’s primary key uniquely identifies each record in the table. Every record must have a value
in the primary key field—Rule of Entity Integrity—and the value must be unique.

• A foreign key is a field in a table for which every entry has a unique value in another table and in
which the field in the other table is the primary key. The foreign key helps maintain the Rule of
Referential Integrity—every value in a foreign key field must appear in another table’s primary
key field. Foreign keys enable information from multiple tables to be joined and presented to the
user.

• A typical SQL query “selects” information from one or more tables in a database. Such selections
are performed by SELECT queries. The simplest form of a SELECT query is

SELECT * FROM TableName

in which the asterisk (*) indicates that all fields from TableName should be selected. TableName
specifies the table in the database from which the fields will be selected. To select specific fields
from a table, replace the asterisk (*) with a comma-separated list of the field names to select.

• SQL uses the optional WHERE clause to specify the selection criteria for the query. The simplest
SELECT query with selection criteria is

SELECT * FROM TableName WHERE criteria

The condition in the WHERE clause can contain operators <, >, <=, >=, =, <> and LIKE. Operator
LIKE matches a string using the wildcard characters asterisk (*) and question mark (?).

• The results of a query can be grouped according to category using the optional GROUP BY clause.
The simplest form of a GROUP BY clause is

SELECT *, COUNT(*) FROM TableName GROUP BY field

in which COUNT returns the number of records selected by the query, and field represents the field
that is used for grouping purposes.

• Query results can be arranged in ascending or descending order using the optional ORDER BY
clause. The simplest form of an ORDER BY clause is

SELECT * FROM TableName ORDER BY field ASC
SELECT * FROM TableName ORDER BY field DESC

iw3htp2_22.fm Page 729 Friday, July 20, 2001 3:52 PM

730 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

in which ASC specifies ascending (lowest to highest) order, DESC specifies descending (highest
to lowest) order and field represents the field used for sorting purposes.

• Multiple fields can order data with an ORDER BY clause in the form

ORDER BY field1 SortingOrder, field2 SortingOrder, ...

in which SortingOrder is either ASC or DESC.

• The WHERE, GROUP BY and ORDER BY clauses can be combined in one query.

• The query syntax TableName.fieldName distinguishes between fields with the same name that re-
side in different tables.

• The basic form of an INSERT INTO SQL statement is

INSERT INTO TableName (fieldName1, fieldName2, ...)
 VALUES (’value1’, ’value2’, ...)

where TableName is the table in which the data will be inserted. Each field name to be updated is
specified in a comma-separated list in parentheses. The value for each field is specified after the
SQL keyword VALUES in another comma-separated list in parentheses.

• A basic UPDATE SQL statement has the form

UPDATE TableName
 SET fieldName1 = value1, fieldName2 = value2, ...
 WHERE criteria

in which TableName is the table to update. The individual fields to update are specified (followed
by an equal sign and a new value in single quotes) after the SQL SET keyword, and the WHERE
clause determines a single record to update.

• A record(s) can be permanently deleted from an existing table by using the DELETE FROM state-
ment. The simplest form on a DELETE FROM command is

DELETE FROM TableName WHERE criteria

in which TableName is the table that contains the record to be deleted, and the WHERE clause de-
termines the record to be deleted.

• MySQL is a scalable, robust and enterprise-level relational database management system
(RDBMS). It provides multithreading capabilities, supports a variety of programming languages
and handles large databases. MySQL is not a true open source product.

• Most databases are distributed applications, which are programs that divide work among multiple
computer systems.

• Database interfaces are programmatic libraries that allow various programming languages to ac-
cess and interact with a database.

• In Perl, the database interface is referred to as DBI. The DBI objects are known as handles. The
three different handle types are driver handles, database handles and statement handles.

• The Python database interface is referred to as DB-API (database application programming inter-
face). It uses Connection data objects and Cursor data objects to access the database.

• The PHP database interface is referred to as a dbx module. The dbx module consists of seven
functions that interface to the database modules, not to the database.

• Microsoft Universal Data Access (UDA) is an architecture designed for high-performance data ac-
cess to both relational data sources, non-relational data sources and mainframe/legacy data sourc-

iw3htp2_22.fm Page 730 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 731

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

es. The UDA architecture is comprised of three primary components: OLE DB—the core of the
UDA architecture that provides uniform access to any data source; Open Database Connectivity
(ODBC)—a C programming language library that uses SQL to access data; and ActiveX Data Ob-
jects (ADO)—a simple object model that exposes the capabilities of OLE DB.

• The ADO object model provides objects and collections. A collection is a container that holds one
or more objects of a specific type.

• ADO provides the Connection object for connecting to a data source, the Command object for
querying a data source, the Parameter object for providing additional information a Command
object needs, the Error object for debugging, the RecordSet object for storing one or more
records and the Field object for accessing a field.

• ADO provides collections Parameters, Errors and Fields.

TERMINOLOGY
* SQL wildcard character field
? SQL wildcard character Field object in ADO
ActiveX Data Objects (ADO) foreign key
ASC FROM SQL keyword
close fully qualified name
collection GROUP BY keyword
Command object in ADO handle
commit INNER JOIN keyword
Connection data object INSERT INTO keyword
Connection object in ADO LIKE operator
COUNT function MySQL
Cursor data object Open Database Connectivity (ODBC)
data binding ORDER BY keyword
database Parameter object in ADO
database handle primary key
database interface (DBI) record
database management system (DBMS) record set
DB-API Recordset object in ADO
dbx module
dbx_close

relational database management
system (RDBMS)

dbx_cmp_asc result set
dbx_cmp_desc rollback
dbx_connect rowcount
dbx_error Rule of Entity Integrity
dbx_query Rule of Referential Integrity
dbx_sort SELECT keyword
DELETE FROM keyword SET keyword
DESC statement handle
distributed application Structured Query Language (SQL)
driver handle Tabular Data Control (TDC)
Error object TcX
execute(operation) UDA architecture
executemany(operation, parameters) Universal Data Access (UDA)
fetchall UPDATE keyword
fetchmany(size) WHERE keyword
fetchone wildcard character

iw3htp2_22.fm Page 731 Friday, July 20, 2001 3:52 PM

732 Database: SQL, MySQL, DBI and ADO Chapter 22

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

SELF-REVIEW EXERCISES
22.1 Fill in the blanks in each of the following statements:

a) The most popular database query language is .
b) A/An is a field in a table for which every entry has a unique value in another

table and where the field in the other table is the primary key for that table.
c) SQL keyword is followed by the selection criteria that specify the records to

select in a query.
d) A/An is an integrated collection of centrally controlled data.
e) The Python interface is referred to as and is composed of and

 data objects.

22.2 State whether the following are true or false. If false, explain why.
a) The foreign key uniquely identifies each record in a table.
b) A distributed application divides tasks across multiple computer systems.
c) A table in a database consists of rows and records.
d) In PHP, the dbx module interfaces directly to the database.
e) MySQL is a non-portable database that can be used only on the Windows platform.

ANSWERS TO SELF-REVIEW EXERCISES
22.1 a) SQL. b) foreign key. c) WHERE. d) database. e) DB-API, Connection, Cursor.

22.2 a) False. The primary key uniquely identifies each record in a table. b) True. c) False. A table
in a database consists of rows (records) and columns (fields). d) False. In PHP, the dbx module con-
sists of seven modules that interface to the database modules, not to the database itself. e) False.
MySQL is a portable database that can execute on many platforms, including Windows, UNIX and
Linux. Moreover, it can execute with various programming languages, such as C, C++ and Java.

EXERCISES
22.3 Define the following terms:

a) Database handle.
b) Fully qualified name.
c) Open source.
d) Rule of Referential Integrity.
e) Universal Data Access (UDA).

22.4 Define the following SQL keywords:
a) ASC.
b) COUNT.
c) INSERT INTO.
d) LIKE.
e) UPDATE.

22.5 Write SQL queries for the Books.mdb database (discussed in Section 22.3) that perform
each of the following tasks:

a) Select all authors from the Authors table.
b) Select all publishers from the Publishers table.
c) Select a specific author and list all books for that author. Include the title, year and ISBN

number. Order the information alphabetically by title.
d) Select a specific publisher and list all books published by that publisher. Include the title,

year and ISBN number. Order the information alphabetically by title.

iw3htp2_22.fm Page 732 Friday, July 20, 2001 3:52 PM

Chapter 22 Database: SQL, MySQL, DBI and ADO 733

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/20/01

22.6 Write SQL queries for the Books.mdb database (discussed in Section 23.3) that perform
each of the following tasks:

a) Add a new author to the Authors table.
b) Add a new title for an author (remember that the book must have an entry in the

AuthorISBN table). Be sure to specify the publisher of the title.
c) Add a new publisher.

22.7 Fill in the blanks in each of the following statements:
a) MySQL is a robust and scalable .
b) The module consists of seven functions that interface to the database module.
c) ADO is an acronym for .
d) ADO provides objects and .
e) ADO object represents the connection to the data source.

22.8 Correct each of the following SQL queries that refer to the Books.mdb database.
a) SELECT yearborn FROM Author WHERE Authorid = 3.
b) SELECT ISBN, Title FROM Titles GROUP BY Title DESC.
c) INSERT INTO Authors (AuthorID, FirstName, LastName, YearBorn)

 VALUES ("2", "Jane", "Doe").
d) SELECT AuthorID, Titles.Title, Titles.YearPublished,

 Titles.ISBN
 FROM Titles, Authors, AuthorISBN
 WHERE AuthorISBN.ISBN = Titles.ISBN AND (AuthorID = 1)
 ORDER BY Titles.Title.

e) UPDATE Publishers WITH PublisherID = 4
WHERE PublisherName =
 ’Prentice Hall’.

iw3htp2_22.fm Page 733 Friday, July 20, 2001 3:52 PM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

23
Wireless Internet
and m-Business

Objectives
• To provide an overview of wireless technologies and

applications.
• To explore location-identification technologies.
• To introduce wireless marketing techniques and

mobile payment options.
• To examine various wireless standards, platforms and

programming languages.
• To introduce the Wireless Markup Language (WML).
• To explore the use of WML elements in creating

Wireless Application Protocol (WAP) applications.
• To understand the relationship between WML and

WMLScript.
• To review aspects of writing simple WMLScript

programs.
A wise skepticism is the first attribute of a good critic.
James Russell Lowell (1819–1891)

How absolute the knave is! we must speak by the card, or
equivocation will undo us.
William Shakespeare (1564–1616)

The chief merit of language is clearness, and we know that
nothing detracts so much from this as do unfamiliar terms.

Galen (129–199)

iw3htp2_23.fm Page 734 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 735

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

23.1 Introduction
Wireless technology has developed into one of today’s hottest topics because of its ability
to bring the power of communications and the Internet into the hands of users worldwide.
The introduction of wireless communications affects many aspects of society, including
business management and operations, employee productivity, consumer purchasing behav-
ior, marketing strategies and personal communications. As the popularity of wireless ser-
vices grows, manufacturers are enabling wireless devices with an increasing array of
features and capabilities. For example, many personal digital assistants (PDAs) now oper-
ate as cell phones, and vice versa.

In this chapter, we explore elements of the wireless Internet and mobile business. We
present information regarding wireless marketing, wireless payment options and security
and privacy issues. We also introduce wireless programming languages and techniques.

Outline

23.1 Introduction
23.2 M-Business
23.3 Identifying User Location

23.3.1 E911 A\ct
23.3.2 Location-Identification Technologies

23.4 Wireless Marketing, Advertising and Promotions
23.5 Wireless Payment Options
23.6 Privacy and the Wireless Internet
23.7 International Wireless Communications
23.8 Wireless-Communications Technologies
23.9 WAP and WML
23.10 Phone Simulator and Setup Instructions
23.11 Creating WML Documents
23.12 WMLScript Programming
23.13 String Object Methods
23.14 Wireless Protocols, Platforms and Programming Languages

23.14.2 Handheld Devices Markup Languages (HDML)
23.14.3 Compact HTML (cHTML) and i-mode
23.14.4 Java and Java 2 Micro Edition (J2ME)
23.14.5 Binary Run-Time Environment for Wireless (BREW)
23.14.6 Bluetooth Wireless Technology

23.15 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Works Cited

iw3htp2_23.fm Page 735 Saturday, July 21, 2001 9:30 AM

736 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Although we begin our programming discussion with an examination of the Wireless
Application Protocol (WAP) and Wireless Markup Language (WML), the chapter covers
various programming languages and wireless platforms. These include Java 2 Micro Edi-
tion (J2ME), Binary Run-Time Environment for Wireless (BREW), i-mode and Blue-
tooth™ wireless technology.

In this chapter, we introduce WML wireless programming techniques and examine the
use of WML in developing content. WML identifies the elements of a document so that a
wireless browser, such as the Openwave™ Mobile Browser, can render the document on
the small display screen of a wireless device. We begin with WML because the language
provides an excellent foundation in the structuring of data using markup. The chapter first
examines WML elements and attributes. Later, we explore the use of the WMLScript
scripting language to write programs that enhance the functionality of WAP applications;
WMLScript enables the creation of highly appealing and powerful wireless content. We
introduce elements of WMLScript programming and present examples that illustrate
important features of the language. The chapter also provides an overview of several of
WMLScript’s built-in objects and demonstrates their capabilities.

We discuss the basics of creating applications that use WML and WMLScript in accor-
dance with the Wireless Application Protocol (WAP). WAP is an established standard for
accessing information and displaying the information on a wireless device. The chapter
presents many simple WAP applications. Further information about WAP can be found at
the WAP Forum Web site, www.wapforum.org. In addition, we offer in-depth treat-
ments of these and other topics pertaining to wireless communications in our book Wireless
Internet and Mobile Business How To Program.

23.2 M-Business
M-business, or mobile business, defined as e-business enabled by wireless communica-
tions, is one of the newest frontiers in electronic communications. While still in its initial
stages, m-business promises rapid growth. This will be fueled by m-business’ ability to
reach users effectively and allow them instant access to business-critical information and
communications capabilities at any time, from almost anywhere.

Wireless access benefits businesses, employers, employees and consumers. For
employers and employees, wireless access provides the ability to communicate, access cor-
porate databases, manage administrative tasks (such as answer e-mail and schedule meet-
ings) and enhance customer relations. In addition, wireless communications enables the
streamlining of product shipment and tracking. Furthermore, both employees and con-
sumers can manage responsibilities and complete tasks during idle time—waiting for a bus,
or standing in line at a bank.

23.3 Identifying User Location
Location-identification technologies allow businesses and individuals to determine wireless
users’ locations to within yards. Some of the most impressive m-business applications are lo-
cation-based services, or applications that are supported by location-identification technolo-
gies. Location-based services can be used to improve wireless marketing, customer
relationship management (CRM) and business-to-consumer (B2C) and business-to-employ-

iw3htp2_23.fm Page 736 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 737

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

ee (B2E) applications. For instance, if a business knows that a customer is near one of its
stores or offices, the business could send notification of a sale or promotion to the user’s hand-
held device. Emergency services and wireless accessibility also can be improved through the
adoption of location-identification technologies. In this section, we introduce location-based
services and their enabling technologies. We also examine the E911 Act, a government man-
date that requires all cell phones to host location-identification technologies.

Location-based services are made possible by relationships among cellular service
providers, cellular networks and mobile-device users. Many leading wireless companies
have developed their own methods of determining a user’s location. Some considerations
that affect these methods are bandwidth availability, communication speed and multipath
errors (errors resulting from signals reflecting off objects like buildings and mountains).

23.3.1 E911 A\ct

The E911 Act (the “E” stands for “Enhanced”), put forth by the Federal Trade Commission
(FTC) in 1996 and signed into law in 1999, is designed to standardize and enhance 911 ser-
vice across mobile devices. Its goal is to improve emergency response time to 911 calls
made by cell-phone users. In addition, the Disabilities Issues Task Force of the FCC is
making efforts to ensure that hearing- and speech-impaired people have access to 911 ser-
vice through mobile devices. Although the E911 Act will improve the efficiency of emer-
gency services, it raises concerns about wireless users’ privacy. Privacy issues in relation
to wireless communications are discussed in Section 23.6.

The first phase of the E911 Act requires all wireless services companies to provide
Automatic Number Information (ANI), or the phone numbers of cell phones calling in 911
emergencies. Carriers (such as AT&T, Verizon or Cingular) must also provide the loca-
tions of the cell sites (a cell site identifies the coverage area of a tower that receives and
transmits cell-phone signals) receiving the 911 calls. Emergency technicians can use this
information to determine users’ locations, although only to within the range of the nearest
tower. The second phase of the bill mandates that all mobile-phone carriers provide Auto-
matic Location Identification (ALI) of a caller to within 125 meters, 67 percent of the time.

There are several benefits to the E911 Act. In many emergency situations, drivers do not
know their exact locations. Information provided by the new technology can help emergency
response teams accurately locate callers, improve response times and reduce the conse-
quences of injuries. In addition, if a call breaks up or the operator cannot understand the caller,
emergency personnel can obtain the information necessary to find and assist the caller.1

23.3.2 Location-Identification Technologies

Location-identification technologies enable businesses to provide wireless users with loca-
tion-based services. For example, when a user asks for directions to the nearest coffee shop,
the wireless carrier can use triangulation to determine the location of the user’s wireless
device. Triangulation is a popular technique employed by many location-identification
technologies. A user’s location is determined by analyzing the angles of cell-phone signals
from (at least) two fixed points a known distance apart. This information is presented to the
content provider (the business offering the location-based service) in the form of a geocode
(the latitude and longitude of the user’s location). The geocode is then translated into a map
or step-by-step navigational instructions with the help of a mapping service and this infor-

iw3htp2_23.fm Page 737 Saturday, July 21, 2001 9:30 AM

738 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

mation is passed to the user. Figure 23.1 outlines various location-identification technolo-
gies and their accuracy levels.

23.4 Wireless Marketing, Advertising and Promotions
Wireless communications, the Internet and the World Wide Web provide marketers with
new tools for the development and delivery of marketing campaigns. Wireless technologies
in particular have greatly enhanced the ability of organizations to target consumers and pro-
vide timely, relevant content. In this section, we discuss marketing via wireless devices and
the delivery of wireless promotions and advertising. We also introduce aspects of customer
relationship management via wireless communications.

E-marketing and m-marketing should be used in conjunction with traditional mar-
keting to create an effective corporate marketing strategy. This strategy should focus on
attracting new customers and bringing them back repeatedly. Because wireless marketing
requires the alteration of traditional marketing strategies to meet the demands of wireless
devices and consumers, marketers should develop wireless sites and campaigns separately
from, but in parallel with, online initiatives. E-marketing is discussed in Chapter 32, e-
Business & e-Commerce.

Wireless marketing can be classified as a push strategy, a pull strategy or a combina-
tion of both.2 A pull strategy assumes that users will request that specific information be
sent to their wireless devices in real time. By contrast, a push strategy is enacted when an
organization delivers marketing messages to wireless devices at a time deemed appropriate
by the company, rather than in real time. Regardless of which strategy is used, wireless
marketing should be permission-based, also known as opt-in. Permission-based marketing
protects customers’ privacy and provides a well-defined target market, increasing cam-
paign response rates and productivity. By allowing users to control the number and type of
messages that they receive, marketers can improve customer satisfaction and campaign
results. In addition, an opt-in policy can decrease the costs associated with wireless cam-
paigns, because marketing material is delivered only to consumers who have expressed
interest in the company and its products or services.

Successful implementation of wireless advertising requires that the content provider,
advertiser and carrier establish a system that delivers ads to consumers at the right location
and at the right time. When combined with location-identification technologies and loca-
tion-based services, wireless advertising offers the benefit of highly targeted information
delivery. For example, an individual who receives an e-coupon from a nearby fast-food res-
taurant is far more likely to respond to the ad than is a consumer 50 miles away who is sent
a coupon for the same restaurant. The ability to provide location-specific advertisements
increases the value of the advertisements, as companies are willing to pay more for ads to
which many customers respond.

Although wireless communications provide many benefits, they also create new obsta-
cles for advertisers. Security issues arise, because content delivered over the wireless
Internet may be vulnerable at certain points during transmission. Security is discussed in
detail in Chapter 32, e-Business & e-Commerce. Marketers must ensure that messages
appear in the intended format. Limited technology and multiple protocols cause content to
be displayed differently on various receiving devices. In addition, cell-phone reception is
poor in some areas, and service can disconnect while customers are ordering or inquiring
about a product or service.3

iw3htp2_23.fm Page 738 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 739

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Wireless advertising is further hindered by the lack of wireless-advertising standards
and the complex value chain that exists in the wireless-advertising industry. Traditionally,
advertisers work with publishers, who deliver advertisements to consumers through various
media. When advertisements are distributed to wireless devices, a wireless carrier is added
to this chain, as publishers must go through carriers to reach consumers. It is usually the
carrier that captures users’ geographic locations. Carriers have the potential to control the
type and amount of wireless advertising that reaches their subscribers. It can be difficult to
convince carriers to allow advertising through their services because the carriers do not
want to annoy their customers.

To reach wireless customers, advertisers must either develop an in-house solution or
use a wireless ad-serving network to deliver ads. A publisher or publisher network (i.e., a
site or group of sites that carry wireless content and wireless advertisements) must also be
selected. Advertisers should evaluate carriers’ and publishers’ wireless-transmission pro-
tocols; a device that operates on one standard may not be able to receive an advertisement
designed for a different standard, and advertisers should work with carriers and publishers
to minimize such problems. For example, sometimes graphics are more effective than text
in a wireless advertisement, because graphics can display a font smaller than those sup-
ported by the device. Using a graphic, the advertiser may be able to send more text than is
possible in a text-formatted ad. However, marketers must be aware that some wireless
devices cannot display graphics.4

Short Message Service (SMS), a service that delivers text messages of up to 160 alpha-
numeric characters, is one option for delivering wireless advertisements. When marketers
send SMS messages, the length, creativity and interactivity of the message are limited
because the message cannot contain graphics. However, text messages take far less time to

Technology Degree of Accuracy

Cell of Origin
(COO)

Least accurate. User could be anywhere in tower’s range. Meets only Phase I
of E911 Act.

Angle of Arrival
(AOA)

Fairly accurate. User is within the overlap of two towers’ cell sites. Used
primarily in rural areas where there are fewer towers. Complies with Phase
II of E911.

Time Difference of
Arrival (TDOA)

Accurate. User’s location is determined by triangulating from three loca-
tions. Complies with Phase II of E911. Most effective when towers are close
together.

Enhanced Observed
Time Difference (E-
OTD)

Accurate. User’s location is determined by triangulating from three loca-
tions. Complies with Phase II of E911.

Location Pattern
Matching

Accurate. User’s location is determined by analyzing multipath interference
in a given area, making the method more effective for locating a device in an
urban area.

Global Positioning
Systems (GPS)

Highly accurate. Satellites determine a user’s location anywhere on earth.
However, GPS is not as effective when the user is indoors.

Fig. 23.1Fig. 23.1Fig. 23.1Fig. 23.1 Location-identification technologies.

iw3htp2_23.fm Page 739 Saturday, July 21, 2001 9:30 AM

740 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

load than do rich multimedia and graphics-packed messages.5 SMS can also be used to send
mobile alerts, which provide customers with valuable news and product updates.6

m-Fact 23.1
Over one billion messages are sent through SMS in Europe per month.7 23.1

Alternatively, companies can send promotions to customers by distributing e-coupons
to users’ wireless devices. For example, wireless promotions delivered to automobile
drivers and passengers can alert them to nearby shopping malls, gas stations and restaurants
that are offering special deals. However, some users might find this kind of advertising
intrusive. A wireless promotional strategy can enable opt-in users to indicate the type and
amount of promotional information they wish to receive, as well as allowing them to select
the time of day that the coupons will be sent.

Wireless communications also can be used to improve customer relationship manage-
ment (CRM). CRM focuses on providing and maintaining quality service for customers
by effectively communicating and delivering products, services, information and solu-
tions. By using wireless devices, customers can receive timely and relevant information on
demand, and companies can interact more efficiently with their sales and field forces.

Sales-force automation assists companies with aspects of the sales process, including
the maintenance and discovery of leads and the management of contacts. Sales-force auto-
mation can lighten the administrative load on the sales force, allowing salespeople to focus
on important details and leads that can increase revenue. Furthermore, information about
products and customers can be accessed in real time, providing salespeople with current
company and client information.8

A sales force’s ability to access information almost anywhere at any time improves its
level of overall production. For example, imagine that a salesperson is at a professional
hockey game with a potential client. The prospective client asks the salesperson a question
that must be answered before the sale can be made. Using a cell phone or PDA, the sales-
person can access information at that moment and close the sale. Without the wireless
Internet and enabled devices, the salesperson would have had to call the office or find a
wired Internet connection—which is not easy to do at a sporting event.

23.5 Wireless Payment Options
Secure electronic funds transfer and positive user transaction experiences are crucial to the
success of e-commerce and m-commerce. Businesses that offer domestic and international
products and services must ensure that m-payments (payments made via wireless devices)
will be received securely and that the transactions are valid.

The variety of wireless devices, the lack of m-payment interoperability and the imma-
turity of the m-payment industry have led to inconsistent user experiences. Interoperability,
the ability for transactions to be performed using any software or device, is a major hurdle
for the m-payment market. Organizations such as Global Mobile Commerce Interopera-
bility Group (GMCIG) and Mobile Electronic Transactions (MeT) Group support stan-
dards that enhance interoperability.

Traditionally, banks and credit-card companies process payments. Currently, micro-
payments, or payments under $10, are the most popular m-payment application. This cre-

iw3htp2_23.fm Page 740 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 741

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

ates problems, because banks and credit-card companies cannot process micropayments
profitably. Often, the cost to financial institutions of processing small payments is more
than the actual payment amount. Mobile-phone operators are best suited to handle micro-
payments because the phone bills that they produce are composed almost exclusively of
small charges. However, mobile operators are not equipped to assume the financial risk
associated with payment processing for services other than theirs, and consumers may not
trust a mobile operator to act as a financial institution.9

 To address this issue until m-payments are used for larger purchases, banks and wire-
less operators have begun to form partnerships. Through such affiliations, wireless opera-
tors can offer their users a convenient billing system for m-payments, while banks provide
experience in payment processing and financial risk management. Another alternative is
for banks to become Mobile Virtual Network Operators (MVNO). MVNOs purchase band-
width capacity from mobile carriers and resell it under their brand name, coupled with
value-added services.10

M-wallets are the most common form of transaction software offered by the developing
m-payments market. M-wallets, like e-wallets, allow users to store billing and shipping infor-
mation. Users can recall this information and enter it with one click while shopping from a
mobile device. Data entry on wireless devices can be time-consuming, because most devices
have small keypads on which multiple keys must be pressed to display a correct letter. By
enabling one-click shopping, m-wallet software simplifies the ordering process and adds con-
venience to m-business transactions. In addition, companies are integrating new technologies
into m-wallet software. For example, Qpass’ TalkWallet™ uses speech-recognition and
voice-authentication technologies to enable cell-phone users to make purchases by speaking
into their phones. Such applications eliminate the need for keypad data entry.11

23.6 Privacy and the Wireless Internet
As we discuss in Chapter 32, the Internet presents many new consumer privacy issues.
When people communicate through wireless devices, privacy is further threatened; trans-
missions can be intercepted, and users can be located with a high degree of accuracy. Wire-
less location-tracking will offer access to information about users’ activities, including
where they go, when they go and the length of their stay. Over time, a compilation of this
data could contribute to a substantial profile of a user’s habits.

Currently, the accepted protocol for collecting a user’s information is called an opt-in
policy—i.e., the user agrees to the collection of his or her personal information in exchange
for receiving targeted content. In some cases, a business installs a double opt-in policy.
Double opt-in policies require the user to request information and then to confirm that
request by replying to a follow-up e-mail. In theory, this practice provides greater protec-
tion of privacy. An opt-out policy enables an organization to send marketing information
to consumers until individual users request to be removed from the mailing list.

When an opt-in policy is used, consumers should request and expect the information
that they receive from advertisers. Companies that wish to collect personal information
must inform consumers as to how their information will be managed. The complicated
legalese of privacy policies could be difficult to display effectively on small interfaces,
making the wireless Internet more susceptible to privacy violations. For example, if a com-
pany has partners or affiliates, location information might be shared with and used by these

iw3htp2_23.fm Page 741 Saturday, July 21, 2001 9:30 AM

742 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

companies. As a result, consumers could find themselves bombarded with unsolicited e-
mail—while they are in their cars, at the movie theater or enjoying an evening out. In addi-
tion, although the Federal Communications Commission (FCC) has guidelines outlining a
telecommunications carrier’s responsibilities for protecting a user’s privacy, marketers and
vendors are not subject to the same guidelines.12 Third-party vendors, in most cases, will
have their own privacy policies.

To date, there is no legislation that monitors the use and misuse of location-identifi-
cation technology. Industry leaders and government agencies fear that such legislation
could slow the development of wireless technology. Even if the government perceives a
need for regulation, there are many ways to approach privacy legislation; one “compre-
hensive” privacy law could target some issues, but miss others. Personal information col-
lected from wireless users, for example, can be of a different nature than that collected
from wired users.

 To address privacy concerns, the Cellular Telecommunications and Internet Asso-
ciation (CTIA) has presented guidelines for protecting consumer privacy. These include:
(1) Companies should alert consumers when their locations are being identified, (2) Opt-
in should be the standard, meaning that companies should inform users of the services
that they will receive in exchange for personal information and allow users to make edu-
cated decisions, (3) Consumers should be able to access their own information and (4)
The same protections should be offered to all consumers, regardless of carrier or
device.13

23.7 International Wireless Communications
Wireless communications and related technologies are driving forces behind the global
economy. The United States does not dominate the world’s wireless communications mar-
ket; in fact, researchers estimate that the United States is up to two years behind the fore-
front of wireless technology.14 Although more Americans subscribe to cell-phone service
than do citizens of any other country, the U.S. market penetration (i.e., the percentage of
the population using the service) is lower than that in 10 of the top 20 wireless markets.
Competing wireless standards and the availability of inexpensive wireline phone service
have slowed the adoption of wireless technology in the United States. As a result, the per-
centage of Europeans who own cell phones is nearly twice that of Americans.

The popularity of certain wireless applications differs greatly from country to
country. For example, European consumers have embraced text-messaging services,
whereas Americans often limit cell-phone use to voice applications. In addition, the
United States has an extensive wireline telecommunications infrastructure that delivers
relatively inexpensive telephone service and Internet access. Many other parts of the
world do not have the same level of infrastructure, making telephone and Internet service
costly and difficult to access. Some developing regions are turning to wireless infrastruc-
ture solutions by implementing wireless local access, as well as wireline networks.15

Wireless local access refers to the establishment of wireless networks that serve as pri-
mary telephone and Internet connections.

Next to voice service, messaging is the most popular cell-phone application in the
global market. Messaging refers to the transmission of brief text messages to the display of
another cell phone. According to the Global System for Mobile Communications (GSM)

iw3htp2_23.fm Page 742 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 743

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Association, an organization that supports the extensive GSM cell-phone system, 15 billion
Short Message Service (SMS) text messages were sent over GSM wireless networks during
December 2000. SMS is used to send short, e-mail-like messages, as well as to alert sub-
scribers to new e-mails, faxes or voice messages. Carriers worldwide are launching SMS
Web portals that offer m-commerce applications, corporate services, sports, financial news
and weather-based information services. In addition, individuals are creating innovative
uses for SMS services; televised award ceremonies poll audiences via SMS, and some reli-
gions use SMS to send reminders regarding prayer time.16

23.8 Wireless-Communications Technologies
The proliferation of wireless consumer devices, such as personal digital assistants (PDAs),
digital cell phones and two-way pagers is increasing the demand for m-business and m-
commerce. Wireless devices enabled with Internet access allow users to manage their per-
sonal and professional lives while away from their desktop computers. By using PDAs,
such as the Palm™ handheld computer and the Pocket PC, as well as digital cell phones
and laptop computers, users can buy airline tickets and groceries, trade stocks and check
their e-mail from remote locations.17

Wireless communications technologies are categorized and identified by generation.
These include first generation (1G), second generation (2G), two-and-a half generation
(2.5G), third generation (3G) and even fourth generation (4G). The analog cell phone is an
example of a first-generation technology. As wireless communications evolved from
analog to digital transmission, first-generation technologies gave way to second-generation
technologies. Second-generation technology, which offers transmission speeds of up to
9.6Kbps, is the current standard for the United States. Today, service providers are devel-
oping the next generation—third generation (3G)—of transmission technologies, which
promises speeds far greater than those of standard dial-up connections.

The 2.5-generation technologies represent an intermediate step between second-genera-
tion and third-generation technologies. These technologies rely on networks that use packet-
switching technologies (information is divided into packets when it is sent and then reassem-
bled at the receiving end). Many countries, with the exception of Japan and parts of Europe,
do not have the spectrum available or the networks to support 3G technologies. Even in Japan
and Europe, 3G technologies are not expected to be widely available until 2003 or even 2005.
The services are not expected to be released in the United States until 2006.

3G technology enables increased data speeds, larger network capacity and transmis-
sion support of multiple data types, including streaming audio, video, multimedia, voice
and data. Japan’s NTT DoCoMo leads the world in the development of third-generation
technologies with the anticipated release of Wideband Code Division Multiple Access (W-
CDMA). NTT DoCoMo is also the developer of i-mode, the most popular wireless Internet
service, which boasts over 25 million subscribers.18 Using a compact version of HTML
called cHTML, i-mode offers voice services combined with text messaging, animated
graphics and Web browsing.

In the wireless world, there are many programming platforms and technologies. The
Wireless Application Protocol (WAP) and Wireless Markup Language (WML) are the
most commonly used technologies for wireless communications in the United States; they
also are popular in parts of Europe and Asia. In the following sections, we demonstrate how
to build wireless applications that use WAP/WML.

iw3htp2_23.fm Page 743 Saturday, July 21, 2001 9:30 AM

744 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

23.9 WAP and WML
One of the most important aspects of wireless communications is standardization. In 1997,
the Wireless Application Protocol (WAP) was developed by dominant cell-phone manu-
facturers Nokia, Ericsson, Motorola and others to facilitate the introduction and standard-
ization of wireless Internet access.19 WAP is a set of communications protocols that are
designed to enable wireless devices to access the Internet. WAP applications can be used
on Palm OS, Windows CE, Mac OS and Java 2 Micro Edition devices.20

Although WAP communications involve many components, we focus on three—a
WAP-enabled mobile device, a WAP gateway and a Web server. When a user of a WAP-
enabled device requests information from the Internet, the device sends the request to a
WAP gateway. WAP gateways serve as links between mobile devices and the Internet.
WAP gateways are designed to convert Web content from WML to HTTP, which is the
standard protocol used to transfer and view information in Web transactions. The WAP
gateway communicates with the Web server (i.e., the server that has a connection to the
Internet). The Web server processes the mobile-device request by searching through
existing databases and information resources, such as Web pages. The Web server then
transmits the requested information back to the WAP gateway, using HTTP. The gateway
translates the information into WML and sends it to the mobile device for use.21

The Wireless Markup Language (WML), which is based on XML, is the markup lan-
guage used to create Web content delivered to wireless handheld devices. WML tags are the
markup commands that specify how a Web page should be formatted for viewing on a wire-
less device. Microbrowsers, browsers designed with limited bandwidth and memory
requirements, can access the Web via the wireless Internet. WAP supports WML to deliver
the content.

A WML document is called a deck; each contains one or more pages, called cards.
Cards are renderable units of WML documents useful for WAP clients (a WAP client being
any WAP-enabled device) that generally use the devices with limited screen sizes. Each
card can contain both text content and navigational controls to facilitate user interaction.
Though only one card can be viewed at a time, navigation between cards is rapid, because
the entire deck is stored by the microbrowser.22

Although WAP and WML provide many advantages, they also have many opponents.
Those who favor WAP technology see it as a short-term solution for the delivery of wire-
less Internet access. WAP opponents cite various disadvantages that are associated with the
protocol, including possible security breaches, limited bandwidth and unreliability.

The limited bandwidth capabilities of WAP-enabled devices cause a host of problems.
Not only are WAP-enabled devices unable to handle the transmission of multimedia, but
they can also become overloaded during peak hours, the busiest hours of the day for con-
ducting wireless communications.23 This limitation causes business-to-business (B2B) and
business-to-consumer (B2C) application developers to anticipate the release of faster 3G
technologies and a new WAP specification that supports increased functionality.

When learning about mobile communications, it is vital to understand the process by
which mobile devices connect to and interact with the Internet, because this process is orga-
nized differently for each protocol and programming language. However, no protocol cur-
rently existing allows a wireless device to communicate directly with the Internet. Each
system (i.e., WAP and WML, i-mode and Java and J2ME) employs its own method of
sending and receiving information to and from the Internet.

iw3htp2_23.fm Page 744 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 745

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

23.10 Phone Simulator and Setup Instructions
Several free browsers are available for the development and testing of WAP applications.
Openwave and Nokia® are the two most popular WAP browsers. The Openwave Software
Development Kit is available at

developer.openwave.com/download/license_41.html

and the Nokia Wireless Toolkit is available at

forum.nokia.com/main/1,6668,1_1,00.html

The Openwave Simulator is part of Openwave’s Software Development Kit (SDK), a group
of tools for wireless developers. The Openwave Simulator replicates the behavior of the
Openwave browser that is used on actual wireless devices. Openwave’s UP.SDK Getting
Started Guide, which facilitates the installation and use of the SDK, is available at devel-
oper.openwave.com/htmldoc/41/getstart.

In this chapter, we use the Openwave UP.Simulator. To install the Openwave UP.SDK
on a machine running Windows 2000, perform the following steps: [Note: More detailed
installation instructions are available on the Deitel & Associates, Inc., Web site,
www.deitel.com.]

1. Go to the Openwave Web site, and click the Download button.

2. Check the Save this program to disk option, and click OK.

3. Select a name and location for the file, and click OK.

4. Once the document is complete, click Open to begin the installation process.

5. When the Welcome screen of the installation program appears, click Next.

6. Read the license agreement, and click Yes.

7. Read the SCREENSHOTS AND IMAGE USE AGREEMENT, and click Yes.

8. Read the text of the Safe Country Verification dialog, and check the Yes box
before clicking Next.

9. Choose a destination folder in which to install the Openwave browser by clicking
the Browse button, or select the default folder (recommended). Click Next to
continue.

10. Specify the name of the folder to appear in the Start menu, and click Next.

11. Setup is now complete. To view the README file and launch the Openwave
browser (UP.Simulator), check each respective option. Click Finish.

To simulate WAP applications by using the Openwave and Nokia browsers, WAP doc-
uments must be requested from a Web server (see Chapter 21), such as Apache or Internet
Information Services (IIS). Visit the Downloads and Resources page on our Web site
(www.deitel.com) to access Web server installation and configuration instructions.
The following instructions cover the configuration of the Internet Information Services
Web server. Apache configuration instructions can be found at our Web site.

In IIS, copy the files from the Chapter 23 examples directory on the CD-ROM that
accompanies this book to C:\Inetpub\wwwroot. Alternatively, these files can be

iw3htp2_23.fm Page 745 Saturday, July 21, 2001 9:30 AM

746 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

placed in a directory referenced by a virtual directory. We discuss the creation of virtual
directories in detail in Chapter 21, Web Servers.

To configure IIS to respond to requests for WAP documents, perform the following:

1. Right click the Windows task bar, click Properties and select the Advanced
tab. Under Start Menu Settings, select Display Administrative Tools, and
click OK.

2. Click the Start button on the Windows task bar and select Programs, then Ad-
ministrative Tools, then Internet Services Manager.

3. In the Internet Information Services dialog, double click the computer name,
or click the plus sign next to the computer icon to expand the list.

4. Right click Default Web Site, and select Properties.

5. Click the HTTP Headers tab, and select the File Types... button, which is lo-
cated within the (MIME): Map Frame Settings box.

6. Click the New Type button.

7. In the Associate Extension text box, type wml. In the Content type {MIME}
text box, type text/vnd.wap.wml. This allows the server to map WML docu-
ments to the .wml file extension.

8. Click OK.

9. Click the New Type button.

10. In the Associate Extension text box, type wmls. In the Content type
(MIME): text box, type text/vnd.wap.wmlscript. This allows the server to map
WMLScript files to the .wmls file extension.

11. Click OK.

To request a document, it is necessary to launch the Openwave Simulator. This is
achieved by typing localhost/fileName.wml, in the Openwave Simulator’s Go field
and pressing Enter. For example, to request our first WML document (Fig, 23.2), type
localhost/fig23_2.wml. If the document is located in a wwwroot subdirectory or
in a virtual directory, the folder name or virtual directory name must precede the docu-
ment’s file name (e.g., localhost/folderName/fileName.wml).

23.11 Creating WML Documents
In this section, we begin to create WAP applications by marking up information using
WML. Figure 23.2 presents a WML document that displays a welcome message. The
screen shot of the Openwave Simulator displays the WML document. The Phone Infor-
mation window below the simulator displays the status of the simulator. If an error occurs
during the rendering of the document, the error is listed in this window.

Like XHTML, WML is an XML vocabulary (i.e., a markup language that is created using
XML). Line 1 is the optional XML declaration that specifies the version of XML to which
this document’s syntax adheres. Lines 2–3 specify the Document Type Definition (DTD) to
which the document conforms. The root element for every WML document is wml.

iw3htp2_23.fm Page 746 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 747

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 <?xml version = "1.0"?>
2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
3 "http://www.wapforum.org/DTD/wml12.dtd">
4
5 <!-- Fig. 23.2: fig23_2.wml -->
6 <!-- Simple WML Page -->
7
8 <wml>
9 <card id = "index" title = "WML Title">

10 <p>
11 Welcome to wireless programming!
12 </p>
13 </card>
14 </wml>

Fig. 23.2Fig. 23.2Fig. 23.2Fig. 23.2 Simple WML document (part 1 of 2). (Image of UP.SDK courtesy of
Openwave Systems Inc. Openwave, the Openwave logo, and UP.SDK are
trademarks of Openwave Systems Inc. All rights reserved.)

iw3htp2_23.fm Page 747 Saturday, July 21, 2001 9:30 AM

748 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 9 contains the opening card element. The card element has two important
attributes: id, which uniquely identifies the card, and title, which displays a title at the
top of most browser windows. The Openwave browser does not display card titles.

Common Programming Error 23.1
WML element and attribute names are case sensitive and must be written in lowercase. Writ-
ing a WML tag in uppercase is a syntax error. 23.1

Common Programming Error 23.2
Every WML document requires a minimum of one card element, which contains informa-
tion (e.g., text, images or links). Failure to include this element is a syntax error. 23.2

Good Programming Practice 23.1
A wireless device’s display is often small, so keep card titles concise. 23.1

Portability Tip 23.1
Some browsers do not display the value of the title attribute. 23.1

All text in a WML document is placed between <p> tags that are nested within
<card> tags. Although the text occupies only one line in the document, the screen capture
in Fig. 23.2 shows the text as displayed on two lines. When a line of text exceeds the width
of the display, the Openwave browser wraps the text onto the next line.

Portability Tip 23.2
Not all browsers wrap text onto the next line of the display window. In some cases, long lines
of text run off the right side of the screen. Many devices do not support horizontal scrolling;
therefore, the text cannot be read. Always test WAP applications on devices on which these
applications are likely to run. 23.2

Fig. 23.2Fig. 23.2Fig. 23.2Fig. 23.2 Simple WML document (part 2 of 2). (Image of UP.SDK courtesy of
Openwave Systems Inc. Openwave, the Openwave logo, and UP.SDK are
trademarks of Openwave Systems Inc. All rights reserved.)

iw3htp2_23.fm Page 748 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 749

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Figure 23.2 also includes a screen capture of the Phone Information window. This
window alerts the developer to any errors that occur during the testing of WML and WML-
Script documents. For example, if we had left out the closing card element (line 13 of Fig.
23.2), the Openwave Simulator would display the error message, “Compile Error.
See Info Window for Details.” in the display window. Figure 23.3 shows a screen
capture of the Phone Information window detailing the specifics of the error. Wireless
devices do not contain this window.

The section labeled WML Errors lists each error, along with an accompanying line
number. Below the list of errors, the window lists the WML code. Note that in this example,
the closing card element is missing.

One of WML’s most important capabilities is its ability to create hyperlinks between
WML documents on the Web. Both text and images can be used as links to other decks.
Figure 23.4 creates both internal links (i.e., links to locations inside the same document)
and external links (i.e., links to locations in separate documents), by using local icons, or
small images stored in the wireless device’s memory. Figure 23.5 is a WML document
which contains two cards. Figure 23.4 provides an external link to each card. These icons
are part of the browser and do not have to be downloaded with the card. The Openwave
browser supports over 175 different local icons, including such images as symbols, clouds,
cell phones, cars and footballs. The WML Language Reference documentation that is
included with the SDK download contains a complete list of local icons supported by the
Openwave browser.

Fig. 23.3Fig. 23.3Fig. 23.3Fig. 23.3 Phone Information window showing an error in the deck.

iw3htp2_23.fm Page 749 Saturday, July 21, 2001 9:30 AM

750 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

As in XHTML, WML links are marked up with the a (anchor) element. In line 14 (Fig.
23.4), the href attribute is assigned a card name in the current deck, preceded by a pound
sign (#). This creates an internal link to a card that is inside the document’s deck. External
linking to cards in other WML decks is specified by assigning to href the external doc-
ument’s name, followed by a # and card name (i.e., href = "page.wml#cardname").
Line 26 links to card4 in fig23_5.wml (Fig. 23.5). If the card name is not specified,
the first card in the deck is displayed.

1 <?xml version = "1.0"?>
2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
3 "http://www.wapforum.org/DTD/wml12.dtd">
4
5 <!-- Fig. 23.4: fig23_4.wml -->
6 <!-- Using local icons -->
7
8 <wml>
9 <card id = "index" title = "Icons">

10 <p>
11 Local Icons

12
13 <!-- link to the second card -->
14
15
16 <!-- insert the local icon -->
17
18 Link

19
20 <!-- link to the third card -->
21
22
23 Wrench

24
25 <!--link to an external card-->
26
27
28 Football

29
30
31
32 Boat
33 </p>
34 </card>
35
36 <card id = "card2" title = "Icons">
37 <p>
38 You chose the link!
39 </p>
40 </card>
41

Fig. 23.4Fig. 23.4Fig. 23.4Fig. 23.4 Using local icons as links (part 1 of 2).

iw3htp2_23.fm Page 750 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 751

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Two types of images can be used as links—imported images and local icons. Imported
images must be downloaded or created using software programs such as Paint Shop Pro
(included on the CD at the back of this book), PhotoShop Elements (discussed in Chapter
3) or Paint. Imported images are referenced using the img element’s src attribute. Before
an image can be rendered by the Openwave browser, it must be converted to wireless
bitmap (wbmp) format by using a conversion program such as Pic2WBMP, which can be
downloaded for free from www.gingco.de/wap.

Performance Tip 23.1
Large images can take a long time to download. Some wireless Internet billing plans charge
by the amount of data downloaded; others charge by the amount of time spent using the ser-
vice. In either case, the downloading of large images can result in additional wireless- access
charges for users. Using local icons instead of imported images minimizes download time. 23.1

Local icons are included as part of the Openwave browser and are referenced via the
img element’s localsrc attribute. Although the height and width of an image can
be specified in pixels, the size of an image is limited to the device’s display area.

Portability Tip 23.3
Currently, only a small number of wireless devices can display color. 23.3

Portability Tip 23.4
Some wireless browsers do not provide local icons. If the icon specified by the localsrc
attribute is not supported by the browser, the image specified by the src attribute is used. If
neither image can be displayed, then the value of the alt attribute is displayed. 23.4

Every img element requires an alt attribute that contains a short text description of
the image. The alt attribute is used when an image cannot be displayed.

Common Programming Error 23.3
Omitting the alt attribute is a syntax error. 23.3

42 <card id = "card3" title = "Wrench Link">
43 <p>
44 You chose the wrench!
45 </p>
46 </card>
47 </wml>

Fig. 23.4Fig. 23.4Fig. 23.4Fig. 23.4 Using local icons as links (part 2 of 2).

1 <?xml version = "1.0"?>
2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
3 "http://www.wapforum.org/DTD/wml12.dtd">
4

Fig. 23.5Fig. 23.5Fig. 23.5Fig. 23.5 Linking to an external card (part 1 of 2). (Image of UP.SDK courtesy
Openwave Systems Inc. Openwave, the Openwave logo, and UP.SDK are
trademarks of Openwave Systems Inc. All rights reserved.)

iw3htp2_23.fm Page 751 Saturday, July 21, 2001 9:30 AM

752 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

5 <!-- Fig. 23.5: fig23_5.wml -->
6 <!-- Linking to an external card -->
7
8 <wml>
9 <card id = "card4" title = "Football Link">

10 <p>
11 You chose the football!
12 </p>
13 </card>
14
15 <card id = "card5" title = "Boat Link">
16 <p>
17 You chose the boat!
18 </p>
19 </card>
20 </wml>

Fig. 23.5Fig. 23.5Fig. 23.5Fig. 23.5 Linking to an external card (part 2 of 2). (Image of UP.SDK courtesy
Openwave Systems Inc. Openwave, the Openwave logo, and UP.SDK are
trademarks of Openwave Systems Inc. All rights reserved.)

iw3htp2_23.fm Page 752 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 753

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 14–18 (Fig. 23.4) contain an image hyperlink. By nesting the tag in an
<a> tag, the image becomes a hyperlink. In this case, we provide an internal link to card2
(line 14).

The src attribute of the img element in line 17 is empty because the image is speci-
fied in the localsrc attribute, and we do not provide an alternate image to display if the
browser does not support the local icon. The src attribute is also a required attribute of the
img element, but can be left blank. The link local icon is specified in the localsrc
attribute.

23.12 WMLScript Programming
We now begin our introduction to the WMLScript scripting language. WMLScript facili-
tates a disciplined approach to the designing of programs that enhance the functionality of
WML documents. The relationship between WML and WMLScript is similar to that be-
tween XHTML and JavaScript. However, one key difference is that WMLScript is placed
in a separate document and cannot be embedded inside a WML document.

Common Programming Error 23.4
WMLScript is case sensitive. Failure to use the proper case is a syntax error. 23.4

Software Engineering Observation 23.1
The Openwave browser caches each deck loaded from the server. The cache is an area of a
device in which the browser saves Web pages to facilitate the rapid retrieval of the pages in the
future. The Openwave browser looks for a document in the device’s cache before going to the
Web to access the document. When developing applications, be sure to clear the cache every
time a page is changed by selecting Clear Cache from the Edit menu in the simulator. 23.4

Our first WMLScript example provides the text “Welcome to WMLScript Pro-
gramming!” to a WML document. Openwave’s browser contains a WMLScript inter-
preter for the execution of WMLScript commands. Our first script is shown in Fig. 23.6;
the associated WML document and output are shown in Fig. 23.7.

Common Programming Error 23.5
Placing any WMLScript code outside a function definition is an error. 23.5

1 // Fig. 23.6: welcomeDoc.wmls
2 // Writing a line of text
3
4 extern function welcome()
5 {
6 // creating a browser variable and assigning it a value
7 WMLBrowser.setVar("welcome",
8 "Welcome to WMLScript programming!");
9

10 // refresh the display window
11 WMLBrowser.refresh();
12 }

Fig. 23.6Fig. 23.6Fig. 23.6Fig. 23.6 WMLScript listing for welcomeDoc.wmls.

iw3htp2_23.fm Page 753 Saturday, July 21, 2001 9:30 AM

754 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 4–12 define function welcome. Keyword extern denotes that the function is
externally accessible to other WML and WMLScript documents. The omission of this key-
word restricts the function’s visibility (or scope) to the WMLScript file in which it is
defined. Functions that do not use extern are called utility or helper functions. These
functions often contain logic that is specific to the WMLScript file. Other external docu-
ments cannot not call these functions directly.

WMLScript provides objects for performing common mathematical calculations,
string manipulations, browser manipulations and other functions. These objects offer many
basic capabilities that programmers need. WMLScript provides the WMLBrowser object
for interacting with the browser. We call the WMLBrowser object’s setVar method
(lines 7–8) to create a browser variable named welcome and to assign it a string. Browser
variables are global variables; they reside in the browser’s memory and are accessible to
any WML or WMLScript document residing in the browser’s memory.

Common Programming Error 23.6
Failure to terminate a WMLScript statement with a semicolon is an error. 23.6

Line 11 calls the WMLBrowser object’s refresh method to update (or refresh) the
values of all browser variables. This allows the WML document that calls function wel-
come to use the browser variable’s new value. In this instance, invoking the refresh
method refreshes the browser, updating welcome’s value. If the variable is not refreshed,
browser variable welcome will display an empty string when it is dereferenced in the
WML document (line 19 of Fig. 23.7).

Common Programming Error 23.7
If a browser variable is created in a WMLScript document and control goes back to the card
that referenced the function, the browser must be refreshed using the refresh method. If
this is not done, the value of the variable will not be updated and displayed. 23.7

The WML document in Fig. 23.7 invokes function welcome in welcomeDoc.wmls
(Fig. 23.6). The result of function welcome is displayed by the WML document.

1 <?xml version = "1.0"?>
2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
3 "http://www.wapforum.org/DTD/wml12.dtd">
4
5 <!-- Fig. 23.7: fig23_7.wml -->
6 <!-- Printing a line of text -->
7
8 <wml>
9 <card id = "Line" title = "Line">

10
11 <onevent type = "onenterforward">
12
13 <!-- call function welcome -->
14 <go href = "welcomeDoc.wmls#welcome()" />

Fig. 23.7Fig. 23.7Fig. 23.7Fig. 23.7 WML document that calls function welcome (part 1 of 2). (Image of
UP.SDK courtesy Openwave Systems Inc. Openwave, the Openwave logo,
and UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.)

iw3htp2_23.fm Page 754 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 755

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 11–16 contain the onevent element that invokes WMLScript function wel-
come. The onevent element is an event element that executes a task element, such as the
go element (line 14), which is wrapped in its tags. Task elements such as go, refresh
and prev perform certain actions when executed. A complete list of task elements can be
found at www.w3schools.com/wap/wml_reference.asp. Attribute type is set
to "onenterforward". This executes the task element go when the card is loaded.

15
16 </onevent>
17
18 <p>
19 $welcome <!-- dereference browser variable welcome -->
20 </p>
21 </card>
22 </wml>

Fig. 23.7Fig. 23.7Fig. 23.7Fig. 23.7 WML document that calls function welcome (part 2 of 2). (Image of
UP.SDK courtesy Openwave Systems Inc. Openwave, the Openwave logo,
and UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.)

iw3htp2_23.fm Page 755 Saturday, July 21, 2001 9:30 AM

756 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Function welcome in welcomeDoc.wmls is invoked in line 14 by assigning to attribute
href the WMLScript document name followed by a # sign and the function name (Fig.
23.6). WMLScript documents have the .wmls file extension and are referenced from
within a WML document.

Good Programming Practice 23.2
If the value of the href attribute does not include the name of the function, the first function
declared using keyword extern is executed. Always include the function name when calling
a WMLScript file. 23.2

Common Programming Error 23.8
Failure to enclose link addresses in quotes is a syntax error. 23.8

Common Programming Error 23.9
When referencing a function from an href attribute’s value, failure to precede a function
name with a pound sign (#) is a runtime error. 23.9

Common Programming Error 23.10
When referencing a function from an href attribute’s value, failure to follow the function
name with a set of parentheses is a logic error. 23.10

Lines 18–20 mark up browser variable welcome’s value with <p> tags. The insertion
of the dollar sign ($) before the variable name retrieves the browser variable’s value from
the device’s memory.

Common Programming Error 23.11
Browsers that do not support scripting cannot interpret WMLScript instructions. The brows-
er renders only the WML document. 23.4

Sometimes it is useful to display important messages, such as those that inform users
that required form fields have been left blank, in windows called dialogs. Function dis-
playDialog (Fig. 23.8) displays text in an alert dialog. This function is called from
within the WML document shown in Fig. 23.9.

The Dialogs object contains methods for the displaying of messages on clients
devices. Line 6 (Fig. 23.8) calls Dialogs method alert, which displays an alert dialog
(Fig. 23.9). The string passed to this method is displayed to the user. The dialog output dis-
plays three lines of text. As each newline character (\n) is rendered, subsequent text is dis-
played on the next line.

1 // Fig. 23.8: dialogPrompt.wmls
2 // Printing multiple lines in a dialog
3
4 extern function displayDialog()
5 {
6 Dialogs.alert("Welcome to\nWMLScript\nProgramming!");
7 }

Fig. 23.8Fig. 23.8Fig. 23.8Fig. 23.8 WMLScript listing for dialogPrompt.wmls.

iw3htp2_23.fm Page 756 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 757

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Figure 23.9 is the WML document that invokes function displayDialog. Most
browsers contain one or more soft keys that allow users to select options. Soft keys are the
physical buttons on a wireless device that enable a user to navigate between documents. By
default, the alert dialog labels the left soft key OK. When the user presses the soft key, the
dialog is closed (or dismissed). After the dialog is closed, any remaining WML markup is ren-
dered.

In our next example, we explore WMLScript functions in greater detail. Figure 23.10
calls a programmer-defined function, count, to obtain a number from the user, convert the
number to an integer and pass that value to a second programmer-defined function,
square. This function returns the square of the integer.

Lines 7–8 call Dialogs method prompt to obtain a number from the user. The first
argument passed to method prompt is the prompt message that is displayed to the user.
The second argument specifies a default value for which we provide an empty string value.
The default value is displayed in the input field when the dialog opens. If a default value is
supplied, the user would have to delete this value to enter information. Method prompt
creates a soft key labeled alpha, which limits the information that users can enter to letters
typed via the device’s keypad. Variable inputNumber stores the string input by the user.
In line 12, we call Lang object method parseInt to convert inputNumber’s value
from a string to an integer. Object Lang provides methods for conversion between data
types and for the performing of mathematical calculations.

There are two ways to declare variables in WMLScript: Method setVar and keyword
var. Method setVar declares a browser variable that can be accessed by both WML and
WMLScript documents, and keyword var declares a local variable (i.e., a variable that can
be accessed only in the function in which it is declared).

1 <?xml version = "1.0"?>
2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
3 "http://www.wapforum.org/DTD/wml12.dtd">
4
5 <!-- Fig. 23.9: fig23_9.wml -->
6 <!-- Using dialogs -->
7
8 <wml>
9 <card id = "Dialog" title = "Dialog">

10
11 <!-- event element to execute go element -->
12 <onevent type = "onenterforward">
13
14 <!-- call function displayDialog -->
15 <!-- in dialogPrompt.wmls -->
16 <go href = "dialogPrompt.wmls#displayDialog()" />
17
18 </onevent>
19
20 </card>
21 </wml>

Fig. 23.9Fig. 23.9Fig. 23.9Fig. 23.9 Displaying multiple lines in a dialog (part 1 of 2). (Image of UP.SDK courtesy
Openwave Systems Inc. Openwave, the Openwave logo, and UP.SDK are
trademarks of Openwave Systems Inc. All rights reserved.)

iw3htp2_23.fm Page 757 Saturday, July 21, 2001 9:30 AM

758 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 // Fig. 23.10: squareNumbers.wmls
2 // Programmer-defined functions
3
4 extern function count()
5 {
6 // prompt the user for a number
7 var inputNumber = Dialogs.prompt(
8 "Enter a number to be squared", "");
9

10 // convert the number to an integer and pass
11 // the number to function square
12 var numberSquared = square(Lang.parseInt(inputNumber));
13

Fig. 23.10Fig. 23.10Fig. 23.10Fig. 23.10 Using programmer-defined functions to square a number (part 1 of 2).

Fig. 23.9Fig. 23.9Fig. 23.9Fig. 23.9 Displaying multiple lines in a dialog (part 2 of 2). (Image of UP.SDK courtesy
Openwave Systems Inc. Openwave, the Openwave logo, and UP.SDK are
trademarks of Openwave Systems Inc. All rights reserved.)

Soft keys

iw3htp2_23.fm Page 758 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 759

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Function square (line 23) calculates the square of a number and returns the result
to function count. The scope of function square is restricted to squareNum-
bers.wmls, because keyword extern has been omitted from the definition. Lines 14–
15 concatenate inputNumber’s value, the string " squared is " and the value of vari-
able numberSquared. The result is then stored in variable outputSquare. Line 19
calls the WMLBrowser method setVar to create a new browser variable named
result1, which is assigned the value of outputSquare. Line 20 calls WMLBrowser
method go to load card result into the browser.

Common Programming Error 23.12
The placing of a semicolon after the right parenthesis in a function definition is a runtime
error. 23.12

Common Programming Error 23.13
The failure to return a value from a function that is expected to do so is a logic error. 23.13

Figure 23.11 lists the WML document that contains the call to function count (Fig.
23.10). The document contains two cards. The first card programs a soft key (lines 12–
14), that, when pressed, invokes function count.

Element do (lines 12–14) programs a soft key for a wireless device. Attribute label
defines the text that appears above the soft key on the display screen. Attribute type
assigns an action to the soft key. When a device has two soft keys, the "accept" value
programs the left soft keys and the "options" value programs the right soft key.

When a soft key is pressed, the go element’s action is executed. Line 13 contains the
go element that calls function count in squareNumber.wmls. After the number is
squared, the browser displays card result. Lines 24–26 program a soft key that dis-
plays the previous card, which asks the user to enter the number to be squared. Element
prev is a task element that displays the previous card.

In the previous examples, we used the WMLBrowser object for creating browser vari-
ables. In Fig. 23.12, WMLBrowser method getVar is called to retrieve a variable’s value
from a WML document.

Line 6 calls method getVar to obtain the value of browser variable username. This
value is then assigned to local variable x. Figure 23.13 shows the WML document that

14 var outputSquare = inputNumber + " squared is " +
15 numberSquared;
16
17 // set the string to a browser variable and
18 // redirect the client to the card named result
19 WMLBrowser.setVar("result1", outputSquare);
20 WMLBrowser.go("#result");
21 }
22
23 function square(y)
24 {
25 return y * y;
26 }

Fig. 23.10Fig. 23.10Fig. 23.10Fig. 23.10 Using programmer-defined functions to square a number (part 2 of 2).

iw3htp2_23.fm Page 759 Saturday, July 21, 2001 9:30 AM

760 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

defines browser variable username. Line 21 creates an input box for user input. The input
element’s name attribute identifies the input box. An input box’s name becomes a browser
variable once it is posted. The value of variable username is retrieved on line 6 of Fig. 23.12
and is assigned to variable x. We then call WMLBrowser method go to display card2 (Fig.
23.13). Lines 30–32 create a soft key that allows the user to return to the previous card to
enter a new name. Line 35 displays the value of browser variable result.

23.13 String Object Methods
Characters are the fundamental building blocks of WMLScript programs. Every program
is composed of a sequence of characters that, when grouped together meaningfully, are in-
terpreted by the wireless device as a series of instructions used to accomplish a task.

The String object provides methods for selecting characters, obtaining substrings
and searching for substrings within a string. A complete list of String object methods is
available at

www.wirelessdevnet.com/channels/
coderef.phtml?catid=5&subid=5.

Figure 23.14 demonstrates some of these methods.

1 <?xml version = "1.0"?>
2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
3 "http://www.wapforum.org/DTD/wml12.dtd">
4
5 <!-- Fig. 23.11: fig23_11.wml -->
6 <!-- Squaring numbers -->
7
8 <wml>
9 <card id = "index" title = "Number Squared">

10
11 <!-- soft key to invoke function count -->
12 <do type = "accept" label = "OK">
13 <go href = "squareNumbers.wmls#count()" />
14 </do>
15
16 <p>
17 Press OK to square a number.
18 </p>
19 </card>
20
21 <card id = "result" title = "Results">
22
23 <!-- soft key that returns the user to the previous card -->
24 <do type = "accept" label = "Home">
25 <prev />
26 </do>

Fig. 23.11Fig. 23.11Fig. 23.11Fig. 23.11 Squaring a number by using programmer-defined functions (part 1 of 2).
(Image of UP.SDK courtesy Openwave Systems Inc. Openwave, the
Openwave logo, and UP.SDK are trademarks of Openwave Systems Inc. All
rights reserved.)

iw3htp2_23.fm Page 760 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 761

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

27
28 <p>
29 $result1
30 </p>
31 </card>
32 </wml>

1 // Fig. 23.12: getVariable.wmls
2 // Using the WMLBrowser object’s getVar method
3

Fig. 23.12Fig. 23.12Fig. 23.12Fig. 23.12 Using the WMLBrowser object’s getVar method (part 1 of 2).

Fig. 23.11Fig. 23.11Fig. 23.11Fig. 23.11 Squaring a number by using programmer-defined functions (part 2 of 2).
(Image of UP.SDK courtesy Openwave Systems Inc. Openwave, the
Openwave logo, and UP.SDK are trademarks of Openwave Systems Inc. All
rights reserved.)

iw3htp2_23.fm Page 761 Saturday, July 21, 2001 9:30 AM

762 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

4 extern function getName()
5 {
6 var x = WMLBrowser.getVar("username");
7 var y = x + ", thanks for visiting!";
8
9 WMLBrowser.setVar("result", y);

10 WMLBrowser.go("#card2");
11 }

1 <?xml version = "1.0"?>
2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
3 "http://www.wapforum.org/DTD/wml12.dtd">
4
5 <!-- Fig. 23.13: getVar.wml -->
6 <!-- Using the WMLBrowser object’s getVar method -->
7
8 <wml>
9 <card id = "index" title = "getVar">

10 <do type = "accept" label = "Run">
11
12 <!-- call function getName -->
13 <go href = "getVariable.wmls#getName()" />
14
15 </do>
16
17 <p>
18 Enter your name:

19
20 <!-- create input box for user input -->
21 <input name = "username" value = "" />
22
23 </p>
24 </card>
25
26 <card id = "card2" title = "getVar">
27
28 <!-- create a soft key to return the client -->
29 <!-- to the previous card -->
30 <do type = "accept" label = "Back">
31 <prev />
32 </do>
33
34 <p>
35 $result <!-- dereference browser variable result -->
36 </p>
37 </card>
38 </wml>

Fig. 23.13Fig. 23.13Fig. 23.13Fig. 23.13 Setting and displaying a variable using WMLScript (part 1 of 2). (Image of
UP.SDK courtesy Openwave Systems Inc. Openwave, the Openwave logo,
and UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.)

Fig. 23.12Fig. 23.12Fig. 23.12Fig. 23.12 Using the WMLBrowser object’s getVar method (part 2 of 2).

iw3htp2_23.fm Page 762 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 763

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The example begins with the value of variable string1 set to an empty string ("").
Through the course of the example, we call String object methods to change the string
"Wireless Web" to the string "Deitel Book".

1 // Fig. 23.14: functionSet.wmls
2 // Demonstrating String object methods
3
4 extern function stringMethods()
5 {
6 var string1 = "";
7 var empty;
8

Fig. 23.14Fig. 23.14Fig. 23.14Fig. 23.14 Demonstrating String object methods (part 1 of 2).

Fig. 23.13Fig. 23.13Fig. 23.13Fig. 23.13 Setting and displaying a variable using WMLScript (part 2 of 2). (Image of
UP.SDK courtesy Openwave Systems Inc. Openwave, the Openwave logo,
and UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.)

iw3htp2_23.fm Page 763 Saturday, July 21, 2001 9:30 AM

764 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

9 // test if string1 is empty
10 if (String.isEmpty(string1))
11 empty = "string1 is empty";
12 else
13 empty = "string1 is not empty";
14
15 WMLBrowser.setVar("emptyString1", empty);
16
17 // format the string to have 12 spaces between
18 // "Wireless" and "Web"
19 string1 = String.format("Wireless%15s", "Web");
20
21 WMLBrowser.setVar("formatString1", string1);
22
23 // squeeze the string until one space is left
24 string1 = String.squeeze(string1);
25
26 WMLBrowser.setVar("squeezeString1", string1);
27
28 // use method element to count the elements in string1
29 // use the toString method to convert the integer to
30 // a string
31 var count = String.toString(String.elements(string1, " "));
32
33 WMLBrowser.setVar("elementsString1", count);
34
35 // find string starting at index 8 and ending with a space
36 var string1Element = String.elementAt(string1, 8, " ");
37
38 WMLBrowser.setVar("elementAtString1", string1Element);
39
40 // get the length of string1
41 var length = String.length(string1);
42
43 // insert "Book" at the end of string1
44 string1 = String.insertAt(string1, "Book", length, " ");
45
46 WMLBrowser.setVar("insertAtString1", string1);
47
48 // replace "Web" with "Deitel" where "Web" has an
49 // index of 1
50 string1 = String.replaceAt(string1, "Deitel", 1, " ");
51
52 WMLBrowser.setVar("replaceAtString1", string1);
53
54 // remove "Wireless" from string1
55 string1 = String.removeAt(string1, 0, " ");
56
57 WMLBrowser.setVar("removeAtString1", string1);
58 WMLBrowser.go("#card2");
59 }

Fig. 23.14Fig. 23.14Fig. 23.14Fig. 23.14 Demonstrating String object methods (part 2 of 2).

iw3htp2_23.fm Page 764 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 765

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

In line 6, we declare variable string1 and assign it to an empty string. Line 10 deter-
mines if the value of string1 is empty. If the condition in line 10 evaluates to true, vari-
able empty is assigned the string "string1 is empty"; otherwise, empty is assigned
the string “string1 is not empty”. Line 15 calls WMLBrowser method setVar to
declare browser variable emptystring1, setting its value to that of variable empty. We
assign each value to a different browser variable throughout the script so that the results in
Fig. 23.15 are displayed.

In line 19, we assign to string1 the strings "Wireless" and "Web". By calling
method format, we place 12 spaces (indicated by %15s) between the two strings.
Although the notation %15s creates 15 space characters, three are occupied by the string
“Web”, leaving only 12 spaces between the two strings. The Openwave browser automat-
ically wraps the line (Fig. 23.15) because it is too long to display on a single line. The value
of string1 becomes

"Wireless Web"

Line 24 calls String method squeeze to combine all consecutive whitespace char-
acters in string1 into a single whitespace character. Variable string1 now becomes

"Wireless Web"

Line 31 calls String method elements to return the number of words in the string,
separated by a space character. Method toString converts the integer value returned by
elements to a string. This method is useful if a value must be concatenated to another
string.

In line 36, we call method elementAt to return a substring of string1 from index
8 to the first space encountered. Indices point to individual characters in a string, beginning
at 0. In this case, the string returned is

"Web"

In line 41, we call method length to retrieve the number of characters in string1.
This value is assigned to variable length. In line 44, we call method insertAt to insert
the string "Book" into the end of string1, separated by a space. The value of string1
becomes

"Wireless Web Book"

Line 50 calls String method replaceAt to return a new string in which the string
"Deitel" replaces everything from the first space to the second space in string1.
After the replaceAt method is invoked, the value of string1 becomes

"Wireless Deitel Book"

Line 55 calls method removeAt to remove characters in string1 from index 0 to
the first occurrence of a space. When invoked, method removeAt removes the string
"Wireless". The value of string1 becomes

"Deitel Book"

iw3htp2_23.fm Page 765 Saturday, July 21, 2001 9:30 AM

766 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The WML document in Fig 23.15 calls function stringMethods in Fig. 23.14 and
displays the results.

1 <?xml version = "1.0"?>
2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
3 "http://www.wapforum.org/DTD/wml12.dtd">
4
5 <!-- Fig. 23.15: stringMisc.wml -->
6 <!-- WML document that references stringMisc.wmls -->
7
8 <wml>
9

10 <card id = "index" title = "strings">
11 <do type = "accept" label = "Run">
12
13 <!-- call function stringMethods in functionSet.wmls -->
14 <go href = "functionSet.wmls#stringMethods()" />
15
16 </do>
17
18 <p>
19 Click Run to execute the script.
20 </p>
21 </card>
22
23 <card id ="card2" title = "strings">
24 <do type = "accept" label = "Run">
25
26 <!-- redirect the user to the next card to -->
27 <!-- display further results -->
28 <go href = "#card3" />
29
30 </do>
31
32 <p>
33 isEmpty method:

34
35 <!-- dereference browser variable emptyString1 -->
36 $emptyString1
37
38 </p>
39 </card>
40
41 <card id = "card3" title = "strings">
42 <do type = "accept" label = "Run">
43
44 <!-- redirect the user to the next card to -->
45 <!-- display further results -->
46 <go href = "#card4" />

Fig. 23.15Fig. 23.15Fig. 23.15Fig. 23.15 WML document that references stringMisc.wmls. (part 1 of 5).
(Image of UP.SDK courtesy Openwave Systems Inc. Openwave, the
Openwave logo, and UP.SDK are trademarks of Openwave Systems Inc. All
rights reserved.)

iw3htp2_23.fm Page 766 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 767

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

47
48 </do>
49
50 <p>
51 String.format method:

52
53 <!-- dereference browser variable formatString1 -->
54 $formatString1
55 </p>
56 </card>
57
58 <card id = "card4" title = "strings">
59 <do type = "accept" label = "Run">
60
61 <!-- redirect the user to the next card to -->
62 <!-- display further results -->
63 <go href = "#card5" />
64 </do>
65
66 <p>
67 String.squeeze method:

68
69 <!-- dereference browser variable squeezeString1 -->
70 $squeezeString1
71 </p>
72
73 </card>
74
75 <card id = "card5" title = "strings">
76 <do type = "accept" label = "Run">
77
78 <!-- redirect the user to the next card to -->
79 <!-- display further results -->
80 <go href = "#card6" />
81 </do>
82
83 <p>
84 String.elements method:

85
86 <!-- dereference browser variable elementsString1 -->
87 $elementsString1
88 </p>
89 </card>
90
91 <card id = "card6" title = "strings">
92 <do type = "accept" label = "Run">
93
94 <!-- redirect the user to the next card to -->
95 <!-- display further results -->
96 <go href = "#card7" />

Fig. 23.15Fig. 23.15Fig. 23.15Fig. 23.15 WML document that references stringMisc.wmls. (part 2 of 5).
(Image of UP.SDK courtesy Openwave Systems Inc. Openwave, the
Openwave logo, and UP.SDK are trademarks of Openwave Systems Inc. All
rights reserved.)

iw3htp2_23.fm Page 767 Saturday, July 21, 2001 9:30 AM

768 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

97 </do>
98
99 <p>
100 String.elementAt method:

101
102 <!-- dereference browser variable elementAtString1 -->
103 $elementAtString1
104 </p>
105 </card>
106
107 <card id = "card7" title = "strings">
108 <do type = "accept" label = "Run">
109
110 <!-- redirect the user to the next card to -->
111 <!-- display further results -->
112 <go href = "#card8" />
113 </do>
114
115 <p>
116 String.insertAt method:

117
118 <!-- dereference browser variable insertAtString1 -->
119 $insertAtString1
120 </p>
121 </card>
122
123 <card id = "card8" title = "strings">
124 <do type = "accept" label = "Run">
125
126 <!-- redirect the user to the next card to -->
127 <!-- display further results -->
128 <go href = "#card9" />
129 </do>
130
131 <p>
132 String.replaceAt method:

133
134 <!-- dereference browser variable replaceAtString1 -->
135 $replaceAtString1
136 </p>
137 </card>
138
139 <card id = "card9" title = "strings">
140 <do type = "accept" label = "Home">
141
142 <!-- redirect the user to the first card -->
143 <go href = "#index" />
144 </do>
145
146 <p>

Fig. 23.15Fig. 23.15Fig. 23.15Fig. 23.15 WML document that references stringMisc.wmls. (part 3 of 5).
(Image of UP.SDK courtesy Openwave Systems Inc. Openwave, the
Openwave logo, and UP.SDK are trademarks of Openwave Systems Inc. All
rights reserved.)

iw3htp2_23.fm Page 768 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 769

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

147 String.removeAt method:

148
149 <!-- dereference browser variable removeAtString1 -->
150 $removeAtString1
151 </p>
152 </card>
153 </wml>

Fig. 23.15Fig. 23.15Fig. 23.15Fig. 23.15 WML document that references stringMisc.wmls. (part 4 of 5).
(Image of UP.SDK courtesy Openwave Systems Inc. Openwave, the
Openwave logo, and UP.SDK are trademarks of Openwave Systems Inc. All
rights reserved.)

iw3htp2_23.fm Page 769 Saturday, July 21, 2001 9:30 AM

770 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

23.14 Wireless Protocols, Platforms and Programming
Languages
Programming languages, platforms and protocols are pivotal development and implemen-
tation tools for wireless communications. Often, several protocols, platforms and program-
ming languages are used simultaneously in a single wireless technology development. The
lack of a unifying standard results in incompatibilities and obstacles similar to those asso-
ciated with WAP/WML. The following sections examine protocols, programming languag-
es, their uses and their unique contributions to wireless communications.

23.14.1 WAP 2.0

WAP 2.0, scheduled for release in 2001, is a revision of the Wireless Application Protocol.
WAP 2.0 specifies XHTML Basic, a subset of XHTML, to replace WML as the markup
language used by wireless devices to render Web content. This new W3C Recommendation
benefits wireless device manufacturers, Web content developers and users. Manufacturers
will have a de facto industry standard, allowing them to develop compatible mobile devices
and applications. Content developers will be able to create Web pages for such platforms
as diverse as mobile phones, PDAs, pagers, WebTV and desktop computers. In addition,
wireless device users acquire access to a wider selection of content that is easier to navigate.

WAP 2.0 will likely include WML extensions that allow programmers to embed WML
within the XHTML Basic markup. Features, such as soft keys that are not supported by
XHTML Basic will be implemented using WML. In addition, the new protocol is also
expected to include specifications for color, animation and such multimedia features as
MP3 audio and MPEG video streaming.

Fig. 23.15Fig. 23.15Fig. 23.15Fig. 23.15 WML document that references stringMisc.wmls. (part 5 of 5).
(Image of UP.SDK courtesy Openwave Systems Inc. Openwave, the
Openwave logo, and UP.SDK are trademarks of Openwave Systems Inc. All
rights reserved.)

iw3htp2_23.fm Page 770 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 771

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

23.14.2 Handheld Devices Markup Languages (HDML)
The Handheld Devices Markup Language (HDML) was one of the first markup languages
used to deliver content handheld devices. HDML was originally developed in 1996 by a
company called Unwired Planet, now known as Openwave (www.openwave.com).24

HDML is similar to Hypertext Markup Language (HTML), which is used to design and
format Web pages. However, HTML is not effective for use on devices with limited screen
sizes and viewing capabilities. Although HDML was implemented in millions of devices
when it was first introduced, it has been replaced with other emerging standards that sup-
port 2.5G and 3G technologies. HDML eventually evolved into WML.25

In Japan and parts of Europe, consumer wireless devices function using WAP and no
longer support HDML. However, some CDMA-based phones in the United States and
Canada still support both WML and HDML.26 The conversion of HDML to WML code is
not difficult, and Openwave (HDML’s creator) is currently working to replace HDML with
WML.

23.14.3 Compact HTML (cHTML) and i-mode

NTT DoCoMo and its popular i-mode service employ Compact Hypertext Markup Lan-
guage (cHTML) to format Web pages. cHTML a subset of HTML that is designed for mo-
bile devices, uses a limited set of HTML tags and attributes. With the exception of i-mode
phones and devices, cHTML is not widely used. However, in the future, cHTML could
merge with a form of WAP or XHTML Basic.

Previous sections of this chapter described the process by which WAP and WML com-
municate with the Internet. using specific protocols and markup tags. Although the i-mode
service functions similarly, there are a few notable differences. When a user requests infor-
mation from the Internet via an i-mode phone, the request is sent directly to Web servers at
NTT DoCoMo, which send the desired information back to the user. NTT DoCoMo main-
tains over 30,000 pages of content designed specifically for the i-mode service, and this
information is stored on the company’s own servers.

23.14.4 Java and Java 2 Micro Edition (J2ME)

Java is one of the most popular programming languages in the software-development in-
dustry. Sun Microsystems created Java to facilitate the development of Internet and Web-
based applications that can run consistently on any operating system without requiring al-
teration. Sun coined the term, “write once, run anywhere™” to describe this feature.

Over the past few years, Java has matured into the Java 2 platform, which provides an
even higher level of consistency among different systems. Java 2 has evolved into three
platforms:

1. Java 2 Standard Edition (J2SE™), which enables developers to create standalone
programs and client-side applications,

2. Java 2 Enterprise Edition (J2EE™), which enables developers to create powerful
enterprise systems for the management of entire businesses, and

3. Java 2 Micro Edition (J2ME™), which enables developers to create applications
targeted to consumer devices.

iw3htp2_23.fm Page 771 Saturday, July 21, 2001 9:30 AM

772 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Java 2 Micro Edition is the newest option for Java programming. This platform enables
developers to write applications for such consumer devices as set-top boxes, web terminals
and embedded systems. However, much of J2ME’s popularity is attributed to the fact that
developers can write applications for wireless devices. J2ME excels in assisting the devel-
opment of applications for devices with limited resources (i.e., limited screen size,
memory, power and bandwidth). J2ME also offers programmers tools to create user inter-
faces, connect to networks (to send and receive data) and save various program information
(such as phone numbers and e-mail addresses). For more information on J2ME, visit
www.java.sun.com/j2me.

23.14.5 Binary Run-Time Environment for Wireless (BREW)

The market for wireless devices, especially cell phones, is exploding. Great demand exists
for cell phones to support more functions; however, there are problems adapting applica-
tions on the devices’ varying runtime environments. One possible solution is for manufac-
turers to improve the hardware of mobile devices, enabling devices to support a larger
number of applications. However, the costs associated with hardware improvements are ex-
tremely high. To provide additional functionality relatively inexpensively, Qualcomm has
developed Binary Runtime Environment for Wireless (BREW). This new application plat-
form was introduced in May 2001.27

BREW is a layer of code that works with Qualcomm chips and other cell-phone oper-
ating systems that allow cell phones to run application programs written using BREW
development kits. Applications developed with the BREW standard development kit are
platform-independent, allowing them to run on devices with varying runtime environ-
ments. The simplicity of application development using BREW allows manufacturers to
reduce costs and shorten development timetables. In addition, the platform enables soft-
ware developers to create applications, including navigation assistance, instant messaging,
e-mail, e-wallets, games and personal information management, that are be accessible
through a variety of wireless devices.28

23.14.6 Bluetooth Wireless Technology

Bluetooth wireless technology enables low-power, short-range wireless communications
between computers, PDAs, cell phones and other devices. This technology has the potential
to reduce and even eliminate the need for wires in offices, homes, cars and elsewhere.

Bluetooth wireless technology communicates by using radio frequencies to create a
personal area network (PAN) of connected devices, also called a piconet. Bluetooth tech-
nology supports point-to-point communication, through which a Bluetooth-enabled device,
such as a wireless phone, sends a signal to one other device, as well as point-to-multipoint
communications, that connects one device to up to seven others. One Bluetooth device can
recognize and connect to any other Bluetooth-enabled device within a 30 feet radius. For
example, imagine that an employee uses a PDA to schedule a meeting with another user in
the network. When both users return to their desktop computers, the information stored on
their PDAs can be transferred to the users’ desktop computer calendars by using Bluetooth
wireless technology instead of user commands. This eliminates the need for users to per-
form a manual synchronization process later to update devices.

iw3htp2_23.fm Page 772 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 773

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

More than 2,200 companies are members of the Bluetooth Special Interest Group
(SIG) (www.bluetooth.com). The SIG pools the patents of member companies and
provides a free intellectual property license to member companies as long as the members
submit products to qualification testing before sending their Bluetooth products to
market.29

23.15 Internet and World Wide Web Resources

Wireless-Application Solution Providers/Enterprise Solutions

www.xcellenet.com
RemoteWare and Afaria allow organizations to manage communications among smartphones, PDAs,
pagers, cell phones, kiosks and point-of-sale devices.

www.infowave.com
Infowave builds wireless applications for businesses-to-employee communications. The Wireless
Business Engine® allows employees to access e-mail accounts, the corporate intranet, schedules, con-
tact lists and other information.

www.terion.com
This end-to-end solutions provider offers two-way messaging and other technologies designed for the
shipping and transportation industries.

Location-Based Service Providers

www.trueposition.com
TruePosition® uses TDOA technology to provide location-based services. TruePosition specializes
in E911 applications.

www.ericsson.com
GSM phones can be located by using the Ericsson Mobile Positioning System. Ericsson has devel-
oped a wide variety of wireless location solutions.

Location-Based Technology News and Information

www.lbszone.com
This site provides links to news regarding location-based services and leading location-based service
providers.

www.lbsz.com
This portal provides extensive links to news and information regarding location-based services.

Location-Based Services Standards and Legislation

www.locationforum.org
The Location Interoperability Forum (LIF) is dedicated to developing standards for location-identi-
fying technologies.

www.fcc.gov/e911
This Web site was established by the FCC to provide information regarding the E911 Act.

www.fcc.gov/Bureaus/Wireless/Public_Notices/2000/da002099.html
This Web site was established by the FCC to provide details about the automatic location-identifica-
tion specifications of the E911 Act.

iw3htp2_23.fm Page 773 Saturday, July 21, 2001 9:30 AM

774 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Wireless Marketing and Advertising

www.mobliss.com
Mobliss develops wireless marketing solutions and focuses on targeting and tracking campaigns, in-
cluding games, contests, sweepstakes and location-based promotions.

www.digitalimpact.com
Digital Impact designs and implements direct permission-based marketing campaigns. The company
tracks and analyzes campaign results and delivers marketing through online and wireless channels.

www.advertising.com
This company provides marketing solutions for the Web, e-mail and wireless platforms. Ads are
served for PDAs, on wireless Internet sites and through SMS.

WAP, WML and WMLScript

www.wapforum.org
This Web site contains information regarding WAP’s history and its present status. The WAP Forum’s
goal is to establish wireless device interoperablility. This site is a good place to find the latest infor-
mation about WAP, WML and WMLScript.

www.wirelessdevnet.com/channels/wap/training/wml.html
This document provides an introductory tutorial on building WAP applications using WML.

www.wirelessdevnet.com/channels/refview.phtml?cat=wmltags
This site is an online WML reference. It lists WML elements and attributes. Examples of WML mark-
up are also provided.

www.wirelessdevnet.com/channels/wap/training/wml.html
This site provides a WML tutorial for beginners.

SUMMARY
• Wireless technology has developed into one of today’s hottest topics.

• The wireless medium affects business management and operations, employee productivity, con-
sumer purchasing behavior, marketing strategies and personal communications.

• M-business is defined as e-business enabled by wireless communications.

• Businesses and individuals can determine wireless users’ locations within yards by using location-
based services.

• The E911 Act is designed to standardize and enhance 911 service across mobile devices. Phase
one of the E911 Act requires all wireless cellular carriers to provide Automatic Number Informa-
tion (ANI), or the phone numbers of cell phones calling in 911 emergencies. The carriers must also
provide the locations of the cell sites (a cell site identifies a particular tower’s area of coverage)
receiving the 911 calls.

• Phase two E911 bill mandates that all mobile-phone carriers provide Automatic Location Identi-
fication (ALI) of a caller within 125 meters, 67 percent of the time.

• Triangulation determines a user’s location by analyzing the angles from (at least) two fixed points
a known distance apart.

• A geocode is the latitude and longitude of the user’s location.

• A pull strategy assumes that people will request that specific information be sent to their wireless
devices in real time. A push strategy is enacted when marketing messages requested by the recip-
ient are not delivered to wireless devices in real time.

iw3htp2_23.fm Page 774 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 775

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• Permission-based marketing helps guard customer privacy. It also increases campaign response
rates and productivity, because the target market is better defined.

• Limited technology and a variety of protocols cause marketing content to be displayed differently
on various receiving devices.

• The carrier determines the type and amount of wireless advertising that reach its subscribers.

• To reach wireless customers, advertisers must either develop an in-house solution or use a wireless
ad-serving network to deliver ads.

• A publisher or publisher network is a site or group of sites that carry wireless content and wireless
advertisements.

• Wireless advertisements can be delivered by using Short Message Service (SMS), a service that
transmits text messages of 160 alphanumeric characters or less.

• Sales-force automation assists companies in the sales process, including the maintenance and dis-
covery of leads and the management of contacts and other sales-force activities.

• The variety of wireless devices, the lack of m-payment interoperability and the immaturity of the
m-payment industry have created inconsistent user experiences in relation to m-payment applica-
tions.

• Interoperability is the ability for transactions to be performed using any software or device.

• Mobile transactions are well-suited for micropayments, which are payments under $10.

• Some banks are becoming Mobile Virtual Network Operators (MVNO). MVNOs purchase band-
width capacity from mobile carriers and resell it under their brand names, coupled with value-add-
ed services.

• M-wallets allow a user to store billing and shipping information that the user can recall with one
click while shopping from a mobile device.

• The accepted protocol for collecting user information is called an opt-in policy—the user requests
targeted information. An opt-out policy allows organizations to send information to consumers un-
til users request to be taken off the mailing lists.

• The Cellular Telecommunications and Internet Association (CTIA) has presented guidelines for
protecting consumer privacy.

• Market penetration refers to the percent of the population using a marketed service.

• Messaging is the ability to send brief text messages to the display of another cell phone.

• Wireless communications technologies are identified by generations. These include first (1G),
second (2G), two and a half (2.5G), third (3G) and even fourth generation (4G).

• The 2.5-generation technologies include networks that use packet-switching technologies (infor-
mation is divided into packets when it is sent and reassembled at the receiving end; this provides
faster transmission speeds).

• 3G technologies allow for increased data speeds, larger network capacity and transmission support
of multiple data types, including streaming audio, video, multimedia, voice and data.

• WAP is a set of communication protocols designed to enable wireless devices to access the Inter-
net.

• The Wireless Markup Language (WML) is the markup language used to create Web content de-
livered to wireless handheld devices.

• WML documents are divided into renderable units called cards.

• Each WML document consists of one or more cards, which are organized in a deck.

iw3htp2_23.fm Page 775 Saturday, July 21, 2001 9:30 AM

776 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• Every WML document requires a card element, which contains information (such as text, images
and links).

• The card element has two important attributes: id, which identifies the card, and title, which
displays a title at the top of most browser windows.

• All text in a WML document is placed between <p> tags.

• Links are marked up with the a (anchor) element.

• There are two types of images that can be used as links: Imported images and local icons. A local
icon is a small image stored in the wireless device’s memory.

• Local icons are referenced using the localsrc attribute of the img element. Attribute src spec-
ifies the location and file name of an imported image.

• Every img element requires an alt attribute that contains a short description of the image.

• The WMLScript scripting language facilitates a disciplined approach to the designing of programs
that enhance the functionality of WML documents. WMLScript documents are saved with the
.wmls file extension. WMLScript files must be referenced from within a WML document.

• Keyword extern denotes that the function is accessible externally to other WML and WML-
Script documents. Omitting this keyword restricts the function to the WMLScript file in which it
is defined, and the function cannot be called from other documents.

• There are two ways to declare variables in WMLScript: setVar, and var. Method setVar de-
clares a browser variable that is accessible from other WML documents; keyword var declares a
local variable that can be accessed only in the WMLScript document in which it is declared.

• The onevent element is an event element that executes the task element enclosed in its tags.

• The go element is a task element that causes an action to be performed by the browser.

• The dollar sign ($) preceding the variable name retrieves the variable’s value from the device’s
memory.

• The Dialogs object contains methods for the displaying of messages to the client.

• Soft keys are the physical buttons on the device immediately below the display screen.

• Lang object’s parseInt method converts a number to an integer.

• The do element programs the soft keys for a wireless device. Most devices have two soft keys.
The label attribute of the do element defines the soft key’s label, which appears on the display
screen. When a device has two soft keys, the accept value programs the left soft key, and the
options value programs the right soft key.

• When a soft key is pressed, the action of the go element is performed.

• The prev element is a task element that displays the previous card.

• The WMLBrowser object’s methods allow the WMLScript document to communicate with its as-
sociated WML document. This object is used to get variable values, to set variable values and to
navigate between WML documents and cards.

• The WMLBrowser object is often used to set browser variables. Browser variables are necessary
to provide access to the variable in other documents. The variable is referenced by preceding the
identifier with a dollar sign ($identifier).

• The value of the input box is referenced by the input element’s name attribute.

• The String object encapsulates the characteristics and behaviors of a string of characters. The
String object provides methods for selecting characters from a string, concatenating strings, ob-
taining substrings of a string and searching for substrings within a string.

iw3htp2_23.fm Page 776 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 777

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• The Handheld Devices Markup Language (HDML) is similar to Hypertext Markup Language
(HTML), which is used to design and format Web pages.

• NTT DoCoMo’s i-mode service has become the most popular wireless service in Japan. It offers
voice service, combined with access to text-messaging, animated graphics and Web browsing.

• Java is one of the most popular programming languages in the software-development
industry. Sun Microsystems created Java to facilitate the development of Internet and
Web- based applications that can run consistently on any operating system without re-
quiring alteration.

• XHTML Basic is a markup language for identifying the elements of a page so that a browser can
render that Web page on a mobile device.

• Binary Run-Time Environment for Wireless (BREW) is a new software applications platform that
enables software developers to create applications that are accessible through a variety of wireless
devices.

• Bluetooth wireless technology, which is based on radio frequency technology (radio frequency
uses radio signals to communicate), is used in the development of Wireless Personal Area Net-
works (WPANs).

• Bluetooth wireless technology supports point-to-point transmission (occurs when a Bluetooth-en-
abled device, such as a cell phone, sends a signal to one other point, which can be a single machine
or device, such as a computer in an office) and point-to-multipoint (communication between one
device and up to six others) connections.

• Bluetooth wireless technology eliminates the need for cables and wires and does not have line-of-
sight limitations.

TERMINOLOGY
a element frequency hopping spread spectrum (FHSS)
alert dialog geocode
Apache Web server getVar method
automatic location identification (ALI)
automatic number information (ANI)
Bluetooth wireless technology

Global Mobile Commerce Interoperability Group
(GMCIG)

Handheld Devices Markup Language (HDML)
BREW (Binary Runtime Environment

for Wireless)
height attribute
hide a dialog

browser variable href attribute (go)
card element IIS (Internet Information Services)
carrier i-mode
cell site input box
Cellular Telecommunications and

Internet Association (CTIA)
interoperability
isEmpty method

circuit-switching network Java
compact HTML (cHTML) Java 2 micro edition (J2ME)
connected device configuration (CDC) keyword extern
connected limited device configuration (CLDC) length method
deck market penetration
dialog mathematical calculation
Disabilities Issues Task Force m-business
double opt-in policy messaging
elements method method
empty string ("") microbrowser

iw3htp2_23.fm Page 777 Saturday, July 21, 2001 9:30 AM

778 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

SELF-REVIEW EXERCISES
23.1 State whether each of the following is true or false. If false, explain why.

a) M-business is business performed over wireline networks.
b) A geocode is the latitude and longitude of a user’s location and can be determined

through triangulation.
c) Marketing content is displayed identically on all receiving devices.
d) The accepted protocol for collecting user information is an opt-out policy.
e) The String object’s methods allow programmers to perform many common string-ma-

nipulation techniques.

23.2 Fill in the blanks in each of the following statements.
a) determines a user’s location by analyzing the angles from at least two fixed

points a known distance apart.
b) The , or wireless service provider, decides the type and amount of wireless

advertising that reach its subscribers.
c) generation technologies include networks that use packet-switching technol-

ogies.
d) NTT DoCoMo’s service offers voice service, along with access to text mes-

saging, animated graphics and Web browsing.
e) Keyword begins a function definition for a function that is accessible to oth-

er WML and WMLScript documents.

micropayment refresh method
MID profile (MIDP) removeAt method
Mobile Electronic Transactions (MeT) replace method
Mobile Virtual Network Operator (MVNO) replaceAt method
m-payment sales-force automation
multipath error setVar method
m-wallet short message service (SMS)
Nokia browser squeeze method
open technology src attribute (img)
Openwave browser String object
opt-in policy substr method
opt-out policy substrings of a string
p (paragraph) element title element
packet-switching technology toString method
Palm triangulation
permission-based marketing var keyword
Pocket PC WAP application
point-to-multipoint transmission WAP Forum
point-to-point transmission WAP gateway
pound sign (#) WAP-enabled mobile device
prev element width attribute
programmer-defined function square Wireless Application Protocol (WAP)
proxy server wireless browser
publisher network wireless local access
pull strategy WML (Wireless Markup Language)
push strategy WMLBrowser object
radio frequency WMLScript

iw3htp2_23.fm Page 778 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 779

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

23.3 State whether the following are true or false. If false, explain why.
a) WML is a markup language derived from HTML
b) A hyperlink is created by marking up text with <hyperlink> tags.
c) A browser variable can be accessed by any WML or WMLScript document in memory.
d) WMLScript commands are embedded directly into WML documents.
e) The Lang object provides methods that allow WMLScript document to communicate with

the associated WML document.

23.4 Fill in the blanks in each of the following statements:
a) Each WML document consists of one or more cards, which are organized into a

.
b) is the root element in a WML document.
c) All text in a WML document is placed between tags.
d) Keyword declares a local variable.
e) WMLScript files have the extension.
f) Local icons are referenced by attribute .
g) Images have the extension.

23.5 Fill in the blanks in each of the following statements:
a) Method combines all consecutive whitespace characters in a string into a

single whitespace character.
b) Indices for the characters in a string start at .
c) The value for the type attribute programs the right soft key.
d) Preceding a browser variable name with a retrieves the variable’s value.
e) The value for the type attribute programs the left soft key.
f) In WMLScript, concatenation is performed with the operator.

23.6 Identify each of the following as an element or an attribute:
a) wml.
b) localsrc.
c) card.
d) onevent.
e) label.

ANSWERS TO SELF-REVIEW EXERCISES
23.1 a) False. M-business is e-business enabled by wireless communications. E-business is per-
formed over wireline networks. b) True. c) False. Limited technology and multiple protocols cause
marketing content to be displayed differently on different devices. d) False. The accepted protocol for
collecting user information is an opt-in policy, in which the user requests the targeted information.
An opt-out policy allows organizations to send information to consumers until the users request to be
taken off the mailing lists.

23.2 a) Triangulation. b) carrier. c) 2.5. d) i-mode.

23.3 a) False. WML is derived from XML. b) False. A hyperlink is created by marking up text
with <a> tags. c) True. d) False. WMLScript commands are placed in external files. e) False. The
Lang object provides methods for data-type conversions and mathematical calculations. f) True.

23.4 a) deck. b) wml. c) <p>. d) var. e) .wmls. f) localsrc. g) .wbmp. h) extern.

23.5 a) squeeze. b) 0. c) "options". d) $. e) "accept". f) plus (+).

23.6 a) Element. b) Attribute. c) Element. d) Element. e) Attribute.

iw3htp2_23.fm Page 779 Saturday, July 21, 2001 9:30 AM

780 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

EXERCISES
23.7 State whether each of the following is true or false;. If false, explain why.

a) A wireless user’s location can be determined within yards by using location-based ser-
vices.

b) The E911 Act guides the implementation of Internet technology in ambulance and police
headquarters.

c) A publisher is a site that carriers wireless content and wireless advertisements.
d) Interoperability refers to the ability of wireline and wireless devices to communicate with

one another.

23.8 Fill in the blanks in each of the following statements:
a) A assumes that people will request that specific information be sent to their

wireless devices in real time.
b) marketing increases campaign response rates and productivity, because is

better defined.
c) is a set of communication protocols designed to enable wireless devices to

access the Internet.
d) The markup language used to create Web content that is delivered to wireless handheld

devices is .

23.9 Define the following:
a) WML.
b) Bluetooth wireless technology.
c) Short Message Service (SMS).
d) Automatic Number Information (ANI).

23.10 (Class discussion) In Fig. 23.1, we outline various location-identification technologies. Di-
vide the class into two groups and have each group research three of the technologies in the table.
Research can be conducted online or through various other media, such as magazines, articles and
journals. Teams should create a list of pros and cons for each technology, focusing on each technol-
ogy’s cost, accuracy and ability to protect users’ privacy. After data has been gathered, the class
should present each technology in detail.

23.11 Search the Web for information regarding third-generation (3G) wireless technology. Visit
such sites as www.3gnewsroom.com, www.nokia.com and www.ericsson.com/org. Use
information gathered from these sites and other sources to answer to the following question: What
advancements are expected for future wireless technologies and protocols?

23.12 Identify and correct the error in each of the following segments.
a)

<deck>
 <card>
 <p>
 This is the first card.
 </card>
 </p>
</deck>

b)

<WML>
 <card id = "card1" title = "Beginning">card!</card>
</WML>

iw3htp2_23.fm Page 780 Saturday, July 21, 2001 9:30 AM

Chapter 23 Wireless Internet and m-Business 781

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

23.13 Use the search engine found at wap.fast.no/html to find three sites that provide weath-
er information. Create a WML document that links to each of these sites.

23.14 Use WML and WMLScript to display the following sentence (including line breaks) in a
WML document:

Programming with
WMLScript is
easy!

23.15 Write a WMLScript document that inputs integers (one at a time) and passes them (one at a
time) to function isEven, which determines whether an integer is even. The modulus operator (%)
in WMLScript determines whether an integer remainder exists after division. For example, the ex-
pression x % y yields the integer remainder after x is divided by y. All even numbers have a remain-
der of 0 when divided by 2. The function should take an integer argument and return true if the
integer is even, false otherwise.

23.16 Write a WML document that passes two numbers input by a user to a function that calls a
second function to add the numbers, returning the result to the first function. Display the results in a
WML document.

23.17 Write a WMLScript document that reads in a user’s first and last name as separate inputs.
Use String object’s charAt method (www.wirelessdevnet.com/channels/co-
deref.phtml?catid=5&subid=5) to retrieve the first letter of each name and display them in
a WML document.

WORKS CITED
The notation <www.domain-name.com> indicates that the citation is for information found at that
Web site.
1. S. A. Pignone, “When Cell Phones Save Lives,” NEAR Volume 1 Issue 2: 11-14.

2. “First-to-Wireless™,” WindWire, Inc. 27 December 2000: 2.

3. E. Newborne, “Look Ma! No Ads!,” Inside 6 February 2001: 81.

4. T. Bair, “True Tales of Mobile Advertising: The Need for Standards,” Wireless Advertising
Conference Atlanta, Georgia May 20-23.

5. K. Bayne, “Wireless Devices: The New Marketing Frontier,” e-Business Advisor December
2000:12.

6. D. Callaghan, “Marketers Targeting Mobile Buyers,” eWeek 26 February 2001: 35.

7. J. O’Brien, “M-Commerce Off to a Slow Start,” Computer Shopper February 2001: 62.

8. D. Drucker, “The Web: Hardly Death Of A Salesman,” InternetWeek 25 October 1999: 73.

9. “MeT Threatened by Mobile SET Payments?” 7 March 2001 <www.epaynews.com/
archives/index.cgi?keywords=MeT&optional=&subject=&loca-
tion=&ref=keyword&f=view&id=98397320321212015050&block=2>.

10. J. Blau “Carriers, Banks Partner for Payments,” m-business April 2001: 37.

11. “Say. Buy It!: Nuance and Qpass Team to Offer Voice-Driven Commerce Services to Wireless
Carriers with the Qpass TalkWallet™,” Qpass Press Release 20 March 2001.

12. C. Nobel and D. Callaghan, “Wireless Services Hit Snags,” eWeek 18 December 2000: 15.

13. M. Hamblen, “Ensuring Portable Privacy,” Computerworld 11 December 2000: 50.

iw3htp2_23.fm Page 781 Saturday, July 21, 2001 9:30 AM

782 Wireless Internet and m-Business Chapter 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

14. J. Daitch, R. Kamath, R. Kapoor, A. Nemiccolo, J. Sahni, S. Varma, “Wireless Applications for
Business,” Kellogg TechVenture 2000 Anthology <www.intel.com/eBusiness/pdf/
busstrat/hi004618.pdf>.

15. “Wireless Facts,” CWTA <www.cwta.ca/industry_guide/facts.php3>.

16. M. Smith, “More Than 200 Billion GSM Text Messages Forecast for Full Year 2001,” GSM
World <www.gsmworld.com/news/press_2001/press_releases_4.html> 12 Feb-
ruary 2001.

17. B. Issberner, “How ‘Context Switch Radios’ Will Streamline with Personal Area Networks,”
Wireless Integration <wi.pennwellnet.com/home/articles> 1 March 2000.

18. <www.nttdocomo.com/imode>

19. T. Hughes, “The Web Unwired,” Global Technology Business December 1999: 33.

20. Fixing WAP’s Security Flaw,” m-business January 2001: 92.

21. <www.wapuseek.com/wapfaqs.cfm#4>.

22. <www.wapuseek.com>.

23. S. Phan, “Who Needs a PC?” Business 2.0 14 November 2000: 54.

24. T. Hyland, “Handheld Devices Markup Language FAQ,” <www.w3.org/TR/NOTE-Sub-
mission-HDML-FAQ.html>.

25. C. Biggs, “HDML or WML?,” <www.allnetdevices.com/developer/tutori-
als/2000/06/09/hdml_or.html>.

26. C. Biggs, “HDML or WML?,” <www.allnetdevices.com/developer/tutori-
als/2000/06/09/hdml_or.html>.

27. <www.qualcomm.com/cda/brew>.

28. P. Tam, “Qualcomm Strives for Wireless Standard,” The Wall Street Journal 31 January 2001:
B6.

29. <www.bluetooth.com>.

iw3htp2_23.fm Page 782 Saturday, July 21, 2001 9:30 AM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

24
VBScript

Objectives
• To become familiar with the VBScript language.
• To use VBScript keywords, operators and functions to

write client-side scripts.
• To be able to write Sub and Function procedures.
• To use VBScript arrays and regular expressions.
• To be able to write VBScript abstract data types called
Classes.

• To be able to create objects from Classes.
• To be able to write Property Let, Property
Get and Property Set procedures.

When they call the roll in the Senate, the senators do not
know whether to answer “present” or “not guilty.”
Theodore Roosevelt

While I nodded, nearly napping,
suddenly there came a tapping,
As of someone gently rapping, rapping at my chamber door.
Edgar Allan Poe

Basic research is what I am doing when I don’t know what I
am doing.
Wernher von Braun

A problem is a chance for you to do your best.
Duke Ellington

Everything comes to him who hustles while he waits.
Thomas Alva Edison

iw3htp2_24.fm Page 783 Saturday, July 21, 2001 9:34 AM

784 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

24.1 Introduction
Visual Basic Script (VBScript) is a subset of Microsoft Visual Basic® used in World Wide
Web XHTML documents to enhance the functionality of a Web page displayed in a Web
browser. Microsoft’s Internet Explorer Web browser contains a VBScript scripting engine
(i.e., an interpreter) that executes VBScript code. In this chapter, we introduce client-side
VBScript for use in XHTML documents. Because JavaScript has become the de facto cli-
ent-side scripting language in industry, you are not likely to use client-side VBScript.

Earlier in the text we used JavaScript to introduce fundamental computer program-
ming concepts in the context of XHTML documents and the World Wide Web. In this
chapter, we overview VBScript, which provides capabilities similar to those of JavaScript.
The material presented in this chapter is valuable for two reasons. First, company Intranets
tend to standardize on a particular Web browser, and, if that browser is Internet Explorer,
the VBScript techniques introduced in this chapter can readily be used on the client side to
enhance XHTML documents. Second, VBScript is particularly valuable when used with
Microsoft Web servers to create Active Server Pages (ASP)—a technology that allows a
server-side script to create dynamic content that is sent to the client’s browser. Although
other scripting languages can be used, VBScript is the de facto language for ASP. You will
learn about ASP in Chapters 25 and 26.

24.2 Operators
VBScript is a case-insensitive language that provides arithmetic operators, logical opera-
tors, concatenation operators, comparison operators and relational operators. VBScript’s
arithmetic operators (Fig. 24.1) are similar to the JavaScript arithmetic operators. Two ma-
jor differences are the division operator, \, which returns an integer result and the expo-
nentiation operator, ^, which raises a value to a power. [Note: the precedence of operators
is different in JavaScript. See Section 24.9 for a list of VBScript operators and their prece-
dences.]

Outline

24.1 Introduction
24.2 Operators
24.3 Data Types and Control Structures
24.4 VBScript Functions
24.5 VBScript Example Programs
24.6 Arrays
24.7 String Manipulation
24.8 Classes and Objects
24.9 Operator Precedence Chart
24.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_24.fm Page 784 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 785

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Figure 24.2 lists VBScript’s comparison operators. Only the symbols for the equality
operator and the inequality operator are different in JavaScript. In VBScript, these compar-
ison operators may also be used to compare strings.

The VBScript logical operators are And (logical AND), Or (logical OR), Not (logical
negation), Imp (logical implication), Xor (exclusive OR) and Eqv (logical equivalence).
Figure 24.3 shows truth tables for these logical operators. Note: Despite the mixture of case
in keywords, functions, etc., VBScript is not case-sensitive—uppercase and lowercase let-
ters are treated the same, except, as we will see, in character string constants (also called
character string literals).

Performance Tip 24.1
VBScript logical operators do not use “short-circuit” evaluation. Both conditions are always
evaluated. 24.1

VBScript operation
Arithmetic
operator

Algebraic
expression

VBScript
expression

Addition + x + y x + y

Subtraction - z – 8 z – 8

Multiplication * yb y * b

Division (floating-point) /
v ÷ u or

v / u

Division (integer) \ none v \ u

Exponentiation ^ q p q ^ p

Negation - –e —e

Modulus Mod q mod r q Mod r

Fig. 24.1Fig. 24.1Fig. 24.1Fig. 24.1 Arithmetic operators.

v
u

Standard algebraic
equality operator or
relational operator

VBScript
comparison
operator

Example of
VBScript
condition

Meaning of VBScript
condition

= = d = g d is equal to g

≠ <> s <> r s is not equal to r

> > y > x y is greater than x

< < p < m p is less than m

≥ >= c >= z c is greater than or equal to z

≤ <= m <= s m is less than or equal to s

Fig. 24.2Fig. 24.2Fig. 24.2Fig. 24.2 Comparison operators.

iw3htp2_24.fm Page 785 Saturday, July 21, 2001 9:34 AM

786 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

VBScript provides the plus sign, +, and ampersand, &, operators for string concatena-
tion as follows:

s1 = "Pro"
s2 = "gram"
s3 = s1 & s2

or

s3 = s1 + s2

The ampersand is more formally called the string concatenation operator. The above state-
ments would concatenate (or append) s2 to the right of s1 to create an entirely new string,
s3, containing "Program".

If both operands of the concatenation operator are strings, these two operators can be
used interchangeably; however, if the + operator is used in an expression consisting of
varying data types, there can be a problem. For example, consider the statement

s1 = "hello" + 22

VBScript first tries to convert the string "hello" to a number, then add 22 to it. The
string "hello" cannot be converted to a number, so a type mismatch error occurs at run
time. For this reason, the & operator should be used for string concatenation.

Testing and Debugging Tip 24.1
Always use the ampersand (&) operator for string concatenation. 24.1

Truth tables for VBScript Logical Operators

Logical And:
True And True = True
True And False = False
False And True = False
False And False = False

Logical Or:
True Or True = True
True Or False = True
False Or True = True
False Or False = False

Logical Imp:
True Imp True = True
True Imp False = False
False Imp True = True
False Imp False = True

Logical Eqv:
True Eqv True = True
True Eqv False = False
False Eqv True = False
False Eqv False = True

Logical Xor:
True Xor True = False
True Xor False = True
False Xor True = True
False Xor False = False

Logical Not:
Not True = False
Not False = True

Fig. 24.3Fig. 24.3Fig. 24.3Fig. 24.3 Truth tables for VBScript logical operators.

iw3htp2_24.fm Page 786 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 787

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

24.3 Data Types and Control Structures
VBScript has only one data type—variant—that is capable of storing different types of data
(e.g., strings, integers, floating-point numbers etc.). The data types (or variant subtypes) a
variant stores are listed in Fig. 24.4. VBScript interprets a variant in a manner that is suit-
able to the type of data it contains. For example, if a variant contains numeric information,
it will be treated as a number; if it contains string information, it will be treated as a string.

Software Engineering Observation 24.1
Because all variables are of type variant, the programmer does not specify a data type when
declaring a variable in VBScript. 24.1

Variable names cannot be keywords and must begin with a letter. The maximum length
of a variable name is 255 characters containing only letters, digits (0–9) and underscores.
Variables can be declared simply by using their name in the VBScript code. The statement
Option Explicit can be used to force all variables to be declared before they are used.

Common Programming Error 24.1
Attempting to declare a variable name that does not begin with a letter is an error. 24.1

Testing and Debugging Tip 24.2
Forcing all variables to be declared, by using Option Explicit, can help eliminate var-
ious kinds of subtle errors. 24.2

 Common Programming Error 24.2
If a variable name is misspelled (when not using Option Explicit), a new variable is
declared, usually resulting in an error. 24.2

Subtype Range/Description

Boolean True or False

Byte Integer in the range 0 to 255

Currency –922337203685477.5808 to 922337203685477.5807

Date/Time 1 January 100 to 31 December 9999 / 0:00:00 to 23:59:59.

Double –1.79769313486232E308 to –4.94065645841247E–324 (negative)
4.94065645841247E–324 to 1.79769313486232E308 (positive)

Empty Uninitialized. This value is 0 for numeric types (e.g., double), False for
booleans and the empty string (i.e., "") for strings.

Integer –32768 to 32767

Long –2147483648 to 2147483647

Object Any object type.

Single –3.402823E38 to –1.401298E–45 (negative)
1.401298E–45 to 3.402823E38 (positive)

String 0 to ~2000000000 characters.

Fig. 24.4Fig. 24.4Fig. 24.4Fig. 24.4 Some VBScript variant subtypes.

iw3htp2_24.fm Page 787 Saturday, July 21, 2001 9:34 AM

788 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

VBScript provides control structures (Fig. 24.5) for controlling program execution.
Many of the control structures provide the same capabilities as their JavaScript counter-
parts. Syntactically, every VBScript control structure ends with one or more keywords
(e.g., End If, Loop, etc.). Keywords delimit a control structure’s body—not curly braces
(i.e., {}, as in JavaScript).

The If/Then/End If and If/Then/Else/End If control structures behave identi-
cally to their JavaScript counterparts. VBScript’s multiple selection version of If/Then/
Else/End If uses a different syntax from JavaScript’s version because it includes key-
word ElseIf (Fig. 24.6).

Notice that VBScript does not use a statement terminator like the semicolon (;) in
JavaScript. Unlike in JavaScript, placing parentheses around conditions in VBScript is
optional. A condition evaluates to True if the variant subtype is boolean True or if the
variant subtype is considered non-zero. A condition evaluates to False if the variant sub-
type is boolean False or if the variant subtype is considered to be 0.

VBScript’s Select Case/End Select structure provides all the functionality of
JavaScript’s switch structure, and more (Fig. 24.7).

JavaScript Control Structure VBScript Control Structure Equivalent

sequence sequence

if If/Then/End If

if/else If/Then/Else/End If

while While/Wend or Do While/Loop

for For/Next

do/while Do/Loop While

switch Select Case/End Select

none Do Until/Loop

none Do/Loop Until

Fig. 24.5Fig. 24.5Fig. 24.5Fig. 24.5 Comparing VBScript control structures to JavaScript control structures.

JavaScript VBScript

1 if (s == t)
2 u = s + t;
3 else if (s > t)
4 u = r;
5 else
6 u = n;

1 If s = t Then
2 u = s + t
3 ElseIf s > t Then
4 u = r
5 Else
6 u = n
7 End If

Fig. 24.6Fig. 24.6Fig. 24.6Fig. 24.6 Comparing JavaScript’s if structure to VBScript’s If structure.

iw3htp2_24.fm Page 788 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 789

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Common Programming Error 24.3
Writing an If control structure that does not contain keyword Then is an error. 24.3

Notice that the Select Case/End Select structure does not require the use of a
statement like break. One Case cannot accidentally run into another. The VBScript
Select Case/End Select structure is equivalent to VBScript’s If/Then/Else/End
If multiple selection structure. The only difference is syntax. Any variant subtype can be
used with the Select Case/End Select structure.

VBScript’s While/Wend repetition structure and Do While/Loop behave identi-
cally to JavaScript’s while repetition structure. VBScript’s Do/Loop While structure
behaves identically to JavaScript’s do/while repetition structure.

VBScript contains two additional repetition structures, Do Until/Loop and Do/
Loop Until, that do not have direct JavaScript equivalents. Figure 24.8 shows the closest
comparison between VBScript’s Do Until/Loop structure and JavaScript’s while
structure. The Do Until/Loop structure loops until its condition becomes True. In this
example, the loop terminates when x becomes 10. We used the condition !(x == 10) in
JavaScript here, so both control structures have a test to determine whether x is 10. The
JavaScript while structure loops while x is not equal to 10 (i.e., until x becomes 10).

Figure 24.9 shows the closest comparison between VBScript’s Do/Loop Until
structure and JavaScript’s do/while structure. The Do/Loop Until structure loops until
its condition becomes True. In this example, the loop terminates when x becomes 10.
Once again, we used the condition !(x == 10) in JavaScript here so both control struc-
tures have a test to determine if x is 10. The JavaScript do/while structure loops while
x is not equal to 10 (i.e., until x becomes 10).

Notice that these Do Until repetition structures iterate until the condition becomes
True. VBScript For repetition structure behaves differently from JavaScript’s for repe-
tition structure. Consider the side-by-side comparison in Fig. 24.10.

Unlike JavaScript’s for repetition structures condition, VBScript’s For repetition
structure’s condition cannot be changed during the loop’s iteration. In the JavaScript for/
VBScript For loop side-by-side code comparison, the JavaScript for loop would iterate
exactly two times, because the condition is evaluated on each iteration. The VBScript For

JavaScript VBScript

1 switch (x) {
2 case 1:
3 alert("1");
4 break;
5 case 2:
6 alert("2");
7 break;
8 default:
9 alert("?");

10 }

1 Select Case x
2 Case 1
3 Call MsgBox("1")
4 Case 2
5 Call MsgBox("2")
6 Case Else
7 Call MsgBox("?")
8 End Select

Fig. 24.7Fig. 24.7Fig. 24.7Fig. 24.7 Comparing JavaScript’s switch with VBScript’s Select Case.

iw3htp2_24.fm Page 789 Saturday, July 21, 2001 9:34 AM

790 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

loop would iterate exactly eight times because the condition is fixed as 1 To 8—even
though the value of x is changing in the body. VBScript For loops may also use the
optional Step keyword to indicate an increment or decrement. By default, For loops
increment in units of 1. Figure 24.11 shows a For loop that begins at 2 and counts to 20
in Steps of 2.

Common Programming Error 24.4
Attempting to use a relational operator in a For/Next loop (e.g., For x = 1 < 10) is an
error. 24.4

JavaScript VBScript

1 while (!(x == 10))
2 ++x;

1 Do Until x = 10
2 x = x + 1
3 Loop

Fig. 24.8Fig. 24.8Fig. 24.8Fig. 24.8 Comparing JavaScript’s while to VBScript’s Do Until.

JavaScript VBScript

1 do {
2 ++x;
3 } while (!(x == 10));

1 Do
2 x = x + 1
3 Loop Until x = 10

Fig. 24.9Fig. 24.9Fig. 24.9Fig. 24.9 Comparing JavaScript’s do/while to VBScript’s Do Loop/Until.

JavaScript VBScript

1 x = 8;
2 for (y = 1; y < x; y++)
3 x /= 2;

1 x = 8
2 For y = 1 To x
3 x = x \ 2
4 Next

Fig. 24.10Fig. 24.10Fig. 24.10Fig. 24.10 Comparing JavaScript’s for to VBScript’s For.

1 ’ VBScript
2 For y = 2 To 20 Step 2
3 Call MsgBox("y = " & y)
4 Next

Fig. 24.11Fig. 24.11Fig. 24.11Fig. 24.11 Using keyword Step in VBScript’s For repetition structure.

iw3htp2_24.fm Page 790 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 791

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The Exit Do statement, when executed in a Do While/Loop, Do/Loop While, Do
Until/Loop or Do/Loop Until, causes immediate exit from that structure. The fact that
a Do While/Loop may contain Exit Do is the only difference, other than syntax,
between Do While/Loop and While/Wend. Statement Exit For causes immediate exit
from the For/Next structure. With Exit Do and Exit For, program execution con-
tinues with the first statement after the exited repetition structure.

Common Programming Error 24.5
Attempting to use Exit Do or Exit For to exit a While/Wend repetition structure is an
error. 24.5

Common Programming Error 24.6
Attempting to place the name of a For repetition structures’s control variable after Next is
an error. 24.6

24.4 VBScript Functions
VBScript provides several predefined functions, many of which are summarized in this sec-
tion. We overview variant functions, math functions, functions for interacting with the user,
formatting functions and functions for obtaining information about the interpreter.

Figure 24.12 summarizes several functions that allow the programmer to determine
which subtype is currently stored in a variant. VBScript provides function IsEmpty to
determine if the variant has ever been initialized by the programmer. If IsEmpty returns
True the variant has not been initialized by the programmer.

VBScript math functions allow the programmer to perform common mathematical cal-
culations. Figure 24.13 summarizes some VBScript math functions. Note that trigono-
metric functions such as Cos, Sin, etc. take arguments expressed in radians. To convert
from degrees to radians use the formula: radians = degrees × π / 180.

Function

Variant
subtype
returned Description

IsArray Boolean Returns True if the variant subtype is an array and False
otherwise.

IsDate Boolean Returns True if the variant subtype is a date or time and
False otherwise.

IsEmpty Boolean Returns True if the variant subtype is Empty (i.e., has not
been explicitly initialized by the programmer) and False
otherwise.

IsNumeric Boolean Returns True if the variant subtype is numeric and False
otherwise.

IsObject Boolean Returns True if the variant subtype is an object and
False otherwise.

Fig. 24.12Fig. 24.12Fig. 24.12Fig. 24.12 Some variant functions (part 1 of 2).

iw3htp2_24.fm Page 791 Saturday, July 21, 2001 9:34 AM

792 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

TypeName String Returns a string that provides subtype information. Some
strings returned are "Byte", "Integer", "Long",
"Single", "Double", "Date", "Currency",
"String", "Boolean" and "Empty".

VarType Integer Returns a value indicating the subtype (e.g., 0 for Empty, 2
for integer, 3 for long, 4 for single, 5 for double, 6 for cur-
rency, 7 for date/time, 8 for string, 9 for object, etc.).

Function Description Example

Abs(x) Absolute value of x Abs(-7) is 7
Abs(0) is 0
Abs(76) is 76

Atn(x) Trigonometric arctangent of x
(in radians)

Atn(1)*4 is
3.14159265358979

Cos(x) Trigonometric cosine of x (in radians) Cos(0) is 1

Exp(x) Exponential function ex Exp(1.0) is 2.71828
Exp(2.0) is 7.38906

Int(x) Returns the whole-number part of x. Int
rounds to the next smallest number.

Int(-5.3) is –6
Int(0.893) is 0
Int(76.45) is 76

Fix(x) Returns the whole-number part of x
[Note: Fix and Int are different. When x
is negative, Int rounds to the next
smallest number, while Fix rounds to the
next-largest number.]

Fix(-5.3) is –5
Fix(0.893) is 0
Fix(76.45) is 76

Log(x) Natural logarithm of x (base e) Log(2.718282) is 1.0
Log(7.389056) is 2.0

Rnd() Returns a pseudo-random floating-point
number in the range 0 ≤ Rnd < 1. Call
function Randomize once before calling
Rnd to get a different sequence of random
numbers each time the program is run.

Call Randomize
...
z = Rnd()

Round(x, y) Rounds x to y decimal places. If y is
omitted, x is returned as an integer.

Round(4.844) is 5
Round(5.7839, 2) is 5.78

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 VBScript math functions (part 1 of 2).

Function

Variant
subtype
returned Description

Fig. 24.12Fig. 24.12Fig. 24.12Fig. 24.12 Some variant functions (part 2 of 2).

iw3htp2_24.fm Page 792 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 793

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

VBScript provides formatting functions for currency values, dates, times, numbers and
percentages. Figure 24.14 summarizes these formatting functions.

Although they are not discussed in this chapter, VBScript provides many functions for
manipulating dates and times. Manipulations include adding dates, subtracting dates,
parsing dates, etc. Consult the VBScript documentation for a list of these functions.

Sgn(x) Sign of x Sgn(-1988) is –1
Sgn(0) is 0
Sgn(3.3) is 1

Sin(x) Trigonometric sine of x (in radians) Sin(0) is 0

Sqr(x) Square root of x Sqr(900.0) is 30.0
Sqr(9.0) is 3.0

Tan(x) Trigonometric tangent of x (in radians) Tan(0) is 0

Function Description

FormatCurrency Returns a string formatted according to the local machine’s currency
Regional Settings (in the Control Panel). For example, the call
FormatCurrency("-1234.789") returns "($1,234.79)" and
the call FormatCurrency(123456.789) returns
"$123,456.79". Note the rounding to the right of the decimal place.

FormatDateTime Returns a string formatted according to the local machine’s date/time
Regional Settings (in the Control Panel). For example, the call
FormatDateTime(Now, vbLongDate) returns the current date in
the format "Wednesday, September 01, 1999" and the call
FormatDateTime(Now, vbShortTime) returns the current time in
the format "17:26". Function Now returns the local machine’s time and
date. Constant vbLongDate indicates that the day of the week, month,
day and year is displayed. Constant vbShortTime indicates that the
time is displayed in 24-hour format. Consult the VBScript documentation
for additional constants that specify other date and time formats.

FormatNumber Returns a string formatted according to the number Regional
Settings (in the Control Panel) on the local machine. For example,
the call FormatNumber("3472435") returns "3,472,435.00"
and the call FormatNumber(-123456.789) returns
"-123,456.79". Note the rounding to the right of the decimal place.

FormatPercent Returns a string formatted as a percentage. For example the call
FormatPercent(".789") returns "78.90%" and the call
FormatPercent(0.45) returns "45.00%".

Fig. 24.14Fig. 24.14Fig. 24.14Fig. 24.14 Some VBScript formatting functions.

Function Description Example

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 VBScript math functions (part 2 of 2).

iw3htp2_24.fm Page 793 Saturday, July 21, 2001 9:34 AM

794 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

VBScript also provides functions for getting information about the scripting engine
(i.e., the VBScript interpreter). These functions are ScriptEngine (which returns
“JScript”, “VBScript” or “VBA”), ScriptEngineBuildVersion (which
returns the current build version—i.e., the identification number for the current release),
ScriptEngineMajorVersion (which returns the major version number for the script
engine) and ScriptEngineMinorVersion (which returns the minor release number).
For example, the expression

ScriptEngine() & ", " & ScriptEngineBuildVersion() & ", " _
& ScriptEngineMajorVersion() & ", " & _
ScriptEngineMinorVersion()

evaluates to "VBScript, 5207, 5, 5" (where the numbers are the build version, major
version and minor version of the script engine at the time of this writing).

Testing and Debugging Tip 24.3
VBScript functions ScriptEngine, ScriptEngineBuildVersion,
ScriptEngineMajorVersion and ScriptEngineMinorVersion are useful if
you are experiencing difficulty with the scripting engine and need to report information
about the scripting engine to Microsoft. 24.3

Portability Tip 24.1
VBScript functions ScriptEngine, ScriptEngineBuildVersion,
ScriptEngineMajorVersion and ScriptEngineMinorVersion can be used to
determine whether the browser’s script engine version is different from the script engine ver-
sion you used to develop the page. Older script engines do not support the latest VBScript
features. 24.1

VBScript provides two functions, InputBox and MsgBox, for interacting with the
user. Function InputBox displays a dialog in which the user can input data. For example,
the statement

intValue = InputBox("Enter an integer", "Input Box", , _
 1000, 1000)

displays an input dialog (Fig. 24.15) containing the prompt ("Enter an integer") and
the caption ("Input Box") at position (1000, 1000) on the screen. VBScript coordinates
are measured in units of twips (1440 twips equal 1 inch). Position (1000, 1000) is relative
to the upper-left corner of the screen, which is position (0, 0). On the screen, x coordinates
increase from left to right and y coordinates increase from top to bottom.

VBScript functions often take optional arguments (i.e., arguments that programmers
can pass if they wish or that can be omitted). Notice, in the preceding call to InputBox,
the consecutive commas (between "Input Box" and 1000)—these indicate that an
optional argument is being omitted. In this particular case, the optional argument corre-
sponds to the initial value displayed in the input dialog—a feature we do not wish to use in
this particular call to InputBox. Before using a VBScript function, check the VBScript
documentation

msdn.microsoft.com/scripting/default.htm?/scripting/vbscript

to determine whether the function allows for optional arguments.

iw3htp2_24.fm Page 794 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 795

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The underscore character, _, is VBScript’s line-continuation character. A statement
cannot extend beyond the current line without using this character. A statement may use as
many line-continuation characters as necessary.

Common Programming Error 24.7
Splitting a statement over several lines without the line-continuation character is an error. 24.7

Common Programming Error 24.8
Placing anything, including comments, after a line-continuation character is an error. 24.8

When called, function MsgBox displays a message dialog (a sample is shown in Fig.
24.15). For example, the statement

Call MsgBox("VBScript is fun!", , "Results")

displays a message dialog containing "VBScript is fun!" with "Results" in the
title bar. Although not used here, the optional argument allows the programmer to custom-
ize the MsgBox’s buttons (e.g., OK, Yes, etc.) and icon (e.g., question mark, exclamation
point, etc.)—see the VBScript documentation for more information on these features. The
preceding statement could also have been written as

MsgBox "VBScript is fun!", , "Results"

which behaves identically to the version of the statement that explicitly uses Call. In VB-
Script, function calls that wrap arguments in parentheses must be preceded with keyword
Call—unless the function call is assigning a value to a variable, as in

a = Abs(z)

We prefer the more formal syntax that uses Call and parentheses to clearly indicate a
function call.

24.5 VBScript Example Programs
In this section, we present several complete VBScript “live-code” programs and show the
screen inputs and outputs produced as the programs execute. The XHTML document of
Fig. 24.15 includes VBScript code that enables users to click a button to display an input
dialog in which they can type an integer to be added into a running total. When the input
dialog’s OK button is clicked, a message dialog is displayed with a message indicating the
number that was entered and the total of all the numbers entered so far.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!--Fig. 24.15: addition.html -->
6 <!--Adding Integers -->

Fig. 24.15Fig. 24.15Fig. 24.15Fig. 24.15 Adding integers on a Web page using VBScript (part 1 of 3).

iw3htp2_24.fm Page 795 Saturday, July 21, 2001 9:34 AM

796 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Our first VBScript</title>
11
12 <script type = "text/vbscript">
13 <!--
14 Option Explicit
15 Dim intTotal
16
17 Sub cmdAdd_OnClick()
18 Dim intValue
19
20 intValue = InputBox(_
21 "Enter an integer", "Input Box", , 1000, 1000)
22 intTotal = CInt(intTotal) + CInt(intValue)
23 Call MsgBox("You entered " & intValue & _
24 "; total so far is " & intTotal, , "Results")
25 End Sub
26 -->
27 </script>
28 </head>
29
30 <body>
31 Click the button to add an integer to the total.
32 <hr />
33 <form action = "">
34 <input name = "cmdAdd" type = "button"
35 value = "Click Here to Add to the Total" />
36 </form>
37 </body>
38 </html>

Fig. 24.15Fig. 24.15Fig. 24.15Fig. 24.15 Adding integers on a Web page using VBScript (part 2 of 3).

iw3htp2_24.fm Page 796 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 797

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

On Line 12, the XHTML tag script sets the type attribute to vbscript. This tag
tells the browser to use its built-in VBScript interpreter to interpret the script code. Notice
the XHTML comment tags on lines 13 and 26 which appear to “comment out” the
VBScript code.

If the browser understands VBScript, these XHTML comments are ignored, and the
VBScript is interpreted. If the browser does not understand VBScript, the XHTML com-
ment prevents the VBScript code from being displayed as text.

Portability Tip 24.2
Always place client-side VBScript code inside XHTML comments to prevent the code from
being displayed as text in browsers that do not understand VBScript. 24.2

Line 14 uses the Option Explicit statement to force all variables in the VBScript
code to be declared. Statement Option Explicit, if present, must be the first statement
in the VBScript code. Line 15 declares variant variable intTotal, which is visible to all
procedures within the script. Variables declared outside of procedures are called script
variables.

Common Programming Error 24.9
Placing VBScript code before the Option Explicit statement is an error. 24.9

Lines 17–25 define a procedure (i.e., VBScript’s equivalent of a function in JavaS-
cript) called OnClick for the cmdAdd button. VBScript procedures that do not return a
value begin with the keyword Sub (line 17) and end with the keywords End Sub (line 25).
We will discuss VBScript procedures that return values later in this chapter. Line 18
declares the local variable intValue. Variables declared within a VBScript procedure

Fig. 24.15Fig. 24.15Fig. 24.15Fig. 24.15 Adding integers on a Web page using VBScript (part 3 of 3).

input dialog

message dialog

iw3htp2_24.fm Page 797 Saturday, July 21, 2001 9:34 AM

798 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

are visible only within that procedure’s body. Procedures that perform event handling (such
as the cmdAdd_OnClick procedure in lines 17–25) are more properly called event pro-
cedures.

Line 20 calls the function InputBox to display an input dialog. The value entered
into the input dialog is assigned to the intValue variable and is treated by VBScript as
a string subtype. When using variants, conversion functions are often necessary to ensure
that you are using the proper type. Line 22 calls VBScript function CInt twice to convert
from the string subtype to the integer subtype. VBScript also provides conversion func-
tions CBool for converting to the boolean subtype, CByte for converting to the byte
subtype, CCur for converting to the currency subtype, CDate for converting to the date/
time subtype, CDbl for converting to the double subtype, CLng for converting to the
long subtype, CSng for converting to the single subtype and CStr for converting to the
string subtype. Lines 23–24 display a message dialog indicating the last value input and
the running total.

VBScript provides many predefined constants for use in your VBScript code. The con-
stant categories include color constants, comparison constants (to specify how values are
compared), date/time constants, date format constants, drive type constants, file attribute
constants, file I/O constants, MsgBox constants, special folder constants, string constants,
VarType constants (to help determine the type stored in a variable) and miscellaneous
other constants. VBScript constants usually begin with the prefix vb. For a list of VBScript
constants, see the VBScript documentation. You can also create your own constants by
using keyword Const, as in

Const PI = 3.14159

Figure 24.16 provides another VBScript example. The XHTML form provides a
select component, to allow the user to select a Web site from a list of sites. When the
selection is made, the new Web site is displayed in the browser. Lines 34–39 specify a
VBScript. In such code, the <script> tag’s for attribute indicates the XHTML compo-
nent on which the script operates (SiteSelector), the event attribute indicates the
event to which the script responds (OnChange, which occurs when the user makes a selec-
tion) and the type attribute specifies the scripting language (VBScript).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 24.16: site.html -->
6 <!-- Displaying a Web site -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Select a site to browse</title>
11 </head>
12

Fig. 24.16Fig. 24.16Fig. 24.16Fig. 24.16 Using VBScript code to respond to an event (part 1 of 3). (Courtesy of
Prentice Hall, Inc.)

iw3htp2_24.fm Page 798 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 799

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

13 <body>
14 Select a site to browse<p>
15 <hr />
16 <form action = "">
17 <select name = "SiteSelector" size = "1">
18
19 <option value = "http://www.deitel.com">
20 Deitel & Associates, Inc.
21 </option>
22
23 <option value = "http://www.prenhall.com">
24 Prentice Hall
25 </option>
26
27 <option value = "http://www.phptr.com/phptrinteractive">
28 Prentice Hall Interactive
29 </option>
30
31 </select>
32
33 <!-- VBScript code -->
34 <script for = "SiteSelector" event = "onchange"
35 type = "text/vbscript">
36 <!--
37 Document.Location = Document.Forms(0).SiteSelector.Value
38 -->
39 </script>
40 </form></p>
41 </body>
42 </html>

Fig. 24.16Fig. 24.16Fig. 24.16Fig. 24.16 Using VBScript code to respond to an event (part 2 of 3). (Courtesy of
Prentice Hall, Inc.)

iw3htp2_24.fm Page 799 Saturday, July 21, 2001 9:34 AM

800 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 37 causes the browser to change to the selected location. This line uses Internet
Explorer’s Document object to change the location. The Document object’s Location
property specifies the URL of the page to display. The expression SiteSe-
lector.Value gets the value of the selected option in the select. When the
assignment is performed, Internet Explorer automatically loads and displays the Web page
for the selected location.

Fig. 24.17 uses programmer-defined procedures: Minimum, to determine the smallest
of three numbers; and OddEven, to determine whether the smallest number is odd or even.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!--Fig. 24.17: minimum.html -->
6 <!-- VBScript Procedures -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Using VBScript Procedures</title>
11
12 <script type = "text/vbscript">
13 <!--
14 Option Explicit
15
16 ' Find the minimum value. Assume that first value is
17 ' the smallest.

Fig. 24.17Fig. 24.17Fig. 24.17Fig. 24.17 Program that determines the smallest of three numbers (part 1 of 3).

Fig. 24.16Fig. 24.16Fig. 24.16Fig. 24.16 Using VBScript code to respond to an event (part 3 of 3). (Courtesy of
Prentice Hall, Inc.)

iw3htp2_24.fm Page 800 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 801

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

18 Function Minimum(min, a, b)
19
20 If a < min Then
21 min = a
22 End If
23
24 If b < min Then
25 min = b
26 End If
27
28 Minimum = min ' Return value
29 End Function
30
31 Sub OddEven(n)
32 If n Mod 2 = 0 Then
33 Call MsgBox(n & " is the smallest and is even")
34 Else
35 Call MsgBox(n & " is the smallest and is odd")
36 End If
37 End Sub
38
39 Sub cmdButton_OnClick()
40 Dim number1, number2, number3, smallest
41
42 ' Convert each input to Long subtype
43 number1 = CLng(Document.Forms(0).txtBox1.Value)
44 number2 = CLng(Document.Forms(0).txtBox2.Value)
45 number3 = CLng(Document.Forms(0).txtBox3.Value)
46
47 smallest = Minimum(number1, number2, number3)
48 Call OddEven(smallest)
49 End Sub
50 -->
51 </script>
52 </head>
53
54 <body>
55 <form action = ""> Enter a number
56 <input type = "text" name = "txtBox1" size = "5"
57 value = "0" />
58 <p>Enter a number
59 <input type = "text" name = "txtBox2" size = "5"
60 value = "0" /></p>
61 <p>Enter a number
62 <input type = "text" name = "txtBox3" size = "5"
63 value = "0" /></p>
64 <p><input type = "button" name = "cmdButton"
65 value = "Enter" /></p>
66
67 </form>
68 </body>
69 </html>

Fig. 24.17Fig. 24.17Fig. 24.17Fig. 24.17 Program that determines the smallest of three numbers (part 2 of 3).

iw3htp2_24.fm Page 801 Saturday, July 21, 2001 9:34 AM

802 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 16–17 are VBScript single-line comments. VBScript code is commented by
either using a single quote (') or the keyword Rem (for remark) before the comment. [Note:
Keyword Rem can be used only at the beginning of a line of VBScript code.]

Good Programming Practice 24.1
VBScript programmers use the single-quote character for comments. The use of Rem is con-
sidered archaic. 24.1

Lines 18–29 define the programmer-defined procedure Minimum. VBScript proce-
dures that return a value are delimited with the keywords Function (line 18) and End
Function (line 29). This procedure determines the smallest of its three arguments by
using If/Then/Else structures. A value is returned from a Function procedure by
assigning a value to the Function procedure name (line 28). A Function procedure
can return only one value.

Procedure OddEven (lines 31–37) takes one argument and displays a message dialog
indicating the smallest value and whether or not it is odd or even. The modulus operator
Mod is used to determine whether the number is odd or even. Because the data stored in the
variant variable can be viewed as a number, VBScript performs any conversions between
subtypes implicitly before performing the modulus operation. The advantage of placing
these procedures in the head is that other VBScripts can call them.

Lines 39–49 define an event procedure for handling cmdButton’s OnClick event.
The statement in line 47 calls Minimum, passing number1, number2 and number3 as
arguments. Parameters min, a and b are declared in Minimum to receive the values of
number1, number2 and number3, respectively. Procedure OddEven is passed the
smallest number, on line 48.
 Common Programming Error 24.10

Declaring a variable in a procedure body with the same name as a parameter variable is an
error. 24.10

One last word about procedures—VBScript provides statements Exit Sub and Exit
Function for exiting Sub procedures and Function procedures, respectively. Control
is returned to the caller and the next statement in sequence after the call is executed.

Fig. 24.17Fig. 24.17Fig. 24.17Fig. 24.17 Program that determines the smallest of three numbers (part 3 of 3).

iw3htp2_24.fm Page 802 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 803

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

24.6 Arrays
Arrays are data structures consisting of related data items of the same type. A fixed-size ar-
ray’s size does not change during program execution; a dynamic array’s size can change
during execution. A dynamic array is also called a redimmable array (short for a “re-di-
mensionable” array). Individual array elements are referred to by giving the array name fol-
lowed by the element position number in parentheses, (). The first array element is at
position zero.

The position number contained within parentheses is more formally called an index.
An index must be in the range 0 to 2,147,483,648 (any floating-point number is rounded to
the nearest whole number).

The declaration

Dim numbers(2)

instructs the interpreter to reserve three elements for array numbers. The value 2 defines
the upper bound (i.e., the highest valid index) of numbers. The lower bound (the lowest
valid index) of numbers is 0. When an upper bound is specified in the declaration, a fixed-
size array is created.
 Common Programming Error 24.11

Attempting to access an index that is less than the lower bound or greater than the upper
bound is an error. 24.11

The programmer can explicitly initialize the array with assignment statements. For
example, the lines

numbers(0) = 77
numbers(1) = 68
numbers(2) = 55

initialize numbers. Repetition statements can also be used to initialize arrays. For exam-
ple, the statements

Dim h(11), x, i
i = 0
For x = 0 To 30 Step 3
 h(i) = CInt(x)
 i = CInt(i) + 1
Next

initializes the elements of h to the values 0, 3, 6, 9, …, 30.
The program in Fig. 24.18 declares, initializes and prints three arrays. Two of the

arrays are fixed-size arrays and one of the arrays is a dynamic array. The program intro-
duces function UBound, which returns the upper bound (i.e., the highest-numbered index).
[Note: VBScript does provide function LBound for determining the lowest-numbered
index. However, the current version of VBScript does not permit the lowest-numbered
index to be non-zero.]

Testing and Debugging Tip 24.4
Array upper bounds can vary. Use function UBound to ensure that each index is in range
(i.e., within the bounds of the array). 24.4

iw3htp2_24.fm Page 803 Saturday, July 21, 2001 9:34 AM

804 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!--Fig. 24.18: arrays.html -->
6 <!--VBScript Arrays -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Using VBScript Arrays</title>
11
12 <script type = "text/vbscript">
13 <!--
14 Option Explicit
15
16 Public Sub DisplayArray(x, s)
17 Dim j
18
19 Document.Write(s & ": ")
20 For j = 0 To UBound(x)
21 Document.Write(x(j) & " ")
22 Next
23
24 Document.Write("
")
25 End Sub
26
27 Dim fixedSize(3), fixedArray, dynamic(), k
28
29 ReDim dynamic(3) ' Dynamically size array
30 fixedArray = Array("A", "B", "C")
31
32 ' Populate arrays with values
33 For k = 0 to UBound(fixedSize)
34 fixedSize(k) = 50 - k
35 dynamic(k) = Chr(75 + k)
36 Next
37
38 ' Display contents of arrays
39 Call DisplayArray(fixedSize, "fixedSize")
40 Call DisplayArray(fixedArray, "fixedArray")
41 Call DisplayArray(dynamic, "dynamic")
42
43 ' Resize dynamic, preserve current values
44 ReDim Preserve dynamic(5)
45 dynamic(3) = 3.343
46 dynamic(4) = 77.37443
47
48 Call DisplayArray(dynamic, _
49 "dynamic after ReDim Preserve")
50 -->
51 </script>
52 </head><body></body>
53 </html>

Fig. 24.18Fig. 24.18Fig. 24.18Fig. 24.18 Using VBScript arrays (part 1 of 2).

iw3htp2_24.fm Page 804 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 805

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 16–25 define Sub procedure DisplayArray. VBScript procedures are
Public by default; therefore, they are accessible to scripts on other Web pages. Keyword
Public can be used explicitly to indicate that a procedure is public. A procedure can be
marked as Private to indicate that the procedure can be called only from the XHTML
document in which it is defined.

Procedure DisplayArray receives arguments x and s and declares local variable
j. Parameter x receives an array and parameter s receives a string. The For header (line
20) calls function UBound to get the upper bound of x. The Document object’s Write
method is used to print each element of x.

Line 27 declares a four element fixed-sized array named fixedSize (the value in
parentheses indicates the highest index in the array, and the array has a starting index of 0),
variants fixedArray and k, and dynamic array dynamic.

Statement ReDim (line 29) allocates memory for array dynamic (four elements, in
this example). All dynamic array memory must be allocated via ReDim. Dynamic arrays
are more flexible than fixed-sized arrays, because they can be resized anytime by using
ReDim, to accommodate new data.

Performance Tip 24.2
Dynamic arrays allow the programmer to manage memory more efficiently than do fixed-size
arrays. 24.2

Performance Tip 24.3
Resizing dynamic arrays consumes processor time and can slow a program’s execution
speed. 24.3

Common Programming Error 24.12
Attempting to use ReDim on a fixed-size array is an error. 24.12

Line 30 creates an array containing three elements and assigns it to fixedArray.
VBScript function Array takes any number of arguments and returns an array containing
those arguments. Lines 39–41 pass the three arrays and three strings to DisplayArray.
Line 44 reallocates dynamic’s memory to 5 elements. When keyword Preserve is used
with ReDim, VBScript maintains the current values in the array; otherwise, all values in
the array are lost when the ReDim operation occurs.

Fig. 24.18Fig. 24.18Fig. 24.18Fig. 24.18 Using VBScript arrays (part 2 of 2).

iw3htp2_24.fm Page 805 Saturday, July 21, 2001 9:34 AM

806 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

 Common Programming Error 24.13
Using ReDim without Preserve and assuming that the array still contains previous values
is a logic error. 24.13

 Testing and Debugging Tip 24.5
Failure to Preserve array data can result in unexpected loss of data at run time. Always
double check every array ReDim to determine whether Preserve is needed. 24.5

If ReDim Preserve creates a larger array, every element in the original array is pre-
served. If ReDim Preserve creates a smaller array, every element up to (and including)
the new upper bound is preserved (e.g., if there were 10 elements in the original array and
the new array contains five elements, the first five elements of the original array are pre-
served). Lines 45–46 assign values to the new elements. Procedure DisplayArray is
called to display array dynamic.

Arrays can have multiple dimensions. VBScript supports at least 60 array dimensions,
but most programmers will need to use only two- or three-dimensional arrays.
 Common Programming Error 24.14

Referencing a two-dimensional array element u(x, y) incorrectly as u(x)(y) is an er-
ror. 24.14

A multidimensional array is declared much like a one-dimensional array. For example,
consider the following declarations

Dim b(2, 2), tripleArray(100, 8, 15)

which declares b as a two-dimensional array and tripleArray as a three-dimensional
array. Functions UBound and LBound can also be used with multidimensional arrays.
When calling UBound or LBound, the dimension is passed as the second argument. Array
dimensions always begin at one. If a dimension is not provided, the default dimension 1 is
used. For example, the For header

For x = 0 To UBound(tripleArray, 3)

would increment x from the third dimension’s lower bound, 0, to the third dimension’s up-
per bound, 15.

Multidimensional arrays can also be created dynamically. Consider the declaration

Dim threeD()

which declares a dynamic array threeD. The number of dimensions is not set until the
first time ReDim is used. Once the number of dimensions is set, the number of dimensions
cannot be changed by ReDim (e.g., if the array is a two-dimensional array, it cannot be-
come a three-dimensional array). The statement

ReDim threeD(11, 8, 1)

allocates memory for threeD and sets the number of dimensions at 3.

Common Programming Error 24.15
Attempting to change the total number of array dimensions using ReDim is an error. 24.15

iw3htp2_24.fm Page 806 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 807

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Common Programming Error 24.16
Attempting to change the upper bound for any dimension except the last dimension in a dy-
namic-multidimensional array (when using ReDim Preserve) is an error. 24.16

Memory allocated for dynamic arrays can be deallocated (released) at run-time using
the keyword Erase. A dynamic array that has been deallocated must be redimensioned
with ReDim before it can be used again. Erase can also be used with fixed-sized arrays
to initialize all the array elements to the empty string. For example, the statement

Erase mDynamic

releases mDynamic’s memory.

Common Programming Error 24.17
Accessing a dynamic array that has been deallocated is an error. 24.17

24.7 String Manipulation
One of VBScript’s most powerful features is its string-manipulation functions, some of
which are summarized in Fig. 24.19. For a complete list consult the VBScript documenta-
tion. VBScript strings are case sensitive. The first character in a string has index 1 (as op-
posed to arrays which begin at index 0). [Note: Almost all VBScript string-manipulation
functions do not modify their string argument(s); rather, they return new strings containing
the results. Most VBScript string-manipulation functions take optional arguments.]

Function Description

Asc Returns the ASCII numeric value of a character. For example, Asc("x")
returns 120.

Chr Returns the character representation for an ASCII value. For example the call
Chr(120) returns “x.” The argument passed must be in the range 0 to 255
inclusive, otherwise an error occurs.

InStr Searches a string (i.e., the first argument) for a substring (i.e., the second argu-
ment). Searching is performed from left to right. If the substring is found, the
index of the found substring in the search string is returned. For example, the
call Instr("sparrow","arrow") returns 3 and the call
Instr("japan","wax") returns 0.

Len Returns the number of characters in a string. For example, the call
Len("hello") returns 5.

LCase Returns a lowercase string. For example, the call LCase("HELLO@97[")
returns “hello@97[.”

UCase Returns an uppercase string. For example, the call UCase("hello@97[")
returns “HELLO@97[.”

Fig. 24.19Fig. 24.19Fig. 24.19Fig. 24.19 Some string-manipulation functions (part 1 of 3).

iw3htp2_24.fm Page 807 Saturday, July 21, 2001 9:34 AM

808 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Left Returns a string containing characters from the left side of a string argument.
For example, the call Left("Web",2) returns “We.”

Mid Function Mid returns a string containing a range of characters from a string.
For example, the call Mid("abcd",2,3)returns “bcd.”

Right Returns a string containing characters from the right side of a string argument.
For example, the call Right("Web",2) returns “eb.”

Space Returns a string of spaces. For example, the call Space(4)returns a string
containing four spaces.

StrComp Compares two strings for equality. Returns 1 if the first string is greater than the
second string, returns -1 if the first string is less than the second string and
returns 0 if the strings are equivalent. The default is a binary comparison (i.e.,
case-sensitive). An optional third argument of vbTextCompare indicates a
case-insensitive comparison. For example the call StrComp("bcd",
"BCD") returns 1, the call StrComp("BCD", "bcd") returns -1, the call
StrComp("bcd", "bcd") returns 0 and the call
StrComp("bcd", "BCD", vbTextCompare) returns 0.

String Returns a string containing a repeated character. For example, the call
String(4,"u")returns “uuuu.”

Trim Returns a string that does not contain leading or trailing space characters. For
example the call Trim(" hi ") returns “hi.”

LTrim Returns a string that does not contain any leading space characters. For exam-
ple, the call LTrim(" yes") returns “yes.”

RTrim Returns a string that does not contain any trailing space characters. For exam-
ple, the call RTrim("no ") returns “no”.

Filter Returns an array of strings containing the result of the Filter operation. For
example, the call
Filter(Array("A","S","D","F","G","D"),"D") returns a two-
element array containing "D" and "D", and the call
Filter(Array("A","S","D","F","G","D"),"D",False) returns
an array containing "A" , "S", "F" and "G".

Join Returns a string containing the concatenation of array elements separated by a
delimiter. For example, the call Join(Array("one","two","three"))
returns “one two three.” The default delimiter is a space which can be
changed by passing a delimiter string for the second argument. For example, the
call Join(Array("one","two","three"),"$^") returns
“onetwo^three.”

Replace Returns a string containing the results of a Replace operation. Function
Replace requires three string arguments: the string where characters will be
replaced, the substring to search for and the replacement string. For example,
Replace("It's Sunday and the sun is out","sun","moon")
returns “It's Sunday and the moon is out.” Note the case-sensitive
replacement.

Function Description

Fig. 24.19Fig. 24.19Fig. 24.19Fig. 24.19 Some string-manipulation functions (part 2 of 3).

iw3htp2_24.fm Page 808 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 809

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

We now present a VBScript program (Fig. 24.20) that converts a line of text into its
pig Latin equivalent. Pig Latin is a form of coded language often used for amusement.
Many variations exist in the methods used to form pig Latin phrases. For simplicity, we use
the following algorithm:

To form a pig Latin phrase from an English language phrase, the translation proceeds one
word at a time. To translate an English word into a pig Latin word, place the first letter of
the English word (if it is not a vowel) at the end of the English word and add the letters
“ay.” If the first letter of the English word is a vowel place it at the end of the word and add
“y.” Thus, the word “jump” becomes “umpjay,” the word “the” becomes “hetay,”
and the word “ace” becomes “ceay.” Blanks between words remain as blanks. Make the
following assumptions: the English phrase consists of words separated by blanks, there are
no punctuation marks and all words have two or more letters.

Lines 16–42 define the Function procedure TranslateToPigLatin which
translates the string input by the user from English to pig Latin. Line 22 calls function
Split to extract each word in the sentence. By default, Split uses spaces as delimiters.
The condition in line 26 calls functions InStr, LCase and Left to determine whether
the first letter of a word is a vowel. Function Left is called to retrieve the first letter in
words(k)—which is then converted to lowercase using LCase. Function InStr is
called to search the string "aeiou" for the string returned by LCase. The starting index
in every string is 1, and this is where Instr begins searching.

Split Returns an array containing substrings. The default delimiter for Split is a
space character. For example, the call Split("I met a traveller")
returns an array containing elements "I", "met", "a" and "traveller"
and Split("red,white,and blue", ",") returns an array containing
elements "red", "white" and "and blue". The optional second argument
changes the delimiter.

StrReverse Returns a string in reverse order. For example, the call
StrReverse("deer") returns “reed.”

InStrRev Searches a string (i.e., the first argument) for a substring (i.e., the second argu-
ment). Searching is performed from right to left. If the substring is found, the
index of the found substring in the search string is returned. For example, the
call InstrRev("sparrow","arrow") returns 3, the call
InstrRev("japan","wax") returns 0 and the call
InstrRev("to be or not to be","to be") returns 14.

Function Description

Fig. 24.19Fig. 24.19Fig. 24.19Fig. 24.19 Some string-manipulation functions (part 3 of 3).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4

Fig. 24.20Fig. 24.20Fig. 24.20Fig. 24.20 Using VBScript string-processing functions (part 1 of 3).

iw3htp2_24.fm Page 809 Saturday, July 21, 2001 9:34 AM

810 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

5 <!--Fig. 24.20: piglatin.html -->
6 <!-- VBScript String Functions -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Using VBScript String Functions</title>
11
12 <script type = "text/vbscript">
13 <!--
14 Option Explicit
15
16 Public Function TranslateToPigLatin(englishPhrase)
17 Dim words ' Stores each individual word
18 Dim k, suffix
19
20 ' Get each word and store in words the
21 ' default delimiter for Split is a space
22 words = Split(englishPhrase)
23
24 For k = 0 To UBound(words)
25 ' Check if first letter is a vowel
26 If InStr(1, "aeiou", _
27 LCase(Left(words(k), 1))) Then
28 suffix = "y"
29 Else
30 suffix = "ay"
31 End If
32
33 ' Convert the word to pig Latin
34 words(k) = Right(words(k), _
35 Len(words(k)) - 1) & _
36 Left(words(k), 1) & suffix
37 Next
38
39 ' Return translated phrase, each word
40 ' is separated by spaces
41 TranslateToPigLatin = Join(words)
42 End Function
43
44 Sub cmdButton_OnClick()
45 Dim phrase
46
47 phrase = Document.Forms(0).txtInput.Value
48
49 Document.forms(0).txtPigLatin.Value = _
50 TranslateToPigLatin(phrase)
51 End Sub
52 -->
53 </script>
54 </head>
55
56 <body>
57 <form action = ""> Enter a sentence

Fig. 24.20Fig. 24.20Fig. 24.20Fig. 24.20 Using VBScript string-processing functions (part 2 of 3).

iw3htp2_24.fm Page 810 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 811

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 34–36 translate an individual word to pig Latin. Function Len is called to get
the number of characters in words(k). One is subtracted from the value returned by
Len, to ensure that the first letter in words(k) is not included in the string returned by
Right. Function Left is called to get the first letter of words(k), which is then con-
catenated to the string returned by Right. Finally the contents of suffix (either "ay"
or "y") and a space are concatenated.

Lines 44–51 define an event procedure for cmdButton’s OnClick event. Line 50
calls function TranslateToPigLatin, passing the string input by the user. The pig
Latin sentence returned by TranslateToPigLatin is displayed in a text box (line 49).

24.8 Classes and Objects
In this section, we introduce the concepts (i.e., “object think”) and the terminology (i.e., “ob-
ject speak”) of object-oriented programming in VBScript. Objects encapsulate (i.e., wrap to-
gether) data (attributes) and methods (behaviors); the data and methods of an object are
intimately related. Objects have the property of information hiding. This phrase means that,
although objects may communicate with one another, objects do not know how other objects
are implemented—implementation details are hidden within the objects themselves. Surely it
is possible to drive a car effectively without knowing the details of how engines and transmis-
sions work. Information hiding is crucial to good software engineering.

In VBScript, the unit of object-oriented programming is the Class from which
objects are instantiated (i.e., created). Methods are VBScript procedures that are encapsu-
lated with the data they process within the “walls” of classes.

58 <input type = "text" name = "txtInput" size = "50" />
59 <p>Pig Latin
60 <input type = "text" name = "txtPigLatin" size = "70" />
61 </p><p>
62 <input type = "button" name = "cmdButton"
63 value = "Translate" /></p>
64 </form>
65 </body>
66 </html>

Fig. 24.20Fig. 24.20Fig. 24.20Fig. 24.20 Using VBScript string-processing functions (part 3 of 3).

iw3htp2_24.fm Page 811 Saturday, July 21, 2001 9:34 AM

812 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

VBScript programmers can create their own user-defined types called classes. Classes
are also referred to as programmer-defined types. Each class contains data as well as the set
of methods which manipulate that data. The data components of a class are called instance
variables. Just as an instance of a variant is called a variable, an instance of a class is called
an object. The focus of attention in object-oriented programming with VBScript is on
classes rather than methods.

The nouns in a system-requirements document help the VBScript programmer deter-
mine an initial set of classes with which to begin the design process. These classes are then
used to instantiate objects that will work together to implement the system. The verbs in a
system-requirements document help the VBScript programmer determine what methods to
associate with each class.

This section explains how to create and use objects, a subject we call object-based pro-
gramming (OBP).VBScript programmers craft new classes and reuse existing classes. Soft-
ware is then constructed by combining new classes with existing, well-defined, carefully
tested, well-documented, widely available components. This kind of software reusability
speeds the development of powerful, high-quality software. Rapid applications develop-
ment (RAD) is of great interest today.

Early versions of VBScript did not allow programmers to create their own classes, but
VBScript programmers can now indeed develop their own classes, a powerful capability
also offered by such object-oriented languages as C++ and Java.

Packaging software as classes out of which we make objects makes more significant
portions of major software systems reusable. On the Windows platform, these classes have
been packaged into class libraries, such as Microsoft’s MFC (Microsoft Foundation
Classes) that provide C++ programmers with reusable components for handling common
programming tasks, such as the creating and manipulating of graphical user interfaces.

Objects are endowed with the capabilities to do everything they need to do. For
example, employee objects are endowed with a behavior to pay themselves. Video game
objects are endowed with the ability to draw themselves on the screen. This is like a car
being endowed with the ability to “go faster” (if someone presses the accelerator pedal),
“go slower” (if someone presses the brake pedal) and “turn left” or “turn right” (if someone
turns the steering wheel in the appropriate direction). The blueprint for a car is like a class.
Each car is like an instance of a class. Each car comes equipped with all the behaviors it
needs, such as “go faster,” “go slower” and so on, just as every instance of a class comes
equipped with each of the behaviors instances of that class exhibit. We will discuss how to
create classes and how to add properties and methods to those classes.

Software Engineering Observation 24.2
It is important to write programs that are understandable and easy to maintain. Change is
the rule rather than the exception. Programmers should anticipate that their code will be
modified. As we will see, using classes improves program modifiability. 24.2

Classes normally hide their implementation details from the clients (i.e., users) of the
classes. This is called information hiding. As an example of information hiding, let us con-
sider a data structure called a stack.

Think of a stack in terms of a pile of dishes. When a dish is placed on the pile, it is
always placed at the top (referred to as pushing the dish onto the stack). When a dish is
removed from the pile, it is always removed from the top (referred to as popping the dish

iw3htp2_24.fm Page 812 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 813

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

off the stack). Stacks are known as last-in, first-out (LIFO) data structures—the last item
pushed (inserted) on the stack is the first item popped (removed) from the stack. So if we
push 1, then 2, then 3 onto a stack, the next three pop operations will return 3, then 2, then 1.

The programmer may create a stack class and hide from its clients the implementation
of the stack. Stacks can be implemented with arrays and other techniques such as linked
lists. A client of a stack class need not know how the stack is implemented. The client
simply requires that when data items are placed in the stack with push operations, they will
be recalled with pop operations in last-in, first-out order. Describing an object in terms of
behaviors without concern for how those behaviors are actually implemented is called data
abstraction, and VBScript classes define abstract data types (ADTs). Although users may
happen to know how a class is implemented, users should not write code that depends on
these details. This allows a class to be replaced with another version without affecting the
rest of the system, as long as the Public interface of that class does not change (i.e. every
method still has the same name, return type and parameter list in the new class definition).

Most programming languages emphasize actions. In these languages, data exists in
support of the actions programs need to take. Data is “less interesting” than actions,
anyway. Data is “crude.” There are only a few built-in data types, and it is difficult for pro-
grammers to create their own new data types. VBScript elevates the importance of data. A
primary activity in VBScript is creating new data types (i.e., classes) and expressing the
interactions among objects of those classes.

An ADT actually captures two notions, a data representation of the ADT and the oper-
ations allowed on the data of the ADT. For example, subtype integer defines addition, sub-
traction, multiplication, division and other operations in VBScript, but division by zero is
undefined. The allowed operations and the data representation of negative integers are
clear, but the operation of taking the square root of a negative integer is undefined.

Software Engineering Observation 24.3
The programmer creates new types through the class mechanism. These new types may be
designed to be used as conveniently as built-in types. Thus, VBScript is an extensible lan-
guage. Although it is easy to extend the language with these new types, the base language
itself cannot be modified. 24.3

Access to Private data should be carefully controlled by the class’s methods. For
example, to allow clients to read the value of Private data, the class can provide a get
method (also called an accessor method or a query method).

To enable clients to modify Private data, the class can provide a set method (also
called a mutator method). Such modification would seem to violate the notion of Private
data. But a set method can provide data validation capabilities (such as range checking) to
ensure that the data is set properly and to reject attempts to set data to invalid values. A set
method can also translate between the form of the data used in the interface and the form
used in the implementation. A get method need not expose the data in “raw” format; rather,
the get method can edit the data and limit the view of the data the client will see.

Software Engineering Observation 24.4
The class designer need not provide set or get methods for each Private data member;
these capabilities should be provided only when it makes sense and after careful thought. 24.4

Classes often provide Public methods to allow clients of the class to set (i.e., assign
values to) or get (i.e., obtain the values of) Private instance variables. These methods

iw3htp2_24.fm Page 813 Saturday, July 21, 2001 9:34 AM

814 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

are special methods in VBScript called Property Let, Property Set and Prop-
erty Get (collectively these methods and the internal class data they manipulate are
called properties). More specifically, a method that sets variable mInterestRate would
be named Property Let InterestRate and a method that gets the InterestRate
would be called Property Get InterestRate.

Testing and Debugging Tip 24.6
Making the instance variables of a class Private and the methods Public facilitates de-
bugging because problems with data manipulations are localized to the class’s methods. 24.6

Procedures Property Let and Property Set differ in that Property Let is
used for non-object subtypes (e.g., integer, string, byte, etc.) and Property Set is used
for object subtypes.

Testing and Debugging Tip 24.7
Property procedures should scrutinize every attempt to set the object’s data and should
reject invalid data to ensure that the object’s data remains in a consistent state. This elimi-
nates large numbers of bugs that have plagued systems development efforts. 24.7

Software Engineering Observation 24.5
Property Get procedures can control the appearance of data, possibly hiding implemen-
tation details. 24.5

A Property Let Hour that stores the hour in universal time as 0 to 23 is shown in
Fig. 24.21. Notice the change in the declaration of variable mHour—we are using keyword
Private rather than Dim. In this case, Private restricts the scope of mHour to its class.
If Dim or Public is used, the variable is accessible outside the class. Method definitions
that are not preceded by Public or Private default to Public. Variables declared
with Dim default to Public.

Good Programming Practice 24.2
Qualify all class members with either Public or Private to clearly show their access. 24.2

Suppose Property Let Hour is a member of class CTime1 (we discuss how to
create classes momentarily). An object of class CTime1 is created with the following code

Dim wakeUp
Set wakeUp = New CTime1

1 Private mHour
2
3 Public Property Let Hour(hr)
4 If hr >= 0 And hr < 24 Then
5 mHour = hr
6 Else
7 mHour = 0
8 End If
9 End Property

Fig. 24.21Fig. 24.21Fig. 24.21Fig. 24.21 Simple Property Let procedure.

iw3htp2_24.fm Page 814 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 815

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

When creating an object, VBScript keyword New is used and followed by the class name.
When assigning the object to a variable, keyword Set must be used. When a variable (e.g.,
wakeUp) refers to an object, the variable is called a reference.

Common Programming Error 24.18
Attempting to call a method or access a property for a reference that does not refer to an ob-
ject is an error. 24.18

Common Programming Error 24.19
Attempting to assign a reference a value without using Set is an error. 24.19

If we perform the assignments wakeup.Hour = -6 or wakeup.Hour = 27, the
Property Let procedure would reject these as invalid values and set theHour to 0. The
Property Get Hour procedure is shown in Fig. 24.22.

Using CTime1 class object wakeUp, we can store the value of Hour into variable
alarmClockHourValue, as follows:

alarmClockHourValue = wakeup.Hour

which call Property Get Hour to get the value of theHour. The Class definition for
CTime1 is shown in Fig. 24.23. Keywords Class and End Class encapsulate the class
members.

Software Engineering Observation 24.6
To implement a read-only property, simply provide a Property Get procedure but no
Property Let (or Property Set) procedure. 24.6

1 Public Property Get Hour()
2 Hour = mHour
3 End Property

Fig. 24.22Fig. 24.22Fig. 24.22Fig. 24.22 Simple Property Get procedure.

1 Class CTime1
2 Private mHour
3
4 Public Property Let Hour(hr)
5 If hr >= 0 And hr < 24 Then
6 mHour = hr
7 Else
8 mHour = 0
9 End If

10 End Property
11
12 Public Property Get Hour()
13 Hour = mHour
14 End Property
15 End Class

Fig. 24.23Fig. 24.23Fig. 24.23Fig. 24.23 Simple Class definition.

iw3htp2_24.fm Page 815 Saturday, July 21, 2001 9:34 AM

816 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Suppose we have a CEmployee class that references a CDate object named
mBirthDate. We cannot use a Property Let to assign a value to an object. Instead,
we must use a Property Set, as in each of the following Property procedures:

Public Property Set BirthDay(bDay)
 Set mBirthDate = bDay
End Property

Public Property Get BirthDay()
 Set BirthDay = mBirthDate
End Property

Any Property Get, Property Let or Property Set method may contain the
Exit Property statement that causes an immediate exit from a Property procedure.

Accessor methods can read or display data. Another common use for access methods
is to test the truth or falsity of conditions—such methods are often called predicate
methods. An example of a predicate method would be an IsEmpty method for any con-
tainer class—a class capable of holding multiple objects—such as a linked list or a stack.
A program might test IsEmpty before attempting to remove another item from a container
object. A program might test IsFull before attempting to insert another item into a con-
tainer object.

It would seem that providing set and get capabilities is essentially the same as making
the instance variables Public. This is another subtlety of VBScript that makes the lan-
guage desirable for software engineering. If an instance variable is Public, it may be read
or written at will by any method in the program. If an instance variable is Private, a
Public get method certainly seems to allow other methods to read the data at will but the
get method controls the formatting and display of the data. A Public set method can—
and most likely will—carefully scrutinize attempts to modify the instance variable’s value.
This ensures that the new value is appropriate for that data item. For example, an attempt
to set the day of the month to 37 would be rejected, an attempt to set a person’s weight to
a negative value would be rejected, and so on.

Software Engineering Observation 24.7
The benefits of data integrity are not automatic simply because instance variables are made
Private. Methods that set the values of Private data should verify that the intended new
values are proper; if they are not, the set methods should place the Private instance vari-
ables into an appropriate consistent state. 24.7

Software Engineering Observation 24.8
Every method that modifies the Private instance variables of an object should ensure that
the data remains in a consistent state. 24.8

Figure 24.24 demonstrates using a VBScript Class. The Web page allows the user to
enter a first name, age and social security number which are displayed in a message dialog.
This example briefly introduces a VBScript feature for complex pattern matching called
regular expressions. We use regular expressions to validate the format of the social security
number. Client-side scripts often validate information before sending it to the server. In this
example, we briefly introduce regular expressions in the context of client-side validation.
In Chapter 27, Perl, you will learn more about regular expressions.

iw3htp2_24.fm Page 816 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 817

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 16–69 define Class Person, which encapsulates Private data members,
Public Property procedures and a Private method. Data members store the
person’s first name in name, the person’s age in yearsOld and the person’s social secu-
rity number in ssn. Both Property Let and Property Get procedures are provided
for the data members.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!--Fig. 24.24: classes.html -->
6 <!-- VBScript Class -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Using a VBScript Class</title>
11
12 <script type = "text/vbscript">
13 <!--
14 Option Explicit
15
16 Class Person
17 Private name, yearsOld, ssn
18
19 Public Property Let FirstName(fn)
20 name = fn
21 End Property
22
23 Public Property Get FirstName()
24 FirstName = name
25 End Property
26
27 Public Property Let Age(a)
28 yearsOld = a
29 End Property
30
31 Public Property Get Age()
32 Age = yearsOld
33 End Property
34
35 Public Property Let SocialSecurityNumber(n)
36
37 If Validate(n) Then
38 ssn = n
39 Else
40 ssn = "000-00-0000"
41 Call MsgBox("Invalid Social Security Format")
42 End If
43
44 End Property
45

Fig. 24.24Fig. 24.24Fig. 24.24Fig. 24.24 Using VBScript classes and regular expressions (part 1 of 3).

iw3htp2_24.fm Page 817 Saturday, July 21, 2001 9:34 AM

818 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

46 Public Property Get SocialSecurityNumber()
47 SocialSecurityNumber = ssn
48 End Property
49
50 Private Function Validate(expression)
51 Dim regularExpression
52 Set regularExpression = New RegExp
53
54 regularExpression.Pattern = "^\d{3}-\d{2}-\d{4}$"
55
56 If regularExpression.Test(expression) Then
57 Validate = True
58 Else
59 Validate = False
60 End If
61
62 End Function
63
64 Public Function ToString()
65 ToString = name & Space(3) & age & Space(3) _
66 & ssn
67 End Function
68
69 End Class ' Person
70
71 Sub cmdButton_OnClick()
72 Dim p ' Declare object reference
73 Set p = New Person ' Instantiate Person object
74
75 With p
76 .FirstName = Document.Forms(0).txtBox1.Value
77 .Age = CInt(Document.Forms(0).txtBox2.Value)
78 .SocialSecurityNumber =_
79 Document.Forms(0).txtBox3.Value
80 Call MsgBox(.ToString())
81 End With
82
83 End Sub
84 -->
85 </script>
86 </head>
87
88 <body>
89 <form action = "">Enter first name
90 <input type = "text" name = "txtBox1" size = "10" />
91 <p>Enter age
92 <input type = "text" name = "txtBox2" size = "5" /></p>
93 <p>Enter social security number
94 <input type = "text" name = "txtBox3" size = "10" />
95 </p><p>
96 <input type = "button" name = "cmdButton"
97 value = "Enter" /></p>
98 </form>

Fig. 24.24Fig. 24.24Fig. 24.24Fig. 24.24 Using VBScript classes and regular expressions (part 2 of 3).

iw3htp2_24.fm Page 818 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 819

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Procedure Property Let SocialSecurityNumber (lines 35–44) is the most
interesting Property procedure because it calls Private method Validate to verify
the correct format for the social security number that was input. If Validate returns
True, the social security number input is assigned to ssn; if Validate returns False,
ssn is assigned the string "000-00-0000" and a message dialog is displayed.

Method Validate (line 50–62) checks the format of the social security number by
using a so-called regular expression—a concept we explain in the next paragraph. Methods
designated as Private are often called utility or helper methods. These methods are con-
sidered to be part of a class’s implementation detail and therefore clients do not have access
to them.

99 </body>
100 </html>

Fig. 24.24Fig. 24.24Fig. 24.24Fig. 24.24 Using VBScript classes and regular expressions (part 3 of 3).

iw3htp2_24.fm Page 819 Saturday, July 21, 2001 9:34 AM

820 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The statement in line 52 instantiates a regular expression object (i.e., an object of
VBScript class RegExp) and assigns it to reference regularExpression. Line 54 sets
the Pattern property to the pattern we wish to match—in this case a social security
number which consists of three digits, a hyphen (i.e., -), two digits, a hyphen and four
digits. This expression reads as follows: the beginning of the string should begin with
exactly three digits followed by a hyphen, then two digits followed by a hyphen and end
with exactly four digits. The caret, ^ indicates the beginning of the string and the \d indi-
cates that any digit (i.e., 0–9) is a match. The {3}, {2} and {4} expressions indicate that
exactly three occurrences of any digit, exactly two occurrences of any digit and exactly four
occurrences of any digit, respectively, are a match. The dollar sign, $ indicates the end of
the string. The hyphens are treated as literal characters (i.e., a hyphen is not a special char-
acter used in a regular expression for pattern matching—so a hyphen literally is treated as
a hyphen).

The If’s condition (line 56) calls function Test to determine whether the regular
expression’s pattern is a match for the string passed into Test. A successful match returns
True and an unsuccessful match returns False. For more details on VBScript regular
expressions, visit

msdn.microsoft.com/workshop/languages/clinic/
scripting051099.asp

Function ToString (line 64) returns a string containing the name, age and ssn.
Function Space (line 65) is called to provide three spaces between words. Keywords End
Class (line 69) designate the end of the class definition.

Lines 71–83 provide an event procedure for cmdButton’s OnClick event. Line 72
declares p as a variant—which can store object subtypes. The statement in line 73 instan-
tiates a Person object and assigns it to p. As mentioned earlier, VBScript requires the use
of the Set keyword when assigning an object to a variable. To be more precise, we call p
a reference, because it is used with an object. At any moment in time, a reference can refer
to an object or Nothing (i.e., a special value that indicates the absence of an object).

Lines 75–81 use the With/End With statement to set several property values for p
and to call p’s ToString method. The With/End With statement is provided for the
convenience of the programmer, to minimize the number of times an object’s name is
written (when setting multiple properties or calling multiple methods). Note that lines 76–
79 actually call the appropriate Property Let procedures—these lines are not directly
accessing p’s data. Line 80 calls p’s ToString method to get the string that the message
dialog will display. Although the syntax may appear a bit strange, it is indeed correct.

24.9 Operator Precedence Chart
This section contains the operator precedence chart for VBScript (Fig. 24.25). Operators
are shown in decreasing order of precedence from top to bottom.

24.10 Internet and World Wide Web Resources
Although the VBScript language contains far more features than can be presented in one
chapter, there are many Web resources available that are related to VBScript. Visit the fol-
lowing sites for additional information.

iw3htp2_24.fm Page 820 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 821

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

msdn.microsoft.com/scripting/VBScript/doc/vbstutor.htm
The VBScript tutorial contains a short tutorial on VBScript.

msdn.microsoft.com/scripting/VBScript/doc/vbstoc.htm
The VBScript language reference contains links for constants, keywords, functions, etc.

msdn.microsoft.com/vbasic/technical/Documentation.asp
Visual Basic 6 documentation. Use the Visual Basic 6 documentation to get additional information on
functions, constants etc. VBScript is a subset of Visual Basic.

msdn.microsoft.com/workshop/languages/clinic/scripting051099.asp
This is an article that discusses regular expressions in VBScript. One substantial example is provided
at the end of the article.

SUMMARY
• Visual Basic Script (VBScript) is case-insensitive subset of Microsoft Visual Basic® used in

World Wide Web XHTML documents to enhance the functionality of a Web page displayed in a
Web browser (such as Microsoft’s Internet Explorer) that contains a VBScript scripting engine
(i.e., interpreter) and used on servers to enhance the functionality of server-side applications.

OperatorOperatorOperatorOperator TypeTypeTypeType AssociativityAssociativityAssociativityAssociativity

() parentheses left to right

- unary minus left to right

^ exponentiation left to right

*
/
\

multiplication
division
integer division

left to right

Mod modulus left to right

+
-

addition
subtraction

left to right

& string concatenation left to right

=
<>
<
<=
>
>=
Is

equality
inequality
less than
less than or equal
greater than
greater than or equal
object equivalence

left to right

Not logical NOT left to right

And logical AND left to right

Or logical OR left to right

Xor logical exclusive OR left to right

Eqv logical equivalence left to right

Imp logical implication left to right

Fig. 24.25Fig. 24.25Fig. 24.25Fig. 24.25 VBScript operator precedence chart.

iw3htp2_24.fm Page 821 Saturday, July 21, 2001 9:34 AM

822 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• VBScript’s arithmetic operators are similar to JavaScript arithmetic operators. Two major differ-
ences are the division operator, \, which returns an integer result, and the exponentiation operator,
^, which raises a value to a power. VBScript operator precedence differs from that of JavaScript.

• VBScript’s symbols for the equality operator and inequality operators are different from Java-
Script’s symbols. VBScript comparison operators may also be used to compare strings.

• VBScript provides the following logical operators: And (logical AND), Or (logical OR), Not
(logical negation), Imp (logical implication), Xor (exclusive OR) and Eqv (logical equivalence).

• Despite the mixture of case in keywords, functions, etc., VBScript is not case-sensitive—upper-
case and lowercase letters are treated the same.

• VBScript provides the plus sign, +, the and ampersand, &, operators for string concatenation. The
ampersand is more formally called the string concatenation operator. If both operands of the con-
catenation operator are strings, these two operators can be used interchangeably. However, if the
+ operator is used in an expression consisting of varying data types, there can be a problem.

• VBScript code is commented either by using a single quote (') or by keyword Rem. As with Java-
Script’s two forward slashes, //, VBScript comments are single-line comments.

• Like JavaScript, VBScript has only one data type—variant—and it is capable of storing different
types of data (e.g., strings, integers, floating-point numbers, etc.). A variant is interpreted by VB-
Script in a manner that is suitable to the type of data it contains.

• Variable names cannot be keywords and must begin with a letter. The maximum length of a vari-
able name is 255 characters containing only letters, numbers and underscores.Variables can be de-
clared simply by using their name in the VBScript code. Statement Option Explicit forces
all variables to be declared before they are used.

• VBScript provides nine control structures for controlling program execution. Many of the control
structures provide the same capabilities as their JavaScript counterparts. Syntactically, every VB-
Script control structure ends with one or more keywords (e.g., End If, Loop, etc.). Keywords
delimit a control structure’s body—not curly braces (i.e., {}).

• The If/Then/End If and If/Then/Else/End If control structures behave identically to their
JavaScript counterparts. VBScript’s multiple selection version of If/Then/Else/End If uses a
different syntax from JavaScript’s version because it includes keyword ElseIf.

• VBScript does not use a statement terminator (e.g., a semicolon, ;). Unlike JavaScript, placing pa-
rentheses around conditions in VBScript is optional. A condition evaluates to True if the variant
subtype is boolean True or if the variant subtype is considered non-zero. A condition evaluates
to False if the variant subtype is boolean False or if the variant subtype is considered to be 0.

• VBScript’s Select Case/End Select structure provides the same functionality as Java-
Script’s switch structure and more. The Select Case/End Select structure does not re-
quire the use of a statement such as break. One Case cannot accidently run into another. The
VBScript Select Case/End Select structure is equivalent to VBScript’s If/Then/Else/
End If multiple selection structure. The only difference is syntax. Any variant subtype can be
used with the Select Case/End Select structure.

• VBScript’s While/Wend repetition structure and Do While/Loop behave identically to Java-
Script’s while repetition structure. VBScript’s Do/Loop While structure behaves identically to
JavaScript’s do/while repetition structure. VBScript contains two additional repetition struc-
tures, Do Until/Loop and Do/Loop Until, that do not have direct JavaScript equivalents.
These Do Until repetition structures iterate until the condition becomes True.

• The Exit Do statement, when executed in a Do While/Loop, Do/Loop While, Do Until/
Loop or Do/Loop Until, causes immediate exit from that structure and execution continues
with the next statement in sequence. The fact that a Do While/Loop may contain Exit Do is the

iw3htp2_24.fm Page 822 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 823

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

only difference, other than syntax, between Do While/Loop and While/Wend. Statement Exit
For causes immediate exit from the For/Next structure.

• Function IsEmpty determines whether the variant has ever been initialized by the programmer.
If IsEmpty returns True, the variant has not been initialized by the programmer.

• VBScript math functions allow the programmer to perform common mathematical calculations.
Trigonometric functions such as Cos, Sin, etc. take arguments that are expressed in radians. To
convert from degrees to radians use the formula: radians = degrees × π / 180.

• Function InputBox displays a dialog in which the user can input data.

• VBScript coordinates are measured in units of twips (1440 twips equal 1 Inch). Coordinates are
relative to the upper-left corner of the screen, which is position (0, 0). X coordinates increase from
left to right and y coordinates increase from top to bottom.

• Many VBScript functions often take optional arguments.

• The underscore character, _ is VBScript’s line continuation character. A statement cannot extend
beyond the current line without using this character. A statement may use as many line continua-
tion characters as necessary.

• Function MsgBox displays a message dialog.

• In VBScript, function calls that wrap arguments in parentheses must be preceded with keyword
Call—unless the function call is assigning a value to a variable.

• VBScript provides functions for getting information about the scripting engine (i.e., the interpret-
er). These functions are ScriptEngine—which returns either "JScript", "VBScript" or
"VBA", ScriptEngineBuildVersion—which returns the current build version,
ScriptEngineMajorVersion—which returns the major version number for the script en-
gine and ScriptEngineMinorVersion—which returns the minor release number.

• XHTML comment tags comment out the VBScript code. If the browser understands VBScript,
these tags are ignored and the VBScript is interpreted. If the browser does not understand VB-
Script, the XHTML comment prevents the VBScript code from being displayed as text.

• Procedures that do not return a value begin with keyword Sub and end with keywords End Sub.

• Variables declared within a VBScript procedure are visible only within the procedure body. Pro-
cedures that perform event handling are more properly called event procedures.

• VBScript provides functions CBool, CByte, CCur, CDate, CDbl, CInt, CLng, CSng and
CStr for converting between variant subtypes.

• Programmer-defined constants are created by using keyword Const.

• Because the head section of an XHTML document is decoded first by the browser, VBScript
code is normally placed there, so it can be decoded before it is invoked in the document.

• VBScript procedures that return a value are delimited with keywords Function and End
Function. A value is returned from a Function procedure by assigning a value to the proce-
dure name. As in JavaScript, a Function procedure can return only one value at a time.

• VBScript provides statements Exit Sub and Exit Function for exiting Sub procedures and
Function procedures, respectively. Control is returned to the caller, and the next statement in
sequence after the call is executed.

• A fixed-size array’s size does not change during program execution; a dynamic array’s size can
change during execution. A dynamic array is also called a redimmable array. Array elements may
be referred to by giving the array name followed by the element position number in parentheses,
(). The first array element is at index zero.

iw3htp2_24.fm Page 823 Saturday, July 21, 2001 9:34 AM

824 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• Function UBound returns the upper bound (i.e., the highest-numbered index) and function
LBound returns the lowest-numbered index (i.e., 0).

• Keyword Public explicitly indicates that a procedure is public. A procedure may also be marked
as Private, to indicate that only scripts on the same Web page may call the procedure.

• Statement ReDim allocates memory for a dynamic array. All dynamic arrays must receive mem-
ory via ReDim. Dynamic arrays are more flexible than fixed-sized arrays, because they can be re-
sized anytime using ReDim to accommodate new data.

• Function Array takes any number of arguments and returns an array containing those arguments.

• Keyword Preserve may be used with ReDim to maintain the current values in the array. When
ReDim is executed without Preserve, all values contained in the array are lost.

• Arrays can have multiple dimensions. VBScript supports at least 60 array dimensions, but most
programmers will need to use no more than two- or three-dimensional arrays. Multidimensional
arrays can also be created dynamically.

• Memory allocated for dynamic arrays can be deallocated (released) at run-time using keyword
Erase. A dynamic array that has been deallocated must be redimensioned with ReDim before it
can be used again. Erase can also be used with fixed-sized arrays to initialize all the array ele-
ments to the empty string.

• VBScript strings are case sensitive and begin with an index of 1.

• Objects encapsulate data (attributes) and methods (behaviors); the data and methods of an object
are intimately tied together. Objects have the property of information hiding. This means that al-
though objects may communicate with one another, objects do not know how other objects are im-
plemented—implementation details are hidden within the objects themselves.

• In VBScript, the unit of object-oriented programming is the Class from which objects are instan-
tiated (i.e., created). Methods are VBScript procedures that are encapsulated with the data they
process within the “walls” of classes.

• VBScript programmers can create their own user-defined types called classes. Classes are also re-
ferred to as programmer-defined types. Each class contains data as well as the set of methods
which manipulate that data. The data components of a class are called instance variables. Just as
an instance of a variant is called a variable, an instance of a class is called an object.

• Classes normally hide their implementation details from the clients (i.e., users) of the classes. This
is called information hiding.

• Describing an object in terms of behaviors without concern for how those behaviors are actually
implemented is called data abstraction, and VBScript classes define abstract data types (ADTs).
Although users may happen to know how a class is implemented, users must not write code that
depends on these details. This means that a class can be replaced with another version without af-
fecting the rest of the system, as long as the Public interface of that class does not change (i.e.
every method still has the same name, return type and parameter list in the new class definition).

• Access to Private data should be carefully controlled by the class’s methods. For example, to
allow clients to read the value of Private data, the class can provide a get method (also called
an accessor method or a query method).

• To enable clients to modify Private data, the class can provide a set method (also called a mu-
tator method). A set method can also translate between the form of the data used in the interface
and the form used in the implementation. A get method need not expose the data in “raw” format;
rather, the get method can edit the data and limit the view of the data the client will see.

• Classes often provide Public methods to allow clients of the class to set (i.e., assign values to)
or get (i.e., obtain the values of) Private instance variables. These methods are special methods

iw3htp2_24.fm Page 824 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 825

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

in VBScript called Property Let, Property Set and Property Get (collectively these
methods and the internal class data they manipulate are called properties). Procedures Property
Let and Property Set differ in that Property Let is used for non-object subtypes (e.g., in-
teger, string, byte, etc.) and Property Set is used for object subtypes.

• Method definitions that are not preceded by Public or Private default to Public. Variables
declared with Dim default to Public. Methods designated as Private are often called utility
or helper methods. These methods are considered to be part of a class’s implementation detail, and
therefore clients do not have access to them.

• When creating an object, VBScript keyword New is used followed by the class name. When as-
signing the object to a variable, keyword Set must be used. When a variable (e.g., wakeUp) re-
fers to an object, the variable is called a reference.

• Any Property Get, Property Let or Property Set method may contain the Exit
Property statement that causes an immediate exit from a Property procedure.

• Class RegExp may be used to create a regular expression object. A RegExp object’s Pattern
property stores a regular expression. Function Test determines whether a regular expression’s
Pattern is a match for the string argument passed into it.

TERMINOLOGY
$ CStr function
\d currency subtype
^ date/time subtype
Abs function Dim keyword
abstract data type (ADT) Do Loop/Until control structure
accessor method Do Loop/While control structure
Active Server Pages (ASP) Do Until/Loop control structure
addition operator, + Do While/Loop control structure
And logical operator double subtype
Array function dynamic array
Asc function ElseIf keyword
Atn function empty subtype
attribute encapsulation
behavior End Class
boolean subtype End Function
build version End If
byte subtype End Property
CBool function End Select
CByte function End Sub
CCur function End With
CDate function equality operator, =
CDbl function Eqv logical operator
Chr function Erase statement
CInt function event procedure
Class keyword Exit Do statement
client Exit For statement
CLng function Exit Property statement
comment character, ' Exp function
comparison operator exponentiation operator, ^
Const keyword False keyword
Cos function Filter function

iw3htp2_24.fm Page 825 Saturday, July 21, 2001 9:34 AM

826 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Fix function Next keyword
floating-point division operator, / Not logical operator
For/Next control structure noun
FormatCurrency function Now function
FormateDateTime function object
FormatNumber function object subtype
FormatPercent function object-based programming (OBP)
get method Option Explicit
greater-than operator, > optional argument
greater-than or equal-to operator, >= Or logical operator
If/Then/End If control structure parentheses, ()
Imp logical operator Pattern property
inequality operator, <> predicate method
input dialog Preserve keyword
InputBox function Private keyword
instantiating an object procedure
InStr function programmer-defined type
InStrRev function Property Get method
Int function Property keyword
integer division operator, \ Property Let method
integer subtype Property Set method
Intranet Public keyword
IsArray function query method
IsDate function Randomize function
IsEmpty function rapid application development (RAD)
IsNumeric function read-only property
IsObject function ReDim statement
Join function redimmable array
LBound function RegExp class
LCase function regular expressions
Left function Rem keyword
Len function Replace function
less-than operator, < Right function
less-than or equal-to operator, <= Rnd function
lexicographical comparison Round function
line-continuation character, _ RTrim function
Log function ScriptEngine function
long subtype ScriptEngineBuildVersion function
Loop keyword ScriptEngineMajorVersion function
lower bound ScriptEngineMinorVersion function
LTrim function Set keyword
MFC (Microsoft Foundation Classes) set method
Mid function Sgn function
modulus operator, Mod Sin function
MsgBox function single subtype
multidimensional array software reusability
multiplication operator, * Space function
mutator method Split function
negation operator, - Sqr function
New keyword Step keyword

iw3htp2_24.fm Page 826 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 827

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

SELF-REVIEW EXERCISES
24.1 State whether the following are true or false. If the answer is false, explain why.

a) VBScript is case-sensitive.
b) Option Explicit forces all VBScript variables to be declared.
c) The single quote character indicates a VBScript comment.
d) The exponentiation operator’s symbol is the caret, ^.
e) The starting index for an array may be set to either 0 or 1.
f) Array dimensions begin at 0.

24.2 Fill in the blanks in each of the following:
a) Keyword is required when assigning an object to a reference.
b) Keyword is required when instantiating an object.
c) VBScript variables are of type .
d) Function returns a string containing characters from the left side of a string.
e) Class defines a regular expression.
f) Function returns an uppercase string.

24.3 Briefly explain the difference between a Function procedure and a Sub procedure.

24.4 Fill in the blanks in each of the following statements:
a) Keyword is used to create a constant.
b) By default, script variables declared with Dim are .
c) Statement ReDim is used to allocate memory for a array.
d) Property returns a property’s value.
e) is the logical AND operator.
f) Function returns the highest numbered array index.

ANSWERS TO SELF-REVIEW EXERCISES
24.1 a) False. VBScript is case-insensitive. b) True. c) True. d) True. e) False. An array’s start-
ing index is always 0. f) False. Array dimensions begin at 1.

24.2 a) Set. b) New. c) variant. d) Left. e) RegExp. f) UCase.

24.3 A Function procedure returns a value and a Sub procedure does not return a value.

24.4 a) Const. b) Public. c) dynamic. d) Get. e) And. f) UBound.

StrComp function upper bound
string concatenation operator, & user-defined type
String function variant data type
string subtype variant subtype
StrReverse function VarType function
subtraction operator, - vbLongDate constant
subtype of a variant VBScript (Visual Basic Scripting Edition)
Tan function VBScript language attribute
Test function VBScript scripting engine
To keyword vbShortTime constant
Trim function vbTextCompare constant
True keyword verb
twip Wend keyword
TypeName function While/Wend control structure
UBound function With keyword
UCase function XOr logical operator

iw3htp2_24.fm Page 827 Saturday, July 21, 2001 9:34 AM

828 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

EXERCISES
24.5 (Compound Interest Calculator) Create an XHTML document that enables the user to calcu-
late compound interest. Provide several text components in which the user can enter the principal
amount, the yearly interest rate and the number of years (see the compound interest program of Fig.
10.6 for the calculation of interest). Provide a button to cause the VBScript to execute and calculate
the interest. Display the result in another text component. If any text component is left empty,
display a MsgBox indicating the error. Use a Function procedure to perform the calculation.

24.6 (Monthly Compound Interest Calculator) Modify Exercise 24.5 to calculate the compound
interest on a monthly basis. Remember that you must divide the interest rate by 12 to get the monthly
rate.

24.7 Write a VBScript that allows the user to enter a name, email address and phone number. Use
regular expressions to perform the validation [e.g., names can only contain letters, email must be of
the format username@name.extension and the phone number must have the format (555) 555-5555].
Note: You should read the article on regular expression (listed in the Web Resources section) before
attempting this exercise.

24.8 Modify the script of Fig. 24.24 to use some of the string-related functions introduced in Sec-
tion 24.7 to perform the validation instead of a regular expression. How does your new solution com-
pare?

24.9 Write a VBScript that generates from the string "abcdefghijklmnopqrstuvwxyz{"
the following:

 a
 bcb
 cdedc
 defgfed
 efghihgfe
 fghijkjihgf
 ghijklmlkjihg
 hijklmnonmlkjih
 ijklmnopqponmlkji
 jklmnopqrsrqponmlkj
 klmnopqrstutsrqponmlk
 lmnopqrstuvwvutsrqponml
 mnopqrstuvwxyxwvutsrqponm
 nopqrstuvwxyz{zyxwvutsrqpon

24.10 Law enforcement agencies often get partial descriptions of suspect license plate numbers and
have to search for license plate numbers that match the description. Create a program that will allow
a local law enforcement agency to determine how many license plate numbers match a partial descrip-
tion. Randomly create 500 6-character long license plate numbers and store them in an array. Allow
the user to search for partial plate numbers of 3 or 4 digits. Note: License plate numbers can contain
both digits and letters. The array should not contain any duplicates.

24.11 Write a program that reads a five-letter word from the user and produces all possible three-
letter words that can be derived from the letters of the five-letter word. For example, the three-letter
words produced from the word “bathe” include the commonly used words

ate bat bet tab hat the tea

24.12 Create a class called CComplex for performing arithmetic with complex numbers. Write a
program to test your class.

iw3htp2_24.fm Page 828 Saturday, July 21, 2001 9:34 AM

Chapter 24 VBScript 829

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Complex numbers have the form

realPart + imaginaryPart × i

where i is

Use floating-point subtypes to represent the Private data of the class. Provide Public
methods for each of the following:

a) Addition of two CComplex numbers: The real parts are added together and the imagi-
nary parts are added together.

b) Subtraction of two CComplex numbers: The real part of the right operand is subtracted
from the real part of the left operand and the imaginary part of the right operand is sub-
tracted from the imaginary part of the left operand.

c) Printing CComplex numbers in the form (A, B), where A is the real part and B is the
imaginary part.

24.13 Create a class called CRational for performing arithmetic with fractions. Write a program
to test your class.

Use integer variables to represent the Private instance variables of the class—mNum-
erator and mDenominator. The class should store the fraction in reduced form (i.e., the fraction

2/4

would be stored in the object as 1 in the mNumerator and 2 in the mDenominator). Provide
Public methods for each of the following:

a) Addition of two CRational numbers. The result is stored in reduced form.
b) Subtraction of two CRational numbers. The result is stored in reduced form.
c) Multiplication of two CRational numbers. The result is stored in reduced form.
d) Division of two CRational numbers. The result is stored in reduced form.
e) Returning CRational numbers in the form mNumerator/mDenominator (i.e., a

string with this format).
f) Returning CRational numbers in floating-point format. (Consider providing format-

ting capabilities that enable the user of the class to specify the number of digits of preci-
sion to the right of the decimal point.)

24.14 Use a two-dimensional array to solve the following problem. A company has four salespeo-
ple (with salesperson numbers 1 to 4) who sell five different products (with product numbers 1 to 5).
Once a day, each salesperson passes in a slip for each different type of product sold. Each slip contains
the salesperson number, product number and the total dollar value of that product sold that day.

Write a program that reads this information and summarizes the total sales by salesperson by
product. All totals should be stored in the two-dimensional array sales. After each input, print the
results in tabular format, with each of the columns representing a particular salesperson and each of
the rows representing a particular product. Cross-total each row to get the total sales of each product
for last month; cross total each column to get the total sales by salesperson for last month. Your neat
tabular printout should include these cross-totals to the right of the totaled rows and at the bottoms of
the totaled columns. Use VBScript function FormatCurrency as part of your solution.

24.15 Use a one-dimensional array to solve the following problem. A company pays its salespeople
on a commission basis. The salespeople receive $200 per week plus 9% of their gross sales for that
week. For example, a salesperson who grosses $5000 in sales in a week receives $200 plus 9% of

-1

iw3htp2_24.fm Page 829 Saturday, July 21, 2001 9:34 AM

830 VBScript Chapter 24

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

$5000, or a total of $650. Write a program (using an array of counters) that determines how many of
the salespeople earned salaries in each of the following ranges (assume that each salesperson’s salary
is truncated to an integer amount):

24.16 Use a one-dimensional dynamic array to solve the following problem. Read in 20 numbers,
each of which is between 10 and 100, inclusive. As each number is input, print it only if it is not a du-
plicate of a number already input. Provide for the “worst case,” in which all 20 numbers are different.

24.17 Write a Web page that allows the user to select one or more books by using check boxes. Dis-
play the name of each book and its price. Display the current total in a text box at the bottom of the
page. When a book is selected (or unselected), update the total. Use VBScript to perform any arith-
metic operations and to format the total.

24.18 (VBScript Calculator) Write a VBScript calculator that provides addition, subtraction, mul-
tiplication and division operations.

24.19 Modify your solution to Exercise 24.18 to include scientific features such as exponentiation,
cosine, sine, etc. Use the Windows calculator as a guide.

24.20 In the chapter, we mentioned that VBScript contains various date/time manipulations. Study
these date/time capabilities by visiting the resources listed in Section 24.9. Write a program that dem-
onstrates as many of these capabilities as possible.

24.21 Write a Function procedure ToMorseCode that takes one string argument and returns a
string containing the Morse code equivalent. Figure 12.12 lists the Morse code for letters and digits.

24.22 Write a program that plays the “guess the number” game as follows: Your program chooses
the number to be guessed by selecting an Integer at random in the range 1 to 1000, then displays

I have a number between 1 and 1000.
Can you guess my number?
Please enter your first guess.

The player then types a first guess. The program responds with one of the following:

Excellent! You guessed the number!
Would you like to play again (y or n)?

Too low. Try again.
Too high. Try again.

If the player's guess is incorrect, your program should keep telling the player “Too high” or “Too
low” to help the player “zero in” on the correct answer.

Salary Ranges

1) $200-$299 6) $700-$799

2) $300-$399 7) $800-$899

3) $400-$499 8) $900-$999

4) $500-$599 9) $1000 and over

5) $600-$699

iw3htp2_24.fm Page 830 Saturday, July 21, 2001 9:34 AM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

25
Active Server Pages

(ASP)

Objectives
• To to program Active Server Pages using VBScript.
• To understand how Active Server Pages work.
• To understand the differences between client-side

scripting and server-side scripting.
• To be able to pass data between Web pages.
• To be able to use server-side include statements.
• To be able to use server-side ActiveX components.
• To be able to create sessions.
• To be able to use cookies.
• To be able to use ActiveX Data Objects (ADO) to

access a database.
A client is to me a mere unit, a factor in a problem.
Sir Arthur Conan Doyle

Rule One: Our client is always right.
Rule Two: If you think our client is wrong, see Rule One.
Anonymous

Protocol is everything.
Francoise Giuliani

iw3htp2_25.fm Page 831 Saturday, July 21, 2001 9:48 AM

832 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

25.1 Introduction
Interactive Web pages are created with both client- and server-side scripting. This book has
focused on client-side scripting up to this point. The next several chapters discuss server-side
technologies, which are essential to programming Internet applications. Server-side scripting
uses information sent by clients, information stored on the server, information stored in the
server’s memory and information from the Internet to dynamically create Web pages. The
next two chapters focus on Active Server Pages (ASP), a server-side technology that dynam-
ically builds documents (e.g., XHTML, text, XML, etc.) in response to client requests.

 The examples in this chapter illustrate how Active Server Pages use server and client
information to create and send dynamic Web pages to clients. Examples in this chapter
include a program to display the time and date on a Web server, a guest book, a Web page
creator, a user verification system and an advertisement rotator. Chapter 26 builds on this
chapter to construct an online message forum that uses Active Server Pages.

25.2 How Active Server Pages Work
Active Server Pages are processed by an ActiveX component (i.e., a server-side ActiveX
control) called a scripting engine. An ASP file has the file extension .asp and contains
XHTML tags and scripting code. Although other languages, like JavaScript, can be used
for ASP scripting, VBScript (Chapter 24) is the most widely used.

Software Engineering Observation 25.1
Some Independent Software Vendors (ISVs) provide scripting engines for use with ASP that
support languages other than VBScript and JavaScript. 25.1

The Active Server Pages in this chapter demonstrate communication between clients
and servers via the HTTP protocol of the World Wide Web. When a server receives a
client’s HTTP request, the server loads the document (or page) requested by the client.
XHTML documents are static documents—all clients see the same content when the doc-
ument is requested. ASP is a Microsoft technology for sending to the client dynamic Web

Outline

25.1 Introduction
25.2 How Active Server Pages Work
25.3 Setup
25.4 Active Server Page Objects
25.5 Simple ASP Examples
25.6 File System Objects
25.7 Session Tracking and Cookies
25.8 Accessing a Database from an Active Server Page
25.9 Server-Side ActiveX Components
25.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_25.fm Page 832 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 833

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

content, including XHTML, Dynamic HTML, ActiveX controls, client-side scripts and
Java applets (i.e., client-side Java programs that are embedded in a Web page). The Active
Server Page processes the request (which often includes interacting with a database) and
returns the results to the client—normally in the form of an XHTML document, but other
data formats (e.g., images, binary data, etc.) can be returned.

When a client requests an ASP document, the document is loaded into memory and
parsed (top to bottom) by a scripting engine named asp.dll. Script code is interpreted as
it is encountered.

Portability Tip 25.1
An ASP page that generates pure XHTML may be rendered by any client browser. 25.1

Software Engineering Observation 25.2
To take advantage of Active Server Page technology, a Web server must provide a component
such as asp.dll to interpret ASP instructions. 25.2

25.3 Setup
This chapter contains several examples that require either Internet Information Services
(IIS) 5.0 or Personal Web Server (PWS) 4.0 to execute. Before attempting to execute any
example, you should make sure PWS or IIS is running. For help installing and running IIS
and PWS, see Chapter 21, Web Servers.

If you are going to execute the chapter examples, we recommend that you create a vir-
tual directory (see Chapter 21) named Deitel on your computer. Copy all the .asp files
from the Chapter 25 examples directory (included on the CD-ROM that accompanies this
book), but not any subdirectories, to this directory. Create two other directories beneath
C:\Inetpub\Wwwroot or C:\Webshare\Wwwroot home directory of your Web
server named includes and images. Copy all .shtml files from the CD to
includes and all .gif (or any other graphic file extension) files to images.

Some examples access databases. The database files (e.g., .mdb files) can be copied
into any directory on your system. Before executing these examples, you must set up a
System Data Source Name (DSN). See the “Setting up a System Data Source Name” at
www.deitel.com for instructions on how to create a DSN.

25.4 Active Server Page Objects
Active Server Pages provide several built-in objects to offer programmers straightforward
methods for communicating with a Web browser, gathering data sent by an HTTP request
and distinguishing between users. Figure 25.1 provides a brief description of the most com-
monly used ASP objects.

The Request object is commonly used to access the information passed by a get or
post request. This information usually consists of data provided by the user in an XHTML
form. The Request object provides access to information, such as “cookies,” that are
stored on a client’s machine. This object also provides access to binary information (e.g., a
file upload). The Response object sends information, such as XHTML, text, etc. to the
client. The Server object provides access to methods and properties on the server.

iw3htp2_25.fm Page 833 Saturday, July 21, 2001 9:48 AM

834 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

25.5 Simple ASP Examples
In this section, we present simple ASP examples. The first example (Fig. 25.2) sends the
Web server’s date and time to the client as XHTML markup.

Object Name Description

Request Used to access information passed by an HTTP request.

Response Used to control the information sent to the client.

Server Used to access methods and properties on the server.

Fig. 25.1Fig. 25.1Fig. 25.1Fig. 25.1 Commonly used ASP objects.

1 <% @LANGUAGE = VBScript %>
2
3 <%
4 ' Fig. 25.2 : clock.asp
5 ' A simple ASP example
6 Option Explicit
7 %>
8
9 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

10 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
11
12 <html xmlns = "http://www.w3.org/1999/xhtml">
13
14 <head>
15 <title>A Simple ASP Example</title>
16
17 <style type = "text/css">
18 td { background-color: black;
19 color: yellow }
20 strong { font-family: arial, sans-serif;
21 font-size: 14pt; color: blue }
22 p { font-size: 14pt }
23 </style>
24
25 </head>
26
27 <body>
28
29 <p>A Simple ASP Example</p>
30 <table border = "6">
31 <tr>
32 <td>
33 <% =FormatDateTime(Now, vbLongDate) %>
34 </td>
35

Fig. 25.2Fig. 25.2Fig. 25.2Fig. 25.2 Simple Active Server Page (part 1 of 2).

iw3htp2_25.fm Page 834 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 835

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Notice the scripting delimiters <% and %> wrapped around the VBScript code—
these delimit the scripting code that is executed on the server, not the client. Script enclosed
in scripting delimiters is not sent to the client; it is processed by the scripting engine. How-
ever, the scripting code inside the delimiters can generate information that is sent to the
client. Everything outside <% and %> is simply written to the client.

Common Programming Error 25.1
Missing the opening delimiter, <%, or closing delimiter, %>, or both for a server-side
scripting statement is an error. 25.1

Line 1 uses the optional @LANGUAGE processing directive to specify VBScript as the
scripting language. This indicates the scripting engine needed to interpret the scripting
code. In this chapter, we use VBScript exclusively to develop our Active Server Pages,
although other scripting languages, such as JavaScript, may be used. If the @LANGUAGE
processing directive is omitted, VBScript is the default.

Good Programming Practice 25.1
When using VBScript code in an Active Server Page, use the @LANGUAGE statement for clar-
ity. 25.1

Common Programming Error 25.2
The @LANGUAGE directive should always be the first statement in an ASP file. Not placing
it there is an error. 25.2

The Option Explicit statement in line 6 indicates that the programmer must
explicitly declare all VBScript variables. Remember that by simply mentioning a new

36 <td>
37 <% =Time() %>
38 </td>
39 </tr>
40 </table>
41 </body>
42
43 </html>

Fig. 25.2Fig. 25.2Fig. 25.2Fig. 25.2 Simple Active Server Page (part 2 of 2).

iw3htp2_25.fm Page 835 Saturday, July 21, 2001 9:48 AM

836 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

name, VBScript variables are implicitly declared. This can lead to subtle errors. When
used, the Option Explicit statement must be the first VBScript scripting statement
after the @LANGUAGE directive. In this particular example, variables are not declared but
the Option Explicit statement is included as a good programming practice.

Testing and Debugging Tip 25.1
Always include Option Explicit even if you are not declaring any VBScript variables.
As a script evolves over time, you may need to declare variables and the presence of the Op-
tion Explicit statement can help eliminate subtle errors. 25.1

Line 33 calls VBScript function FormatDateTime to return a string formatted
according to the server’s date and time. This function accepts two arguments, the date and
the format in which to return the date. We call VBScript function Now to get the current
date and specify the vbLongDate format, which indicates that the day, time, month and
year should be displayed. This statement is short for

<% Call Response.Write(FormatDateTime(Now, vbLongDate)) %>

which calls the Response method Write to send the formatted date as text to the client.
Line 37 calls VBScript function Time to get the current time on the server. Function

Time returns the time in the format, hh:mm:ss.This statement is short for

<% Call Response.Write(Time()) %>

which calls the Response method Write to send the time as text to the client.
Fig. 25.3 shows the XHTML generated by clock.asp that is rendered in the client

browser. This is what the user would see by selecting the View menu’s Source command
in Internet Explorer. As you can see, server-side scripts, unlike client-side scripts, are not
viewable by the client.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <html xmlns = "http://www.w3.org/1999/xhtml">
5
6 <head>
7 <title>A Simple ASP Example</title>
8
9 <style type = "text/css">

10 td { background-color: black;
11 color: yellow }
12 strong { font-family: arial, sans-serif;
13 font-size: 14pt; color: blue }
14 p { font-size: 14pt }
15 </style>
16
17 </head>
18
19 <body>
20

Fig. 25.3Fig. 25.3Fig. 25.3Fig. 25.3 Viewing the XHTML generated by Fig. 25.2 (part 1 of 2).

iw3htp2_25.fm Page 836 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 837

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

ASP is also used to process form input. Data entered into a form can be sent to the
server, processed and then sent back to the client in a different format. For example, an e-
commerce site may use this to verify a customer’s order information. The order information
is entered into the form and then sent to the server for processing. Once the information is
received, the server may return an order confirmation page, for verification purposes, that
displays all the information the customer entered into the form.

Fig. 25.4 shows how to pass information from a form to an .asp document using the
post method. The action attribute of the form element indicates the .asp file to which
the form information is posted.

In line 27 the Request object retrieves the form data posted to name.asp and
returns the contents of the namebox field as XHTML to the client.

21 <p>A Simple ASP Example</p>
22 <table border = "6">
23 <tr>
24 <td>
25 Thursday, May 24, 2001
26 </td>
27
28 <td>
29 2:22:58 PM
30 </td>
31 </tr>
32 </table>
33 </body>
34
35 </html>

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 25.4 : name.html -->
5 <!-- XHTML document that request an ASP document -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>Name Request</title>
11 </head>
12
13 <body>
14
15 <p style = "font-family: arial, sans-serif">
16 Enter your name:
17 </p>
18
19 <!-- request name.asp when posted -->

Fig. 25.4Fig. 25.4Fig. 25.4Fig. 25.4 XHTML document that requests an ASP (part 1 of 2).

Fig. 25.3Fig. 25.3Fig. 25.3Fig. 25.3 Viewing the XHTML generated by Fig. 25.2 (part 2 of 2).

iw3htp2_25.fm Page 837 Saturday, July 21, 2001 9:48 AM

838 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

When the Enter button is pressed, the form data is posted to name.asp (Fig. 25.5).
ASP name.asp processes the form data and returns XHTML to the client.

20 <form action = "name.asp" method = "post">
21 <input type = "text" name = "namebox" size = "20" />
22 <input type = "submit" name = "submitButton"
23 value = "Enter" />
24 </form>
25
26 </body>
27
28 </html>

1 <% @LANGUAGE = VBScript %>
2
3 <%
4 ' Fig. 25.5 : name.asp
5 ' Another simple ASP example
6 Option Explicit
7 %>
8
9 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

10 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
11
12 <html xmlns = "http://www.w3.org/1999/xhtml">
13
14 <head>
15 <title>Name Information</title>
16
17 <style type = "text/css">
18 p { font-family: arial, sans-serif;
19 font-size: 14pt; color: navy }
20 .special { font-size: 20pt; color: green }
21 </style>
22 </head>
23
24 <body>

Fig. 25.5Fig. 25.5Fig. 25.5Fig. 25.5 ASP document that responds to a client request (part 1 of 2).

Fig. 25.4Fig. 25.4Fig. 25.4Fig. 25.4 XHTML document that requests an ASP (part 2 of 2).

iw3htp2_25.fm Page 838 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 839

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

25.6 File System Objects
File System Objects (FSOs) provide the programmer with the ability to manipulate files,
directories and drives. FSOs also allow the programmer to read and write text and are an
essential element for Active Server Pages that persist data. We overview FSO features and
then provide a “live-code™” example that uses FSOs.

FSOs are objects in the Microsoft Scripting Runtime Library. These FSO types
include: FileSystemObject, File, Folder, Drive and TextStream. Each type
is summarized in Fig. 25.6.

25
26 <!-- retrieve and display namebox's value -->
27 <p>Hi <% =Request("namebox") %>, </p>

28 <p class = "special">Welcome to ASP!</p>
29
30 </body>
31
32 </html>

Object type Description

FileSystemObject Allows the programmer to interact with Files, Folders and
Drives.

File Allows the programmer to manipulate Files of any type.

Folder Allows the programmer to manipulate Folders (i.e., directories).

Drive Allows the programmer to gather information about Drives (hard
disks, RAM disks—computer memory used as a substitute for hard
disks to allow high-speed file operations, CD-ROMs, etc.). Drives
can be local or remote.

TextStream Allows the programmer to read and write text files.

Fig. 25.6Fig. 25.6Fig. 25.6Fig. 25.6 File System Objects (FSOs).

Fig. 25.5Fig. 25.5Fig. 25.5Fig. 25.5 ASP document that responds to a client request (part 2 of 2).

iw3htp2_25.fm Page 839 Saturday, July 21, 2001 9:48 AM

840 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The programmer can use FileSystemObjects to create directories, move files,
determine whether a Drive exists, etc. Figure 25.7 summarizes some common methods
of FileSystemObject.

The File object allows the programmer to gather information about files, manipulate
files and open files. Figure 25.8 lists some common File properties and methods.

t

Methods Description

CopyFile Copies an existing File.

CopyFolder Copies an existing Folder.

CreateFolder Creates and returns a Folder.

CreateTextFile Creates and returns a text File.

DeleteFile Deletes a File.

DeleteFolder Deletes a Folder.

DriveExists Tests whether or not a Drive exists. Returns a boolean.

FileExists Tests whether or not a File exists. Returns a boolean.

FolderExists Tests whether or not a Folder exists. Returns a boolean.

GetAbsolutePathName Returns the absolute path as a string.

GetDrive Returns the specified Drive.

GetDriveName Returns the Drive drive name.

GetFile Returns the specified File.

GetFileName Returns the File file name.

GetFolder Returns the specified Folder.

GetParentFolderName Returns a string representing the parent folder name.

GetTempName Creates and returns a string representing a file name.

MoveFile Moves a File.

MoveFolder Moves a Folder.

OpenTextFile Opens an existing text File. Returns a TextStream.

Fig. 25.7Fig. 25.7Fig. 25.7Fig. 25.7 FileSystemObject methods.

Property/method Description

Properties

DateCreated Date. The date the File was created.

DateLastAccessed Date. The date the File was last accessed.

DateLastModified Date. The date the File was last modified.

Fig. 25.8Fig. 25.8Fig. 25.8Fig. 25.8 Some common File properties and methods (part 1 of 2).

iw3htp2_25.fm Page 840 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 841

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Property Path contains the File’s path in long name format (the operating system
does not abbreviate the name when it exceeds the 8.3 format). Property ShortName con-
tains, if applicable, the file name in short name format (a file name exceeding the 8.3 format
is abbreviated). For example, “ABCDEFGHIJ.doc” is a file name in long name format.
That same file name in short name format might be abbreviated as “ABCDEF~1.doc.”

The Folder object allows the programmer to manipulate and gather information
about directories. Figure 25.9 lists some common Folder properties and methods.

Drive Drive. The Drive where the file is located.

Name String. The File name.

ParentFolder String. The File’s parent folder name.

Path String. The File’s path.

ShortName String. The File’s name expressed as a short name.

Size Variant. The size of the File in bytes.

Methods

Copy Copy the File. Same as CopyFile of FileSystemObject.

Delete Delete the File. Same as DeleteFile of FileSystemObject.

Move Move the File. Same as MoveFile of FileSystemObject.

OpenAsTextStream Opens an existing File as a text File. Returns TextStream.

Property/method Description

Properties

Attributes Integer. Value indicating Folder’s attributes (read only, hidden, etc.).

DateCreated Date. The date the folder was created.

DateLastAccessed Date. The date the folder was last accessed.

DateLastModified Date. The date the folder was last modified.

Drive Drive. The Drive where the folder is located.

IsRootFolder Boolean. Indicates whether or not a Folder is a root folder.

Name String. The Folder’s name.

ParentFolder Folder. The Folder’s parent folder.

Path String. The Folder’s path.

ShortName String. The Folder’s name expressed as a short name.

ShortPath String. The Folder’s path expressed as a short path.

Fig. 25.9Fig. 25.9Fig. 25.9Fig. 25.9 Some Folder properties and methods (part 1 of 2).

Property/method Description

Fig. 25.8Fig. 25.8Fig. 25.8Fig. 25.8 Some common File properties and methods (part 2 of 2).

iw3htp2_25.fm Page 841 Saturday, July 21, 2001 9:48 AM

842 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Property IsRootFolder indicates whether the folder is the root folder for the
Drive (i.e., the folder that contains everything on the drive). If the folder is not the root
folder, method ParentFolder may be called to get the folder’s parent folder (i.e., the
folder in which the selected folder is contained). Method Size returns the total number of
bytes the folder contains. The size includes subfolders (i.e., folders inside the selected
folder) and files.

The Drive object allows the programmer to gather information about drives. Figure
25.10 lists some common Drive properties. Property DriveLetter contains the
Drive’s letter. Property SerialNumber contains the Drive’s serial number. Property
FreeSpace contains the number of bytes available.

Size Variant. The total size in bytes of all subfolders and files.

Type String. The Folder type.

Methods

Delete Delete the Folder. Same as DeleteFolder of
FileSystemObject.

Move Move the Folder. Same as MoveFolder of
FileSystemObject.

Copy Copy the Folder. Same as CopyFolder of
FileSystemObject.

Property Description

AvailableSpace Variant. The amount of available Drive space in bytes.

DriveLetter String. The letter assigned to the Drive (e.g., “C”).

DriveType Integer. The Drive type. Constants Unknown, Removable,
Fixed, Remote, CDRom and RamDisk represent Drive types and
have the values 0–5, respectively.

FileSystem String. The file system Drive description (FAT, FAT32, NTFS, etc.).

FreeSpace Variant. Same as AvailableSpace.

IsReady Boolean. Indicates whether or not a Drive is ready for use.

Path String. The Drive’s path.

RootFolder Folder object. The Drive’s root Folder.

SerialNumber Long. The Drive serial number.

TotalSize Variant. The total Drive size in bytes.

VolumeName String. The Drive volume name.

Fig. 25.10Fig. 25.10Fig. 25.10Fig. 25.10 Drive properties.

Property/method Description

Fig. 25.9Fig. 25.9Fig. 25.9Fig. 25.9 Some Folder properties and methods (part 2 of 2).

iw3htp2_25.fm Page 842 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 843

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The TextStream object allows the programmer to manipulate text files. Figure
25.11 list TextStream properties and methods.

Figure 25.12 is an Active Server Page for a guest book, which allows the visitors to
enter their name, e-mail and comments. File system objects are used to write the visitor
information to a file on the server.

Property/Method Description

Properties

AtEndOfLine Boolean. Indicates whether the end of a line has been encountered.

AtEndOfStream Boolean. Indicates whether the end of file has been encountered.

Column Integer. Returns the character’s position in a line.

Line Integer. Returns the current line number.

Methods

Read String. Returns a specified number of characters from the file refer-
enced by the TextStream object.

ReadAll String. Returns the entire contents of the file referenced by the
TextStream object.

ReadLine String. Returns one line from the file referenced by the
TextStream object.

Write String. Writes text to the file referenced by the TextStream
object.

WriteBlankLines String. Writes newline characters to the file referenced by the
TextStream object.

WriteLine String. Writes one line to the file referenced by the TextStream
object.

Skip Variant. Skips a specified number of characters while reading from the
file referenced by the TextStream object.

SkipLine Variant. Skips a line of characters while reading from the file refer-
enced by the TextStream object.

Close Close the file referenced by the TextStream object.

Fig. 25.11Fig. 25.11Fig. 25.11Fig. 25.11 TextStream methods and properties.

1 <% @LANGUAGE = VBScript %>
2
3 <% ' Fig. 25.12 : guestbook.asp
4 ' Demonstrating File System Objects
5 Option Explicit
6 %>
7

Fig. 25.12Fig. 25.12Fig. 25.12Fig. 25.12 Guest book Active Server Page (part 1 of 5).

iw3htp2_25.fm Page 843 Saturday, July 21, 2001 9:48 AM

844 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

8 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
9 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

10
11 <html xmlns = "http://www.w3.org/1999/xhtml">
12
13 <head>
14 <title>GuestBook Example</title>
15
16 <style type = "text/css">
17 hr { size: 1; color: blue }
18 table { text-align: center }
19 td { font-size: 12pt }
20 p { font-size: 14pt; color: blue }
21 .font { font-family: arial, sans-serif }
22 </style>
23 </head>
24 <body>
25 <%
26 Dim fileObject, textFile, guestBook, mailtoUrl
27
28 ' get physical path for this ASP page and
29 ' concatenate guestbook.txt to it
30 guestbook = Request.ServerVariables("APPL_PHYSICAL_PATH") _
31 & "\guestbook.txt"
32
33 ' instantiate a FileSystemObject
34 Set fileObject = Server.CreateObject(_
35 "Scripting.FileSystemObject")
36
37 ' Check if this request is after the user has posted the form
38 If Request("hiddenInput") = "true" Then
39
40 ' Print a thank you
41 Call Response.Write("Thanks for your entry, " & _
42 Request("username") & "!")
43 %>
44 <hr />
45 <%
46 ' build the mailtoUrl
47 mailtoUrl = Date() & " <a href = " & Chr(34) _
48 & "mailto:" & Request("email") & Chr(34) _
49 & ">" & Request("username") & ": "
50
51
52 ' open the guestbook, 8 is for appending
53 ' create the guestbook if it does not exist
54 Set textFile = _
55 fileObject.OpenTextFile(guestbook, 8, True)
56
57 ' write data to guestbook.txt
58 Call textFile.WriteLine("<hr />" & mailtoUrl & _
59 Request("comment"))
60 Call textFile.Close()

Fig. 25.12Fig. 25.12Fig. 25.12Fig. 25.12 Guest book Active Server Page (part 2 of 5).

iw3htp2_25.fm Page 844 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 845

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

61 End If
62 %>
63
64 <p>Please leave a message in our guestbook.</p>
65
66 <!-- write form to the client -->
67 <form action = "guestbook.asp" method = "post">
68 <table>
69 <tr>
70 <td>Your Name: </td>
71 <td><input class = "font"
72 type = "text" size = "60"
73 name = "username" /></td>
74 </tr>
75
76 <tr>
77 <td>Your email address:</td>
78 <td><input class = "font"
79 type = "text" size = "60"
80 name = "email"
81 value = "user@isp.com" />
82 </td>
83 </tr>
84
85 <tr>
86 <td>Tell the world: </td>
87 <td><textarea name = "comment" rows = "3"
88 cols = "50">
89 Replace this text with the information
90 you would like to post.</textarea></td>
91 </tr>
92 </table>
93
94 <input type = "submit" value = "submit" />
95 <input type = "reset" value = "clear" />
96 <input type = "hidden" name = "hiddenInput"
97 value = "true" />
98 </form>
99
100 <%
101 ' check if the file exists
102 If fileObject.FileExists(guestBook) = True Then
103
104
105 ' open the guestbook, "1" is for reading
106 Set textFile = fileObject.OpenTextFile(guestbook, 1)
107
108 ' read the entries from the file and write them to
109 ' the client.
110 Call Response.Write("Guestbook Entries:
" & _
111 textFile.ReadAll())
112 Call textFile.Close()
113

Fig. 25.12Fig. 25.12Fig. 25.12Fig. 25.12 Guest book Active Server Page (part 3 of 5).

iw3htp2_25.fm Page 845 Saturday, July 21, 2001 9:48 AM

846 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

114 End If
115 %>
116
117 </body>
118
119 </html>

Fig. 25.12Fig. 25.12Fig. 25.12Fig. 25.12 Guest book Active Server Page (part 4 of 5).

iw3htp2_25.fm Page 846 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 847

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The guest book page displayed in the browser consists of a form (to be filled in by the
user) and a list of guest book entries (initially, there are no entries in this list). The form
(lines 67–98) contains two text fields and a text area for inputting the name, e-mail and user
comment.

Line 67 indicates that a post request occurs upon form submission. The action for the
form requests the same ASP page in which the form is contained—guestbook.asp. A
form’s action is not required to request a different document.

Fig. 25.12Fig. 25.12Fig. 25.12Fig. 25.12 Guest book Active Server Page (part 5 of 5).

iw3htp2_25.fm Page 847 Saturday, July 21, 2001 9:48 AM

848 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Upon submission, guestbook.asp is requested and passes parameter hidden-
Input—which has the value "true." The name hiddenInput is programmer-
defined—developers of course may choose any name they prefer. We use this technique to
determine whether this ASP page is being requested by a form submitted from guest-
book.asp.

Lines 30–31 pass Request method ServerVariables the server key
APPL_PHYSICAL_PATH to retrieve the physical path of the virtual directory where this
ASP document resides. We concatenate this with the name of the file, guestbook.txt,
and assign the result to variable guestbook. Fig. 25.13 lists some server variable keys.

Lines 34–35 create an FSO instance (i.e., an object) and assign it to reference file-
Object. When assigning an object to a reference in VBScript, keyword Set is required.

We want only lines 41–60 to execute when the page is loaded with a post request. Line
38 uses the Request object to get hiddenInput’s value and test it against the string
"true." When this page is requested by a client for the first time, hiddenInput has the
value "" (an empty string), and lines 41–60 are not executed. Variable hiddenInput is
only assigned value "true" during the post operation (line 67).

Lines 41–42 print Thanks for your entry, followed by the user’s name. The
Request object gets the value posted in the username field of the submitted form.

The user's submitted name and e-mail are combined with XHTML tags and assigned
to string mailtoUrl (lines 47–49). This string, when displayed in the browser, shows the
submitted name as a mailto link. Clicking this link opens an e-mail message editor with the
person’s name in the To: field. Line 47 calls VBScript function Date to assign the current
server date to the beginning of mailtoUrl. The Request object is used to retrieve the
values from the email field (line 48) and the username field (line 49). The value 34 is
passed to the VBScript function Chr to get a double quote (") character. We call this func-
tion because the interpreter would treat a double quote as the end of the mailtoUrl
string. The XHTML tags are stored in mailtoUrl.

Lines 54–55 call method OpenTextFile to get a TextStream object for accessing
the text file guestbook.txt. The constant value 8 indicates append mode (writing to the
end of the file), and True indicates that the file will be created if it does not already exist.
Read and write modes are specified with constant values 1 and 2, respectively.

Key Name Description

APPL_PHYSICAL_PATH Returns the physical path.

HTTPS Boolean. Determines if the request came in through SSL (Secure
Sockets Layer).

REMOTE_ADDR Client’s DNS name or IP address.

REQUEST_METHOD Request method (i.e., get and post).

SERVER_NAME Server’s hostname (DNS or IP address).

HTTP_USER_AGENT Returns information about the client making the request.

HTTP_COOKIE Returns cookies residing on the client.

Fig. 25.13Fig. 25.13Fig. 25.13Fig. 25.13 Some server variable keys.

iw3htp2_25.fm Page 848 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 849

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 58–59 write text to guestbook.txt using the TextStream method
WriteLine. After writing the text to the file, TextStream method Close is called in
line 60 to close the file.

Every time a client requests this Active Server Page, lines 100–115 execute. This
VBScript code displays a list of all the users who have made guest book entries. Line 102
uses FSO method FileExists to check if the guestbook.txt file exists. If this func-
tion returns True, lines 106–112 execute. In line 106, guestbook.txt is opened for
reading. Lines 110–111 read the entries from the file and write XHTML to the client. The
entire contents of guestbook.txt are read by calling TextStream method ReadAll
in line 111. This text is written to the client using Response.Write. This text contains
XHTML markup which is rendered in the client browser. The TextStream method
Close is called in line 112 to close the file. Fig. 25.14 shows the contents of guest-
book.txt after two users have submitted comments.

25.7 Session Tracking and Cookies
HTTP does not support persistent information that could help a Web server distinguish be-
tween clients. In this section, we introduce two related technologies that enable a Web serv-
er to distinguish between clients: session tracking and cookies.

Many Web sites provide custom Web pages or functionality on a client-by-client basis.
For example, some Web sites allow you to customize their home page to suit your needs.
An example of this is the Yahoo! Web site (my.yahoo.com), which allows you to cus-
tomize how the Yahoo! site appears. [Note: You need to get a free Yahoo! ID first.]

Another example of a service that is customized on a client-by-client basis is a shop-
ping cart for shopping on the Web. When a purchase is made, the server must distinguish
between clients so the business can assign the proper items and charge each client the
proper amount.

A third method of customization on a client-by-client basis is marketing to specific
audiences. Companies often track the pages people visit so they can display advertisements
based on a person’s browsing trends. Many people consider tracking to be an invasion of
their privacy, an increasingly sensitive issue in our information-based society. See Chapter
32 for more information on this and other legal, ethical and moral issues.

The server performs session tracking by keeping track of when a specific person visits
a site. The first time a client connects to the server, the server assigns the user a unique ses-
sion ID. When the client makes additional requests, the client’s session ID is compared with
the session IDs stored in the server’s memory. Active Server Pages use the Session
object to manage sessions. The Session object’s Timeout property specifies the
number of minutes that a session exists before it expires. The default value for property
Timeout is 20 minutes. Calling Session method Abandon can also terminate an indi-
vidual session.

1 <hr />5/24/2001 tem: ASP is
a great tool for server-side development.

2 <hr />5/24/2001 dan: ASP
is my preferred server-side development tool.

Fig. 25.14Fig. 25.14Fig. 25.14Fig. 25.14 Contents of guestbook.txt for Fig. 25.12.

iw3htp2_25.fm Page 849 Saturday, July 21, 2001 9:48 AM

850 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Figure 25.15 is an ASP page generator. Users who are not familiar with ASP may input
their information in a form and submit the form, and the ASP page generator will create the
user’s ASP page. This example consists of two Active Server Pages linked to each other
through HTTP post requests. We use session variables in this example to maintain a state
between the two ASP pages. Multiple Active Server Pages connected in this manner are
sometimes called an ASP application. The first page, instantpage.asp (Fig. 25.15),
consists of a form that requests information from the user. When submitted, the form is
posted to process.asp (Fig. 25.18). If there are no errors, process.asp creates the
user’s ASP page. Otherwise, process.asp redirects the user back to
instantpage.asp. Also, process.asp stores a “welcome back” message in session
variable welcomeBack. Each time a user submits the form, process.asp stores a new
“welcome back” message in the session variable. If a file name is not provided, pro-
cess.asp returns an error to instantpage.asp (Fig. 25.15). [Note: The example
presented is IIS specific. PWS users should use the version in the PWS folder in the Chapter
25 examples directory (on the CD-ROM that accompanies this book). Separate files are
included on the CD for users running Personal Web Server.

Line 30 is a server-side include (SSI) statement that incorporates the contents of
header.shtml (Fig. 25.16) into the ASP file. Server-side includes are commands
embedded in XHTML documents that add dynamic content. The SSI statement in line 30
is replaced with the contents of the file header.shtml. The word virtual in the SSI
refers to the include file’s path as it appears below the server’s root directory. This is often
referred to as a virtual path. SSIs can use file instead of virtual to indicate a physical
path relative to the directory of the current file on the server. For example, line 30 could be
rewritten as

 <!-- #include file = "includes\header.shtml"-->

which assumes that header.shtml is in the includes folder under the directory that
contains instantpage.asp on the server.

Not all Web servers support the available SSI commands. Therefore, SSI commands
are written as XHTML comments. SSI statements always execute before any scripting code
executes.
]

1 <% @LANGUAGE = VBScript %>
2
3 <%
4 ' Fig. 25.15 : instantpage.asp
5 ' ASP document that posts data to process.asp
6 Option Explicit
7 %>
8
9 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

10 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
11
12 <html xmlns = "http://www.w3.org/1999/xhtml">
13

Fig. 25.15Fig. 25.15Fig. 25.15Fig. 25.15 ASP that posts user information to process.asp (part 1 of 4).

iw3htp2_25.fm Page 850 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 851

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

14 <head>
15 <title>Instant Page Content Builder</title>
16
17 <style type = "text/css">
18 table { text-align: center;
19 font-size: 12pt;
20 color: blue;
21 font-size: 12pt;
22 font-family: arial, sans-serif }
23 </style>
24
25 </head>
26
27 <body>
28
29 <!-- include the header -->
30 <!-- #include virtual = "/includes/header.shtml" -->
31 <h2>Instant Page Content Builder</h2>
32
33 <% ' if process.asp posted an error, print the error
34 ' message.
35 If Session("errormessage") <> "no error" Then
36 Call Response.Write(Session("errorMessage"))
37 ' otherwise, print the welcome back message, if any
38 Else
39 Call Response.Write(Session("welcomeBack"))
40 End If
41
42 %>
43 <!-- a form to get the information from the user -->
44 <form action = "process.asp" method = "post">
45 <table>
46 <tr>
47 <td>Your Name: </td>
48
49 <td><input type = "text" size = "60"
50 name = "username" /></td>
51 </tr>
52
53 <tr>
54 <td>Enter the Filename:</td>
55
56 <td><input type = "text" size = "60"
57 name = "filename"
58 value = "yourfilename" /></td>
59 </tr>
60
61 <tr>
62 <td>Enter the Title:</td>
63
64 <td><input type = "text" size = "60"
65 name = "doctitle"
66 value = "document title" /></td>

Fig. 25.15Fig. 25.15Fig. 25.15Fig. 25.15 ASP that posts user information to process.asp (part 2 of 4).

iw3htp2_25.fm Page 851 Saturday, July 21, 2001 9:48 AM

852 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

67 </tr>
68
69 <tr>
70 <td>Enter the content:</td>
71
72 <td><textarea name = "content" rows = "3"
73 cols = "50">
74 Replace this text with the
75 information you would like to post.</textarea></td>
76 </tr>
77 </table>
78
79 <input type = "submit" value = "submit" />
80 <input type = "reset" value = "clear" />
81 </form>
82
83 <!-- #include virtual = "/includes/footer.shtml" -->
84 </body>
85 </html>

Fig. 25.15Fig. 25.15Fig. 25.15Fig. 25.15 ASP that posts user information to process.asp (part 3 of 4).

iw3htp2_25.fm Page 852 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 853

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 <!-- Fig. 25.16: header.shtml -->
2 <!-- Server-side include file containing XHTML -->
3 <hr style = "color: blue" />
4
5 <hr style = "color: blue" />

Fig. 25.16Fig. 25.16Fig. 25.16Fig. 25.16 File listing for header.shtml.

Fig. 25.15Fig. 25.15Fig. 25.15Fig. 25.15 ASP that posts user information to process.asp (part 4 of 4).

iw3htp2_25.fm Page 853 Saturday, July 21, 2001 9:48 AM

854 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

We also use an SSI in line 83 to include footer.shtml (Fig. 25.17).

Software Engineering Observation 25.3
Virtual paths hide the server’s internal file structure. 25.3

Session variable errorMessage is used in this example for error messages, and ses-
sion variable welcomeBack is used to display a “welcome back” message to a returning
user. The If statement on lines 35–40 tests if the value of session variable errorMes-
sage is not equal to "no error." If True, the value of session variable errorMes-
sage is written to the client in line 36. Otherwise, welcomeBack’s value is written to
the client. When the user first requests instantpage.asp, session variable
errorMessage does not have a value, and line 35 returns True. A session variable that
has not explicitly been given a value contains an empty string. Although line 36 is executed,
session variable errorMessage has no value, and thus line 36 does not print anything to
the client. Note that Session("errorMessage") never contains a value unless
process.asp encounters an error and transfers the user back to instantpage.asp.
A session variable’s value is set and retrieved using the Session object.

Line 44 requests Active Server Page process.asp when the form is posted. The
remainder of instantpage.asp is XHTML that defines the form input items and the
page footer.

Software Engineering Observation 25.4
Server-side includes may contain any type of information. Text files and XHTML files are two
of the most common server-side include files. 25.4

Software Engineering Observation 25.5
Server-side includes are performed before any scripting code is interpreted. Therefore, an Ac-
tive Server Page cannot decide dynamically which server-side includes are used and which are
not. Through scripting, an ASP can determine which SSI block is sent to the client. 25.5

Testing and Debugging Tip 25.2
Server-side includes that contain scripting code should enclose the scripting code in
<script> tags or in <% %> delimiters to prevent one block of scripting code from running
into another block of scripting code. 25.2

Software Engineering Observation 25.6
By convention, server-side include files end with the .shtml extension. 25.6

1 <!-- Fig. 25.17: footer.shtml -->
2 <!-- Server-side include file containing XHTML -->
3 <hr style = "color: blue" />
4 <a style = "text-align: center"
5 href = "mailto:orders">ordering information -
6 <a style = "text-align: center"
7 href = "mailto:editor">contact the editor

8 <hr style = "color: blue" />

Fig. 25.17Fig. 25.17Fig. 25.17Fig. 25.17 File listing for footer.shtml.

iw3htp2_25.fm Page 854 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 855

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Software Engineering Observation 25.7
Server-side includes are an excellent technique for reusing XHTML, Dynamic HTML, scripts
and other programming elements. 25.7

The document process.asp (Fig. 25.18) creates the user’s ASP document and pre-
sents a link to the user’s page. This page (process.asp) is requested by
instantpage.asp (line 44).

1 <% @LANGUAGE = VBScript %>
2
3 <%
4 ' Fig. 25.18 : process.asp
5 ' ASP document that creates user's ASP document
6 Option Explicit
7 %>
8
9 <%

10 Dim message, q
11
12 q = Chr(34) ' assign quote character to q
13 Session("errorMessage") = "no error"
14
15 ' check to make sure that they have entered a
16 ' valid filename
17 If (LCase(Request("filename")) = "yourfilename") _
18 Or Request("filename") = "" Then
19 message = "<p style = " & q & "color: red" & q & _
20 ">" & "Please enter a valid name or filename.</p>"
21 Session("errorMessage") = message
22 Call Server.Transfer("instantpage.asp")
23 End If
24
25 Dim directoryPath, filePath, fileObject, fileName
26
27 ' Create a FileSystem Object
28 Set fileObject = Server.CreateObject(_
29 "Scripting.FileSystemObject")
30
31 directoryPath = _
32 Request.ServerVariables("APPL_PHYSICAL_PATH")
33
34 fileName = Request("filename") & ".asp"
35
36 ' build path for text file
37 filePath = directoryPath & "\" & fileName
38
39 ' check if the file already exists
40 If fileObject.FileExists(filePath) Then
41 message = "<p style = " & q & "color: red" & q & _
42 ">" & "The file name is in use.
" & _
43 "Please use a different file name.</p>"

Fig. 25.18Fig. 25.18Fig. 25.18Fig. 25.18 ASP document that dynamically generates an ASP document (part 1 of 3).

iw3htp2_25.fm Page 855 Saturday, July 21, 2001 9:48 AM

856 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

44 Session("errorMessage") = message
45 Call Server.Transfer("instantpage.asp")
46 End If
47
48 ' save XHTML for the welcome back message
49 ' in a session variable
50 message = "<p style = " & q & "color: blue" & q & _
51 ">" & "Welcome Back, " & Request("username") & _
52 "</p>
"
53 Session("welcomeBack") = message
54
55 Dim header, footer, textFile, openMark, closeMark
56 openMark = "<" & "%"
57 closeMark = "%" & ">"
58
59 ' build the header.
60 ' vbCrLf inserts a carriage return/linefeed into the text
61 ' string which makes the XHTML code more readable
62 header = openMark & " @LANGUAGE = VBScript " & closeMark _
63 & vbCrLf & openMark & " ' " & fileName _
64 & " " & closeMark & vbCrLf & vbCrLf _
65 & "<!DOC" & "TYPE html PUBLIC " & q & _
66 "-//W3C//DTD XHTML 1.0 Transitional//EN" & q & _
67 vbCrLf & q & "http://www.w3.org/TR/xhtml1/" & _
68 "DTD/xhtml1-transitional.dtd" & q & ">" & vbCrLf & _
69 "<html xmlns = " & q & "http://www.w3.org/1999/xhtml" & _
70 q & ">" & vbCrLf & "<head>" & vbCrLf _
71 & "<meta name = " & q & "author" & q & " content = " _
72 & q & Request("username") & q & " />" & vbCrLf _
73 & "<meta name = " & q & "pubdate" & q & " content = " _
74 & q & Date() & q & " />" & vbCrLf _
75 & "<title>" & Request("doctitle") & "</title>" _
76 & vbCrLf & "</head>" & vbCrLf & "<body>" & vbCrLf _
77 & "<!-- #" & "include " & "virtual = " & _
78 "/includes/header.shtml -->" _
79 & vbCrLf & "<h2 style = " & q & "text-align: center" & _
80 q & ">" & Request("doctitle") & "</h2>" & _
81 vbCrLf & "
" & vbCrLf
82
83 ' build the footer using a different style for
84 ' building the string
85 footer = vbCrLf & "

" & vbCrLf & _
86 "You have requested this page on " & _
87 openMark & " =Date() " & closeMark & "," & _
88 vbCrLf & "at " & openMark & " =Time() " & _
89 closeMark & "." & vbCrLf & _
90 "<!-- #" & "include " & "virtual = " & _
91 "/includes/footer.shtml -->" _
92 & vbCrLf & vbCrLf & "</body>" & vbCrLf & "</html>"
93
94 ' create the ASP file
95 Set textFile = fileObject.CreateTextFile(filePath, False)

Fig. 25.18Fig. 25.18Fig. 25.18Fig. 25.18 ASP document that dynamically generates an ASP document (part 2 of 3).

iw3htp2_25.fm Page 856 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 857

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The If statement in line 17–18 validates the contents of field Enter the Filename.
If the field is empty or contains the default string yourfilename, lines 19–21 assign
XHTML text containing an error message to the variable message. Line 21 assigns the
value of variable message to session variable errorMessage.

Then, line 22 calls Server method Transfer to request instantpage.asp.
Session variable errorMessage is accessible by this ASP page.

If the user has entered a valid file name, an FSO object is created in lines 28–29 and
assigned to reference fileObject.

Lines 31–32 specify the path on the server where the ASP file eventually will be
written. We call Request method ServerVariables to retrieve the physical path.
Line 34 builds the file name by concatenating the file name specified by the user to the
.asp file extension. Similarly, line 37 builds the file path by concatenating the file name
to the directory path and assigns this value to variable filePath.

This filePath is passed to FSO method FileExists—which is called in line 40
to determine if the file exists. If it does exist, another user has already created an ASP doc-

96 With textFile
97 Call .WriteLine(header & Request("content") & _
98 footer)
99 Call .Close()
100 End With
101 %>
102
103 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
104 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
105
106 <html xmlns = "http://www.w3.org/1999/xhtml">
107
108 <head>
109 <!-- use the title given by the user -->
110 <title>File Generated: <% =fileName %></title>
111
112 <style type = "text/css">
113 h2 { font-family: arial, sans-serif;
114 text-align: center }
115 </style>
116
117 </head>
118
119 <body>
120 <!-- #include virtual = "/includes/header.shtml" -->
121 <h2>File <% =fileName %>
122 was created successfully.
123 </h2>

124
125 <!-- provide a link to the generated page -->
126 <a href = "<% =fileName %>">View your file
127 <!-- #include virtual = "/includes/footer.shtml" -->
128 </body>
129 </html>

Fig. 25.18Fig. 25.18Fig. 25.18Fig. 25.18 ASP document that dynamically generates an ASP document (part 3 of 3).

iw3htp2_25.fm Page 857 Saturday, July 21, 2001 9:48 AM

858 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

ument with the same file name. If this is the case, XHTML containing an error message is
set as the value of session variable errorMessage. Line 45 calls Server method
Transfer to request instantpage.asp.

Lines 50–53 assign XHTML for the “welcome back” message to session variable
welcomeBack. The format of the message is

Welcome back, X!

where X is the current user’s name obtained from the form’s username field.
Lines 56–57 assign the ASP scripting delimiters to string variables openMark and

closeMark. We use two strings instead of one to represent the opening and closing
delimiters (i.e., "<" & "%") because the interpreter treats the single string "<%" as a
scripting delimiter.

Next, we build the user’s ASP file. For clarity, we divide the file into three parts: a
header, a footer and the content (provided by the user in the form’s content field).

Lines 62–81 construct XHTML for the header and assign it to variable header.
VBScript constant vbCrLf is used to insert a carriage-return line-feed combination. The
form’s values are retrieved using the Request object. Lines 85–92 create the page’s
footer and assign it to variable footer.

Lines 95–100 write header, text area content’s text and footer to the text file
before closing it. Lines 103–129 send XHTML to the client that contains a link to the cre-
ated page. Figure 25.19 is a sample ASP file—named test.asp—created by Active
Server Page process.asp. [Note: We added lines 1–2 for presentation purposes.]. The
screen capture in Fig. 25.20 shows the message displayed when the user returns back to
instantpage.asp. The screen capture (Fig. 25.21) shows the error message generated
when the user does not change the default file name in the Enter the Filename field.

Another popular way to customize Web pages is via cookies. Cookies store informa-
tion on the client’s computer for retrieval later in the same browsing session or in future
browsing sessions. For example, cookies could be used in a shopping application to keep
track of the client’s shopping-cart items.

1 <% @LANGUAGE = VBScript %>
2 <% ' test.asp %>
3
4 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
5 "http://www.w3c.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
6 <html xmlns = "http://www.w3.org/1999/xhtml">
7 <head>
8 <meta name = "author" content = "tem" />
9 <meta name = "pubdate" content = "2/27/2001" />

10 <title>XML How to Program</title>
11 </head>
12 <body>
13 <!-- Fig. 25.16: header.shtml -->
14 <!-- Server-side include file containing XHTML -->
15 <hr style = "color: blue" />
16

Fig. 25.19Fig. 25.19Fig. 25.19Fig. 25.19 XHTML document generated by process.asp (part 1 of 2).

iw3htp2_25.fm Page 858 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 859

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Cookies are small files sent by an Active Server Page (or another similar technology,
such as Perl—discussed in Chapter 27) as part of a response to a client. Every HTTP-based
interaction between a client and a server includes a header that contains information about
either the request (when the communication is from the client to the server) or the response
(when the communication is from the server to the client). When an Active Server Page
receives a request, the header includes the request type (e.g., get or post) and cookies
stored on the client machine by the server. When the server formulates its response, the
header information includes any cookies the server wants to store on the client computer.

Software Engineering Observation 25.8
Some clients do not allow cookies to be written on their machine. A refusal to accept cookies
may prevent the client from being able to use the Web site that attempted to write the cookie. 25.8

Depending on the maximum age of a cookie, the Web browser either maintains the
cookie for the duration of the browsing session (i.e., until the user closes the Web browser)
or stores the cookie on the client computer for future use. When the browser makes a
request to a server, cookies previously sent to the client by that server are returned to the
server (if the cookies have not expired) as part of the request formulated by the browser.
Cookies are automatically deleted when they expire (i.e., reach their maximum age). We
use cookies in Section 25.8 to store user IDs.

25.8 Accessing a Database from an Active Server Page
Active Server Pages can communicate with databases through ADO (ActiveX Data Ob-
jects—introduced in Chapter 22). ADO provides a uniform way for a program to connect with
a variety of databases without having to deal with the specifics of those database systems.

17 <hr style = "color: blue" />
18 <h2 style = "text-align: center">XML How to Program</h2>
19

20
21 The authoritative Deitel™ Live-Code™
22 introduction to XML-based systems development.
23 ISBN 0-13-028417-3
24
25

26 You have requested this page on 2/27/2001,
27 at 10:14:44 PM.
28 <!-- Fig. 25.17: footer.shtml -->
29 <!-- Server-side include file containing XHTML -->
30 <hr style = "color: blue" />
31 <a style = "text-align: center"
32 href = "mailto:orders">ordering information -
33 <a style = "text-align: center"
34 href = "mailto:editor">contact the editor

35 <hr style = "color: blue" />
36
37 </body>
38 </html>

Fig. 25.19Fig. 25.19Fig. 25.19Fig. 25.19 XHTML document generated by process.asp (part 2 of 2).

iw3htp2_25.fm Page 859 Saturday, July 21, 2001 9:48 AM

860 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Fig. 25.20Fig. 25.20Fig. 25.20Fig. 25.20 Welcome back message displayed by instantpage.asp.

Fig. 25.21Fig. 25.21Fig. 25.21Fig. 25.21 Error message generated by instantpage.asp.

iw3htp2_25.fm Page 860 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 861

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Web applications are typically three-tier distributed applications, consisting of a user
interface, business logic and database access. The user interface in such an application is
often created using XHTML, Dynamic HTML or XML. The user interface can contain
ActiveX controls, client-side scripts and, in some cases, Java applets. XHTML is the pre-
ferred mechanism for representing the user interface in systems where portability is a con-
cern. Because most browsers support XHTML, designing the user interface to be accessed
through a Web browser guarantees portability across all browser platforms. The user inter-
face can communicate directly with the middle-tier business logic by using the networking
provided automatically by the browser. The middle tier can then access the database to
manipulate the data. All three tiers may reside on separate computers that are connected to
a network or on a single machine.

In multi-tier architectures, Web servers are increasingly used to build the middle tier.
They provide the business logic that manipulates data from databases and that communi-
cates with client Web browsers. Active Server Pages, through ADO, can interact with pop-
ular database systems. Developers do not need to be familiar with the specifics of each
database system. Rather, developers use SQL-based queries, and ADO handles the spe-
cifics of interacting with each database system through OLE DB.

Databases enhance applications by providing a data source that can be used to dynam-
ically generate Web pages. Figure 25.15 (instantpage.asp) puts the power of Web
page creation into the hands of individuals who are not familiar with XHTML or ASP.
However, we may want only a certain subset of pre-approved users to be able to access
instantpage.asp. To restrict access, we use password protection. [Note: The example
presented here is IIS specific. PWS users should use the version in the Chapter 25 examples
directory (on the CD-ROM that accompanies this book). Separate files are included on the
CD for users running Personal Web Server.] Before executing this example, an ODBC
System DSN for this database must be created. See the “Setting up a System Data Source
Name” at www.deitel.com.

Fig. 25.22 (database.asp) is an ASP document used to connect to and query an
Access database.

1 <% @LANGUAGE = VBScript %>
2
3 <%
4 ' Fig. 25.22 : database.asp
5 ' ASP document for interacting with the database
6 Option Explicit
7
8 Dim connection, loginData
9

10 ' provide error handling code
11 On Error Resume Next
12 Session("errorString") = ""
13
14 Set connection = Server.CreateObject("ADODB.Connection")
15 Call connection.Open("login")
16 Call errorHandlerLog()
17

Fig. 25.22Fig. 25.22Fig. 25.22Fig. 25.22 ASP document for connecting to a database (part 1 of 2).

iw3htp2_25.fm Page 861 Saturday, July 21, 2001 9:48 AM

862 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

For simplicity, if an error occurs while the records are being retrieved, we choose to
handle the error later in the script. Line 11 specifies that any error caused by a statement
from this point onward is ignored, and control is transferred to the statement immediately
following the statement that caused the error. Line 12 declares session variable error-
String and assigns it an empty string as its value.

 The Server object provides a method (CreateObject) to instantiate other objects
(e.g., built-in objects, ActiveX components, etc.). Line 14 calls Server method Cre-
ateObject to create an ADODB.Connection object and Sets it to reference con-
nection. An ADODB.Connection object encapsulates the functionality necessary to
connect to a data source. Line 15 calls method Open to open the database referenced by the
specified ODBC System DSN (i.e., login).

Line 16 calls procedure errorHandlerLog to process any errors that might have
occurred in the script. Lines 25–36 define procedure errorHandlerLog. When an error
occurs in the script, Err object’s Number property contains an integer representing which
VBScript error has occurred. Line 26 tests if an error has occurred. If True, lines 27–34
assign XHTML text containing the error number and a message to session variable
errorString.

Lines 19–20 Set reference loginData to an ADODB.Recordset object and call
method Open to execute the query (passed by login.asp) against the database refer-
enced by connection. Method Open is passed a string containing the SQL query and
the ADODB.Connection object that connection references. When Open finishes
executing, the ADODB.Recordset object referenced by loginData contains all
records that match the SQL query and points to either the first record or end of file (EOF)
if no records were found.

Line 21 Sets session variable loginData to variable loginData referencing the
ADODB.Recordset object containing all records that matched the SQL query. Line 23

18 ' create the record set
19 Set loginData = Server.CreateObject("ADODB.Recordset")
20 Call loginData.Open(Session("query"), connection)
21 Set Session("loginData") = loginData
22
23 Call errorHandlerLog()
24
25 Sub errorHandlerLog()
26 If Err.Number <> 0 Then
27 Dim errorString
28
29 errorString = Session("errorString")
30 errorString = errorString & "<p class = " & _
31 Chr(34) & "error" & Chr (34) & ">Error (" _
32 & Err.Number & ") in " & Err.Source & "
" & _
33 Err.Description & "</p>
"
34 Session("errorString") = errorString
35 End If
36 End Sub
37 %>

Fig. 25.22Fig. 25.22Fig. 25.22Fig. 25.22 ASP document for connecting to a database (part 2 of 2).

iw3htp2_25.fm Page 862 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 863

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

calls procedure errorHandlerLog for a second time. Note that in line 30 the error
number and message are concatenated to variable errorString to ensure that error
information is added to previous errors the script has encountered. In Fig. 25.26, we show
a sample error.

Fig. 25.23 provides an Active Server Page named login.asp, which prompts the
user for a login name and password. The login names and passwords are stored in the
Access database opened in database.asp.

1 <% @LANGUAGE = VBScript %>
2
3 <%
4 ' Fig. 25.23 : login.asp
5 ' ASP document to login to instantpage.asp
6 Option Explicit
7
8 ' create the SQL query
9 Session("query") = "SELECT loginID FROM Users"

10 Call Server.Execute("database.asp")
11 %>
12
13 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
14 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
15
16 <html xmlns = "http://www.w3.org/1999/xhtml">
17
18 <head>
19 <title>Login Page</title>
20
21 <style type = "text/css">
22 table { text-align: center;
23 font-size: 12pt;
24 color: blue;
25 font-size: 12pt;
26 font-family: arial, sans-serif }
27 .error { color: red }
28 </style>
29
30 </head>
31
32 <body>
33
34 <!-- #include virtual="/includes/header.shtml" -->
35 <%
36 If Session("errorString") = "" Then
37 ' if this is a return after a failed attempt,
38 ' print an error
39 If Session("loginFailure") = True Then %>
40 <p class = "error">Login attempt failed,
41 please try again</p>
42 <% End If
43

Fig. 25.23Fig. 25.23Fig. 25.23Fig. 25.23 ASP document that allows the user to log into a site (part 1 of 4).

iw3htp2_25.fm Page 863 Saturday, July 21, 2001 9:48 AM

864 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

44 ' begin the form %>
45 <p>Please select your name and enter
46 your password to login:</p>

47
48 <form action = "submitlogin.asp" method = "post">
49
50 <!-- format the form using a table -->
51 <table border = "0">
52 <tr>
53 <td>Name:</td>
54
55 <td>
56 <select name = "loginID">
57 <option value = "noSelection">
58 Select your name</option>
59
60 <%
61 If Request.Cookies("loginID") <> "" Then
62 Call BuildReturning()
63 Else
64 Call BuildNewUser()
65 End If
66 %>
67 </select>
68 </td>
69 </tr>
70
71 <tr>
72 <td>Password:</td>
73 <td><input type = "password"
74 name = "password" /></td>
75 </tr>
76
77 <tr>
78 <td></td>
79 <td align = "left">
80 <input type = "submit" value = "Log Me In" />
81 </td>
82 </tr>
83 </table>
84 </form>
85
86 <!-- #include virtual="/includes/footer.shtml" -->
87 <%
88 Else
89 Call Response.Write(Session("errorString"))
90 End If
91 %>
92 </body>
93 </html>
94
95 <%
96 ' builds the option items for loginIDs and writes

Fig. 25.23Fig. 25.23Fig. 25.23Fig. 25.23 ASP document that allows the user to log into a site (part 2 of 4).

iw3htp2_25.fm Page 864 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 865

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

97 ' selected for the loginID of the returning user
98 Sub BuildReturning()
99 Dim found, loginData
100
101 Set loginData = Session("loginData")
102
103 ' pull user names from the record set to populate the
104 ' dropdown list
105 found = False
106
107 While Not loginData.EOF
108 ' create this record's dropdown entry
109 %> <option
110 <% ' if we did not write selected for any option
111 ' before
112 If (Not found) Then
113
114 ' if the current record's loginID is equal to
115 ' the loginID cookie, then it is the loginID of
116 ' the returning user, and thus we need to write
117 ' selected for this option; in this case we also
118 ' need to signal that we have written selected
119 ' for an option by setting found to True.
120 If Request.Cookies("loginID") _
121 = loginData("loginID") Then
122 Call Response.Write("selected = " & _
123 Chr(34) & "selected" & Chr(34))
124 found = True
125 End If
126 End If
127 %> value = "<% =loginData("loginID") %>">
128 <% =loginData("loginID") %></option>
129 <% Call loginData.MoveNext()
130 Wend
131 End Sub
132
133 ' builds the option items for loginIDs without writing
134 ' selected for any loginID
135 Sub BuildNewUser()
136 Dim loginData
137
138 Set loginData = Session("loginData")
139
140 ' pull user names from the record set to populate the
141 ' dropdown list
142 While Not loginData.EOF
143 ' create this record's dropdown entry
144 %> <option value = "<% =loginData("loginID") %>">
145 <% =loginData("loginID") %></option>
146 <% Call loginData.MoveNext()
147 Wend
148 End Sub
149 %>

Fig. 25.23Fig. 25.23Fig. 25.23Fig. 25.23 ASP document that allows the user to log into a site (part 3 of 4).

iw3htp2_25.fm Page 865 Saturday, July 21, 2001 9:48 AM

866 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

This example uses cookies to identify users. The user’s browser must have cookies
enabled to run this example. If cookies are disabled, the browser will not permit the
example to write a cookie to the client machine, and the example will not be able to identify
the user properly. Cookies are enabled in Internet Explorer 5.5 by selecting Internet
Options from the Tools menu, which displays the Internet Options dialog. Click the
Security tab at the top of this dialog to view the current security settings. Select the
Custom Level... button, scroll down and find Cookies, then click Enable for both
cookie options.

Fig. 25.23Fig. 25.23Fig. 25.23Fig. 25.23 ASP document that allows the user to log into a site (part 4 of 4).

iw3htp2_25.fm Page 866 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 867

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The Active Server Page login.asp prompts the user for a login ID and a password
while submitlogin.asp is responsible for validating the user’s login. Both submit-
login.asp and login.asp use session variable loginFailure. If login is suc-
cessful, loginFailure is set to False, and the client is transferred to
instantpage.asp. If login is unsuccessful, the variable is set to True and the client is
transferred back to login.asp. The page recognizes that there was an error in submit-
login.asp and displays the error message, because login.asp has access to session
variable loginFailure.

The loginID and password fields are stored in table Users inside an Access data-
base named login.mdb. For this example to perform correctly, use for username and
password: bug1, bug2, bug3 or bug4. Users select their loginID from a drop-down list
populated from the Users table. Note that submitlogin.asp also accesses the data-
base to verify login information.

The file submitlogin.asp writes a cookie (named loginID) to the client con-
taining the user’s loginID string to recognize returning users and to have their loginID
displayed as selected in the drop-down list. When the user returns, login.asp reads the
cookie and selects the user’s login name from the drop-down list.

 Line 9 assigns the SQL query that SELECTs all the loginIDs FROM the Users
table to session variable query. We use this session variable in database.asp (Fig.
25.22) as a parameter in method Open to query the database for each login ID. Line 10 exe-
cutes database.asp to retrieve the login IDs from the database.

Line 36 tests if session variable errorString has an empty string as its value. Ses-
sion variable errorString will have an empty string as its value unless an error has
occurred in database.asp. If this returns False, line 89 calls Response method
Write to print the error message to the user.

Lines 39–86 are executed only if database.asp has not returned an error. Lines
39–41 determine whether or not the session variable loginFailure is True, indicating
that submitlogin.asp has detected an invalid login. If True, a message is displayed
informing the client that the login attempt failed and prompting for another login.

The select structure is included to build the drop-down list of loginIDs. Lines
57–58 write the first option that displays, “Select your name.” If no other option is
marked as selected, this option is displayed when the page is loaded. The next
options are the loginIDs retrieved from the database. If this is a returning user, we
want to display the loginID as selected.

Line 61 requests the loginID cookie. If this is the user’s first visit, or if the cookie
has expired, Cookie returns an empty string. [Note: It is possible for a cookie to store an
empty string. If this is the case, Cookie returns the cookie contents, which is an empty
string.] Otherwise, the user’s loginID is returned. Lines 61–65 call BuildReturning
if loginID contains a login ID and call BuildNewUser. Both BuildReturning and
BuildNewUser build the login ID options. However, BuildReturning selects the
returning user’s login ID option while BuildNewUser does not.

BuildReturning’s While loop (lines 107–130) iterates through loginData’s
records. Recall that loginData contains the loginID column (field) of the Users
table from line 101 and points either to the first record or to EOF. Line 107 tests for the end
of the record set, indicating that there are no further records. Line 129 increments the record
set pointer to the next record.

iw3htp2_25.fm Page 867 Saturday, July 21, 2001 9:48 AM

868 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Each iteration of the While loop builds an option item for the current record. Line
109 simply writes the opening of the option item. Next, we test whether this option
needs to be selected with the If statement in lines 120–125. Note that once we have
written selected for an option, there is no need to perform this check in further iter-
ations—selected is written for only one option. The code that writes selected for
an option is thus wrapped in another If statement (lines 112–126). Variable found is set
to False before the loop, in line 105. Once selected is written for an option, found
is assigned True. Line 112 prevents the code that writes selected for an option from
being executed unnecessarily after an option is already selected. Lines 120–121 deter-
mine whether the current record’s loginID field is equal to the value of the loginID
cookie. If so, lines 122–124 write selected and set found to True.

Line 127 sets the value for the option to the current loginID. Finally, line 128
writes the display of this option as the current loginID.

Active Server Page submitlogin.asp (Fig. 25.24) takes the values passed to it by
login.asp and checks the values against the Users table in the database. If a match is
found, the user is redirected to instantpage.asp. If no match is found, the user is redi-
rected back to login.asp. The user never sees or knows about submitlogin.asp
because the page is pure scripting code (i.e., its entire contents are enclosed in scripting
delimiters).

1 <% @LANGUAGE = VBScript %>
2
3 <% ' Fig. 25.24 : submitlogin.asp
4 ' ASP document to check user's username and password
5 Option Explicit
6
7 ' test if a user name and a password were
8 ' entered. If not, transfer back to the login page.
9 If Request("password") = "" Or _

10 Request("loginID") = "noSelection" Then
11 Session("loginFailure") = True
12 Call Server.Transfer("login.asp")
13 End If
14
15 Dim connection, loginData
16
17 ' create the SQL query
18 Session("query") = _
19 "SELECT * FROM Users WHERE loginID = '" & _
20 Request("loginID") & "'"
21
22 Call Server.Execute("database.asp")
23 Set loginData = Session("loginData")
24
25 If Request("password") = loginData("password") Then
26
27 ' password is OK, adjust loginFailure
28 Session("loginFailure") = False
29

Fig. 25.24Fig. 25.24Fig. 25.24Fig. 25.24 ASP document that validates user login (part 1 of 2).

iw3htp2_25.fm Page 868 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 869

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

30 ' write a cookie to recognize them the next time they
31 ' go to login.asp
32 Response.Cookies("loginID") = Request("loginID")
33
34 ' give it three days to expire
35 Response.Cookies("loginID").Expires = Date() + 3
36
37 ' send them to instantpage.asp
38 Call Server.Transfer("instantpage.asp")
39 Else
40 Session("loginFailure") = True
41 Call Server.Transfer("login.asp")
42 End If
43 %>

Fig. 25.24Fig. 25.24Fig. 25.24Fig. 25.24 ASP document that validates user login (part 2 of 2).

iw3htp2_25.fm Page 869 Saturday, July 21, 2001 9:48 AM

870 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 9–13 check whether the form’s password field is empty or if the loginID
field was submitted with the default value. If so, session variable loginFailure is set
to True and the client is redirected back to login.asp.

Lines 18–20 select all the fields from the table. The WHERE clause in this SQL state-
ment specifies a condition on which records are selected: Only the record(s) whose log-
inID field has the same value as the form’s loginID field are selected. Also note that
this SQL statement always finds a record because the form’s loginID values are retrieved
from the Users’ loginID field. For example, if loginID bug1 is selected, then ses-
sion variable query contains

SELECT * FROM Users WHERE loginID = 'bug1'

Line 22 calls Server method Execute to execute database.asp to query the
database for the login ID that the user has submitted. Line 23 sets reference loginData
to session variable loginData set in database.asp containing the records that have
matched our query.

Line 25 checks the password against the password from the record set. Note that the
submitted loginID is a valid login ID that was selected from the drop-down list. Thus,
we only need to check the password to validate a login. If correct, line 32 writes the form’s
loginID value as a cookie named loginID.

Line 28 sets the value of session variable loginFailure to False because the
password has been validated. Line 35 sets the expiration date of this cookie to the current
date plus three days. If we do not set an expiration date for the cookie when we create it, it
is treated as a session cookie (i.e., it is destroyed when the browser is closed). [Note: If an
existing cookie’s content is updated, then the expiration date needs to be set again. Other-
wise, the cookie is destroyed at the end of the session regardless of the expiration date it
had before the update.] The cookie remains on the client’s machine until the cookie expires,
at which time the browser deletes it.

 Next, line 38 calls Server method Transfer to redirect the client to
instantpage.asp. Otherwise, the session variable loginFailure is set to True,
and the client is redirected back to login.asp (lines 40–41).

25.9 Server-Side ActiveX Components
Server-side script functionality is extended with server-side ActiveX components—
ActiveX controls that typically reside on the Web server and do not have a graphical user
interface. These components make features accessible to the ASP author. Figure 25.27
summarizes some of the ActiveX components included with Internet Information Servic-
es (IIS).

Visit

msdn.microsoft.com/library/default.asp?url=/library/en-us/
iisref/html/psdk/asp/comp275c.asp

 for more information about Web server technologies.

iw3htp2_25.fm Page 870 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 871

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Fig. 25.25Fig. 25.25Fig. 25.25Fig. 25.25 Cookies folder before and after cookie creation.

Fig. 25.26Fig. 25.26Fig. 25.26Fig. 25.26 Error messages sent to login.asp by database.asp.

iw3htp2_25.fm Page 871 Saturday, July 21, 2001 9:48 AM

872 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Software Engineering Observation 25.9
If the scripting language you are using in an Active Server Page does not support a certain
feature, an ActiveX server component can be created using Visual C++, Visual Basic, Del-
phi, etc., to provide that feature. 25.9

Many Web sites sell advertising space—especially Web sites with large numbers of
hits. The code in Fig. 25.28 demonstrates the AdRotator ActiveX component for rotating
advertisements on a Web page. Each time a client requests this Active Server Page, the
AdRotator component randomly displays one of several advertisements—in this example,
one of five flag images. When the user clicks a country’s flag image, the country’s corre-
sponding Central Intelligence Agency (CIA) Fact book Web page is displayed. [Note: The
example presented here is IIS specific. PWS users should use the version in the Chapter 25
examples directory (on the CD-ROM that accompanies this book). Separate files are
included on the CD for users running Personal Web Server.]

Line 29 creates an instance of an AdRotator component and assigns it to reference
rotator. Server-side ActiveX components are instantiated by passing the name of the
component as a string to the Server object’s method CreateObject.

Lines 32–33 call the Response object’s Write method to send the advertisement as
HTML to the client. Method GetAdvertisement is called using reference rotator
to get the advertisements from the file config.txt (Fig. 25.29).

Performance Tip 25.1
Server-side ActiveX components usually execute faster than their scripting language equiva-
lents. 25.1

Component Name Description

MSWC.BrowserType ActiveX component for gathering information about the
client’s browser (e.g., type, version, etc.).

MSWC.AdRotator ActiveX component for rotating advertisements on a
Web page.

MSWC.NextLink ActiveX component for linking Web pages together.

MSWC.ContentRotator ActiveX component for rotating HTML content on a
Web page.

MSWC.PageCounter ActiveX component for storing the number of times a
Web page has been requested.

MSWC.Counters ActiveX components that provide general-purpose
persistent counters.

MSWC.MyInfo ActiveX component that provides information about a
Web site (e.g., owner name, owner address, etc.).

Scripting.FileSystemObject ActiveX component that provides an object library for
accessing files on the server or on the server’s network.

ActiveX Data Objects (ADO) Data
Access Components

ActiveX components that provide an object library
for accessing databases.

Fig. 25.27Fig. 25.27Fig. 25.27Fig. 25.27 Some server-side ActiveX components.

iw3htp2_25.fm Page 872 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 873

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 <% @LANGUAGE = VBScript %>
2
3 <%
4 ' Fig. 25.28 : component.asp
5 ' Demonstrating Server-side ActiveX Components
6 Option Explicit
7 %>
8
9 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

10 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
11
12 <html xmlns = "http://www.w3.org/1999/xhtml">
13
14 <head>
15 <title>ActiveX Component Example</title>
16 </head>
17
18 <body>
19
20 <strong style = "font-family: arial, sans-serif">
21 Server-side ActiveX Components
22
23
24 <p>
25 <%
26 Dim rotator, browser, information, counter
27
28 ' create an AdRotator object
29 Set rotator = Server.CreateObject("MSWC.AdRotator")
30
31 ' use config.txt to send an advertisement to the client
32 Call Response.Write(_
33 rotator.GetAdvertisement("config.txt"))
34
35 ' create a BrowserType object
36 Set browser = Server.CreateObject("MSWC.BrowserType")
37
38 If browser.VBScript = True Then
39 %>
40 <script language = "VBScript">
41 Call Msgbox("Client browser supports VBScript!")
42 </script>
43 <%
44 End If
45
46 If browser.JavaScript = True Then
47 %>
48 <script language = "JavaScript">
49 alert("Client browser supports JavaScript!");
50 </script>
51 <%
52 End If
53

Fig. 25.28Fig. 25.28Fig. 25.28Fig. 25.28 Demonstrating server-side ActiveX components (part 1 of 4).

iw3htp2_25.fm Page 873 Saturday, July 21, 2001 9:48 AM

874 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

54 ' get client's browser information
55 information = "<p>Your browser information is:
" & _
56 Request.ServerVariables("HTTP_USER_AGENT") & _
57 "
Browser: " & browser.Browser & " Version: " & _
58 browser.Version & " Minor version: " & _
59 browser.MinorVer & "
Cookies are "
60
61 If browser.Cookies Then
62 information = information & "enabled</p>
"
63 Else
64 information = information & "disabled</p>
"
65 End If
66
67 Call Response.Write(information)
68
69 ' create Page Counter Object
70 Set counter = Server.CreateObject("MSWC.PageCounter")
71 Call counter.PageHit() ' page has been "hit"
72 %>
73 </p>
74
75 <p style = "color: blue; font-size: 12pt">
76 This page has been visited <% =counter.Hits() %>
77 times!</p>
78 </body>
79 </html>

Fig. 25.28Fig. 25.28Fig. 25.28Fig. 25.28 Demonstrating server-side ActiveX components (part 2 of 4).

iw3htp2_25.fm Page 874 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 875

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Fig. 25.28Fig. 25.28Fig. 25.28Fig. 25.28 Demonstrating server-side ActiveX components (part 3 of 4).

iw3htp2_25.fm Page 875 Saturday, July 21, 2001 9:48 AM

876 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 REDIRECT redirect.asp
2 width 54
3 height 36
4 border 1
5 *
6 /images/us.gif
7 http://www.odci.gov/cia/publications/factbook/geos/us.html
8 United States Information
9 20

10 /images/france.gif
11 http://www.odci.gov/cia/publications/factbook/geos/fr.html
12 France Information
13 20
14 /images/germany.gif
15 http://www.odci.gov/cia/publications/factbook/geos/gm.html
16 Germany Information
17 20
18 /images/italy.gif
19 http://www.odci.gov/cia/publications/factbook/geos/it.html
20 Italy Information
21 20
22 /images/spain.gif
23 http://www.odci.gov/cia/publications/factbook/geos/sp.html
24 Spain Information
25 20

Fig. 25.29Fig. 25.29Fig. 25.29Fig. 25.29 File config.txt that describes the advertisements.

Fig. 25.28Fig. 25.28Fig. 25.28Fig. 25.28 Demonstrating server-side ActiveX components (part 4 of 4).

iw3htp2_25.fm Page 876 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 877

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Software Engineering Observation 25.10
The AdRotator ActiveX component allows the page author to minimize the amount of space
on a Web page committed to advertisements, while at the same time maximizing the number
of advertisements to display. 25.10

Portability Tip 25.2
Because the AdRotator ActiveX component is executed on the server, clients do not directly
interact with the component and, therefore, do not have to support ActiveX technologies. 25.2

The file’s header (lines 1–4) includes the URL of the REDIRECT file, redi-
rect.asp (Fig. 25.30), the image height, image width and image border width.
The asterisk (line 5) separates the header from the advertisements. Lines 6–9 describe the
first advertisement by providing the image’s URL (the image’s location), the destination
URL for redirection upon clicking the ad, a value for the alt tag (browsers that cannot dis-
play graphics display the specified text) and a number (between 0 and 1000) representing
the ratio of time this particular image appears. The ratios must be numbers between 0 and
10,000. For example, if four ads have the ratios 6, 9, 12 and 3, then the time ratios are cal-
culated as 20% (6/30), 30% (9/30), 40% (12/30) and 10% (3/30), respectively. Lines 10–
25 list the other four advertisements. [Note: If you are executing this example, copy
config.txt to the Deitel virtual directory you created in Section 25.3.]

File redirect.asp (Fig. 25.30) redirects the user to the country page when the ad
is clicked. Each time the ad is clicked, the document redirect.asp is requested and a
query string is sent with the request. The query string contains an attribute url that is equal
to the destination URL found in config.txt for this ad. Because we are redirecting the
user to a different page on the client rather than the server, we call Response method
Redirect to redirect the user to the country page. For example, click the U.S. flag. The
resulting behavior is equivalent to typing

http://localhost/Deitel/redirect.asp?url=http://www.odci.gov/
cia/publications/factbook/us.html

in the browser’s Address field.
We arbitrarily chose the names config.txt and redirect.asp. You may

choose any name you prefer. The redirect file loads (into the browser) the page referenced
by the ad’s URL. These files can be placed anywhere in the publishing directory (i.e., they
do not have to be under the same directory as rotate.asp). For example, if you put
config.txt under directory X in the publishing directory, then Fig 25.28 lines 32–33
would read

1 <% @LANGUAGE = VBScript %>
2
3 <%
4 ' Fig. 25.30 : redirect.asp
5 ' Redirection Page for AdRotator Component
6 Option Explicit
7
8 Call Response.Redirect(Request("url"))
9 %>

Fig. 25.30Fig. 25.30Fig. 25.30Fig. 25.30 Code listing for redirect.asp.

iw3htp2_25.fm Page 877 Saturday, July 21, 2001 9:48 AM

878 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Call Response.Write(_
 flagChanger.GetAdvertisement("/X/config.txt"))

Note that GetAdvertisement is passed a URL, not a physical disk path. Hence the use
of the forward slash. Also note that /X/config.txt is short for http://local-
host/X/config.txt (the server is localhost and the publishing directory is
C:\Inetpub\Wwwroot). You can replace localhost with the IP address
127.0.0.1, which also refers to the local machine.

Because Web servers respond to a variety of clients, an ASP document often needs to
determine who the client is and what features it supports. Line 36 (Fig. 25.28) creates a
BrowserType object to obtain information about the client’s browser. Line 38 checks
property VBScript’s value to determine if it is True. If so, the block (lines 48–50) are
written to the client. Lines 46–52 test the JavaScript property.

Line 56 passes the server variable key HTTP_USER_AGENT to ServerVariables
to obtain a string containing the client’s information. The BrowserType object’s
Browser, Version and MinorVer properties (lines 57–59) may also be used to obtain
similar client information. Line 61 tests the Cookies property’s value to determine if the
browser supports cookies.

Many popular Web sites display a “hit” counter that shows how many visitors the site
has had. IIS provides the PageCounter ActiveX component for storing the number of
“hits.” Method PageHit (line 71) increments the number of “hits” by one, and method
Hits (line 76) returns the number of “hits.”

25.10 Internet and World Wide Web Resources
msdn.microsoft.com/workshop/c-frame.htm?/workshop/server/asp/
ASP-over.asp
This Web site is arguably the best ASP resource on the Web. This page, part of the Microsoft Devel-
opers Network, provides an introduction to ASP technologies.

msdn.microsoft.com/workshop/server/asp/asptutorial.asp
This site is the starting page of an ASP tutorial provided by the Microsoft Developers Network. It is
one of the most comprehensive ASP tutorials on the Web.

support.microsoft.com/support/default.asp?SD=SO&PR=asp
This site, located on the Microsoft Personal Online Support Network, should be your first stop when
you are having trouble or are curious about an aspect of ASP. In addition to providing links to other
useful help sites, the site also includes a collection of links to ASP technical resources.

www.tcp-ip.com
The ASP Toolbox home page is an excellent source for ASP information and resources. The site con-
tains numerous links to free components and other resources helpful in Web development using Ac-
tive Server Pages. The site tutorials include an overview of Active Server technology as well as
helpful hints and demos with source code. Other features of this page include ASP discussion forums
and resources.

www.4guysfromrolla.com/webtech/index_asp.shtml
Contains FAQs, ASP-related articles, coding tips, message boards, etc.

www.aspin.com/index
Contains ASP resources including applications, books, forums, references, examples and tutorials,
links, etc.

iw3htp2_25.fm Page 878 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 879

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

www.kamath.com/default.asp
Contains downloads, FAQs, tutorials, book excerpts, columns, etc.

www.aspwatch.com
Contains ASP-related articles and code examples.

www.developer.com
Great source of information for developers. The ASP section contains working code, troubleshooting
techniques and advice.

www.paessler.com/tools/ASPBeautify
Home of a tool that formats ASP pages for readability.

www.asptoday.com
ASPToday contains articles on ASP along with discussion pages and code.

html.about.com/compute/html/msubasp.htm
This page has a list of links to many ASP-related resources on the Web. The site’s links range from
FAQs pages to tutorials to descriptions of advanced aspects of ASP. The page is a good place to start
if you are interested in finding out more about specific ASP-related technologies.

www.w3schools.com/asp
This site is the home of a number of comprehensive ASP tutorials. Topic categories range from ASP
objects to general syntax usage. The page is a great place to go to if you are unclear on any individual
aspect of ASP programming. Examples are provided at the site.

www.w3scripts.com/asp
This site is the home page of an ASP script repository written to teach different aspects of ASP pro-
gramming. All script example screens are split into two parts: the script being demonstrated and the
script’s output. It is a useful site for all levels of ASP programmers.

msdn.microsoft.com/library/default.asp?url=/library/en-us/iisref/
html/psdk/asp/comp275c.asp
MSDN site that provides descriptions and links for many server-side ActiveX components.

SUMMARY
• Active Server Pages are processed by an ActiveX component (i.e., a server-side ActiveX control)

called a scripting engine.

• An ASP file has the file extension.asp and contains XHTML tags and scripting code.

• Although other languages, like JavaScript, can be used for ASP scripting, VBScript is the most
widely used.

• ASP is a Microsoft-specific technology for sending dynamic Web content to the client—which in-
cludes XHTML, Dynamic HTML, ActiveX controls, client-side scripts and Java applets (i.e., cli-
ent-side Java programs that are embedded in a Web page).

• An Active Server Page processes the request (which often includes interacting with a database)
and returns the results to the client—normally in the form of an XHTML document, but other data
formats (e.g., images, binary data, etc.) can be returned, as well.

• When a client requests an ASP document, it is loaded into memory and parsed (top to bottom) by
a scripting engine named asp.dll. Script code is interpreted as it is encountered.

• Active Server Pages provide several built-in objects to offer programmers straightforward meth-
ods for communicating with a Web browser, gathering data sent by an HTTP request and distin-
guishing between users.

iw3htp2_25.fm Page 879 Saturday, July 21, 2001 9:48 AM

880 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• The Request object is commonly used to access the information passed by a get or post request.
The Request object also provides access to “cookies,” which are stored on a client’s machine.

• The Response object sends information such as XHTML, text, etc. to the client.

• The Server object provides access to methods and properties on the server.

• Scripting delimiters <% and %> wrapped around the VBScript code indicate that the scripting code
is executed on the server, not the client.

• The optional @LANGUAGE processing directive indicates the scripting engine needed to interpret
the scripting code.

• The Request object retrieves the form data posted to an ASP document.

• File System Objects (FSOs) provide the programmer with the ability to manipulate files, directo-
ries and drives. FSOs also allow the programmer to read and write text and are an essential element
for Active Server Pages that persist data.

• FSOs are objects in the Microsoft Scripting Runtime Library. FSO types include: FileSyste-
mObject, File, Folder, Drive and TextStream.

• The programmer can use FileSystemObjects to create directories, move files, determine
whether a Drive exists, etc.

• The File object allows the programmer to gather information about files, manipulate files and
open files.

• The Folder object allows the programmer to manipulate and gather information about directo-
ries.

• The Drive object allows the programmer to gather information about drives.

• HTTP does not support persistent information that could help a Web server distinguish between
clients.

• The server performs session tracking by keeping track of when a specific person visits a site. The
first time a client connects to the server, the server assigns the user a unique session ID. When the
client makes additional requests, the client’s session ID is compared with the session IDs stored in
the server’s memory.

• Active Server Pages use the Session object to manage sessions.

• Multiple Active Server Pages connected are sometimes called an ASP application.

• Server-side includes are commands embedded in XHTML documents that add dynamic content.
They are written as XHTML comments. SSI statements always execute before any scripting code
executes.

• A session variable that has not explicitly been given a value contains an empty string.

• A session variable’s value is set and retrieved using the Session object.

• Server-side includes can contain any type of information. Text files and XHTML files are two of
the most common server-side include files.

• By convention, server-side include (SSI) files end with the .shtml extension.

• Server-side includes are an excellent technique for reusing XHTML, Dynamic HTML, scripts and
other programming elements.

• A popular way to customize Web pages is via cookies.

• Cookies store information on the client’s computer for retrieval later in the same browsing session
or in future browsing sessions.

• Cookies are small files sent by an Active Server Page as part of a response to a client.

iw3htp2_25.fm Page 880 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 881

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• Every HTTP-based interaction between a client and a server includes a header that contains infor-
mation about either the request (when the communication is from the client to the server) or the
response (when the communication is from the server to the client).

• When an Active Server Page receives a request, the header includes the request type (e.g., get or
post) and cookies stored on the client machine by the server. When the server formulates its re-
sponse, the header information includes any cookies the server wants to store on the client com-
puter.

• Depending on the maximum age of a cookie, the Web browser either maintains the cookie for the
duration of the browsing session (i.e., until the user closes the Web browser) or stores the cookie
on the client computer for future use.

• Active Server Pages can communicate with databases through ADO (ActiveX Data Objects).

• Web applications are typically three-tier distributed applications, consisting of a user interface,
business logic and database access.

• Web servers provide the business logic that manipulates data from databases and that communi-
cates with client Web browsers.

• Databases enhance applications by providing a data source that can be used to generate Web pages
dynamically.

• On Error Resume Next specifies that any error caused by a statement from this point onward
is ignored and control is transferred to the statement immediately following the statement that
caused the error.

• When an error occurs in the script, Err object’s Number property contains an integer represent-
ing which VBScript error has occurred.

• If an expiration date is not set for a cookie when it is created, it is treated as a session cookie (i.e.,
it is destroyed when the browser is closed).

• The cookie remains on the client’s machine until it expires, at which time the browser deletes it.

• Server-side ActiveX components are instantiated by passing the name of the component as a string
to the Server object’s method CreateObject.

TERMINOLOGY
%> closing scripting delimiter cookie
<% opening scripting delimiter cookie expiration
Abandon method of Session Cookies property
ActiveX Data Objects (ADO) CreateObject method
ADODB.Command object CreateTextFile method
ADODB.Connection object Drive
ADODB.RecordSet object EOF constant
AdRotator ActiveX Control Execute method
APP_PHYSICAL_PATH expiration of a cookie
.asp file File
asp.dll file system object
BrowserType ActiveX Component FileExists method
business logic FileSystemObject
cache Web pages Folder
Chr method get HTTP request
client-side scripting GetAdvertisement method
Close method HTTP_USER_AGENT
columns #include

iw3htp2_25.fm Page 881 Saturday, July 21, 2001 9:48 AM

882 Active Server Pages (ASP) Chapter 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

SELF-REVIEW EXERCISES
25.1 State whether each of the following is true or false. If false, explain why.

a) VBScript is the only language that can be used in an Active Server Page.
b) Active Server Page file names typically end in .asp.
c) Only Microsoft Internet Explorer can render an Active Server Page.
d) The <% Option Explicit %> statement is optional.
e) Variables can be passed from one Active Server Page to another without using a form.
f) VBScript statements cannot be present in a server-side include file.
g) Server-side ActiveX components typically do not have graphical user interfaces.
h) AdRotator is a client-side ActiveX control.
i) Server-side include files end in .ssi by convention.
j) Before an ASP can use ADO to access a database, the database must have a System DSN.

25.2 Fill in the blanks for each of the following statements:
a) Processing directive informs asp.dll of the scripting language is used.
b) Passing an integer value of to function Chr returns the double quote (")

character.
c) Session variables retain their value during the duration of the .
d) Cookies are files placed on the machine.
e) Constant represents a carriage-return line-feed combination.
f) ASP is an acronym for .
g) ActiveX component provides information about the client making the re-

quest.
h) Server method is called to create an object.
i) The object is used to access information passed by a get or post request.
j) Server method is called to transfer the client to a different page.

JavaScript property server-side ActiveX component
@LANGUAGE directive server-side include (SSI)
maximum age of a cookie server-side scripting
MoveFirst method session
MoveNext method session ID
On Error Resume Next statement Session object
Open method session tracking
OpenTextFile method short name format
Option Explicit statement .shtml file
physical path TextStream
post HTTP request three-tier distributed application
ReadAll method Timeout property of Session
record Transfer method
record set vbCrLf constant
Redirect method of Response VBScript
Request object VBScript property
Response object Version property
script engine virtual path
script host Write method
Server object WriteLine method
server variable key

iw3htp2_25.fm Page 882 Saturday, July 21, 2001 9:48 AM

Chapter 25 Active Server Pages (ASP) 883

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

ANSWERS TO SELF-REVIEW EXERCISES
25.1 a) False. Any scripting language recognized by the server can be used. b) True. c.) False.
Most browsers can render XHTML returned by an Active Server Page. d) True. e) True. Variables
can be embedded in a URL (e.g., localhost/page.asp?var=true). f) False. A server-side in-
clude can contain scripting code, XHTML, text, etc. g) True. h) False. AdRotator is a server-side Ac-
tiveX component. i) False. Server-side include files end in .shtml by convention. j) True.

25.2 a) @LANGUAGE. b) 34. c) session. d) client. e) vbCrLf. f) Active Server Page.
g) BrowserType. h) CreateObject. i) Request. j) Transfer.

EXERCISES
25.3 Create a server-side include file containing the AdRotator code listed in Fig. 25.28. Write an
ASP that performs the same action as the AdRotator and uses this server-side include file.

25.4 Modify Fig. 25.2’s clock.asp to display different time zones.

25.5 Modify Fig. 25.12’s guestbook.asp to read and write to a database rather than a text file.
This exercise requires the use of a database development tool such as Microsoft Access.

25.6 Using the same techniques as Fig. 25.12 (guestbook.asp), develop an ASP application
for a discussion group. Allow new links to be created for new topics.

25.7 Modify Fig. 25.23’s login.asp to read and write to a text file rather than a database.

25.8 Create an ASP application that allows the user to customize a Web page. Store the user’s
name and preferences in a text file. The application should consist of three ASP files: one that asks
the user to login and reads from the text file to determine if the user is known. If the user is not known,
a second ASP file is loaded asking the user to choose their preference for foreground color, back-
ground color and image. Write the new user’s name and preferences to the text file. Next, display the
page customized to this user using the user’s preferences that are stored in the text file. If the user is
known at login, the normal page should be displayed.

25.9 Create an Active Server Page that creates an XML document from the following database:

25.10 Modify Exercise 25.9 to include an XSL document to format and sort (by product ID) the
XML document.

 Product ID Product

 152341 Acme Ant

 015832 Big Beetle

 951324 Candy Caterpillar

 765421 Distorted Dragonfly

 235231 Easy Earthworm

 882312 Foggy Fly

 441221 Green Grasshopper

 722345 Happy Horsefly

 523119 Icky Inchworm

 612214 Jumpy Junebug

iw3htp2_25.fm Page 883 Saturday, July 21, 2001 9:48 AM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

26
Case Study: Active

Server Pages and XML

Objectives
• To create a Web-based message forum using Active

Server Pages.
• To use XML with Active Server Pages.
• To be able to add new forums.
• To be able to post messages to the message forum.
• To use Microsoft’s DOM to manipulate an XML

document.
• To use XSLT to transform XML documents.
If any man will draw up his case, and put his name at the foot
of the first page, I will give him an immediate reply. Where
he compels me to turn over the sheet, he must wait my
leisure.
Lord Sandwich

They also serve who only stand and wait.
John Milton

A fair request should be followed by a deed in silence.
Dante Alighieri

iw3htp2_26.fm Page 884 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 885

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

26.1 Introduction
In this chapter, we use XML and ASP to create one of the most popular types of Web
sites—a message forum. Message forums are “virtual” bulletin boards where various topics
are discussed. Common features of message forums include discussion groups, questions
and answers and general comments. Many Web sites host message forums. For example,

messages.yahoo.com/index.html
web.eesite.com/forums
www.deja.com

are popular sites that host message forums.
In the case study presented in this chapter, users can post messages and create new

forums. We leave the removal of a forum as an exercise for the reader.

26.2 Setup and Message Forum Documents
In this section, we provide the setup instructions for executing the case study. The case
study requires the following software:

1. Microsoft Internet Information Services (IIS) or Microsoft Personal Web Server
(PWS).

2. Internet Explorer 5.5 (for XML and XSLT processing).

3. msxml 3.0 or higher. Visit www.deitel.com for download and installation in-
structions.

Copy the files from the Chapter 26 examples directory (on the CD-ROM that accom-
panies this book) to the Web directory (e.g., c:\inetpub\wwwroot). [Note: Either IIS
or PWS must be installed; otherwise, this Web directory will not exist. This directory must
also have Write permissions to allow users to post messages and add forums. The version
presented in this chapter is IIS specific. PWS users should use the version in the examples
directory in the PWS folder.] Each of these files and documents is summarized in Fig. 26.1
and will be discussed later in the chapter.

Outline

26.1 Introduction
26.2 Setup and Message Forum Documents
26.3 Forum Navigation
26.4 Adding Forums
26.5 Forum XML Documents
26.6 Posting Messages
26.7 Other Documents
26.8 Internet and World Wide Web Resources

Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_26.fm Page 885 Saturday, July 21, 2001 9:56 AM

886 Case Study: Active Server Pages and XML Chapter 26

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The main page, default.asp, displays the list of available message forums, which
are stored in the XML document forums.xml. Hyperlinks are provided to each XML
message forum document and also to addForum.asp, which adds a forum to
forums.xml and creates a new XML message forum (e.g., forum2.xml), using the
message forum template template.xml.

Each XML message forum document (e.g., forumASP.xml) is transformed into an
XHTML document using the XSLT document formatting.xsl. The CSS document
site.css formats the XHTML for display. New messages are posted to a forum by
addPost.asp. If errors occur when the document is processed, invalid.html is dis-
played. Some of these key interactions between documents are illustrated in Fig. 26.2.

26.3 Forum Navigation
This section introduces the documents that organize and display the message forums. Fig-
ure 26.3 lists the XML document (forums.xml) that marks up each message forum.

Root element forums can hold any number of message forums. We provide an initial
forum named forumASP.xml. An individual message forum is marked up, using element
forum. Attribute filename stores the name of the XML document that contains the
forum’s markup. We will discuss how this XML document is manipulated momentarily.

Figure 26.4 shows the Active Server Page (default.asp) that displays the list of
message forums contained in forums.xml. CSS document site.css is applied to the
XHTML sent to the Web browser.

Line 27 gets the absolute path for the file forums.xml and stores it in variable str-
Path. Microsoft’s XML parser (i.e., msxml) requires an absolute path. Line 29 calls the
Server object’s CreateObject method to instantiate a DOMDocument object
(Microsoft.XMLDOM) and assigns the object to xmlFile. The DOMDocument object
is the document root of an XML document.

File Name Description

forums.xml XML document listing all available forums and their filenames.

default.asp Main page, providing navigational links to the forums.

template.xml Template for a message forum XML document.

addForum.asp Adds a forum.

forumASP.xml Sample message forum.

formatting.xsl Document for transforming message forums into XHTML.

addPost.asp Adds a message to a forum.

invalid.html Used to display an error message.

site.css Style sheet for formatting XHTML documents.

style.css Style sheet for formatting the message forum site.

Fig. 26.1Fig. 26.1Fig. 26.1Fig. 26.1 Message forum documents.

iw3htp2_26.fm Page 886 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 887

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Fig. 26.2Fig. 26.2Fig. 26.2Fig. 26.2 Key interactions between message forum documents.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 26.3 : forums.xml -->
4 <!-- Creating the ASP forum -->
5
6 <forums>
7
8 <forum filename = "forumASP.xml">ASP</forum>
9

10 </forums>

Fig. 26.3Fig. 26.3Fig. 26.3Fig. 26.3 XML document that marks up the message forums.

1 <% @LANGUAGE = "VBScript" %>
2
3 <% ' Fig. 26.4 : default.asp
4 ' Forum home page
5 Option Explicit
6 %>
7
8 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
9 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

10
11 <html xmlns = "http://www.w3.org/1999/xhtml">
12
13 <head>
14 <title>Deitel Message Forums</title>
15 <link rel = "stylesheet" type = "text/css"
16 href = "style.css" />
17 </head>
18
19 <body>
20 <h1>Deitel Message Forums</h1>
21 <p>Available Forums</p>
22

Fig. 26.4Fig. 26.4Fig. 26.4Fig. 26.4 Message forums main page (part 1 of 2).

default.asp

addForum.asp

forums.xml

forumASP.xml

addPost.asp

formatting.xsl

iw3htp2_26.fm Page 887 Saturday, July 21, 2001 9:56 AM

888 Case Study: Active Server Pages and XML Chapter 26

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

23 <%
24 Dim xmlFile, xmlNodes, xmlItem
25 Dim strPath, strTitle, strFileName
26
27 strPath = Server.MapPath("forums.xml")
28
29 Set xmlFile = Server.CreateObject("Microsoft.XMLDOM")
30 xmlFile.Async = False
31
32 If Not xmlFile.Load(strPath) Then
33 Call Server.Transfer("invalid.html")
34 End If
35
36 Set xmlNodes = xmlFile.DocumentElement.ChildNodes
37
38 For Each xmlItem In xmlNodes
39 strFileName = xmlItem.getAttribute("filename")
40 strTitle = xmlItem.text
41 %>
42
43 <a href = "<% =strFileName %>"><% =strTitle %>
44
45 <%
46 Next
47 %>
48
49
50 <p>Forum Management</p>
51
52
53 Add a Forum
54 Delete a Forum
55
56
57 </body>
58
59 </html>

Fig. 26.4Fig. 26.4Fig. 26.4Fig. 26.4 Message forums main page (part 2 of 2).

iw3htp2_26.fm Page 888 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 889

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 30 sets the object referenced by xmlFile to behave synchronously (i.e., when a
method is called, it must finish executing before any other method is allowed to execute).
We will explain the significance of setting Async to False momentarily.

Lines 32–34 call method Load to parse the XML document (e.g., forums.xml). If
parsing succeeds, True is returned; otherwise, False is returned. Because xmlFile is
synchronous, execution does not continue until method Load completes. If method calls
are not synchronous (i.e., they are asynchronous), execution continues despite the fact that
the method may not have finished executing, which could result in logic errors (i.e., the
code does not execute as intended). If parsing fails, we redirect the browser to
invalid.html, which is discussed in Section 26.7.

Line 36 uses property DocumentElement to get the root element’s child nodes. Ele-
ment nodes have property ChildNodes, which returns a collection (e.g., a list) of the ele-
ment node’s child nodes.

Lines 38–46 contain a For Each loop that iterates through all the nodes in the collec-
tion of child nodes stored in xmlNodes. Line 39 calls method getAttribute to get a
forum’s filename. This method returns the value of the node’s filename attribute and
assigns it to strFileName. Line 40 uses property text to return the node’s text content,
which is the forum’s name.

Line 43 writes, as an anchor, the value of strFileName and writes the value of
strTitle to describe the anchor. This creates the hyperlinks for the available forums.
Each hyperlink references an XML document. For example, the ASP forum references
forumASP.xml.

Line 53 provides a hyperlink to addForum.asp, which adds a new forum and is dis-
cussed in the next section. Line 54 is a placeholder for a link to delete forums, which is left
to the reader as an exercise.

26.4 Adding Forums
In this section, we discuss the documents used to add new forums. Each new forum created
is based upon a template XML document named template.xml (Fig. 26.5).

This template document contains the bare components for a message forum. It contains
a stylesheet processing instruction that references formatting.xsl (discussed in
Fig. 26.8) and <forum> tags. The Active Server Page (addForum.asp) that modifies
the template document is presented in Fig. 26.6. [Note: Actually, the copy of the template
document loaded into memory is modified and saved to disk with a different name.]

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 26.5 : template.xml -->
4 <!-- Template XML document -->
5
6 <?xml:stylesheet type = "text/xsl" href = "formatting.xsl"?>
7
8 <forum>
9 </forum>

Fig. 26.5Fig. 26.5Fig. 26.5Fig. 26.5 Template for message forum XML documents.

iw3htp2_26.fm Page 889 Saturday, July 21, 2001 9:56 AM

890 Case Study: Active Server Pages and XML Chapter 26

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 <% @LANGUAGE = "VBScript" %>
2 <% Option Explicit %>
3
4 <% ' Fig. 26.6 : addForum.asp %>
5
6 <%
7 Dim xmlFile, xmlRoot, xmlNode
8 Dim strTitle, strError, strPath
9

10 If Request("submit") <> Empty Then
11
12 If Request("name") <> Empty And _
13 Request("filename") <> Empty And _
14 Request("user") <> Empty And _
15 Request("title") <> Empty And _
16 Request("text") <> Empty Then
17
18 ' Create a new XML file
19 strPath = Server.MapPath(Request("filename"))
20
21 Set xmlFile = Server.CreateObject("Microsoft.XMLDOM")
22 xmlFile.Async = False
23
24 If xmlFile.Load(strPath) Then
25 Call Server.Transfer("invalid.html")
26 End If
27
28 ' set up the file
29 Call xmlFile.Load(Server.MapPath("template.xml"))
30
31 ' get the root element
32 Set xmlRoot = xmlFile.DocumentElement
33
34 ' set the filename
35 Call xmlRoot.SetAttribute("filename", _
36 Request("filename"))
37
38 ' create Name node
39 Set xmlNode = xmlFile.CreateElement("name")
40 xmlNode.Text = Request("name")
41 Call xmlRoot.AppendChild(xmlNode)
42
43 ' create first message
44 Set xmlNode = xmlFile.CreateElement("message")
45 Call xmlNode.SetAttribute("timestamp", Now & " EST")
46 Call xmlRoot.AppendChild(xmlNode)
47
48 Set xmlRoot = xmlNode
49
50 ' create user node
51 Set xmlNode = xmlFile.CreateElement("user")
52 xmlNode.Text = Request("user")
53 Call xmlRoot.AppendChild(xmlNode)

Fig. 26.6Fig. 26.6Fig. 26.6Fig. 26.6 Page to add to a forum (part 1 of 4).

iw3htp2_26.fm Page 890 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 891

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

54
55 ' create title node
56 Set xmlNode = xmlFile.CreateElement("title")
57 xmlNode.Text = Request("title")
58 Call xmlRoot.AppendChild(xmlNode)
59
60 ' create text node
61 Set xmlNode = xmlFile.CreateElement("text")
62 xmlNode.Text = Request("text")
63 Call xmlRoot.AppendChild(xmlNode)
64
65 Call xmlFile.Save(strPath) ' save the file
66
67 ' load XML file
68 strPath = Server.MapPath("forums.xml")
69
70 Set xmlFile = Server.CreateObject("Microsoft.XMLDOM")
71 xmlFile.Async = False
72
73 If Not xmlFile.Load(strPath) Then
74 Call Server.Transfer("invalid.html")
75 End If
76
77 ' get the root node
78 Set xmlRoot = xmlFile.DocumentElement
79
80 ' create nodes
81 Set xmlNode = xmlFile.CreateElement("forum")
82 Call xmlNode.SetAttribute("filename", _
83 Request("filename"))
84 xmlNode.Text = Request("name")
85 Call xmlRoot.AppendChild(xmlNode)
86
87 Call xmlFile.Save(strPath) ' save the file
88
89 ' finished processing
90 Call Server.Transfer("default.asp")
91 Else
92 strError = "ERROR: Invalid input."
93 End If
94
95 End If
96 %>
97
98 <!DOCTYPE html
99 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
100 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
101
102 <html xmlns = "http://www.w3.org/1999/xhtml">
103 <head>
104 <title>Add a Forum</title>
105 <link rel = "stylesheet" type = "text/css" href = "style.css" />
106 </head>

Fig. 26.6Fig. 26.6Fig. 26.6Fig. 26.6 Page to add to a forum (part 2 of 4).

iw3htp2_26.fm Page 891 Saturday, July 21, 2001 9:56 AM

892 Case Study: Active Server Pages and XML Chapter 26

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

107
108 <body>
109 <p>Create a Forum</p>
110 <p><% =strError %></p>
111
112 <form method = "post" action = "addForum.asp">
113
114 <h2>
115 Forum Name:

116 <input type = "text" size = "40" name = "name"
117 value = "<% =Request("name") %>" />
118 </h2>
119
120 <h2>
121 Forum File Name:

122 <input type = "text" size = "40" name = "filename"
123 value = "<% =Request("filename") %>" />
124 </h2>
125
126 <h2>
127 User:

128 <input type = "text" size = "40" name = "user"
129 value = "<% =Request("user") %>" />
130 </h2>
131
132 <h2>
133 Message Title:

134 <input type = "text" size = "40" name = "title"
135 value = "<% =Request("title") %>" />
136 </h2>
137
138 <h2>
139 Message Text:

140 <textarea name = "text" cols = "40"
141 rows = "4"><% =Request("text") %></textarea>
142 </h2>
143
144 <h2>
145 <input type = "submit" name = "submit" value = "Submit" />
146 <input type = "reset" value = "Clear" />
147 </h2>
148
149 </form>
150
151 <p>
152 Return to Main Page
153 </p>
154
155 </body>
156
157 </html>

Fig. 26.6Fig. 26.6Fig. 26.6Fig. 26.6 Page to add to a forum (part 3 of 4).

iw3htp2_26.fm Page 892 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 893

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

This Active Server Page performs two tasks: First, it displays the form that gets the
new forum’s information (lines 98–149). Second, it provides the script for creating the
forum (lines 1–96). We will discuss the form for getting information first.

Line 110 writes strError’s content to the Web browser. Error messages, if they
exist, are stored in strError. Lines 112–149 create a form to post information back to
addForum.asp. The form has fields for the forum name, forum file name, user name,
message title and message text. The Request object is used to retrieve the submitted
form’s value.

We will now discuss the script logic for the page. Line 10 determines whether the form
was submitted by testing the form’s submit field for a value. If the submit field is
Empty, then the form was not submitted.

Lines 12–16 check the form’s fields for values. If any of the fields is Empty, the infor-
mation for the new forum is incomplete, and line 92 sets strError to "ERROR: Invalid
input.".

Lines 24–26 attempt to load the file specified by the user. [Note: The name specified
in the Forum File Name must end in .xml.] If the file loads successfully, then the file
already exists. Therefore, we transfer to invalid.html. Remember, we want to add a
new forum, not open an existing one.

Line 29 loads the template XML document (i.e., template.xml). We will mark up
the form’s data and add the data to the in-memory representation of template.xml.

Lines 35–36 call method SetAttribute to create an attribute node named file-
name that has the value contained in form field filename. Line 39 creates a new element
node named name, using DOMDocument method CreateElement.

Fig. 26.6Fig. 26.6Fig. 26.6Fig. 26.6 Page to add to a forum (part 4 of 4).

iw3htp2_26.fm Page 893 Saturday, July 21, 2001 9:56 AM

894 Case Study: Active Server Pages and XML Chapter 26

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 40 assigns form field name’s value to the element node’s (created in line 39)
Text property. Line 41 calls method AppendChild to append the newly created element
name node to the root element (i.e., forum).

Lines 44–46 create and append element message, along with attribute timestamp,
to the root element forum. Lines 51–53 create and append element user to element mes-
sage. Lines 56–58 create and append element title, and lines 61–63 create and append
element text to the root element.

Line 65 saves the XML document to disk by calling method Save. Variable str-
Path contains the filename provided by the user in line 19. Lines 68–87 open, modify (by
adding the new forum just created) and save forums.xml.

26.5 Forum XML Documents
This section presents a sample forum (Fig. 26.7) that contains several messages and the
XSLT document (Fig. 26.8) that transforms it into XHTML.

Lines 48–53 write an <a> tag to the result tree. XSLT element xsl:attribute cre-
ates an attribute named href for element a and assigns it the value of attribute filename
concatenated to addPost.asp?file=.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 26.7 : forumASP.xml -->
4 <!-- Postings on ASP forum -->
5
6 <?xml:stylesheet type = "text/xsl" href = "formatting.xsl"?>
7
8 <forum filename = "forumASP.xml">
9

10 <name>ASP Forum</name>
11
12 <message timestamp = "4/28/2001 2:50:34 PM EST">
13 <user>D. Bug</user>
14 <title>I Love ASP!</title>
15 <text>Everyone should use ASP.</text>
16 </message>
17
18 <message timestamp = "5/8/2001 11:09:54 AM EST">
19 <user>Ms. Quito</user>
20 <title>ASP and XML</title>
21 <text>What a powerful combination. Try it!</text>
22 </message>
23
24 <message timestamp = "5/15/2001 4:39:50 PM EST">
25 <user>Sarge Ant</user>
26 <title>ASP</title>
27 <text>This army ant uses ASP in boot camp.</text>
28 </message>
29
30 </forum>

Fig. 26.7Fig. 26.7Fig. 26.7Fig. 26.7 Sample forum.

iw3htp2_26.fm Page 894 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 895

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 26.8 : formatting.xsl -->
4 <!-- XSL document that transforms XML data to XHTML -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:output method = "html" omit-xml-declaration = "no"

10 doctype-system =
11 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
12 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN" />
13
14 <xsl:template match = "/">
15
16 <html xmlns = "http://www.w3.org/1999/xhtml">
17 <xsl:apply-templates select = "*" />
18 </html>
19
20 </xsl:template>
21
22 <xsl:template match = "forum">
23
24 <head>
25 <title><xsl:value-of select = "name"/></title>
26 <link rel = "stylesheet" type = "text/css"
27 href = "style.css" />
28 </head>
29
30 <body>
31
32 <table width = "100%" cellspacing = "0"
33 cellpadding = "2">
34 <tr>
35 <td class = "forumTitle">
36 <xsl:value-of select = "name" />
37 </td>
38 </tr>
39 </table>
40
41 <table width = "100%" cellspacing = "0"
42 cellpadding = "2">
43 <xsl:apply-templates
44 select = "message" />
45 </table>
46
47 <p>
48 <a>
49 <xsl:attribute
50 name = "href">addPost.asp?file=<xsl:value-of
51 select = "@filename" />
52 </xsl:attribute>
53 Post a Message

Fig. 26.8Fig. 26.8Fig. 26.8Fig. 26.8 XSLT to transform XML forum document into HTML (part 1 of 2).

iw3htp2_26.fm Page 895 Saturday, July 21, 2001 9:56 AM

896 Case Study: Active Server Pages and XML Chapter 26

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Figure 26.9 shows the XHTML document rendered by Internet Explorer 5.5 when
forumASP.xml is transformed by formatting.xsl. [Note: We have edited the
XHTML document for presentation purposes.] Line 66 provides a link to addPost.asp,
along with the name of the file to which the new message will be added.

54 Return to Main Page
55 </p>
56
57 </body>
58
59 </xsl:template>
60
61 <xsl:template match = "message">
62
63 <tr>
64 <td class = "msgTitle">
65 <xsl:value-of select = "title" />
66 </td>
67 </tr>
68
69 <tr>
70 <td class = "msgInfo">
71 by
72 <xsl:value-of select = "user" />
73 at
74
75 <xsl:value-of select = "@timestamp" />
76
77 </td>
78 </tr>
79
80 <tr>
81 <td class = "msgText">
82 <xsl:value-of select = "text" />
83 </td>
84 </tr>
85
86
87 </xsl:template>
88
89 </xsl:stylesheet>

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3
4 <!-- Fig. 26.9 : forumASP_transformed.html -->
5 <!-- Results of transforming forumASP.xml -->
6

Fig. 26.9Fig. 26.9Fig. 26.9Fig. 26.9 Output of the transformation of the forum XML document (part 1 of 3).

Fig. 26.8Fig. 26.8Fig. 26.8Fig. 26.8 XSLT to transform XML forum document into HTML (part 2 of 2).

iw3htp2_26.fm Page 896 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 897

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>ASP Forum</title>
11 <link href = "site.css" type = "text/css" rel = "stylesheet" />
12 </head>
13
14 <body>
15 <table cellpadding = "2" cellspacing = "0" width = "100%">
16 <tr>
17 <td class = "forumTitle">ASP Forum</td>
18 </tr>
19 </table>
20
21 <table cellpadding = "2" cellspacing = "0" width = "100%">
22 <tr>
23 <td class = "msgTitle">I Love ASP!</td>
24 </tr>
25 <tr>
26 <td class = "msgInfo">
27 by
28 D. Bug
29 at
30 4/28/2001 2:50:34 PM EST</td>
31 </tr>
32 <tr>
33 <td class = "msgText">Everyone should use ASP.</td>
34 </tr>
35 <tr>
36 <td class = "msgTitle">ASP and XML</td>
37 </tr>
38 <tr>
39 <td class = "msgInfo">
40 by
41 Ms. Quito
42 at
43 5/8/2001 11:09:54 AM EST</td>
44 </tr>
45 <tr>
46 <td class = "msgText">
47 What a powerful combination. Try it!</td>
48 </tr>
49 <tr>
50 <td class = "msgTitle">ASP</td>
51 </tr>
52 <tr>
53 <td class = "msgInfo">
54 by
55 Sarge Ant
56 at
57 5/15/2001 4:39:50 PM EST</td>
58 </tr>
59 <tr>

Fig. 26.9Fig. 26.9Fig. 26.9Fig. 26.9 Output of the transformation of the forum XML document (part 2 of 3).

iw3htp2_26.fm Page 897 Saturday, July 21, 2001 9:56 AM

898 Case Study: Active Server Pages and XML Chapter 26

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

26.6 Posting Messages
In this section, we present the ASP document addPost.asp (Fig. 26.10), which posts
messages to a forum. This ASP uses much of the same functionality as addForum.asp.

Line 23 loads the forum XML document. Lines 31–33 create a message element and
an associated timestamp attribute. Line 38 creates child element user; line 41 creates
child element title; and line 44 creates child element text for element message.
Finally, the forum is saved to disk in line 46.

60 <td class = "msgText">
61 This army ant uses ASP in boot camp.</td>
62 </tr>
63 </table>
64
65 <p>
66 Post a Message
67

68 Return to Main Page
69 </p>
70
71 </body>
72
73 </html>

Fig. 26.9Fig. 26.9Fig. 26.9Fig. 26.9 Output of the transformation of the forum XML document (part 3 of 3).

iw3htp2_26.fm Page 898 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 899

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 <% @LANGUAGE = "VBScript" %>
2
3 <% ' Fig. 26.10 : addPost.asp
4 ' ASP document for posting a message
5
6 Option Explicit
7
8 Dim xmlFile, xmlRoot, xmlNode
9 Dim strTitle, strError, strPath

10
11 If Request("submit") <> Empty Then
12
13 If Request("file") <> Empty And _
14 Request("userName") <> Empty And _
15 Request("messageTitle") <> Empty And _
16 Request("messageText") <> Empty Then
17
18 strPath = Server.MapPath(Request("file"))
19
20 Set xmlFile = Server.CreateObject("Microsoft.XMLDOM")
21 xmlFile.Async = False
22
23 If Not xmlFile.Load(strPath) Then
24 Call Server.Transfer("invalid.html")
25 End If
26
27 ' get the root node
28 Set xmlRoot = xmlFile.DocumentElement
29
30 ' create first message
31 Set xmlNode = xmlFile.CreateElement("message")
32 Call xmlNode.SetAttribute("timestamp", Now & " EST")
33 Call xmlRoot.AppendChild(xmlNode)
34
35 Set xmlRoot = xmlNode
36
37 ' create user node
38 Call CreateElementNode("user", "userName", xmlNode)
39
40 ' create title node
41 Call CreateElementNode("title", "messageTitle", xmlNode)
42
43 ' create text node
44 Call CreateElementNode("text", "messageText", xmlNode)
45
46 Call xmlFile.Save(strPath) ' save the file
47
48 ' finished processing
49 Call Server.Transfer(Request("file"))
50 Else
51 strError = "ERROR: Invalid input."
52 End If
53

Fig. 26.10Fig. 26.10Fig. 26.10Fig. 26.10 Adding a message to a forum (part 1 of 3).

iw3htp2_26.fm Page 899 Saturday, July 21, 2001 9:56 AM

900 Case Study: Active Server Pages and XML Chapter 26

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

54 End If
55
56 ' procedure that creates an element node
57 Sub CreateElementNode(elementName, formElement, node)
58 Set xmlNode = xmlFile.CreateElement(elementName)
59 xmlNode.Text = Request(formElement)
60 Call xmlRoot.AppendChild(node)
61 End Sub
62 %>
63
64 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
65 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
66
67 <html xmlns = "http://www.w3.org/1999/xhtml">
68 <head>
69 <title>Post a Message</title>
70 <link rel = "stylesheet" type = "text/css"
71 href = "style.css" />
72 </head>
73
74 <body>
75 <p><% =strError %></p>
76
77 <form method = "post" action = "addPost.asp">
78 <p>
79 User:

80 <input type = "text" size = "40" name = "userName"
81 value = "<% =Request("userName") %>" />
82 </p>
83
84 <p>
85 Message Title:

86 <input type = "text" size = "40" name = "messageTitle"
87 value = "<% =Request("messageTitle") %>" />
88 </p>
89
90 <p>
91 Message Text:

92 <textarea name = "messageText" cols = "40"
93 rows = "4"><% =Request("messageText") %>
94 </textarea>
95 </p>
96
97 <p>
98 <input type = "hidden" name = "file"
99 value = "<% =Request("file") %>"/>
100 <input type = "submit" name = "submit" value = "Submit" />
101 <input type = "reset" value = "Clear" />
102 </p>
103 </form>
104
105 <p>
106 <a href = "<% =Request("file") %>">Return to Forum

Fig. 26.10Fig. 26.10Fig. 26.10Fig. 26.10 Adding a message to a forum (part 2 of 3).

iw3htp2_26.fm Page 900 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 901

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Figure 26.11 shows a new forum (i.e., Internet and World Wide Web: 2nd Edi-
tion) added to the message board, while Fig. 26.12 shows the initial content of that forum.

107 </p>
108 </body>
109
110 </html>

Fig. 26.11Fig. 26.11Fig. 26.11Fig. 26.11 New forum on the message board.

Fig. 26.10Fig. 26.10Fig. 26.10Fig. 26.10 Adding a message to a forum (part 3 of 3).

iw3htp2_26.fm Page 901 Saturday, July 21, 2001 9:56 AM

902 Case Study: Active Server Pages and XML Chapter 26

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Figure 26.13 shows the result of posting a new message to the Internet and World
Wide Web: 2nd Edition forum.

26.7 Other Documents
In this section, we present three other documents used in the case study. Figure 26.14 lists
the XHTML document that displays an error message (invalid.html).

Fig. 26.12Fig. 26.12Fig. 26.12Fig. 26.12 Initial content of the newly added forum.

Fig. 26.13Fig. 26.13Fig. 26.13Fig. 26.13 Contents of the Internet and World Wide Web: 2nd Edition.

iw3htp2_26.fm Page 902 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 903

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Figure 26.15 lists the CSS document (site.css) that formats the XHTML documents.
Figure 26.16 lists the CSS document that formats the forum (style.css).

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3
4 <!-- Fig. 26.14 : invalid.html -->
5 <!-- XHTML document for displaying errors -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>Deitel Book Organization</title>
11 <link rel = "stylesheet" type = "text/css"
12 href = "site.css" />
13 </head>
14
15 <body>
16 <h1>Invalid Request.</h1>
17
18 <p>Return to Main Page</p>
19 </body>
20
21 </html>

Fig. 26.14Fig. 26.14Fig. 26.14Fig. 26.14 Document that displays an error message.

1 /* Fig. 26.15 : site.css */
2 /* Stylesheet for XHTML documents */
3
4 body
5 {
6 background: white;
7 color: black;
8 font-family: Arial, sans-serif;
9 font-size: 10pt;

10 }
11
12 a
13 {
14 background: transparent;
15 color: blue;
16 text-decoration: none;
17 }
18
19 a:hover
20 {
21 text-decoration: underline;
22 }
23
24 table
25 {

Fig. 26.15Fig. 26.15Fig. 26.15Fig. 26.15 CSS document for XHTML pages (part 1 of 2).

iw3htp2_26.fm Page 903 Saturday, July 21, 2001 9:56 AM

904 Case Study: Active Server Pages and XML Chapter 26

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

26 border-width: 1px;
27 border-style: solid;
28 }
29
30 .forumTitle
31 {
32 background: lime;
33 color: black;
34 font-size: 12pt;
35 font-weight: bold;
36 text-align: center;
37 }
38
39 .msgTitle
40 {
41 background: silver;
42 color: black;
43 font-size: 10pt;
44 font-weight: bold;
45 }
46
47 .msgInfo
48 {
49 background: silver;
50 color: black;
51 font-size: 10pt;
52 }
53
54 .msgPost
55 {
56 background: silver;
57 color: black;
58 font-size: 8pt;
59 }
60
61 .msgText
62 {
63 font-size: 10pt;
64 padding-left: 10px;
65 }
66
67 .date
68 {
69 font-size: 8pt;
70 }

1 /* Fig. 26.16 : style.css */
2 /* Stylesheet for forums */
3

Fig. 26.16Fig. 26.16Fig. 26.16Fig. 26.16 CSS document for forums (part 1 of 3).

Fig. 26.15Fig. 26.15Fig. 26.15Fig. 26.15 CSS document for XHTML pages (part 2 of 2).

iw3htp2_26.fm Page 904 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 905

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 h1
2 {
3 color: #330099;
4 letter-spacing: 2px;
5 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
6 background-color: transparent;
7 }
8
9 h2

10 {
11 color: #6633FF;
12 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
13 font-size: small;
14 background-color: transparent;
15 }
16
17 p
18 {
19 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
20 color: #336666;
21 letter-spacing: 1px;
22 font-size: larger;
23 font-weight: bold;
24 background-color: transparent;
25 }
26
27 body
28 {
29 background-image: url(bug2.gif);
30 background-repeat: no-repeat;
31 margin-top: 5%;
32 background-position: 25%;
33 margin-left: 10%;
34 }
35
36 li
37 {
38 font-family: "Courier New", Courier, monospace;
39 font-weight: bolder;
40 list-style-type: circle;
41 color: #3333FF;
42 background-color: transparent;
43 }
44
45 input
46 {
47 background-color: transparent;
48 color: #336666;
49 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
50 }
51
52 textarea
53 {

Fig. 26.16Fig. 26.16Fig. 26.16Fig. 26.16 CSS document for forums (part 2 of 3).

iw3htp2_26.fm Page 905 Saturday, July 21, 2001 9:56 AM

906 Case Study: Active Server Pages and XML Chapter 26

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

26.8 Internet and World Wide Web Resources
www.4guysfromrolla.com/webtech/101200-1.shtml
This site lists different ways to extract XML data from an ASP page.

54 background-color: transparent;
55 color: #336666;
56 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
57 }
58
59 .forumTitle
60 {
61 color: #FFFFCC;
62 font-size: 14pt;
63 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
64 text-align: center;
65 background-color: #6666CC;
66 }
67
68 .msgTitle
69 {
70 background: #FFFFCC;
71 color: black;
72 font-size: 10pt;
73 font-weight: bold;
74 }
75
76 .msgInfo
77 {
78 background: #FFFFCC;
79 color: black;
80 font-size: 10pt;
81 }
82
83 .msgPost
84 {
85 background: silver;
86 color: black;
87 font-size: 8pt;
88 }
89
90 .msgText
91 {
92 font-size: 10pt;
93 padding-left: 10px;
94 }
95
96 .date
97 {
98 font-size: 8pt;
99 }

Fig. 26.16Fig. 26.16Fig. 26.16Fig. 26.16 CSS document for forums (part 3 of 3).

iw3htp2_26.fm Page 906 Saturday, July 21, 2001 9:56 AM

Chapter 26 Case Study: Active Server Pages and XML 907

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

www.15seconds.com/focus/XML.htm
The ASPWatch site contains many articles on integrating ASP with various technologies. This article
focuses on ASP and XML.

TERMINOLOGY

SELF-REVIEW EXERCISES
26.1 What purpose does the Async property of a DOMDocument object serve?

26.2 To create child element nodes for elements in an XML document, what needs to be done?

ANSWERS TO SELF-REVIEW EXERCISES
26.1 The Async property sets the execution type of DOMDocument methods. If Async is set to
True, methods are performed asynchronously, so execution continues even if the method call was
not completed. If Async is set to False, methods are performed synchronously, so execution waits
until the method call is completed.

26.2 To create element nodes, call DOMDocument object’s method CreateElement, with the
name of the element to be created as a parameter. Next, method appendChild is called on the el-
ement to which the new element is to be a child, with the child element as the parameter.

EXERCISES
26.3 Create an Active Server Page to delete messages from a forum. This ASP should take a fo-
rum’s filename and the timestamp of the message as form arguments. Modify formatting.xsl
to provide a link to the ASP for each message. [Hint: To remove an element’s child, use remove-
Child, with the node to remove as a parameter.]

26.4 Create an Active Server Page to delete forums. This ASP should list the available forums and
allow the user to select one for deletion.

26.5 In lines 98–99 of Fig. 26.10 (addPost.asp), what is the value of the input element?

26.6 These lines of code are from lines 50–51of formatting.xsl. Explain why the @ in front
of "@filename" is necessary in the xsl:value-of element.

<xsl:attribute name = "href">addPost.asp?file=
 <xsl:value-of select = "@filename">Post a Message
</xsl:attribute>

26.7 Describe the purpose of Fig. 26.8 (formatting.xsl)?

26.8 Describe the purpose of lines 19–22 of Fig 26.15 (site.css)

Async property logic error
asynchronous MapPath method of Server object
collection message forum
CreateElement method Request method
CreateObject method Save method
DOMDocument object Server object
Load method synchronous

iw3htp2_26.fm Page 907 Saturday, July 21, 2001 9:56 AM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

27
Perl and CGI

(Common Gateway
Interface)

Objectives
• To understand basic Perl programming.
• To understand the Common Gateway Interface.
• To understand string processing and regular

expressions in Perl.
• To be able to use cookies to read and write client data.
• To be able to construct programs that interact with

MySQL databases.
This is the common air that bathes the globe.
Walt Whitman

The longest part of the journey is said to be the passing of the
gate.
Marcus Terentius Varro

Railway termini... are our gates to the glorious and
unknown. Through them we pass out into adventure and
sunshine, to them, alas! we return.
E. M. Forster

There comes a time in a man’s life when to get where he has
to go—if there are no doors or windows—he walks through
a wall.
Bernard Malamud

You ought to be able to show that you can do it a good deal
better than anyone else with the regular tools before you
have a license to bring in your own improvements.
Ernest Hemingway

iw3htp2_27.fm Page 908 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 909

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

27.1 Introduction
Practical Extraction and Report Language (Perl) is one of the most widely used languages
for Web programming today. Larry Wall began developing this high-level programming
language in 1987 while working at Unisys. His initial intent was to create a programming
language to monitor large software projects and generate reports. Wall wanted to create a
language that would be more powerful than shell scripting and more flexible than C, a lan-
guage with rich text-processing capabilities and, most of all, a language that would make
common programming tasks straightforward and easy. In this chapter, we discuss Perl 5.6
and examine several practical examples that use Perl for Internet programming.

The Common Gateway Interface (CGI) is a standard protocol through which users
interact with applications on Web servers. Thus, CGI provides a way for clients (e.g., Web
browsers) to interface indirectly with applications on the Web server. Because CGI is an
interface, it cannot be programmed directly; a script or executable program (commonly
called a CGI script) must be executed to interact with it. While CGI scripts can be written
in many different programming languages, Perl is commonly used due to its power, flexi-
bility and availability of several preexisting programs.

Figure 27.1 illustrates the interaction between client and server when the client
requests a document that references a CGI script. Often, CGI scripts process information
(e.g., a search-engine query, a credit-card number) gathered from a form. For example, a
CGI script might verify credit-card information and notify the client of the results (i.e.,
accepted or rejected). Permission is granted within the Web server (usually by the Web-
master or the author of the Web site) for specific programs on the server to be executed.
These programs are typically designated with a certain filename extension (such as .cgi
or .pl) and/or located within a special directory (such as cgi-bin). After the application
output is sent to the server through CGI, the results may be sent to the client. Information
received by the client is usually an HTML or XHTML document, but may contain images,
streaming audio, Macromedia Flash files (see Chapter 19), XML (see Chapter 20), etc.

Outline

27.1 Introduction
27.2 Perl
27.3 String Processing and Regular Expressions
27.4 Viewing Client/Server Environment Variables
27.5 Form Processing and Business Logic
27.6 Server-Side Includes
27.7 Verifying a Username and Password
27.8 Using DBI to Connect to a Database
27.9 Cookies and Perl
27.10 Operator Precedence Chart
27.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_27.fm Page 909 Saturday, July 21, 2001 10:03 AM

910 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Applications typically interact with the user through standard input and standard
output. Standard input is the stream of information received by a program from a user, typ-
ically through the keyboard, but also possibly from a file or another input device. Standard
output is the information stream presented to the user by an application; it is typically dis-
played on the screen, but may be printed, written to a file, etc.

For CGI scripts, the standard output is redirected (or piped) through the Common
Gateway Interface to the server and then sent over the Internet to a Web browser for ren-
dering. If the server-side script is programmed correctly, the output will be readable by the
client. Usually, the output is an HTML or XHTML document that is rendered by a Web
browser.

27.2 Perl
With the advent of the World Wide Web and Web browsers, the Internet gained tremen-
dous popularity. This greatly increased the volume of requests users made for information
from Web servers. It became evident that the degree of interactivity between the user and
the server would be crucial. The power of the Web resides not only in serving content to
users, but also in responding to requests from users and generating dynamic content. The
framework for such communication already existed through CGI. Most of the information
users send to servers is text, thus Perl was a logical choice for programming the server side
of interactive Web-based applications. Perl possesses simple, yet powerful, text-processing
capabilities and is arguably the most popular CGI scripting language. The Perl community,
headed by Wall (who currently works for O’Reilly & Associates as a Perl developer and
researcher), continuously works to evolve the language, keeping it competitive with newer
server-side technologies, such as Microsoft’s Active Server Pages (see Chapter 25).

Figure 27.2 presents a simple Perl program that writes the text "Welcome to
Perl!" to the screen. Because the program does not interact with the Common Gateway
Interface, it is not a CGI script. Our initial examples are command-line programs that illus-
trate fundamental Perl programming.

Fig. 27.1Fig. 27.1Fig. 27.1Fig. 27.1 Data path of a typical CGI-based application.

iw3htp2_27.fm Page 910 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 911

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 2–3 use the Perl comment character (#) to instruct the interpreter to ignore
everything on the current line following the #. This syntax allows programmers to write
descriptive comments inside their programs. The exception to this rule is the “shebang”
construct (#!) on line 1. On Unix systems, this line indicates the path to the Perl interpreter
(such as #!/usr/bin/perl). On other systems (e.g., Windows), the line may be
ignored, or it may indicate to the server (e.g., Apache) that a Perl program follows the state-
ment.

Good Programming Practice 27.1
While not all servers require the “shebang” construct (#!), it is good practice to include it
for program portability. 27.1

Common Programming Error 27.1
Some systems require that the shebang construct indicate the path to the Perl interpreter. If
this path is incorrect, the program might not run. For Windows, this path is most likely
#!C:\Perl\bin\perl. If the reader is unsure as to where the Perl interpreter is, do a
search for perl.exe and use the path found in the shebang construct. 27.1

The comment (line 2) indicates that the filename of the program is fig27_02.pl.
Perl program file names typically end with the .pl extension. The program can be exe-
cuted by running the Perl interpreter from the command-line prompt (e.g., the DOS prompt
in Windows).

In order to run the Perl script, Perl must first be installed on the system. Windows users
should see the “ActiveState Perl Installation” document at www.deitel.com for instruc-
tions on how to install ActivePerl. ActivePerl is the standard Perl implementation for Win-
dows. For installation on other platforms visit www.perl.com.

To run fig27_02.pl, type at the command prompt

perl fig27_02.pl

where perl is the interpreter and fig27_02.pl is the Perl script. Alternatively, you
could type

perl -w fig27_02.pl

which instructs the Perl interpreter to output warnings to the screen if it finds potential bugs
in your code.

On Windows systems, a Perl script may also be executed by double-clicking its pro-
gram icon. The program window closes automatically once the script terminates, and any
screen output is lost. For this reason, it is usually better to run a script from the DOS prompt.

1 #!/usr/bin/perl
2 # Fig. 27.2: fig27_02.pl
3 # A first program in Perl.
4
5 print("Welcome to Perl!\n");

Welcome to Perl!

Fig. 27.2Fig. 27.2Fig. 27.2Fig. 27.2 Simple Perl program.

iw3htp2_27.fm Page 911 Saturday, July 21, 2001 10:03 AM

912 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Testing and Debugging Tip 27.1
When running a Perl script from the command line, always use the -w option. Otherwise, the
program may seem to execute correctly, while there is actually something wrong with the
source code. The -w option displays warnings encountered while executing a Perl program. 27.1

Line 5 calls function print to write text to the screen. Note that because Perl is case-
sensitive, writing Print or PRINT instead of print yields an error. The text "Welcome
to Perl!\n" is surrounded in quotes and is called a string. The last portion of the
string—the newline escape sequence, \n—moves the output cursor to the next line. The
semicolon (;) at the end of line 5 terminates Perl statements. Lastly, notice that the argu-
ment passed to function print (i.e., the string that we wish to print) is enclosed in paren-
theses (). These parentheses are not required; however, we suggest that you use
parentheses as often as possible in your programs, to maintain clarity. In this example, we
use parentheses to indicate what we want printed. We will demonstrate the use of paren-
theses throughout the chapter.

Common Programming Error 27.2
Forgetting to terminate a statement with a ; is a syntax error in most cases. 27.2

Perl has built-in data types (Fig. 27.3) that represent different kinds of data. Notice that
each variable name has a specific character (i.e., $, @ or %) preceding it. For example, the
$ character specifies that the variable contains a scalar value (i.e., strings, integer numbers,
floating-point numbers and references). The script fig27_04.pl (Fig. 27.4) demon-
strates the manipulation of scalar variables.

Common Programming Error 27.3
Failure to place a preceding $ character before a scalar variable name is a syntax error. 27.3

Data type
Format for variable
names of this type Description

Scalar $scalarname Can be a string, an integer number, a
floating-point number or a reference.

Array @arrayname An ordered list of scalar variables that can be
accessed using integer indices.

Hash %hashname An unordered set of scalar variables whose val-
ues are accessed using unique scalar values
(i.e., strings) called keys.

Fig. 27.3Fig. 27.3Fig. 27.3Fig. 27.3 Perl data types.

1 #!/usr/bin/perl
2 # Fig. 27.4: fig27_04.pl
3 # Program to illustrate the use of scalar variables.
4

Fig. 27.4Fig. 27.4Fig. 27.4Fig. 27.4 Using scalar variables (part 1 of 2).

iw3htp2_27.fm Page 912 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 913

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

In Perl, a variable is created the first time it is encountered by the interpreter. Line 5
creates a variable with name $number and sets its value to 5. Line 8 adds 5 to $number,
which results in the value 10 being stored in $number. Notice that we use an assignment
operator (+=) to yield an expression equivalent to $number = $number + 5, which adds
5 to the value of $number and stores the result in $number. Assignment operators (i.e.,
+=, -=, *= and /=) are syntactical shortcuts. Line 9 calls function print to write text fol-
lowed by the value of $number. Note that the actual value of $number is printed, rather
than "$number"; when a variable is encountered inside a double-quoted ("") string, Perl
uses a process called interpolation to replace the variable with its associated data. On line

5 $number = 5;
6 print("The value of variable \$number is: $number\n\n");
7
8 $number += 5;
9 print("Variable \$number after adding 5 is: $number\n");

10
11 $number *= 2;
12 print("Variable \$number after multiplying by 2 is: ");
13 print("$number\n\n\n");
14
15 # using an uninitialized variable in the context of a string
16 print("Using a variable before initializing: $variable\n\n");
17
18 # using an uninitialized variable in a numeric context
19 $test = $undefined + 5;
20 print("Adding uninitialized variable \$undefined ");
21 print("to 5 yields: $test\n");
22
23 # using strings in numeric contexts
24 $string = "A string value";
25 $number += $string;
26 print("Adding a string to an integer yields: $number\n");
27
28 $string2 = "15charactersand1";
29 $number2 = $number + $string2;
30 print("Adding $number to string \"$string2\" yields: ");
31 print("$string2\n");

The value of variable $number is: 5

Variable $number after adding 5 is: 10
Variable $number after multiplying by 2 is: 20

Using a variable before initializing:

Adding uninitialized variable $undefined to 5 yields: 5
Adding a string to an integer yields: 20
Adding 20 to string "15charactersand1" yields: 15charactersand1

Fig. 27.4Fig. 27.4Fig. 27.4Fig. 27.4 Using scalar variables (part 2 of 2).

iw3htp2_27.fm Page 913 Saturday, July 21, 2001 10:03 AM

914 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

11, we use a shortcut similar to the one used on line 8: *=. In this case, we multiply
$number by 2 and store the result in $number.

Testing and Debugging Tip 27.2
Function print can be used to display the value of a variable at a particular point during
a program’s execution. This is often helpful in debugging a program. 27.3

In Perl, uninitialized variables have the value undef, which evaluates to different
values depending on the variable’s context. When undef is used in a numeric context
(e.g., $undefined on line 19), it evaluates to 0. In contrast, when it is interpreted in a
string context (such as $variable in line 16), undef evaluates to the empty string ("").

Lines 24–31 show the results of evaluating strings in numeric context. Unless a string
begins with a digit, it is evaluated as undef in a numeric context. If it begins with a digit,
every character up to, but not including, the first nondigit character is evaluated as a
number, and the remaining characters are ignored. For example, the string "A string
value" (line 24) does not begin with a digit and, therefore, evaluates to undef. Because
undef evaluates to 0, variable $number’s value is unchanged. The string
"15charactersand1" (line 28) begins with a digit and is interpolated as 15. The char-
acter 1 on the end is ignored, because there are nondigit characters preceding it. Evaluating
a string in numeric context does not actually change the value of the string. This rule is
shown by line 31’s output, which prints the original string, "15charactersand1".

Notice that the programmer does not need to differentiate between numeric and string
data types, because the interpreter’s evaluation of scalar variables depends on the context
in which they are used.

Common Programming Error 27.4
Using an uninitialized variable might make a numerical calculation incorrect. For example,
multiplying a number by an uninitialized variable results in 0. 27.4

Testing and Debugging Tip 27.3
While it is not always necessary to initialize variables before using them, errors can be
avoided by doing so. Many Perl programmers use the statements use strict and use
warnings to catch such errors. For simplicity, we will not initialize variables before using
them in this chapter. 27.3

Perl provides the capability to store data in arrays. Arrays are divided into elements,
each containing a scalar value. The script fig27_05.pl (Fig. 27.5) demonstrates some
techniques for array initialization and manipulation.

1 #!/usr/bin/perl
2 # Fig. 27.5: fig27_05.pl
3 # Program to demonstrate arrays in Perl.
4
5 @array = ("Bill", "Bobby", "Sue", "Michelle");
6
7 print("The array contains: @array\n");
8 print("Printing array outside of quotes: ", @array, "\n\n");
9

10 print("Third element: $array[2]\n");

Fig. 27.5Fig. 27.5Fig. 27.5Fig. 27.5 Using arrays (part 1 of 2).

iw3htp2_27.fm Page 914 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 915

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 5 initializes array @array to contain the strings "Bill", "Bobby", "Sue"
and "Michelle". In Perl, all array variable names must be preceded by the @ symbol.
Parentheses are necessary to group the strings in the array assignment; this group of ele-
ments surrounded by parentheses is called a list. In assigning the list to @array, each
person’s name is stored in an individual array element with a unique integer index value,
starting at 0.

Common Programming Error 27.5
Although lists in Perl may seem similar to arrays, they are not. A list is simply a group of ele-
ments surrounded by parentheses and does not contain the entire functionality of an array. 27.5

When printing an array inside double quotes (line 7), the array element values are
printed with only one space separating them. The values are separated by whatever is in
special variable $", which, by default, is a space. If this value were changed to the letter
"a", all the array elements would be printed with the character "a" between them. If the
array name is not enclosed in double quotes when it is printed (line 8), the interpreter
prints the element values without inserting spaces between them.

11
12 $number = 3;
13 print("Fourth element: $array[$number]\n\n");
14
15 @array2 = ('A' .. 'Z');
16 print("The range operator is used to create a list of\n");
17 print("all capital letters from A to Z:\n");
18 print("@array2 \n\n");
19
20 $array3[3] = "4th";
21 print("Array with just one element initialized: @array3 \n\n");
22
23 print('Printing literal using single quotes: ');
24 print('@array and \n', "\n");
25
26 print("Printing literal using backslashes: ");
27 print("\@array and \\n\n");

The array contains: Bill Bobby Sue Michelle
Printing array outside of quotes: BillBobbySueMichelle

Third element: Sue
Fourth element: Michelle

The range operator is used to create a list of
all capital letters from A to Z:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Array with just one element initialized: 4th

Printing literal using single quotes: @array and \n
Printing literal using backslashes: @array and \n

Fig. 27.5Fig. 27.5Fig. 27.5Fig. 27.5 Using arrays (part 2 of 2).

iw3htp2_27.fm Page 915 Saturday, July 21, 2001 10:03 AM

916 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 10 demonstrates how individual array elements are accessed using square
brackets ([]). As mentioned previously, if we use the @ character followed by the array
name, we reference the array as a whole. But if the name of the array is prefixed by the $
character and followed by an index number in square brackets (as in line 10), it refers
instead to an individual element of the array, which is a scalar value. Line 13 demonstrates
the use of a variable as the index number. The value of $number[3] is used to get the
value of the fourth element of the array.

Line 15 initializes array @array2 to contain the capital letters A to Z inclusive. The
range operator (..) specifies that all values between uppercase A and uppercase Z be
placed in the array. The range operator can be used to create a consecutive series of values,
such as 1 through 15 or a through z.

The Perl interpreter handles memory management. Therefore, it is not necessary to
specify an array’s size. If a value is assigned to a position outside the range of the array or
to an uninitialized array, the interpreter automatically extends the array range to include the
new element. Elements that are added by the interpreter during an adjustment of the range
are initialized to the undef value. Lines 20–21 assign a value to the fourth element in the
uninitialized array @array3. The interpreter recognizes that memory has not been allo-
cated for this array and creates new memory for the array. The interpreter then sets the value
of the first three elements to undef and the value of the fourth element to the string
"4th". When the array is printed, the first three undef values are treated as empty strings
and printed with a space between each. This accounts for the three extra spaces in the output
before the string "4th".

To print special characters, like \, @ and " and not have the interpreter treat them as an
escape sequence or array, Perl provides two options. The first is to print (lines 23–24)
the characters as a literal string (i.e., a string enclosed in single quotes). When strings are
inside single quotes, the interpreter treats the string literally and does not attempt to inter-
pret any escape sequence or variable substitution. The second choice is to use the backslash
character (line 26–27) to escape special characters.

27.3 String Processing and Regular Expressions
One of Perl’s most powerful capabilities is the processing of textual data easily and effi-
ciently, which allows for straightforward searching, substitution, extraction and concatena-
tion of strings. Text manipulation in Perl is usually done with a regular expression—a
series of characters that serves as a pattern-matching template (or search criterion) in
strings, text files and databases. This feature allows complicated searching and string pro-
cessing to be performed using relatively simple expressions.

Many string-processing tasks can be accomplished by using Perl’s equality and compar-
ison operators (Fig. 27.6, fig27_06.pl). Line 5 declares and initializes array @fruits.
Operator qw (“quote word”) takes the contents inside the parentheses and creates a comma-
separated list, with each element wrapped in double quotes. In this example, qw(apple
orange banana) is equivalent to ("apple", "orange", "banana").

Lines 7–24 demonstrate our first example of Perl control structures. The foreach
structure (line 7) iterates sequentially through the elements in @fruits. Each element’s
value is assigned to variable $item, and the body of the foreach is executed once for
each element in the array. Notice that a semicolon does not terminate the foreach.

iw3htp2_27.fm Page 916 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 917

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 9 introduces another control structure: the if structure. Parentheses surround the
condition being tested, and mandatory curly braces surround the block of code that is exe-
cuted when the condition is true. In Perl, any scalar except the number 0, the string "0"
and the empty string (i.e., undef values) is defined as true. In our example, when the
$item’s content is tested against "banana" (line 9) for equality, the condition evaluates
to true, and the print command (line 10) is executed.

The remaining if statements (lines 13, 17 and 21) demonstrate the other string com-
parison operators. Operators eq, lt and gt test strings for equality, less-than and greater-
than, respectively. These operators are used only with strings. When comparing numeric
values, operators ==, !=, <, <=, > and >= are used.

Common Programming Error 27.6
Using == for string comparisons or eq for numerical comparisons can result in errors in the
program. 27.6

Common Programming Error 27.7
While the number 0 and the string "0" evaluate to false in Perl if statements, other string
values that might look like zero ("0.0") evaluate to true. 27.7

1 #!/usr/bin/perl
2 # Fig. 27.6: fig27_06.pl
3 # Program to demonstrate the eq, ne, lt, gt operators.
4
5 @fruits = qw(apple orange banana);
6
7 foreach $item (@fruits) {
8
9 if ($item eq "banana") {

10 print("String '$item' matches string 'banana'\n");
11 }
12
13 if ($item ne "banana") {
14 print("String '$item' does not match string 'banana'\n");
15 }
16
17 if ($item lt "banana") {
18 print("String '$item' is less than string 'banana'\n");
19 }
20
21 if ($item gt "banana") {
22 print("String '$item' is greater than string 'banana'\n");
23 }
24 }

String 'apple' does not match string 'banana'
String 'apple' is less than string 'banana'
String 'orange' does not match string 'banana'
String 'orange' is greater than string 'banana'
String 'banana' matches string 'banana'

Fig. 27.6Fig. 27.6Fig. 27.6Fig. 27.6 Using the eq, ne, lt and gt operators.

iw3htp2_27.fm Page 917 Saturday, July 21, 2001 10:03 AM

918 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

For more powerful string comparisons, Perl provides the match operator (m//), which
uses regular expressions to search a string for a specified pattern. Figure 27.7 uses the
match operator to perform a variety of regular expression tests.

We begin by assigning the string "Now is is the time" to variable $search (line
5). The expression on line 8 uses the m// match operator to search for the literal characters
Now inside variable $search. Note that the m character preceding the slashes of the m//
operator is optional in most cases and thus is omitted here.

The match operator takes two operands. The first operand is the regular-expression
pattern to search for (Now), which is placed between the slashes of the m// operator. The
second operand is the string within which to search, which is assigned to the match operator
using the =~ operator. The =~ operator is sometimes called a binding operator, because it
binds whatever is on its left side to a regular-expression operator on its right.

In our example, the pattern Now is found in the string "Now is is the time". The
match operator returns true, and the body of the if statement is executed. In addition to
literal characters like Now, which match only themselves, regular expressions can include
special characters called metacharacters, which specify patterns or contexts that cannot be
defined using literal characters. For example, the caret metacharacter (^) matches the
beginning of a string. The next regular expression (line 12) searches the beginning of
$search for the pattern Now.

The $ metacharacter searches the end of a string for a pattern (line 17). Because the
pattern Now is not found at the end of $search, the body of the if statement (line 18) is
not executed. Note that Now$ is not a variable; it is a search pattern that uses $ to search
for Now at the end of a string.

1 #!/usr/bin/perl
2 # Fig 27.7: fig27_07.pl
3 # Searches using the matching operator and regular expressions.
4
5 $search = "Now is is the time";
6 print("Test string is: '$search'\n\n");
7
8 if ($search =~ /Now/) {
9 print("String 'Now' was found.\n");

10 }
11
12 if ($search =~ /^Now/) {
13 print("String 'Now' was found at the beginning of the line.");
14 print("\n");
15 }
16
17 if ($search =~ /Now$/) {
18 print("String 'Now' was found at the end of the line.\n");
19 }
20
21 if ($search =~ /\b (\w+ ow) \b/x) {
22 print("Word found ending in 'ow': $1 \n");
23 }
24

Fig. 27.7Fig. 27.7Fig. 27.7Fig. 27.7 Using the matching operator (part 1 of 2).

iw3htp2_27.fm Page 918 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 919

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The condition on line 21, searches (from left to right) for the first word ending with the
letters ow. As in strings, backslashes in regular expressions escape characters with special
significance. For example, the \b expression does not match the literal characters “\b.”
Instead, the expression matches any word boundary. A word boundary is a boundary
between an alphanumeric character—0–9, a–z, A–Z and the underscore character—and
something that is not an alphanumeric character. Between the \b characters is a set of
parentheses, which will be explained momentarily.

The expression inside the parentheses, \w+ ow, indicates that we are searching for pat-
terns ending in ow. The first part, \w+, is a combination of \w (an escape sequence that
matches a single alphanumeric character) and the + modifier, which is a quantifier that
instructs Perl to match the preceding character one or more times. Thus, \w+ matches one or
more alphanumeric characters. The characters ow are taken literally. Collectively, the expres-
sion /\b (\w+ ow) \b/ matches one or more alphanumeric characters ending with ow, with
word boundaries at the beginning and end. See Fig. 27.8 for a description of several Perl reg-
ular-expression quantifiers and Fig. 27.9 for a list of regular-expression metacharacters.

Parentheses indicate that the text matching the pattern is to be saved in a special Perl
variable (e.g., $1, etc.). The parentheses (line 21 of Fig. 27.7) cause Now to be stored in
variable $1. Multiple sets of parentheses may be used in regular expressions, where each
match results in a new Perl variable ($1, $2, $3, etc.). The value matched in the first set of
parentheses is stored in variable $1, the value matched in the second set of parentheses is
stored in variable $2, and so on.

25 if ($search =~ /\b (\w+) \s (\1) \b/x) {
26 print("Repeated words found: $1 $2\n");
27 }
28
29 @matches = ($search =~ / \b (t \w+) \b /gx);
30 print("Words beginning with 't' found: @matches\n");

Test string is: 'Now is is the time'

String 'Now' was found.
String 'Now' was found at the beginning of the line.
Word found ending in 'ow': Now
Repeated words found: is is
Words beginning with 't' found: the time

Quantifier Matches

{n} Exactly n times

{m,n} Between m and n times inclusive

{n,} n or more times

Fig. 27.8Fig. 27.8Fig. 27.8Fig. 27.8 Some of Perl’s quantifiers (part 1 of 2).

Fig. 27.7Fig. 27.7Fig. 27.7Fig. 27.7 Using the matching operator (part 2 of 2).

iw3htp2_27.fm Page 919 Saturday, July 21, 2001 10:03 AM

920 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Adding modifying characters after a regular expression refines the pattern-matching
process. Modifying characters (Fig. 27.10) placed to the right of the forward slash that
delimits the regular expression instruct the interpreter how to treat the preceding expres-
sion. For example, the i after the regular expression

/computer/i

tells the interpreter to ignore case when searching, thus matching computer, COMPUTER,
Computer, CoMputER, etc.

+ One or more times (same as {1,})

* Zero or more times (same as {0,})

? One or zero times (same as {0,1})

Symbol Matches Symbol Matches

^ Beginning of line \d Digit (i.e., 0 to 9)

$ End of line \D Nondigit

\b Word boundary \s Whitespace

\B Nonword boundary \S Nonwhitespace

\w Word (alphanumeric)
character

\n Newline

\W Nonword character \t Tab

Fig. 27.9Fig. 27.9Fig. 27.9Fig. 27.9 Some of Perl’s metacharacters.

Quantifier Matches

Fig. 27.8Fig. 27.8Fig. 27.8Fig. 27.8 Some of Perl’s quantifiers (part 2 of 2).

Modifying Character Purpose

g Perform a global search; find and return all matches, not just the first
one found.

i Ignores the case of the search string (case insensitive).

m The string is evaluated as if it had multiple lines of text (i.e., newline
characters are not ignored).

s Ignore the newline character and treat it as whitespace. The text is
seen as a single line.

x All whitespace characters are ignored when searching the string.

Fig. 27.10Fig. 27.10Fig. 27.10Fig. 27.10 Some of Perl’s modifying characters.

iw3htp2_27.fm Page 920 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 921

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

When added to the end of a regular expression, the x modifying character indicates that
whitespace characters are to be ignored. This allows programmers to add space characters
to their regular expressions for readability without affecting the search. If the expression
were written as

$search =~ /\b (\w+ ow) \b/

—that is, without the x modifying character—then the script would be searching for a word
boundary, two spaces, one or more alphanumeric characters, one space, the characters ow,
two spaces and a word boundary. The expression would not match $search’s value.

The condition on line 25 uses the memory function (i.e., parentheses) in a regular
expression. The first parenthetical expression matches any string containing one or more
alphanumeric characters. The expression \1 then evaluates to the word that was matched
in the first parenthetical expression. The regular expression searches for two identical, con-
secutive words, separated by a whitespace character (\s), in this case “is is.”

The condition in line 29 searches for words beginning with the letter t in the string
$search. Modifying character g indicates a global search—a search that does not stop
after the first match is found. The array @matches is assigned the value of a list of all
matching words.

27.4 Viewing Client/Server Environment Variables
Knowing information about a client’s execution environment allows system administrators
to provide client-specific information. Environment variables contain information about
the execution environment in which script is being run, such as the type of Web browser
used, the HTTP host and the HTTP connection. A Web server might use this information
to generate client-specific Web pages.

Until now, we have written simple Perl applications that output to the local user’s
screen. Through the use of CGI, we can communicate with the Web server and its clients,
allowing us to use the Internet as a method of input and output for our Perl applications. In
order to run Perl scripts as CGI applications, a Web server must be installed and configured
correctly for your system. See the “Web Server Installation” document at
www.deitel.com for information on installing and setting up a Web server.

We place our CGI programs in the cgi-bin folder. If this directory does not exist,
create it in the Web server’s root directory. Other important files (such as .html files,
.shtml files, images, etc.) are normally placed in the root directory of the Web server.
For additional information, see your Web server’s documentation.

In Fig. 27.11, we present our first CGI program. When creating dynamic Web pages in
Perl, we output XHTML by using print statements. The XHTML generated in this program
displays the client’s environment variables. The use statement (line 5) instructs Perl pro-
grams to include the contents (e.g., functions) of predefined packages called modules. The
CGI module, for example, contains useful functions for CGI scripting in Perl, including func-
tions that return strings representing XHTML (or HTML) tags and HTTP headers. With the
use statement, we can specify which functions we would like to import from a particular
module. In line 5, we use the import tag :standard to import a predefined set of standard
functions. We use several of these functions in the following examples.

iw3htp2_27.fm Page 921 Saturday, July 21, 2001 10:03 AM

922 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 11 instructs the Perl script to print a valid HTTP header, using function
header from the CGI library. Browsers use HTTP headers to determine how to handle
incoming data. The header function returns the string “Content-type: text/
html\n\n,” indicating to the client that what follows is XHTML. The text/html por-
tion of the header indicates that the browser must display the returned information as an
XHTML document. Standard output is redirected when a CGI script is executed, so the
function print outputs to the user’s Web browser.

On lines 13–14, we begin to write XHTML to the client by using the start_html
function. This function prints the document type definition for this document, as well as
several opening XHTML tags (<html>, <head>, <title>, etc., up to the opening
<body> tag). Notice that certain information is specified within curly braces ({}). In
many CGI module functions additional information (e.g., attributes) can be specified
within curly braces. The print statement on lines 13–14 displays the result returned by
start_html. Each argument within the curly braces is in the form of a key–value pair.
A key (or value name) is assigned a value using the arrow operator (=>), where the key is
to the left of the arrow and the value is to the right. The first argument consists of the key
dtd and the value $dtd. When we include the dtd argument in the function
start_html, the default document type definition is changed from HTML’s DTD to the
value of $dtd. This adds the proper XHTML DTD to this file, specified in lines 7–9. The
title argument specifies the value that goes between the opening and closing <title>
tags. In this example, the title of the Web page is set to "Environment Vari-
ables...". Note that the order of these key–value pairs is not important.

The function start_html, as well as many other Perl functions, can be used in a
variety of ways. All of the arguments to start_html are optional, and some arguments
can be specified differently than how we see in this program. A good way to find correct
syntaxes is to consult Official Guide to Programming with CGI.pm The Standard for
Building Web Scripts by Lincoln Stein (the creator of the CGI library). Information about
CGI is also available on the Internet. (See the Web resources at the end of this chapter.)

1 #!/usr/bin/perl
2 # Fig. 27.11: fig27_11.pl
3 # Program to display CGI environment variables.
4
5 use CGI qw(:standard);
6
7 $dtd =
8 "-//W3C//DTD XHTML 1.0 Transitional//EN\"
9 \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";

10
11 print(header());
12
13 print(start_html({ dtd => $dtd,
14 title => "Environment Variables..." }));
15
16 print("<table style = \"border: 0; padding: 2;
17 font-weight: bold\">");
18

Fig. 27.11Fig. 27.11Fig. 27.11Fig. 27.11 Displaying CGI environment variables (part 1 of 2).

iw3htp2_27.fm Page 922 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 923

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

On lines 19–20, we have two more CGI.pm functions—Tr and th. These functions
place their arguments between table row and table header tags, respectively. The print
statement displays

<tr><th>Variable Name</th><th>Value</th></tr>

Function th is called twice, with the arguments "Variable Name" and "Value",
causing both of these values to be surrounded by start and end table header tags. [Note: This
function has a capital “T” because Perl already contains an operator tr.] We call function
Tr again on line 22 with the hr and td functions, in order to print a row of horizontal rules
within <td> tags.

19 print(Tr(th("Variable Name"),
20 th("Value")));
21
22 print(Tr(td(hr()), td(hr())));
23
24 foreach $variable (sort(keys(%ENV))) {
25
26 print(Tr(td({ style => "background-color: #11bbff" },
27 $variable),
28 td({ style => "font-size: 12pt" },
29 $ENV{ $variable })));
30
31 print(Tr(td(hr()), td(hr())));
32 }
33
34 print("</table>");
35 print(end_html());

Fig. 27.11Fig. 27.11Fig. 27.11Fig. 27.11 Displaying CGI environment variables (part 2 of 2).

iw3htp2_27.fm Page 923 Saturday, July 21, 2001 10:03 AM

924 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The %ENV hash is a built-in table in Perl that contains the names and values of all the
environment variables. On lines 24–32, we see a foreach structure that uses the %ENV
hash. The hash data type is designated by the % character and represents an unordered set
of scalar-value pairs. Unlike an array, which accesses elements through integer indices
(e.g., $array[2]), each element in a hash is accessed using a unique string key that is
associated with that element’s value. For this reason, hashes are also known as associative
arrays, because the keys and values are associated in pairs. Hash values are accessed using
the syntax $hashName{ keyName }. In this example, each key in hash %ENV is the name
of an environment variable name (e.g., HTTP_HOST). When this value is used as the key
in the %ENV hash, that variable’s value is returned.

Function keys returns an unordered array containing all the keys in the %ENV hash
(line 24), as hash elements have no defined order. We call function sort to order the array
of keys alphabetically. Finally, the foreach loop iterates sequentially through the array
returned by sort, repeatedly assigning the current key’s value to scalar $variable.
Lines 26–31 are executed for each element in the array of key values. In lines 26–29, we
output a new row for the table, containing the name of the environment variable ($vari-
able) in one column and the value for that variable ($ENV{ $variable }) in the next.
We call function td on line 26 again, using curly-brace notation. This line specifies the
value for the attribute style. The name of the attribute is specified on the left, followed
by its value on the right. When using the CGI module functions, this notation is used to
specify attribute values. On line 28, we use the hash notation again to specify a style
attribute. Finally, on line 35, we call the function end_html, which returns the closing
tags for the page (</body> and </html>).

27.5 Form Processing and Business Logic
XHTML forms enable Web pages to collect data from users and send the data to a Web
server for processing by server-side programs and scripts. This allows users to purchase
products, send and receive Web-based e-mail, participate in a poll, perform online paging
or engage in a number of other tasks. This type of Web communication allows users to in-
teract with the server and is vital to Web development.

Figure 27.12 uses an XHTML form to collect information about users before adding
them to a mailing list. This type of registration form could be used, by a software company to
obtain profile information for a user’s company database before allowing the user to down-
load software.

Line 21 contains a form element which indicates that, when the user clicks Register,
the form information is posted to the server. The statement action = "cgi-bin/
fig27_13.pl" directs the server to execute the fig27_13.pl Perl script (located in
the cgi-bin directory) to process the posted form data. We assign a unique name (e.g.,
email on line 33) to each of the form’s input fields. When Register is clicked, each
field’s name and value is sent to the script fig27_13.pl, which can then access the
submitted value for each specific field.

Good Programming Practice 27.2
Use meaningful XHTML object names for input fields. This practice makes Perl programs
easier to understand when processing form data. 27.2

iw3htp2_27.fm Page 924 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 925

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 27.12: fig27_12.html -->
5
6 <html>
7 <head>
8 <title>Sample form to take user input in XHTML</title>
9 </head>

10
11 <body style = "font-face: arial; font-size: 12pt">
12
13 <div style = "font-size: 14pt; font-weight: bold">
14 This is a sample registration form.
15 </div>
16
17

18 Please fill in all fields and click Register.
19
20 <form method = "post" action = "/cgi-bin/fig27_13.pl">
21
22

23
24 <div style = "color: blue" >
25 Please fill out the fields below.

26 </div>
27
28
29 <input type = "text" name = "fname" />

30
31 <input type = "text" name = "lname" />

32
33 <input type = "text" name = "email" />

34
35 <input type = "text" name = "phone" />

36
37 <div style = "font-size: 10pt">
38 Must be in the form (555)555-5555.

39 </div>
40
41

42 <div style = "color: blue">
43 Which book would you like information about?

44 </div>
45
46 <select name = "book">
47 <option>Internet and WWW How to Program 2e</option>
48 <option>C++ How to Program 3e</option>
49 <option>Java How to Program 4e</option>
50 <option>XML How to Program 1e</option>
51 </select>

52
53

Fig. 27.12Fig. 27.12Fig. 27.12Fig. 27.12 XHTML document with an interactive form (part 1 of 2).

iw3htp2_27.fm Page 925 Saturday, July 21, 2001 10:03 AM

926 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

54 <div style = "color: blue">
55 Which operating system are you currently using?
56 </div>

57
58 <input type = "radio" name = "os"
59 value = "Windows NT" checked />
60 Windows NT<input type = "radio"
61 name = "os" value = "Windows 2000" />
62 Windows 2000<input type = "radio"
63 name = "os" value = "Windows 98/me" />
64 Windows 98/me
<input type = "radio"
65 name = "os" value = "Linux" />
66 Linux<input type = "radio" name = "os"
67 value = "Other" />
68 Other
<input type = "submit"
69 value = "Register" />
70 </form>
71 </body>
72 </html>

Fig. 27.12Fig. 27.12Fig. 27.12Fig. 27.12 XHTML document with an interactive form (part 2 of 2).

iw3htp2_27.fm Page 926 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 927

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The program in Fig. 27.13 processes the data posted by fig27_12.html and sends
a Web page response back to the client. Function param (lines 8–13) is part of the Perl
CGI module and retrieves values from a form field’s value. For example, in line 35 of the
previous figure (Fig. 27.12), an XHTML form text field is created with the name phone.
In line 12 of Fig. 27.13, we access the value that the user entered for that field by calling
param("phone") and assign the value returned to variable $phone.

In line 24, we determine whether the phone number entered by the user is valid. In this
case, (555)555-5555 is the only acceptable format. Validating information is crucial when
you are maintaining a database, and a great way to do this is using regular expressions. Vali-
dation ensures that data is stored in the proper format in a database, that credit-card numbers
contain the proper number of digits before encrypting them for submission to a merchant, etc.
The design of verifying information is called business logic, or business rules.

The if condition in line 24 uses a regular expression to validate the phone number.
The expression “\(” matches the opening parenthesis of the phone number. Because we
want to match the literal character (, we must escape its normal meaning by using the \
character. This sequence must be followed by three digits (\d{3}), a closing parenthesis,
three digits, a hyphen and finally, four more digits. Note that we use the ^ and $ metachar-
acters to ensure that there are no extra characters at the beginning or end of the string.

If the regular expression is matched, then the phone number is valid, and a Web page is
sent, thanking the user for completing the form. If the user posts an invalid phone number, the
else (lines 63–76) is executed, instructing the user to enter a valid phone number.

1 #!/usr/bin/perl
2 # Fig. 27.13: fig27_13.pl
3 # Program to read information sent to the server
4 # from the form in the fig27_12.html document.
5
6 use CGI qw(:standard);
7
8 $os = param("os");
9 $firstName = param("fname");

10 $lastName = param("lname");
11 $email = param("email");
12 $phone = param("phone");
13 $book = param("book");
14
15 $dtd =
16 "-//W3C//DTD XHTML 1.0 Transitional//EN\"
17 \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";
18
19 print(header());
20
21 print(start_html({ dtd => $dtd,
22 title => "Form Results" }));
23
24 if ($phone =~ / ^ \(\d{3} \) \d{3} - \d{4} $ /x) {
25 print("Hi ");
26 print(span({ style => "color: blue; font-weight: bold" },
27 $firstName));

Fig. 27.13Fig. 27.13Fig. 27.13Fig. 27.13 Script to process user data from fig27_12.html (part 1 of 3).

iw3htp2_27.fm Page 927 Saturday, July 21, 2001 10:03 AM

928 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

28 print("!");
29
30 print("\nThank you for completing the survey.");
31 print(br(), "You have been added to the ");
32
33 print(span({ style => "color: blue; font-weight: bold" },
34 $book));
35 print(" mailing list.", br(), br());
36
37 print(span({ style => "font-weight: bold" },
38 "The following information has
39 been saved in our database: "), br());
40
41 print(table(
42 Tr(th({ style => "background-color: #ee82ee" },
43 "Name"),
44 th({ style => "background-color: #9370db" },
45 "E-mail"),
46 th({ style => "background-color: #4169e1" },
47 "Phone"),
48 th({ style => "background-color: #40e0d0" },
49 "OS")),
50
51 Tr({ style => "background-color: #c0c0c0" },
52 td("$firstName $lastName"),
53 td($email),
54 td($phone),
55 td($os))));
56
57 print(br());
58
59 print(div({ style => "font-size: x-small" },
60 "This is only a sample form. You have not been
61 added to a mailing list."));
62 }
63 else {
64 print(div({ style => "color: red; font-size: x-large" },
65 "INVALID PHONE NUMBER"), br());
66
67 print("A valid phone number must be in the form ");
68 print(span({ style => "font-weight: bold" },
69 "(555)555-5555."));
70
71 print(div({ style => "color: blue" },
72 "Click the Back button, and enter a
73 valid phone number and resubmit."));
74 print(br(), br());
75 print("Thank you.");
76 }
77
78 print(end_html());

Fig. 27.13Fig. 27.13Fig. 27.13Fig. 27.13 Script to process user data from fig27_12.html (part 2 of 3).

iw3htp2_27.fm Page 928 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 929

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Good Programming Practice 27.3
Use business logic to ensure that invalid information is not stored in a database. 27.3

The br function (line 31) adds a break (
) to the XHTML page, while methods
span (line 26) and div (line 59) add and <div> tags to the page, respectively.

Fig. 27.13Fig. 27.13Fig. 27.13Fig. 27.13 Script to process user data from fig27_12.html (part 3 of 3).

iw3htp2_27.fm Page 929 Saturday, July 21, 2001 10:03 AM

930 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

27.6 Server-Side Includes
Dynamic content greatly improves the look and feel of a Web page. Pages that include the
current date or time, rotating banners or advertisements, a daily message, special offer or
company news are attractive, because they are current. Clients see new information on ev-
ery visit and thus will likely revisit the site in the future.

Server-Side Includes (SSIs) are commands embedded in XHTML documents to allow
the creation of simple dynamic content. SSI commands like ECHO and INCLUDE enable
the inclusion on Web pages of content that is constantly changing (i.e., the current time) or
information that is stored in a database. The command EXEC can be used to run CGI scripts
and embed their output directly into a Web page.

Not all Web servers support the available SSI commands. Therefore, SSI commands
are written as XHTML comments (e.g., <!--#ECHO VAR="DOCUMENT_NAME" -->).
Servers that do not recognize these commands treat them as comments. Some servers do
support SSI commands, but only if the servers are configured to do so. Check your server’s
documentation to configure your server appropriately.

 A document containing SSI commands is typically given the .shtml file extension
(the s at the front of the extension stands for server). The .shtml files are parsed by the
server. The server executes the SSI commands and writes output to the client.

Figure 27.14 implements a Web page hit counter. Each time a client requests the doc-
ument, the counter is incremented by 1. The Perl script fig27_15.pl manipulates the
counter.

Performance Tip 27.1
Parsing XHTML documents on a server can dramatically increase the load on that server. To
increase the performance of a heavily loaded server, try to limit the use of Server Side Includes. 27.1

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3
4 <!-- Fig. 27.14: fig27_14.shtml -->
5
6 <html>
7 <head>
8 <title>Using Server Side Includes</title>
9 </head>

10
11 <body>
12 <h3 style = "text-align: center">
13 Using Server Side Includes
14 </h3>
15
16 <!--#EXEC CGI="/cgi-bin/fig27_15.pl" -->

17
18 The Greenwich Mean Time is
19
20 <!--#ECHO VAR="DATE_GMT" -->.

Fig. 27.14Fig. 27.14Fig. 27.14Fig. 27.14 Incorporating a Web-page hit counter and displaying environment
variables, using server-side includes (part 1 of 3).

iw3htp2_27.fm Page 930 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 931

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

21

22
23 The name of this document is
24
25 <!--#ECHO VAR="DOCUMENT_NAME" -->.
26

27
28 The local date is
29
30 <!--#ECHO VAR="DATE_LOCAL" -->.
31

32
33 This document was last modified on
34
35 <!--#ECHO VAR="LAST_MODIFIED" -->.
36

37
38 Your current IP Address is
39
40 <!--#ECHO VAR="REMOTE_ADDR" -->.
41

42
43 My server name is
44
45 <!--#ECHO VAR="SERVER_NAME" -->.
46

47
48 And I am using the
49
50 <!--#ECHO VAR="SERVER_SOFTWARE" -->
51 Web Server.
52

53
54 You are using
55
56 <!--#ECHO VAR="HTTP_USER_AGENT" -->.
57

58
59 This server is using
60
61 <!--#ECHO VAR="GATEWAY_INTERFACE" -->.
62

63
64

65 <div style = "text-align: center;
66 font-size: xx-small">
67 <hr />
68 This document was last modified on
69 <!--#ECHO VAR="LAST_MODIFIED" -->.
70 </div>
71 </body>
72 </html>

Fig. 27.14Fig. 27.14Fig. 27.14Fig. 27.14 Incorporating a Web-page hit counter and displaying environment
variables, using server-side includes (part 2 of 3).

iw3htp2_27.fm Page 931 Saturday, July 21, 2001 10:03 AM

932 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 16 of the fig27_14.shtml script executes the fig27_15.pl script, using
the EXEC command. Before the XHTML document is sent to the client, the SSI command
is executed, and any script output is sent to the client. This technique can increase the load
on the server tremendously, depending on how many times the script has to be parsed and
the size and workload of the scripts.

Line 20 uses the ECHO command to display variable information. The ECHO command
is followed by the keyword VAR and the name of the variable. For example, variable
DATE_GMT contains the current date and time in Greenwich Mean Time (GMT). In line
25, the name of the current document is included in the XHTML page with the
DOCUMENT_NAME variable. The DATE_LOCAL variable inserts the date on line 30 in
local format—different formats are used around the world.

Figure 27.15 (fig27_15.pl) introduces file input and output in Perl. Line 8 opens
(for input) the file counter.dat, which contains the number of hits to date for the
fig27_14.shtml Web page. Function open is called to create a filehandle to refer to
the file during the execution of the script. In this example, the file opened is assigned a file-
handle named COUNTREAD.

1 #!/usr/bin/perl
2 # Fig. 27.15: fig27_15.pl
3 # Program to track the number of times

Fig. 27.15Fig. 27.15Fig. 27.15Fig. 27.15 Perl script for counting Web page hits (part 1 of 2).

Fig. 27.14Fig. 27.14Fig. 27.14Fig. 27.14 Incorporating a Web-page hit counter and displaying environment
variables, using server-side includes (part 3 of 3).

iw3htp2_27.fm Page 932 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 933

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 9 uses the diamond operator, <>, to read one line of the file referred to by file-
handle COUNTREAD and assign it to the variable $data. When the diamond operator is
used in a scalar context, only one line is read. If assigned to an array, each line from the file
is assigned to a successive element of the array. Because the file counter.dat contains
only one line (in this case, only one number), the variable $data is assigned the value of
that number in line 9. Line 10 then increments $data by 1. If the file does not yet exist
when we try to open it, $data is assigned the value undef, which will be evaluated as 0
and incremented to 1 on line 10.

Now that the counter has been incremented for this hit, we write the counter back to
the counter.dat file. In line 13 we open the counter.dat file for writing by pre-
ceding the file name with a > character (this is called write mode). This immediately trun-
cates (i.e., discards) any data in that file. If the file does not exist, Perl creates a new file
with the specified name. Perl also provides an append mode (>>) for appending to the end
of a file. The first argument (COUNTWRITE) specifies the filehandle, which will be used to
refer to the file.

After line 13 is executed, data can be written to the file counter.dat. Line 14 writes
the counter number back to the file counter.dat. The first argument to print indi-
cates the filehandle that refers to the file where data are written. If no filehandle is specified,
print writes to standard out (STDOUT). Notice that we need to use a space, rather than a
comma, to separate the filehandle from the data. In line 15, the connection to
counter.dat is terminated by calling function close.

Lines 21–24 use a for structure to iterate through each digit of the number scalar
$data. The for structure syntax consists of three semicolon-separated statements in
parentheses, followed by a body delimited by curly braces. In our example, we iterate until

4 # a Web page has been accessed.
5
6 use CGI qw(:standard);
7
8 open(COUNTREAD, "counter.dat");
9 $data = <COUNTREAD>;

10 $data++;
11 close(COUNTREAD);
12
13 open(COUNTWRITE, ">counter.dat");
14 print(COUNTWRITE $data);
15 close(COUNTWRITE);
16
17 print(header(), "<div style = \"text-align: center;
18 font-weight: bold\">");
19 print("You are visitor number", br());
20
21 for ($count = 0; $count < length($data); $count++) {
22 $number = substr($data, $count, 1);
23 print(img({ src => "images/$number.gif" }), "\n");
24 }
25
26 print("</div>");

Fig. 27.15Fig. 27.15Fig. 27.15Fig. 27.15 Perl script for counting Web page hits (part 2 of 2).

iw3htp2_27.fm Page 933 Saturday, July 21, 2001 10:03 AM

934 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

$count is equal to length($data). Function length returns the length of a char-
acter string, so the for iterates once for each digit in the variable $data. For instance, if
$data stores the value "32", then the for structure iterates twice, first to process the
value "3", and second to process the value "2". In the first iteration, $count equals 0 (as
initialized on line 21), and the second time $count will equal 1. This is because the value
of $count will be incremented for each loop (as specified by the statement $count++,
also on line 21). For each iteration, we obtain the current digit by calling function substr.
The first parameter passed to function substr specifies the string from which to obtain a
substring. The second parameter specifies the offset, in characters, from the beginning of
the string, so an offset of 0 returns the first character, 1 returns the second and so forth. The
third argument specifies the length of the substring to be obtained (one character in this
case). The for structure then assigns each digit (possibly from a multiple-digit number) to
the scalar variable $number. Each digit’s corresponding image is displayed using the img
function (line 23).

Good Programming Practice 27.4
When opening a text file to read its contents, open the file in read-only mode. Opening the
file in other modes increases the risk of overwriting the data accidentally. 27.4

Good Programming Practice 27.5
Always close files as soon as you are finished using them. 27.5

It is important in this example to think about file permissions and security. This program
may not run correctly if the user’s default settings do not allow scripts to manipulate files. In
order to resolve this issue, the user can change the permissions in the folder where
counter.dat resides, so that all users have Write access. However, the user should be
aware that this poses a security risk to the system. Security details are covered in Chapter 32.

27.7 Verifying a Username and Password
It is often desirable to have a private Web site—one that is visible only to certain people.
Implementing privacy generally involves username and password verification. Figure
27.16 is an XHTML form that queries the user for a username and a password. It posts the
fields username and password to the Perl script fig27_17.pl upon submission of
the form. Note that for simplicity, this example does not encrypt the data before sending
them to the server.

The script fig27_17.pl (Fig. 27.17) is responsible for verifying the username and
password of the client by crosschecking against values from a database. The database list
of valid users and their passwords is a simple text file: password.txt (Fig. 27.18).

On line 14 of fig27_17.pl, we open the file password.txt for reading and
assign it to the filehandle FILE. To verify that the file was opened successfully, a test is
performed using the logical OR operator (or). Operator or returns true if either the left
condition or the right condition evaluates to true. If the condition on the left evaluates to
true, then the condition on the right is not evaluated. In this case, the function die executes
only if open returns false, indicating that the file did not open properly. Function die dis-
plays an error message and terminates program execution.

iw3htp2_27.fm Page 934 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 935

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3
4 <!-- Fig. 27.16: fig27_16.html -->
5
6 <html>
7 <head>
8 <title>Verifying a username and a password</title>
9 </head>

10
11 <body>
12 <p>
13 <div style = "font-family = arial">
14 Type in your username and password below.
15 </div>

16
17 <div style = "color: #0000ff; font-family: arial;
18 font-weight: bold; font-size: x-small">
19 Note that the password will be sent as plain text.
20 </div>
21 </p>
22
23 <form action = "/cgi-bin/fig27_17.pl" method = "post">
24
25 <table style = "background-color: #dddddd">
26 <tr>
27 <td style = "font-face: arial;
28 font-weight: bold">Username:</td>
29 </tr>
30 <tr>
31 <td>
32 <input name = "username" />
33 </td>
34 </tr>
35 <tr>
36 <td style = "font-face: arial;
37 font-weight: bold">Password:</td>
38 </tr>
39 <tr>
40 <td>
41 <input name = "password" type = "password" />
42 </td>
43 </tr>
44 <tr>
45 <td>
46 <input type = "submit" value = "Enter" />
47 </td>
48 </tr>
49 </table>
50 </form>
51 </body>
52 </html>

Fig. 27.16Fig. 27.16Fig. 27.16Fig. 27.16 Entering a username and password (part 1 of 2).

iw3htp2_27.fm Page 935 Saturday, July 21, 2001 10:03 AM

936 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Good Programming Practice 27.6
Function die can be useful to handle situations in which a program cannot continue. Rather
than resulting in program errors, function die will cause the program to end with a message
explaining the situation to the user. 27.6

The while structure (lines 17–29) repeatedly executes the code enclosed in curly
braces until the condition in parentheses evaluates to false. In this case, the test condition
assigns the next unread line of password.txt to $line and evaluates to true as long as
a line from the file was successfully read. When the end of the file is reached, <FILE>
returns false and the loop terminates.

Fig. 27.16Fig. 27.16Fig. 27.16Fig. 27.16 Entering a username and password (part 2 of 2).

1 #!/usr/bin/perl
2 # Fig. 27.17: fig27_17.pl
3 # Program to search a database for usernames and passwords.
4
5 use CGI qw(:standard);
6
7 $dtd =
8 "-//W3C//DTD XHTML 1.0 Transitional//EN\"
9 \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";

10
11 $testUsername = param("username");
12 $testPassword = param("password");
13
14 open(FILE, "password.txt") or
15 die("The database could not be opened.");
16
17 while ($line = <FILE>) {
18 chomp($line);

Fig. 27.17Fig. 27.17Fig. 27.17Fig. 27.17 Program to analyze the username and password entered into an XHTML
form (part 1 of 3).

iw3htp2_27.fm Page 936 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 937

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

19 ($username, $password) = split(",", $line);
20
21 if ($testUsername eq $username) {
22 $userVerified = 1;
23
24 if ($testPassword eq $password) {
25 $passwordVerified = 1;
26 last;
27 }
28 }
29 }
30
31 close(FILE);
32
33 print(header());
34 print(start_html({ dtd => $dtd,
35 title => "Password Analyzed" }));
36
37 if ($userVerified && $passwordVerified) {
38 accessGranted();
39 }
40 elsif ($userVerified && !$passwordVerified) {
41 wrongPassword();
42 }
43 else {
44 accessDenied();
45 }
46
47 print(end_html());
48
49 sub accessGranted
50 {
51 print(div({ style => "font-face: arial;
52 color: blue;
53 font-weight: bold" },
54 "Permission has been granted,
55 $username.", br(), "Enjoy the site."));
56 }
57
58 sub wrongPassword
59 {
60 print(div({ style => "font-face: arial;
61 color: red;
62 font-weight: bold" },
63 "You entered an invalid password.", br(),
64 "Access has been denied."));
65 }
66
67 sub accessDenied
68 {
69 print(div({ style => "font-face: arial;
70 color: red;

Fig. 27.17Fig. 27.17Fig. 27.17Fig. 27.17 Program to analyze the username and password entered into an XHTML
form (part 2 of 3).

iw3htp2_27.fm Page 937 Saturday, July 21, 2001 10:03 AM

938 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Each line in password.txt (Fig. 27.18) consists of an account name and password
pair, separated by a comma, and followed by a newline character. For each line read, func-
tion chomp is called (line 18) to remove the newline character at the end of the line. Then
split is called to divide the string into substrings at the specified separator or delimiter
(in this case, a comma). For example, the split of the first line in password.txt
returns the list ("account1", "password1"). The syntax

71 font-size: larger;
72 font-weight: bold" },
73 "You have been denied access to this site."));
74 }

1 account1,password1
2 account2,password2
3 account3,password3
4 account4,password4
5 account5,password5
6 account6,password6
7 account7,password7
8 account8,password8
9 account9,password9

10 account10,password10

Fig. 27.18Fig. 27.18Fig. 27.18Fig. 27.18 Database password.txt containing usernames and passwords.

Fig. 27.17Fig. 27.17Fig. 27.17Fig. 27.17 Program to analyze the username and password entered into an XHTML
form (part 3 of 3).

iw3htp2_27.fm Page 938 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 939

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

($username, $password) = split(",", $line);

sets $username and $password to the first and second elements returned by split
(account1 and password1), respectively.

If the username entered is equivalent to the one we have read from the text file, the con-
ditional in line 21 returns true. The $userVerified variable is then set to 1. Next, the
value of $testPassword is tested against the value in the $password variable (line
24). If the password matches, the $passwordVerified variable is set to 1. In this case,
because a successful username–password match has been found, the last statement, used
to exit a repetition structure prematurely, allows us to exit the while loop immediately in
line 26.

We are finished reading from password.txt, and we close the file on line 31.
Line 37 checks if both the username and password were verified, by using the Perl logical
AND operator (&&). If both conditions are true (that is, if both variables evaluate to nonzero
values), then the function accessGranted is called (lines 49–56), which sends a Web
page to the client, indicating a successful login.

If the if statement evaluates to false, the condition in the following elsif statement
is tested. Line 40 tests if the user was verified, but the password was not. In this case, the
function wrongPassword is called (lines 58–65). The unary logical negation operator
(!) is used in line 40 to negate the value of $passwordVerified and test if it is false.
If the user is not recognized, function accessDenied is called, and a message indicating
that permission has been denied is sent to the client (lines 67–74).

Perl allows programmers to define their own functions or subroutines. Keyword sub
begins a function definition, and curly braces delimit the function body (lines 49, 58 and
67). To call a function (i.e., to execute the code within the function definition), use the func-
tion’s name, followed by a pair of parentheses (line 38, 41 and 44).

27.8 Using DBI to Connect to a Database
Database connectivity allows system administrators to maintain information on user ac-
counts, passwords, credit-card information, mailing lists, product inventory, etc. Databases
allow companies to enter the world of electronic commerce and maintain crucial data.

In order to access various relational databases in Perl, we need an interface (in the form
of software) that allows us to connect to and execute SQL statements (queries). The Perl
DBI (Database Interface) allows us to do this. This interface was created to access different
types of databases uniformly. In this section, we access and manipulate a MySQL database.
The examples in this section require that MySQL (www.mysql.org) be installed. The
Perl DBI module and the MySQL driver, DBD::mysql (specified on lines 6–7 of Fig.
27.19), are also required.

If you are using ActiveState Perl, you can download these files using the Perl Package
Manager (PPM), which is part of ActiveState Perl. Using PPM, you can download and
install Perl modules and packages (provided that you are connected to the Internet at the
time you are running the program). To use PPM, type ppm at the command prompt. This
command starts the package manager in interactive mode, providing you with the ppm>
prompt. Type install DBI and press Return to install DBI. To install the MySQL driver,
type install DBD::mysql and press Return.

iw3htp2_27.fm Page 939 Saturday, July 21, 2001 10:03 AM

940 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

If you do not have the Perl Package Manager, you can search for the module or
package on CPAN, the Comprehensive Perl Archive Network (www.cpan.org). Finally,
you will need to use the database books. This database is located in the Chapter 27 exam-
ples directory on the CD-ROM that accompanies this book. The examples directory con-
tains a subfolder named books, which contains all the database files. In your mysql
directory, there is a data directory that contains MySQL databases. Each folder is a data-
base and contains all the files that comprise that database. Copy the books folder into this
data directory.

In Fig. 27.19, the client selects an author from a drop-down list (the authors are num-
bered according to their ID value). When Get Info is clicked, the chosen author and the
author’s ID are posted to the Perl script in Fig. 27.20 that queries the database for all books
published by that author. The results are displayed in an XHTML table. To create and exe-
cute SQL queries, we create DBI objects known as handles. Database handles create and
manipulate a connection to a database, while statement handles create and manipulate SQL
statements (queries) to a database.

1 #!/usr/bin/perl
2 # Fig. 27.19: fig27_19.pl
3 # CGI program that generates a list of authors.
4
5 use CGI qw(:standard);
6 use DBI;
7 use DBD::mysql;
8
9 $dtd =

10 "-//W3C//DTD XHTML 1.0 Transitional//EN\"
11 \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";
12
13 print(header());
14
15 print(start_html({ dtd => $dtd,
16 title => "Authors" }));
17
18 # connect to "books" database, no password needed
19 $databaseHandle = DBI->connect("DBI:mysql:books",
20 "root", "", { RaiseError => 1 });
21
22 # retrieve the names and IDs of all authors
23 $query = "SELECT FirstName, LastName, AuthorID
24 FROM Authors ORDER BY LastName";
25
26 # prepare the query for execution, then execute it
27 # a prepared query can be executed multiple times
28 $statementHandle = $databaseHandle->prepare($query);
29 $statementHandle->execute();
30
31 print(h2("Choose an author:"));
32
33 print(start_form({ action => 'fig27_20.pl' }));
34

Fig. 27.19Fig. 27.19Fig. 27.19Fig. 27.19 Perl script that queries a MySQL database for authors (part 1 of 2).

iw3htp2_27.fm Page 940 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 941

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

On lines 19–20, we connect to the database by calling DBI method connect. The
first argument specifies the data source (i.e., the database). Notice that we first specify the
interface name (DBI), followed by a colon (:), then the database driver (mysql), followed
by another colon and the name of the data source (books). The second argument specifies
the user, and the third argument specifies the password for the database. This database does
not require a username or password, so we simply use the empty string (""). The fourth
argument ({ RaiseError => 1 }) is used for error checking. If an error occurs when
trying to connect to the database, function die is called and passed an error message. Set-
ting this hash reference to 1 is like setting a variable to true—this value “turns on” the error
checking, saving the programmer from writing extra code to handle this problem or from
having the program crash unexpectedly. If the connection succeeds, function connect
returns a database handle that is assigned to $databaseHandle.

In this example, we query the database for the names and IDs of the authors. We create
this query on lines 23–24. On line 28, we use our database handle to prepare the query

35 print("<select name = \"author\">\n");
36
37 # drop-down list contains the author and ID number
38 # method fetchrow_array returns a single row from the result
39 while (@row = $statementHandle->fetchrow_array()) {
40 print("<option>");
41 print("$row[2]. $row[1], $row[0]");
42 print("</option>");
43 }
44
45 print("</select>\n");
46
47 print(submit({ value => 'Get Info' }));
48 print(end_form(), end_html());
49
50 # clean up -- close the statement and database handles
51 $databaseHandle->disconnect();
52 $statementHandle->finish();

Fig. 27.19Fig. 27.19Fig. 27.19Fig. 27.19 Perl script that queries a MySQL database for authors (part 2 of 2).

iw3htp2_27.fm Page 941 Saturday, July 21, 2001 10:03 AM

942 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

(using the method prepare). This method prepares the database driver for a statement,
which can be executed multiple times. The statement handle returned is assigned to
$statementHandle. We execute the query by calling method execute on line 29.

Once the query has been executed, we can access the results by calling method
fetchrow_array (line 39). Each call to this function returns the next set of data in the
resulting table until there are no data sets left. A data set, or row in the resulting table, con-
tains one of the elements that satisfied the query. For example, in the first program, a query
was executed that returned the ID and name of each author. This query created a table that
contained two columns, one for the author’s ID and one for the author’s name. A row con-
tained the ID and name of a specific author. Each row was returned as an array and assigned
to @row. We print these values as list options on lines 40–42. The option chosen is sent
as the parameter "author" (line 35) to the Perl script in Fig. 27.20. On lines 51–52,we
close the database connection (using method disconnect), and we specify that we are
finished with this query by calling method finish. This function closes the statement
handle and frees memory, especially if the resulting table was large.

Look-and-Feel Observation 27.1
Using tables to output fields in a database neatly organizes information into rows and col-
umns. 27.1

Figure 27.20 presents the script fig27_20.pl, which takes the specified author and
queries the database for information about that author.

This program creates an XHTML page that displays the title of each book written by
the current author, along with the ISBN number and book publisher. In order to obtain this
information, we need the author’s ID number, because the AuthorISBN table contains a
field for the author’s ID, not the author’s name. Recall that the author’s ID was posted to
this script by fig27_19.pl. The ID is the numerical value that precedes the author’s
name in the author parameter. To retrieve the ID and author name, we call method
substr on lines 16–17. This statement returns the first character in the string (an offset of
zero indicates the beginning of the string), which contains the ID value. On line 17, we
specify an offset of three, because the author’s name begins after the third character. Notice
that in this call we do not specify a length, because we want all characters from the offset
to the end of the string, inclusive.

1 #!/usr/bin/perl
2 # Fig. 27.20: fig27_20.pl
3 # CGI program to query a MySQL database.
4
5 use CGI qw(:standard);
6 use DBI;
7 use DBD::mysql;
8
9 $dtd =

10 "-//W3C//DTD XHTML 1.0 Transitional//EN\"
11 \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";
12
13 print(header());

Fig. 27.20Fig. 27.20Fig. 27.20Fig. 27.20 Perl script that queries a MySQL database for author information (part 1 of 3).

iw3htp2_27.fm Page 942 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 943

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

14
15 # retrieve author's ID and name from the posted form
16 $authorID = substr(param("author"), 0, 1);
17 $authorName = substr(param("author"), 3);
18
19 print(start_html({ dtd => $dtd,
20 title => "Books by $authorName" }));
21
22 $databaseHandle = DBI->connect("DBI:mysql:books",
23 "root", "", { RaiseError => 1 });
24
25 # use AuthorID to find all the ISBNs related to this author
26 $query1 = "SELECT ISBN FROM AuthorISBN
27 WHERE AuthorID = $authorID";
28
29 $statementHandle1 = $databaseHandle->prepare($query1);
30 $statementHandle1->execute();
31
32 print(h2("$authorName"));
33
34 print("<table border = 1>");
35 print(th("Title"), th("ISBN"), th("Publisher"));
36
37 while (@isbn = $statementHandle1->fetchrow_array()) {
38 print("<tr>\n");
39
40 # use ISBN to find the corresponding title
41 $query2 = "SELECT Title, PublisherID FROM titles
42 WHERE ISBN = \'$isbn[0]\'";
43 $statementHandle2 = $databaseHandle->prepare($query2);
44 $statementHandle2->execute();
45 @title_publisherID = $statementHandle2->fetchrow_array();
46
47 # use PublisherID to find the corresponding PublisherName
48 $query3 = "SELECT PublisherName FROM Publishers
49 WHERE PublisherID = \'$title_publisherID[1]\'";
50
51 $statementHandle3 = $databaseHandle->prepare($query3);
52 $statementHandle3->execute();
53 @publisher = $statementHandle3->fetchrow_array();
54
55
56 # print resulting values
57 print(td($title_publisherID[0]), "\n");
58 print(td($isbn[0]), "\n");
59 print(td($publisher[0]), "\n");
60
61 print("</tr>");
62
63 $statementHandle2->finish();
64 $statementHandle3->finish();
65 }
66

Fig. 27.20Fig. 27.20Fig. 27.20Fig. 27.20 Perl script that queries a MySQL database for author information (part 2 of 3).

iw3htp2_27.fm Page 943 Saturday, July 21, 2001 10:03 AM

944 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

After connecting to the database, we specify and execute our first query, on lines 26–
30. This query returns all the ISBN numbers for the specified author. We place these values
in a table. On line 37, we begin a while loop that iterates through each row matched by
the query. The rows are retrieved by calling fetchrow_array, which returns the current
data set as an array. When there are no more data sets to return, the condition evaluates to
false. Within the loop, we use the ISBNs to obtain the title and publisher values for the cur-
rent table row. The query on lines 41–45 uses the ISBN value to determine the book’s title
and the publisher’s ID number. The next query (lines 48–53) uses the publisher’s ID to
determine the name of the publisher. These values are printed on lines 57–59.

67 print("</table>");
68
69 print(end_html());
70
71 $databaseHandle->disconnect();
72 $statementHandle1->finish();

Fig. 27.20Fig. 27.20Fig. 27.20Fig. 27.20 Perl script that queries a MySQL database for author information (part 3 of 3).

iw3htp2_27.fm Page 944 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 945

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

27.9 Cookies and Perl
Cookies maintain state information for a particular client who uses a Web browser. Preserv-
ing this information allows data and settings to be retained even after the execution of a CGI
script has ended. Cookies are used to record user preferences (or other information) for the
next time a client visits a Web site. For example, many Web sites use cookies to store a
client’s postal zip code. The zip code is used when the client requests a Web page to send,
for instance, current weather information or news updates for the client’s region. On the
server side, cookies may be used to help track information about client activity, to deter-
mine which sites are visited most frequently or how effective certain advertisements and
products are.

Microsoft Internet Explorer stores cookies as small text files saved on the client’s hard
drive. The data stored in the cookies are sent back to the whenever the user requests a Web
page from the server. The server can then serve XHTML content to the client, specific to
the information stored in the cookie.

 Figure 27.21 uses a script to write a cookie to the client’s machine. The
fig27_21.html file is used to display an XHTML form that allows a user to enter a
name, height and favorite color. When the user clicks the Write Cookie button, the
fig27_22.pl script (Fig. 27.22) is executed.

Good Programming Practice 27.7
Critical information, such as credit card and password information, should not be stored us-
ing cookies. Cookies cannot be used to retrieve information such as e-mail addresses or data
on the hard drive of a client’s computer. 27.7

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3
4 <!-- Fig. 27.21: fig27_21.html -->
5
6 <html>
7 <head>
8 <title>Writing a cookie to the client computer</title>
9 </head>

10
11 <body style = "font-face: arial">
12 <div style = "font-size: large;
13 font-weight: bold">
14 Click Write Cookie to save your cookie data.
15 </div>

16
17 <form method = "post" action = "cgi-bin/fig27_22.pl"
18 style = "font-weight: bold">
19 Name:

20 <input type = "text" name = "name" />

21 Height:

22 <input type = "text" name = "height" />

23 Favorite Color:

24 <input type = "text" name = "color" />

Fig. 27.21Fig. 27.21Fig. 27.21Fig. 27.21 XHTML document to read in cookie data from the user (part 1 of 2).

iw3htp2_27.fm Page 945 Saturday, July 21, 2001 10:03 AM

946 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The fig27_22.pl script (Fig. 27.22) reads the data sent from the client on lines 7–
9. Line 11 declares and initializes variable $expires to contain the expiration date of the
cookie. The browser deletes a cookie after it expires. Lines 13–15 call function print to
output the cookie information. We use the Set-Cookie: header to indicate that the
browser should store the incoming data in a cookie. The header sets three attributes for each
cookie: A name–value pair containing the data to be stored, the expiration date and the URL
path of the server domain over which the cookie is valid. For this example, no path is given,
making the cookie readable from anywhere within the server’s domain. Lines 21–40 create
a Web page indicating that the cookie has been written to the client.

25 <input type = "submit" value = "Write Cookie" />
26 </form>
27
28 </body>
29 </html>

1 #!/usr/bin/perl
2 # Fig. 27.22: fig27_22.pl
3 # Program to write a cookie to a client’s machine.
4
5 use CGI qw(:standard);
6
7 $name = param("name");
8 $height = param("height");
9 $color = param("color");

10
11 $expires = "Monday, 11-JUN-01 16:00:00 GMT";
12

Fig. 27.22Fig. 27.22Fig. 27.22Fig. 27.22 Writing a cookie to the client (part 1 of 2).

Fig. 27.21Fig. 27.21Fig. 27.21Fig. 27.21 XHTML document to read in cookie data from the user (part 2 of 2).

iw3htp2_27.fm Page 946 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 947

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

On lines 25–38 we see our first “here” document. Line 25 instructs the Perl interpreter
to print the subsequent lines verbatim (after variable interpolation) until it reaches the
End_Data label. This label consists simply of the identifier End_Data, placed at the
beginning of a line, with no whitespace characters preceding it, and followed immediately
with a newline. “Here” documents are often used in CGI programs to eliminate the need to

13 print("Set-Cookie: Name=$name; expires=$expires; path=\n");
14 print("Set-Cookie: Height=$height; expires=$expires; path=\n");
15 print("Set-Cookie: Color=$color; expires=$expires; path=\n");
16
17 $dtd =
18 "-//W3C//DTD XHTML 1.0 Transitional//EN\"
19 \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";
20
21 print(header());
22 print(start_html({ dtd => $dtd,
23 title => "Cookie Saved" }));
24
25 print <<End_Data;
26 <div style = "font-face: arial; font-size: larger">
27 The cookie has been set with the following data:
28 </div>

29
30
31 Name: $name

32 Height: $height

33 Favorite Color:
34
35 $color

36
Click here
37 to read saved cookie.
38 End_Data
39
40 print(end_html());

Fig. 27.22Fig. 27.22Fig. 27.22Fig. 27.22 Writing a cookie to the client (part 2 of 2).

iw3htp2_27.fm Page 947 Saturday, July 21, 2001 10:03 AM

948 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

call function print repeatedly. Notice that we use functions in the CGI library, as well as
“here” documents, to create a clean program.

If the client is an Internet Explorer browser, cookies are stored in the Cookies direc-
tory on the client’s machine. Figure 27.23 shows the contents of this directory prior to the
execution of fig27_22.pl. After the cookie is written, a text file is added to this list. The
file cheryl@localhost[1].txt can be seen in the Cookies directory in Fig. 27.24.
The domain for which the cookie is valid is localhost. The username cheryl, how-
ever, is only part of the filename Internet Explorer uses for cookies and is not actually a part
of the cookie itself. Therefore, a remote server, cannot access the username.

Figure 27.25 (fig27_25.pl) reads the cookie written in Fig. 27.22 and displays the
information in a table. Environment variable HTTP_COOKIE contains the client’s cookies.
Line 25 calls subroutine readCookies and places the returned value into hash
%cookies. The user-defined subroutine readCookies splits the environment variable
containing the cookie information into separate cookies (using split) and stores the
cookies as distinct elements in @cookieArray (line 39). For each cookie in @cookie-
Array, we call split again to obtain the original name–value pair—which, in turn, is
stored in %cookieHash in line 43.

Note that the split function in line 42 makes reference to a variable named $_. The
special Perl variable $_ is used as a default for many Perl functions. In this case, because
no variable was provided in the foreach loop (line 41), $_ is used by default. Thus, in
this example, $_ is assigned the value of the current element of @cookieArray as a
foreach structure iterates through it.

Once %cookieHash has been created, it is returned from the function on line 46
(using the return keyword), and %cookies is assigned this value in line 25. A
foreach loop (lines 28–32) then iterates through the hash with the given key names,
printing the key and value for the data from the cookie in an XHTML table.

Fig. 27.23Fig. 27.23Fig. 27.23Fig. 27.23 Cookies directory before a cookie is written.

iw3htp2_27.fm Page 948 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 949

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Fig. 27.24Fig. 27.24Fig. 27.24Fig. 27.24 Cookies directory after a cookie is written.

1 #!/usr/bin/perl
2 # Fig. 27.25: fig27_25.pl
3 # program to read cookies from the client's computer.
4
5 use CGI qw(:standard);
6
7 $dtd =
8 "-//W3C//DTD XHTML 1.0 Transitional//EN\"
9 \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";

10
11 print(header());
12 print(start_html({ dtd => $dtd,
13 title => "Read Cookies" }));
14
15 print(div({ style => "font-face: arial;
16 font-size: larger;
17 font-weight: bold" },
18 "The following data is saved in a
19 cookie on your computer."), br());
20
21 print("<table style = \"background-color: #aaaaaa\"
22 border = 5 cellpadding = 10
23 cellspacing = 0>");
24
25 %cookies = readCookies();
26 $color = $cookies{ Color };
27
28 foreach $cookieName ("Name", "Height", "Color") {
29 print(Tr(td({ style => "background-color: $color" },
30 $cookieName),
31 td($cookies{ $cookieName })));
32 }

Fig. 27.25Fig. 27.25Fig. 27.25Fig. 27.25 Output displaying the cookie’s content (part 1 of 2).

iw3htp2_27.fm Page 949 Saturday, July 21, 2001 10:03 AM

950 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

It is important to note that users can disable cookies on their machines. There are a few
ways to do this, but the most basic is to create a file similar to a cookie that would be stored
on the server’s computer, rather than the client’s computer. For more information, the
reader can visit the Web sites listed at the end of this chapter.

27.10 Operator Precedence Chart
This section contains the operator precedence chart for Perl (Fig. 27.26). The operators are
shown in decreasing order of precedence, from top to bottom.

27.11 Internet and World Wide Web Resources
There is a strongly established Perl community online that has made available a wealth of
information on the Perl language, Perl modules and CGI scripting.

33
34 print("<table>");
35 print(end_html());
36
37 sub readCookies
38 {
39 @cookieArray = split("; ", $ENV{ 'HTTP_COOKIE' });
40
41 foreach (@cookieArray) {
42 ($cookieName, $cookieValue) = split("=", $_);
43 $cookieHash{ $cookieName } = $cookieValue;
44 }
45
46 return %cookieHash;
47 }

Fig. 27.25Fig. 27.25Fig. 27.25Fig. 27.25 Output displaying the cookie’s content (part 2 of 2).

iw3htp2_27.fm Page 950 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 951

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

OperatorOperatorOperatorOperator TypeTypeTypeType AssociativityAssociativityAssociativityAssociativity

terms and list
operators

print @array or
sort (4, 2, 7)

left to right

-> member access left to right

++
--

increment
decrement

none

** exponentiation right to left

!
~
\
+
-

logical NOT
bitwise one’s complement
reference
unary plus
unary minus

right to left

=~
!~

matching
negated match

left to right

*
/
%
x

multiplication
division
modulus
repetition

left to right

+
-
.

addition
subtraction
string concatenation

left to right

<<
>>

left shift
right shift

left to right

named unary
operators

unary operators—e.g., -e (filetest) none

<
>
<=
>=
lt
gt
le
ge

numerical less than
numerical greater than
numerical less than or equal to
numerical greater than or equal to
string less than
string greater than
string less than or equal to
string greater than or equal to

none

==
!=
<=>
eq
ne
cmp

numerical equality
numerical inequality
numerical comparison (returns -1, 0 or 1)
string equality
string inequality
string comparison (returns -1, 0 or 1)

none

& bitwise AND left to right

|
^

bitwise inclusive OR
bitwise exclusive OR

left to right

Fig. 27.26Fig. 27.26Fig. 27.26Fig. 27.26 Perl operator precedence chart (part 1 of 2).

iw3htp2_27.fm Page 951 Saturday, July 21, 2001 10:03 AM

952 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

www.perl.com
Perl.com is the first place to look for information about Perl. The homepage provides up-to-date
news on Perl, answers to common questions about Perl and an impressive collection of links to Perl
resources on the Internet. The links include sites for Perl software, tutorials, user groups and demos.

www.perl.org
This Perl Mongers site is a great one-stop resource for developers. Resources include documentation,
links to several other Perl sites and mailing lists.

www.activestate.com
From this site you can download ActivePerl—the Perl 5.6 implementation for Windows.

www.perl.com/CPAN/README.html
The “Comprehensive Perl Archive Network” includes an extensive listing of Perl-related information.

www.perl.com/CPAN/scripts/index.html
This site is the scripts index from the CPAN archive. You will find a wealth of scripts written in Perl.

&& logical AND left to right

|| logical OR left to right

.. range operator none

?: conditional operator right to left

=
+=
-=
*=
/=
%=
**=
.=
x=
&=
|=
^=
<<=
>>=
&&=
||=

assignment
addition assignment
subtraction assignment
multplication assignment
division assignment
modulus assignment
exponentiation assignment
string concatenation assignment
repetition assignment
bitwise AND assignment
bitwise inclusive OR assignment
bitwise exclusive OR assignment
left shift assignment
right shift assignment
logical AND assignment
logical OR assignment

right to left

,
=>

expression separator; returns value of last expression
expression separator; groups two expressions

left to right

not logical NOT right to left

and logical AND left to right

or
xor

logical OR
logical exclusive OR

left to right

OperatorOperatorOperatorOperator TypeTypeTypeType AssociativityAssociativityAssociativityAssociativity

Fig. 27.26Fig. 27.26Fig. 27.26Fig. 27.26 Perl operator precedence chart (part 2 of 2).

iw3htp2_27.fm Page 952 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 953

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

www.pm.org
This site is the homepage of Perl Mongers, a group dedicated to supporting the Perl community. This
site is helpful in finding others in the Perl community with whom to converse; Perl Mongers has es-
tablished Perl user groups around the globe.

www.speakeasy.org/~cgires
This site is a collection of tutorials and scripts that can provide a thorough understanding of CGI.

www.perlarchive.com
This site features a large number of scripts and guides, as well as a learning center that includes help-
ful articles.

www.cgi.resourceindex.com
General CGI site including scripts, a list of freelance CGI programmers, documentation, job listings
and several other resources.

www.cgi101.com
CGI 101 is a site for those looking to improve their programming ability through familiarity with CGI.
The site contains a six-chapter class outlining techniques for CGI programming in the Perl language.
The class includes both basic and advanced scripts, with working examples. Also included in the site
are script libraries and links to other helpful sources.

www.freeperlcode.com
This site provides a help guide and access to several Perl scripts that can be easily downloaded and
installed.

www.jmarshall.com/easy/cgi
This site provides a good, brief explanation of CGI for those with programming experience.

www.stars.com/Authoring/Languages/Perl
This site contains many links to Perl resources.

www.stars.com/Authoring/CGI
The Web Developer's Virtual Library provides tutorials for learning both CGI and Perl.

www.perlmonth.com
Perlmonth is a monthly online periodical devoted to Perl, with featured articles from professional pro-
grammers. This site is a good source for those who use Perl frequently and wish to keep up on Perl’s
latest developments.

tpj.com
The Perl Journal is a large magazine dedicated to Perl. Subscribers are provided with up-to-date Perl
news and articles, on the Internet or in printed form.

www.1024kb.net/perlnet.html
This page provides a brief tutorial on Perl network programming for those who already know the lan-
guage. The tutorial uses code examples to explain the basics of network communication.

www.w3.org/CGI
The World Wide Web Consortium page on CGI is concerned with CGI’s security issues. This page
provides links to CGI specifications, as indicated by the National Center for Super computing Appli-
cations (NCSA).

SUMMARY
• The Common Gateway Interface (CGI) is a standard protocol through which applications interact

with Web servers. CGI provides a way for clients to interface indirectly with applications on the
Web server.

iw3htp2_27.fm Page 953 Saturday, July 21, 2001 10:03 AM

954 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• Because CGI is an interface, it cannot be programmed directly; a script or executable program
(commonly called a CGI script) must be executed to interact with it.

• CGI scripts often process information gathered from a form. These programs are typically desig-
nated with a certain filename extension (such as .cgi or .pl) and/or located within a special di-
rectory (such as cgi-bin). After the application output is sent to the server through CGI, the
results may be sent to the client.

• Standard input is the stream of information received by a program from a user, typically through
the keyboard, but also possibly from a file or another input device.

• Standard output is the information stream presented to the user by an application; it is typically
displayed on the screen, but may also be printed by a printer, written to a file, etc.

• The Perl comment character (#) instructs the interpreter to ignore everything on the current line
following the #. The exception to this rule is the “shebang” construct (#!). On Unix systems, this
line indicates the path to the Perl interpreter. On other systems, the line may be ignored, or it may
indicate to the server that a Perl program follows the statement.

• Perl program file names typically end with the .pl extension. Programs can be executed by run-
ning the Perl interpreter from the command-line prompt (e.g., the DOS prompt in Windows).

• Using the -w option when running a Perl program instructs the interpreter to output warnings to
the screen if it finds bugs in your code.

• Function print is used to output text.

• Text surrounded by quotes is called a string.

• Escape sequences can be used to output special characters, such as newlines.

• Semicolons (;) are used to terminate Perl statements.

• Perl has built-in data types that represent different kinds of data, including scalar, hash and array.

• The $ character specifies that a variable contains a scalar value.

• The @ character specifies that a variable contains an array, while the % character specifies that a
variable contains a hash.

• In Perl, a variable is created the first time it is encountered by the interpreter.

• The assignment operators +=, -=, *= and /= are syntactical shortcuts for other operators.

• When a variable is encountered inside a double quoted ("") string, Perl uses a process called in-
terpolation to replace the variable with its associated data.

• In Perl, uninitialized variables have the value undef, which can be evaluated differently depend-
ing on context. When undef is found in a numeric context, it evaluates to 0. When it is interpreted
in a string context, undef evaluates to the empty string ("").

• Unless a string begins with a digit, it is evaluated as undef in a numeric context. If the string does
begin with a digit, every character up to the first nondigit character is evaluated as a number, and
the remaining characters are ignored.

• The programmer does not need to differentiate between numeric and string data types because the
interpreter evaluates scalar variables depending on the context in which they are used.

• Several values can be stored in arrays, which are divided into elements, each containing a scalar
value. Array variable names are preceded by the @ symbol.

• When printing an array inside double quotes, the array element values are printed with only one
space separating them.

iw3htp2_27.fm Page 954 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 955

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• Individual array elements are accessed using square brackets ([]). If the array name is prefaced
by the $ character and followed by an index number in square brackets, it refers instead to an in-
dividual array element, which is a scalar value.

• The range operator (..) is used to specify all the values in a range, such as 2–10.

• It is not necessary to specify an array’s size. The Perl interpreter recognizes that memory has not
been allocated for this array and creates new memory automatically.

• When strings are inside single quotes, the interpreter treats the string literally and does not attempt
to interpret any escape sequence or variable substitution.

• Text manipulation in Perl is usually done with regular expressions—a series of characters that
serve as pattern-matching templates in strings, text files and databases.

• Operator qw (“quote word”) takes the contents inside the parentheses and creates a comma-sepa-
rated list with each element wrapped in double quotes.

• The foreach structure iterates sequentially through the elements in a specified array, or the ele-
ments in a range of values.

• The if structure is used to execute code depending on a specified condition.

• In Perl, anything except the number 0, the string "0" and the empty string (i.e., undef values) is
defined as true.

• Operators ne, lt and gt test strings for equality, less than and greater than, respectively. These
operators are used only with strings. When comparing numeric values, operators ==, !=, <, <=,
> and >= are used.

• Perl provides the match operator (m//), which uses regular expressions to search a string for a
specified pattern.

• The match operator takes two operands. The first operand is the regular expression pattern for
which to search, which is placed between the slashes of the m// operator. The second operand is
the string to search within, which is assigned to the match operator by using the =~ (binding) op-
erator.

• Regular expressions can include special characters, called metacharacters, that can specify pat-
terns or contexts that cannot be defined using literal characters.

• The caret metacharacter (^) searches the beginning of a string for a pattern.

• The $ metacharacter searches the end of a string for a pattern.

• Backslashes are used in regular expressions and strings to escape characters with special signifi-
cance.

• The \b expression matches any word boundary.

• The + modifier is a quantifier that instructs Perl to match the preceding character one or more
times.

• Parentheses indicate that the text matching the pattern is to be saved in a special Perl variable.

• Modifying characters placed to the right of the forward slash that delimits a regular expression in-
struct the interpreter to treat the expression in different ways.

• Placing an i after the regular expression tells the interpreter to ignore case when searching.

• Placing an x after the regular expression indicates that whitespace characters are to be ignored.

• Modifying character g indicates a global search—a search that does not stop after the first match
is found.

• Environment variables contain information about the environment in which a script is being run.

iw3htp2_27.fm Page 955 Saturday, July 21, 2001 10:03 AM

956 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• The use statement directs Perl programs to include the contents of predefined packages, called
modules.

• The CGI module contains many useful functions for CGI scripting in Perl.

• With the use statement, we can specify an import tag to include a predefined set of functions.

• We usually specify the import tag :standard when importing the CGI.pm module to specify
the standard CGI functions.

• Function header directs the Perl program to output a valid HTTP header.

• The start_html function begins the output of XHTML. This function will print the document
type definition for this document, as well as several opening XHTML tags.

• When using many of the functions in the CGI module, attribute information can be specified with-
in curly braces.

• Each argument within the curly braces is in the form of a key–value pair. A key (or value name)
is assigned a value using the arrow operator (=>), where the key is to the left of the arrow, and the
value is to the right.

• Function Tr contains its arguments within table row tags.

• Function th contains its arguments within table header tags.

• Function hr creates horizontal rules.

• Function td contains its arguments within table data tags.

• The hash data type is designated by the % character and represents an unordered set of scalar-value
pairs.

• Each element in a hash is accessed by using a unique key that is associated with a value.

• Hash values are accessed by using the syntax $hashName{ keyName }.

• Function keys returns an array of all the keys from a specified hash in no specific order, as hash
elements have no defined order.

• We use function sort to order the array of keys alphabetically.

• The %ENV hash is a built-in table that contains the names and values of all the environment vari-
ables.

• Function end_html outputs the closing tags for a page (</body> and </html>).

• Function param is used to retrieve values from form field elements.

• Regular expressions can be used to validate information in a CGI script. The design of verifying
information is called business logic (also called business rules).

• Function br adds a break (
) to the XHTML page.

• Function span adds tags to a page.

• Function div adds <div> tags to a page.

• Server-Side Includes (SSIs) are commands embedded in HTML documents to allow simple dy-
namic content creation.

• The command EXEC can be used to run CGI scripts and embed their output directly into a Web
page. Before the XHTML document is sent to the client, the SSI command EXEC is executed and
any script output is sent to the client.

• A document containing SSI commands is typically given the .shtml file extension. The .sht-
ml files are parsed by the server.

• The ECHO command is used to display variable information. It is followed by the keyword VAR
and the name of the variable.

iw3htp2_27.fm Page 956 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 957

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• The variable DATE_GMT contains the current date and time in Greenwich Mean Time (GMT).

• The name of the current document is specified the DOCUMENT_NAME variable.

• The DATE_LOCAL variable inserts the date.

• Function open is called to open a file and create a filehandle to be associated with the file.

• The diamond operator (<>) is used to read input from the user or a file. When the diamond operator
is used in a scalar context, only one line is read. When the operator is used in list context, all the
input (or the entire file) is read and assigned to values in the list.

• We open a file for writing by preceding the file name with a > character.

• Perl also provides an append mode (>>) for appending to the end of a file.

• A for structure is similar to a foreach structure. It iterates through a set of values, specified in
parentheses after the keyword for. Within the parentheses, three statements are used to indicate
the values through which the structure will iterate.

• Function length returns the length of a character string.

• Function substr is used to identify a specified substring.

• The img function is used to display images.

• Function die displays an error message and terminates the program.

• Function chomp removes the newline character from the end of a string, if a newline exists.

• Function split divides a string into substrings at the specified separator or delimiter.

• The last statement is used to exit a loop structure once a desired condition has been satisfied.

• Perl allows programmers to define their own functions or subroutines. Keyword sub begins a
function definition, and curly braces delimit the function body.

• Database connectivity allows system administrators to maintain crucial data.

• The Perl Database Interface (DBI) allows access to various relational databases in a uniform man-
ner.

• The Perl DBI module and the MySQL driver, DBD::mysql are required to access and manipu-
late a MySQL database from a Perl program.

• The Perl Package Manager (PPM) is designed so that the user can easily download and install sev-
eral Perl modules and packages. Perl modules and packages can also be found on the Comprehen-
sive Perl Archive Network (CPAN).

• To create and execute SQL queries, we create DBI objects, known as handles.

• Database handles create and manipulate a connection to a database.

• Statement handles create and manipulate SQL statements to a database.

• Method connect in module DBI sets up a database connection and returns a database handle.

• A database handle is used to prepare a database query (using the method prepare in module
DBI). This method prepares the database driver for a statement, which can be executed multiple
times.

• We execute a query by calling method execute in module DBI.

• Once a query has been executed, we can access the results using the method fetchrow_array
in module DBI. Each call to this function returns the next set of data in the resulting table until
there are no data sets left.

• A database connection can be closed using method disconnect in module DBI.

• We can indicate that we are no longer using a query by calling method finish in module DBI.

iw3htp2_27.fm Page 957 Saturday, July 21, 2001 10:03 AM

958 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• Cookies maintain state information for a particular client who uses a Web browser. Microsoft In-
ternet Explorer stores cookies as small text files saved on the client’s hard drive.

• We use the Set-Cookie: header to indicate that the browser should store the incoming data in
a cookie.

• A “here” document is used to output a string verbatim. The string is specified as all the text from
the beginning of the document to the closing identifier.

• Environment variable HTTP_COOKIE contains the client’s cookies.

• The special variable $_ is used as a default for many Perl functions.

TERMINOLOGY
!= operator >> append mode
$ metacharacter ActivePerl
$ type symbol ActiveState
$_ special variable alphanumeric character
% type symbol Apache Web server
%ENV hash append mode (>>)
* quantifier array
.cgi file extension assignment operator
.pl file extension associative array
.shtml file extension binding operator (=~)
:standard import tag br function
? quantifier built-in metacharacter
@ type symbol business logic
\b metacharacter business rules
\B metacharacter C programming language
\d metacharacter CGI (Common Gateway Interface)
\D metacharacter CGI module
\n escape sequence CGI script
\n metacharacter CGI tutorial
\s metacharacter cgi-bin directory
\S metacharacter chomp function
\t metacharacter close function
\w metacharacter comment character (#)
\W metacharacter comparison operator
\w pattern connect method
^ metacharacter control structure
{} curly braces in CGI.pm functions cookie
{m,n} quantifier Cookies directory
{n,} quantifier CPAN (Comprehensive Perl Archive Network)
{n} quantifier database connectivity
+ quantifier database handle
< operator DATE_GMT variable
<= operator DATE_LOCAL variable
<> diamond operator DBD::mysql driver
== operator DBI module
> operator delimiter
> write mode diamond operator (<>)
>= operator die function

iw3htp2_27.fm Page 958 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 959

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

disconnect method m modifying character
div function m//
DOCUMENT_NAME variable match operator (m//)
dtd argument in start_html function metacharacter
ECHO command modifying character
elements in an array module
else clause MySQL database
empty string mysql directory
end_html function MySQL driver
environment variable ne operator
equality operators numeric context
escape sequence open function
escaping special characters param function
EXEC command Perl (Practical Extraction and Report Language)
execute method perl command
fetchrow_array method Perl data types
filehandle Perl interpreter
finish method Perl Package Manager (PPM)
for structure piping
foreach structure post method
forms ppm method
function prepare method
g modifying character print function
gt operator private Web site
handle quantifier
hash qw operator
header function range operator (..)
hr function read-only mode
HTTP connection redirection
HTTP header regular expression
HTTP host return keyword
HTTP_COOKIE environment variable s modifying character
HTTP_HOST environment variable scalar
i modifying character scalar value
if structure semicolons (;) to terminate statement
img function Set-Cookie: header
import tag shebang construct (#!)
INCLUDE command sort function
interactive mode span function
interpolation split function
keys (in a hash) SQL query string
keys function SSI (Server-Side Include)
last statement standard input (STDIN)
length function standard output (STDOUT)
list start_html function
literal character state information
logical AND (&&) operator statement handle
logical negation operator (!) string context
logical OR (||) operator sub keyword
lt operator subroutine

iw3htp2_27.fm Page 959 Saturday, July 21, 2001 10:03 AM

960 Perl and CGI (Common Gateway Interface) Chapter 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

SELF-REVIEW EXERCISES
27.1 Fill in the blanks in the following statements.

a) The Protocol is used by Web browsers and Web servers to communicate
with each other.

b) Typically, all CGI programs reside in directory .
c) To output warnings as a Perl program executes, the command-line switch

should be used.
d) The three data types in Perl are , and .
e) are divided into individual elements that can each contain an individual sca-

lar variable.
f) To test the equality of two strings, operator should be used.
g) Business is used to ensure that invalid data are not entered into a database.
h) allow Webmasters to include the current time, date or even the contents of a

different HTML document.
i) The control structure iterates once for each element in a list or array.
j) Many Perl functions take special variable as a default argument.

27.2 State whether the following are true or false. If false, explain why.
a) Documents containing Server Side Includes must have a file extension of .SSI in order

to be parsed by the server.
b) A valid HTTP header must be sent to the client to ensure that the browser correctly dis-

plays the information.
c) The numerical equality operator, eq, is used to determine if two numbers are equal.
d) The ^ metacharacter is used to match the beginning of a string.
e) Perl has a built-in binding operator, =, that tests if a matching string is found within a

variable.
f) Cookies can read information, such as e-mail addresses and personal files from a client’s

hard drive.
g) An example of a valid HTTP header is Content-type text\html.
h) CGI environment variables contain such information as the type of Web browser the cli-

ent is running.
i) The characters \w in a regular expression match only a letter or number.
j) CGI is a programming language that can be used in conjunction with Perl to program for

the Web.

ANSWERS TO SELF-REVIEW EXERCISES
27.1 a) Hypertext Transfer. b) cgi-bin. c) -w. d) scalar variable, array, hash.
e) Arrays. f) eq. g) logic (or rules). h) Server-Side Includes. i) foreach. j) $_.

27.2 a) False. Documents containing Server-Side Includes usually have a file extension of .sh-
tml. b) True. c) False. The numerical equality operator is ==. d) True. e) False. The built-in binding

substr method validation
td function VAR keyword
th function -w command-line option in Perl
title argument in start_html function Web server
tr function Webmaster
Tr function while structure
undef value word boundary
Unisys write mode (>)
use statement x modifying character

iw3htp2_27.fm Page 960 Saturday, July 21, 2001 10:03 AM

Chapter 27 Perl and CGI (Common Gateway Interface) 961

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

operator is =~. f) False. Cookies do not have access to private information, such as e-mail addresses
or private data stored on the hard drive. g) False. A valid HTTP header might be: Content-type:
text/html. h) True. i) False. \w also matches the underscore character. j) False. CGI is an inter-
face, not a programming language.

EXERCISES
27.3 How can a Perl program determine the type of browser a Web client is using?

27.4 Describe how input from an HTML form is retrieved in a Perl program.

27.5 How does a Web browser determine how to handle or display incoming data?

27.6 What is the terminology for a command that is embedded in an HTML document and parsed
by a server prior to being sent?

27.7 Write a Perl program named ex27_07.pl that creates a scalar value $states with the
value "Mississippi Alabama Texas Massachusetts Kansas". Using only the tech-
niques discussed in this chapter, write a program that does the following:

a) Search for a word in scalar $states that ends in xas. Store this word in element 0 of
an array named @statesArray.

b) Search for a word in $states that begins with k and ends in s. Perform a case-insen-
sitive comparison. Store this word in element 1 of @statesArray.

c) Search for a word in $states that begins with M and ends in s. Store this in element 2
of the array.

d) Search for a word in $states that ends in a. Store this word in element 3 of the array.
e) Search for a word in $states at the beginning of the string that starts with M. Store this

word in element 4 of the array.
f) Output the array @statesArray to the screen.

27.8 In this chapter, we have presented CGI environment variables. Develop a program that de-
termines whether the client is using Internet Explorer. If so, determine the version number, and send
that information back to the client.

27.9 Modify the programs and documents of Figs. 27.12 and 27.13 to save information sent to the
server in a text file.

27.10 Write a Perl program that tests whether an e-mail address is input correctly. A valid e-mail
address contains a series of characters followed by the @ character and a domain name.

27.11 Using CGI environment variables, write a program that logs the IP addresses (obtained with
the REMOTE_ADDR CGI environment variable) that request information from the Web server.

27.12 Modify the programs of Figs. 27.19 and 27.20 so that there is another column in the resulting
table. Each element in that column will be a button that, when clicked, will display a third Web page
with a description of the current book. To do this in a straightforward manner, you should create a
third program that will query the database for the book’s description. This program will be called
when one of the buttons is clicked.

iw3htp2_27.fm Page 961 Saturday, July 21, 2001 10:03 AM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

28
 Python

Objectives
• To understand basic Python data types.
• To understand string processing and regular

expressions in Python.
• To use exception handling.
• To perform basic CGI tasks in Python.
• To construct programs that interact with MySQL

databases using the Python Database Application
Programming Interface (DB-API).

Art is the imposing of a pattern on experience, and our
aesthetic enjoyment is recognition of the pattern.
Alfred North Whitehead

No rule is so general, which admits not some exception.
Robert Burton

iw3htp2_28.fm Page 962 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 963

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

28.1 Introduction
Python is an interpreted, cross-platform, object-oriented language that can be used to write
large-scale Internet search engines, small administration scripts, GUI applications, CGI
scripts and more. The creator of the language, Guido van Rossum, combined a clean syntax
with popular elements from several existing languages to produce Python.

Python is a freely distributed technology whose open-source nature has encouraged a
wide base of developers to submit modules that extend the language. Using Python’s core
modules and those freely available on the Web, programmers can develop applications that
accomplish a great variety of tasks. Python’s interpreted nature facilitates rapid application
development (RAD) of powerful programs. GUI applications, in particular, can be tested
quickly and developed using Python’s interface to Tcl/Tk (among other GUI toolkits).

28.1.1 First Python Program
In this section, we examine a simple Python program and explain how to work with the Py-
thon programming environment. For this chapter, we assume the reader has installed Py-
thon 2.0 or later. [Note: The resources for this book posted at our Web site,
www.deitel.com, include step-by-step instructions on installing Python on Windows
and Unix/Linux platforms.] Python can be executed on a program stored in a file, or Python
can run in interactive mode, where users enter lines of code one at a time. Among other
things, interactive mode enables program writers to test small blocks of code quickly and
helps contribute to a relatively rapid development time for most Python projects.

Figure 28.1 is a simple Python program that prints the text Welcome to Python!
to the screen. Lines 1–2 contain single-line comments that describe the program. Com-
ments in Python begin with the # character; Python ignores all text in the current line after
this character. Line 4 uses the print statement to write the text Welcome to Python!
to the screen.

Outline

28.1 Introduction
28.2 Basic Data Types, Control Structures and Functions
28.3 Tuples, Lists and Dictionaries
28.4 String Processing and Regular Expressions
28.5 Exception Handling
28.6 Introduction to CGI Programming
28.7 Form Processing and Business Logic
28.8 Cookies
28.9 Database Application Programming Interface (DB-API)
28.10 Operator Precedence Chart
28.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_28.fm Page 963 Saturday, July 21, 2001 10:09 AM

964 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Python statements can be executed in two ways. The first is by typing statements into
a file (as in Fig. 28.1). Python files typically end with .py, although other extensions (e.g.,
.pyw on Windows) can be used. Python is then invoked on the file by typing

python file.py

at the command line, where file.py is the name of the Python file. [Note: To invoke Py-
thon, the system path variable must be set properly to include the python executable. The
resources for this book posted at our Web site, www.deitel.com, include step-by-step
instructions on how to set the appropriate variable.] The output box of Fig. 28.1 contains
the results of invoking Python on fig28_01.py.

Python statements can also be interpreted interactively. Typing

python

at the command prompt runs Python in interactive mode.

Testing and Debugging Tip 28.1
In interactive mode, Python statements can be entered and interpreted one at a time. This
mode is often useful when debugging a program (i.e., discovering and removing errors in the
program). 28.1

 Figure 28.2 shows Python running in interactive mode on Windows. The first two
lines display information about the version of Python being used. The third line begins with
the Python prompt (>>>). A Python statement is interpreted by typing the statement at the
Python prompt and pressing the Enter or Return key.

The print statement on the third line prints the text Welcome to Python! to the
screen. After printing the text to the screen, the Python prompt is displayed again (line 5),
and Python waits for the user to enter the next statement. We exit Python by typing Crtl-Z
(on Microsoft Windows systems) and pressing the Return key. [Note: On UNIX and Linux
systems, Ctrl-D exits Python.]

1 # Fig. 28.1: fig28_01.py
2 # A first program in Python
3
4 print "Welcome to Python!"

Welcome to Python!

Fig. 28.1Fig. 28.1Fig. 28.1Fig. 28.1 Simple Python program.

Python 2.1 (#15, Apr 16 2001, 18:25:49) [MSC 32 bit (Intel)] on win32
Type "copyright", "credits" or "license" for more information.
>>> print "Welcome to Python!"
Welcome to Python!
>>> ^Z

Fig. 28.2Fig. 28.2Fig. 28.2Fig. 28.2 Python in interactive mode.

iw3htp2_28.fm Page 964 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 965

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

28.1.2 Python Keywords
Before we discuss Python programming in more detail, we present a list of Python’s key-
words (Figure 28.3). These words have special meanings in Python and cannot be used as
variable names, function names or other objects.

A list of Python keywords can also be obtained from the keyword module.
Figure 28.4 illustrates how to obtain the list of Python keywords in interactive mode. [Note:
We discuss modules further in Section 28.4.]

Python is a case-sensitive language. This means that Python treats variable x (lower-
case) and variable X (upper case) as two different variables. Similarly, the statement

Def = 3

is a valid Python statement, but the statement

def = 3

causes a syntax error, because def is a keyword and, therefore, not a valid variable name.

Good Programming Practice 28.1
Using variable or function names that resemble keywords (e.g., variable Def) or Python
functions (e.g., list) may cause confusion to the program writer and readers. Avoid using
such variable or function names. 28.1

Line 5 contains the function definition header for function greatestCommonDi-
visor. This function computes the greatest common divisor of two numbers—the largest
integer that divides evenly into both numbers. The keyword def marks the beginning of
the function definition. The function takes two parameters: x and y. The list of parameters
is placed inside parentheses (()), and the parameter list is followed by a colon (:).

Common Programming Error 28.1
Forgetting to place a colon after a function definition header or after a control structure is
a syntax error. 28.1

28.2 Basic Data Types, Control Structures and Functions
This section introduces basic data types, control structures and functions, using a simple
program (Fig. 28.5). In this program, we define two functions that use control structures to
perform the operations of those functions.

Python keywords

and continue else for import not raise

assert def except from in or return

break del exec global is pass try

class elif finally if lambda print while

Fig. 28.3Fig. 28.3Fig. 28.3Fig. 28.3 Python keywords.

iw3htp2_28.fm Page 965 Saturday, July 21, 2001 10:09 AM

966 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 6 calls Python function min on parameters x and y. This function returns the
smaller of the two values. We assign the value returned by min to local variable gcd.

Notice that line 6 is indented. Unlike many other languages, Python determines the
beginning and end of a statement based on whitespace. Each new line begins a new state-
ment. The indentation in line 6 marks the beginning of the code block that belongs to func-
tion greatestCommonDivisor. Groups of statements that belong to the same block of
code are indented by the same amount. The language does not specify how many spaces to
indent, only that the indentation must be consistent.

Common Programming Error 28.2
Inconsistent indentation in a Python program causes a syntax error. 28.2

Line 8 describes the beginning of a Python while loop. The code in the while block
executes as long as gcd is greater than or equal to 1.

Python 2.1 (#15, Apr 16 2001, 18:25:49) [MSC 32 bit (Intel)] on win32
Type "copyright", "credits" or "license" for more information.
>>> import keyword
>>> print keyword.kwlist
['and', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
'else', 'except', 'exec', 'finally', 'for', 'from', 'global', 'if',
'import', 'in', 'is','lambda', 'not', 'or', 'pass', 'print', 'raise',
'return', 'try', 'while']
>>>

Fig. 28.4Fig. 28.4Fig. 28.4Fig. 28.4 Printing Python keywords in interactive mode.

1 # Fig. 28.5: fig28_05.py
2 # Program to illustrate basic data types, control structures and
3 # functions.
4
5 def greatestCommonDivisor(x, y):
6 gcd = min(x, y)
7
8 while gcd >= 1:
9

10 if (x % gcd) == (y % gcd) == 0:
11 return gcd
12 else:
13 gcd -= 1
14
15 def determineColor(color):
16
17 if color == "green":
18 print "You entered green!"
19 elif color == "purple":
20 print "You entered purple!"
21 else:
22 print "You did not enter green or purple."

Fig. 28.5Fig. 28.5Fig. 28.5Fig. 28.5 Program illustrating data types, control structures and functions (part 1 of 2).

iw3htp2_28.fm Page 966 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 967

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 10 is a Python if statement. If the specified condition is true (i.e., the condition
evaluates to any nonzero value), the code in the if block (i.e., the indented code that fol-
lows the if statement) is executed. The statement in line 10 uses the modulo operator (%)
to determine if parameters x and y can be divided evenly by variable gcd. The statement
illustrates the fact that Python comparison expressions can be “chained.” This code is iden-
tical to

if (x % gcd) == 0 == (y % gcd):

and to

if x % gcd == 0 and y % gcd == 0:

Chaining occurs left to right; therefore, the former expression is more efficient than the
expression presented in the code, because the former expression may save a division op-
eration.

If the expression in line 10 is true, we have found the greatest common divisor. The
return keyword (line 11) exits the function and returns the specified value.

23
24 number1 = int(raw_input("Enter a positive integer: "))
25 number2 = int(raw_input("Enter a positive integer: "))
26
27 print "The greatest common divisor is", \
28 greatestCommonDivisor(number1, number2)
29
30 for entry in range(5):
31 colorChoice = raw_input("\nEnter your favorite color: ")
32 determineColor(colorChoice)

Enter a positive integer: 2
Enter a positive integer: 30
The greatest common divisor is 2

Enter your favorite color: yellow
You did not enter green or purple.

Enter your favorite color: green
You entered green!

Enter your favorite color: black
You did not enter green or purple.

Enter your favorite color: purple
You entered purple!

Enter your favorite color: red
You did not enter green or purple.

Fig. 28.5Fig. 28.5Fig. 28.5Fig. 28.5 Program illustrating data types, control structures and functions (part 2 of 2).

iw3htp2_28.fm Page 967 Saturday, July 21, 2001 10:09 AM

968 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

If the expression in line 10 is false (i.e., the condition evaluates to zero), the code in
the else block (lines 12–13) executes. This code decrements variable gcd by 1, using the
-= statement and has the same effect as the statement

gcd = gcd - 1

Python defines several such statements, including +=, -=, *=, /=, %= (modulo division)
and **= (exponentiation). [Note: These statements are new in Python 2.0; using these
statements in Python 1.5.2 or less causes a syntax error.]

Function determineColor (lines 15–22) takes parameter color, which contains
a string. Lines 17–22 use the if/elif/else control structure to evaluate expressions
based on the value of the parameter. If the value of parameter color is equal to the string
"green" (line 17), the function prints "You entered green!" If the value of color
is equal to the string "purple" (line 19), the function prints "You entered purple!"
If the value of name does not match either of these strings (line 21), the function prints
"You did not enter green or purple." Function determineColor illustrates
simple Python string comparisons. We discuss string comparison/manipulation in further
detail in Section 28.4.

Line 24 calls Python function raw_input to get input from the user. This function
takes an optional string argument that is displayed as a prompt to the user. The
raw_input function returns a string. The Python function int takes as an argument a
noninteger type and returns an integer representation of the argument. We store the integer
returned from function int in local variable number1. Line 25 retrieves a value for
number2 in a similar fashion.

Common Programming Error 28.3
A numerical value obtained via the raw_input function must be converted from a string to
the proper numerical type. Manipulating a string representation of a numerical value may
result in a logical or syntactical error. 28.3

Lines 27–28 print the greatest common divisor of the two numbers to the screen. The
backslash character (\) at the end of line 27 is a line-continuation character that allows us
to continue a statement on the next line. The comma (,) that follows the string informs
Python that we want to print additional items after the string. In this case, the additional
item is the integer value returned by the call to function greatestCommonDivisor.
Notice from the output that Python automatically inserts a space between the last character
in the string and the integer value.

Common Programming Error 28.4
Forgetting to include a line-continuation character (\) at the end of a statement that contin-
ues onto the next line is a syntax error. 28.4

Line 30 begins a Python for loop. The call to Python function range with an argu-
ment of 5 returns the values 0, 1, 2, 3 and 4. [Note: The function actually returns a list that
contains these values. We discuss lists in Section 28.3.] The for loop iterates through
these values and, on each iteration, assigns a value to variable entry and then executes
the statements in the for block (lines 31–32). Thus, the statements in the for block are
executed five times. These statements retrieve a string from the user and pass that string to
function determineColor. Notice the “\n” escape sequence at the beginning of the

iw3htp2_28.fm Page 968 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 969

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

string in line 31. This is a special Python character that prints a newline to the screen. A
newline causes the cursor (i.e., the current screen position indicator) to move to the begin-
ning of the next line on the screen. Figure 28.6 lists some common Python escape
sequences. After the program calls function determineColor on five user-defined
strings, the program exits.

28.3 Tuples, Lists and Dictionaries
In addition to basic data types that store numerical values and strings, Python defines three
data types for storing more complex data: the list—a sequence of related data, the tuple
(pronounced too-ple)—a list whose elements may not be modified and a dictionary—a list
of values that are accessed through their associated keys. These data types are high-level
implementations of simple data structures that enable Python programmers to manipulate
many types of data quickly and easily. Some Python modules (e.g., Cookie and cgi) use
these data types to provide simple access to their underlying data structures. Figure 28.7 is
a program that illustrates tuples, lists and dictionaries.

Escape sequence Meaning

\n Newline (line feed).

\r Carriage return.

\t Tab.

\' Single quote.

\" Double quote.

\b Backspace.

\\ Backslash.

Fig. 28.6Fig. 28.6Fig. 28.6Fig. 28.6 Escape sequences.

1 # Fig. 28.7: fig28_07.py
2 # A program that illustrates tuples, lists and dictionaries.
3
4 # tuples
5 aTuple = (1, "a", 3.0) # create tuple
6 firstItem = aTuple[0] # first tuple item
7 secondItem = aTuple[1] # second tuple item
8 thirdItem = aTuple[2] # third tuple item
9

10 print "The first item in the tuple is", firstItem
11 print "The second item in the tuple is", secondItem
12 print "The third item in the tuple is", thirdItem
13 print
14
15 firstItem, secondItem, thirdItem = aTuple

Fig. 28.7Fig. 28.7Fig. 28.7Fig. 28.7 Program illustrating tuples, lists and dictionaries (part 1 of 3).

iw3htp2_28.fm Page 969 Saturday, July 21, 2001 10:09 AM

970 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

16 print "The first item in the tuple is", firstItem
17 print "The second item in the tuple is", secondItem
18 print "The third item in the tuple is", thirdItem
19 print
20
21 aTuple += (4,)
22 print "Used the += statement on the tuple"
23 print
24
25 # print the tuple
26 print "The raw tuple data is:", aTuple
27 print "The items in the tuple are:"
28
29 for item in aTuple: # print each item
30 print item,
31
32 print # end previous line
33 print # blank line
34
35 # lists
36 aList = [1, 2, 3] # create list
37 aList[0] = 0 # change first element of list
38 aList.append(5) # add item to end of list
39
40 print "The raw list data is:", aList # print list data
41 print
42
43 aList += [4] # add an item to the end of the list
44 print "Added an item to the list using the += statement"
45 print
46
47 # print each item in the list
48 print "The items in the list are:"
49
50 for item in aList:
51 print item,
52
53 print # end previous line
54 print # blank line
55
56 # dictionaries
57 aDictionary = { 1 : "January", 2 : "February", 3 : "March",
58 4 : "April", 5 : "May", 6 : "June", 7 : "July",
59 8 : "August", 9 : "September", 10 : "October",
60 11 : "November" }
61 aDictionary[12] = "December" # add item to dictionary
62
63 print "The raw dictionary data is:", aDictionary
64 print "\nThe entries in the dictionary are:"
65
66 for item in aDictionary.keys():
67 print "aDictionary[", item, "] = ", aDictionary[item]

Fig. 28.7Fig. 28.7Fig. 28.7Fig. 28.7 Program illustrating tuples, lists and dictionaries (part 2 of 3).

iw3htp2_28.fm Page 970 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 971

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 5 creates a tuple, with elements 1, "a" and 3.0. Tuples are created as a comma-
separated list of values inside parentheses. A tuple is used most often to contain combina-
tions of many data types (e.g., strings, integers, other tuples, etc.). Lines 6–8 use the
[]operator to access specific elements through an index. The first element in a tuple has
index 0.

Tuple element contents are immutable—they cannot be modified. So, the statement

aTuple[0] = 0

produces a run-time error similar to

The first item in the tuple is 1
The second item in the tuple is a
The third item in the tuple is 3.0

The first item in the tuple is 1
The second item in the tuple is a
The third item in the tuple is 3.0

Used the += statement on the tuple

The raw tuple data is: (1, 'a', 3.0, 4)
The items in the tuple are:
1 a 3.0 4

The raw list data is: [0, 2, 3, 5]

Added an item to the list using the += statement

The items in the list are:
0 2 3 5 4

The raw dictionary data is: {12: 'December', 11: 'November', 10: 'Oc-
tober', 9: 'September', 8: 'August', 7: 'July', 6: 'June', 5: 'May', 4:
'April', 3: 'March', 2: 'February', 1: 'January'}

The entries in the dictionary are:
aDictionary[12] = December
aDictionary[11] = November
aDictionary[10] = October
aDictionary[9] = September
aDictionary[8] = August
aDictionary[7] = July
aDictionary[6] = June
aDictionary[5] = May
aDictionary[4] = April
aDictionary[3] = March
aDictionary[2] = February
aDictionary[1] = January

Fig. 28.7Fig. 28.7Fig. 28.7Fig. 28.7 Program illustrating tuples, lists and dictionaries (part 3 of 3).

iw3htp2_28.fm Page 971 Saturday, July 21, 2001 10:09 AM

972 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Traceback (innermost last):
 File "<interactive input>", line 1, in ?
TypeError: object doesn't support item assignment

Common Programming Error 28.5
Attempting to change an immutable data structure is a syntax error. 28.5

Attempting to access a value at a non-existent element is also an error. The statement

print aTuple[10]

produces a run-time error similar to

Traceback (innermost last):
 File "<interactive input>", line 1, in ?
IndexError: tuple index out of range

because aTuple does not have a 10th element.

Common Programming Error 28.6
Trying to access an out-of-range element (i.e., an element at an index that does not exist) pro-
duces a runtime error. 28.6

Line 15 unpacks the items of the tuple into three variables. This statement produces the
same results as lines 6–8. Line 21 has the effect of adding an element to the end of variable
aTuple. The right-hand side of the += statement must be a tuple; therefore, we must
specify a one-element tuple or singleton on the right side of the statement. The value (4,
) is a one-element tuple. The comma after the tuple element value is mandatory, because
the value (4) is an integer.

Because tuples are immutable, the += statement actually creates a new tuple that com-
bines the tuple on the left side of the += sign (i.e., aTuple) with the tuple on the right side
of the += sign (i.e., (4,)) to create a new tuple. The new tuple is stored in variable aTuple.

The output of line 26 shows how the print statement handles a variable that is a
tuple. Lines 29–30 use a for loop to print each element in variable aTuple.

The statement in line 29 assigns the first element in aTuple (i.e., aTuple[0]) to
variable item. Line 30 then prints the value of variable item to the screen. The for loop
iterates over each element in the tuple, assigns the element to variable item and executes
the code in line 30.

By default, the print statement writes a newline character (e.g., a carriage return) at the
end of its output; however, the comma in line 30 tells Python not to print the newline char-
acter. In the next iteration of the for loop, the print statement writes text to the screen on
the same line as the previous print statement. Lines 32–33 print a new line and a blank line
to the screen, respectively, after all the elements in the tuple have been displayed

Line 36 creates a list that contains elements 1, 2 and 3. Python lists are similar to
tuples, except that Python lists are mutable (they may be altered). Line 37 demonstrates this
fact by assigning the value 0 to the element in the list at index 0. Line 38 adds an element
to the end of a list by calling list method append. Lists also support several other methods
(Fig. 28.8).

iw3htp2_28.fm Page 972 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 973

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The output from the statement in line 40 shows how the print statement handles a
variable that is a list. Line 43 adds the integer 4 to variable aList, using the += statement.
The value on the right side of the += statement must be a list (or another sequence, such as
a string or tuple). In this case, the list contains one element. The for statement (lines 50–
51) prints each element of the list to the screen.

Lines 57–60 create a Python dictionary. Each entry in a dictionary has two parts—a key
and a value—and a dictionary consists of a set of zero or more comma-separated key-value
pairs. A value in a dictionary is manipulated using that value’s key. The key must be of an
immutable data type (e.g., number, string or a tuple that contains only immutable data types);
dictionary values may be any data type. Each key-value pair takes the form key : value.

Line 61 illustrates how to add a new element to a dictionary by using the [] operator.
Because a value must be accessed using its corresponding key, each key in a dictionary
must be unique. For example, the statements

month = { 11 : "November" }
month[11] = "Nov."

create a dictionary and then change the value associated with key 11 from "November"
to the abbreviation "Nov.".

Lines 66–67 use a for loop to print each key-value pair in variable aDictionary.
Method keys returns an unordered list of all keys in the dictionary. Dictionaries also sup-
port several other methods (Fig. 28.9). The for loop iterates over each key and prints the
key and its corresponding value. Each value in the dictionary is accessed using the [] oper-
ator (line 67).

Method Purpose

append(item) Inserts item at the end of the list.

count(item) Returns the number of occurrences of item in the list.

extend(newList) Inserts newList at the end of the list.

index(item) Returns the index of the first occurrence of item in the list. If element
is not in the list, a ValueError exception occurs. [Note: We discuss
exceptions in Section 28.5]

insert(index, item) Inserts item at position index.

pop([index]) Removes and returns the last element in the list. If parameter index is
specified, removes and returns the element at position index.

remove(item) Removes the first occurrence of item from the list. If item is not in the
list, a ValueError exception occurs.

reverse() Reverses the items in the list.

sort([function]) Sorts items of the list. Optional parameter function is a comparison
function that may be user-defined.

Fig. 28.8Fig. 28.8Fig. 28.8Fig. 28.8 Python list methods.

iw3htp2_28.fm Page 973 Saturday, July 21, 2001 10:09 AM

974 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

28.4 String Processing and Regular Expressions
Programmers use string processing to accomplish a variety of tasks. System administration
scripts can use Python modules and strings to process text files. Web programmers can use
Python CGI scripts to validate user-entered data from an XHTML form or to aggregate and
display data from a variety of sources. This section discusses simple string processing in
Python, including the use of regular expressions. A regular expression string defines a pat-
tern with which text data can be compared. Regular expressions are used to search through
strings, text files, databases, etc. Regular expressions are not part of the core Python lan-
guage, but regular expression processing capability is available through the standard Py-
thon re module.

Figure 28.10 demonstrates the use of strings in Python. Lines 5–6 assign the value
"This is a string." to variable string1 and print that value to the screen. In lines
8–9, we assign a similar value to variable string2 and print that string.

Method Description

clear() Deletes all items from the dictionary.

copy() Creates a copy of the dictionary.

get(key [, falseValue]) Returns the value associated with key. If key is not in the
dictionary and if falseValue is specified, returns the spec-
ified value.

has_key(key) Returns 1 if key is in the dictionary; returns 0 if key is not
in the dictionary.

items() Returns a list of tuples that are key-value pairs.

keys() Returns a list of keys in the dictionary.

setdefault(key [, falseValue]) Behaves similarly to method get. If key is not in the dic-
tionary and falseValue is specified, inserts the key and the
specified value into dictionary.

update(otherDictionary) Adds all key-value pairs from otherDictionary to the cur-
rent dictionary.

values() Returns a list of values in the dictionary.

Fig. 28.9Fig. 28.9Fig. 28.9Fig. 28.9 Dictionary methods.

1 # Fig. 28.10: fig28_10.py
2 # Program to illustrate use of strings
3
4 # simple string assignments
5 string1 = "This is a string."
6 print string1
7
8 string2 = "This is a second string."
9 print string2

Fig. 28.10Fig. 28.10Fig. 28.10Fig. 28.10 Using strings (part 1 of 2).

iw3htp2_28.fm Page 974 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 975

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

In line 12, three strings—string1, " " and string2—are concatenated with oper-
ator +. We then print this new string (string3).

Lines 16–17 create and print a string with a single character—an asterisk. Line 18 uses
the *= statement to concatenate string4 to itself 10 times. We print the resulting string
in line 19. Python also defines the += statement for strings, which effectively concatenates
two strings. [Note: Because strings are immutable, the *= and += statements actually create
new strings to perform their respective operations.]

Lines 22–26 illustrate the use of quotes in a string. Line 22 shows one method of dis-
playing double quotes inside a string. The double quotes are displayed using the escape
character (\). If we omit the escape character, then Python interprets the double quote
character as marking the end of the string, rather than as a character within the string itself.
Line 23 presents another method of displaying double quotes inside a string. Notice that the

10
11 # string concatenation
12 string3 = string1 + " " + string2
13 print string3
14
15 # using operators
16 string4 = '*'
17 print "String with an asterisk: " + string4
18 string4 *= 10
19 print "String with 10 asterisks: " + string4
20
21 # using quotes
22 print "This is a string with \"double quotes.\""
23 print 'This is another string with "double quotes."'
24 print 'This is a string with \'single quotes.\''
25 print "This is another string with 'single quotes.'"
26 print """This string has "double quotes" and 'single quotes.'"""
27
28 # string formatting
29 name = raw_input("Enter your name: ")
30 age = raw_input("Enter your age: ")
31 print "Hello, %s, you are %s years old." % (name, age)

This is a string.
This is a second string.
This is a string. This is a second string.
String with an asterisk: *
String with 10 asterisks: **********
This is a string with "double quotes."
This is another string with "double quotes."
This is a string with 'single quotes.'
This is another string with 'single quotes.'
This string has "double quotes" and 'single quotes.'
Enter your name: Brian
Enter your age: 33
Hello, Brian, you are 33 years old.

Fig. 28.10Fig. 28.10Fig. 28.10Fig. 28.10 Using strings (part 2 of 2).

iw3htp2_28.fm Page 975 Saturday, July 21, 2001 10:09 AM

976 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

entire string is contained within single quotes ('). Python strings may be contained either
within double quotes or single quotes. As line 23 demonstrates, if a string is contained
within single quotes, then double quotes within the string do not need to be “escaped” with
the backslash character. Similarly, if a string is contained within double quotes (line 25),
then single quotes within the string do not need to be escaped.

If we do not want to escape quote characters in a string, we can place the entire string
within pairs of three consecutive double quote characters (line 26). This is called a triple-
quoted string—triple-quoted strings may alternatively be surrounded by sets of three con-
secutive single quote characters ('''). We use triple-quoted strings later in this chapter to
output large blocks of XHTML from CGI scripts.

In lines 29–30, we use Python function raw_input to input the user’s name and age.
In line 31, we format a string to incorporate the input data. The % format character acts as
a place holder in the string. The format character s indicates that we want to place another
string within the current string at the specified point. Figure 28.11 lists several format char-
acters for use in string formatting. [Note: See Appendix D on number systems for a discus-
sion of the numeric terminology in Fig. 28.11.]

At the end of line 31, we use the % operator to indicate that the formatting characters
in the string are to be replaced with the values listed between the parentheses. Python con-
structs the string from left to right by matching a placeholder with the next value specified
between parentheses and replacing the formatting character with that value.

Figure 28.12 presents some of Python’s regular expression operations. Line 4 imports
the re (regular expression) module. A module contains data and functions that a program
can use to accomplish a specific task. After a program imports a module, the program can
make use of these data and functions. In our example, importing the re module enables us
to access data and functions that facilitate regular-expression processing.

Line 8 compiles the regular expression "Test", using the re module’s compile
function. This method returns an object of type SRE_Pattern, which represents a com-
piled regular expression.

Symbol Meaning

c Single character (i.e., a string of length one).

s String.

d Signed decimal integer.

u Unsigned decimal integer.

o Unsigned octal integer.

x Unsigned hexadecimal integer (using format abcdef).

X Unsigned hexadecimal integer (using format ABCDEF).

f Floating-point number.

e, E Floating-point number (using scientific notation).

g, G Floating-point number (using least-significant digits).

Fig. 28.11Fig. 28.11Fig. 28.11Fig. 28.11 String-format characters.

iw3htp2_28.fm Page 976 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 977

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Software Engineering Observation 28.1
If a program uses a particular regular expression string many times, compiling that string
can speed up the regular expression comparisons. 28.1

Figure 28.13 lists the most popular regular expression symbols recognized by the re
module. Unless otherwise specified, regular expression characters * and + match as many
occurrences of a pattern as possible. For example, the regular expression hel*o matches
strings that have the letters he, followed by any number of l’s, followed by an o (e.g.,
"heo", "helo", "hello", "helllo", etc.).

1 # Fig. 28.12: fig28_12.py
2 # Program searches a string using the regular expression module.
3
4 import re
5
6 searchString = "Testing pattern matches"
7
8 expression1 = re.compile(r"Test")
9 expression2 = re.compile(r"^Test")

10 expression3 = re.compile(r"Test$")
11 expression4 = re.compile(r"\b\w*es\b")
12 expression5 = re.compile(r"t[aeiou]", re.I)
13
14 if expression1.search(searchString):
15 print '"Test" was found.'
16
17 if expression2.match(searchString):
18 print '"Test" was found at the beginning of the line.'
19
20 if expression3.match(searchString):
21 print '"Test" was found at the end of the line.'
22
23 result = expression4.findall(searchString)
24
25 if result:
26 print 'There are %d words(s) ending in "es":' % \
27 (len(result)),
28
29 for item in result:
30 print " " + item,
31
32 print
33 result = expression5.findall(searchString)
34
35 if result:
36 print 'The letter t, followed by a vowel, occurs %d times:' % \
37 (len(result)),
38
39 for item in result:
40 print " " + item,
41
42 print

Fig. 28.12Fig. 28.12Fig. 28.12Fig. 28.12 Using regular expressions to search a string.

iw3htp2_28.fm Page 977 Saturday, July 21, 2001 10:09 AM

978 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 9–12 use a few of these symbols to compile four regular expression patterns. The
expression in line 9 (expression2) matches the string "Test" at the beginning of a
line. The expression in line 10 (expression3) matches the string "Test" at the end of
a line. The expression in line 11 (expression4) matches a word that ends with "es".
The expression in line 12 (expression5) matches the letter t, followed by a vowel. Line
12 illustrates the optional second argument that function compile may take. This argu-
ment is a flag that describes how the regular expression will be used when matching the
expression against a string. The re.I flag means that case is ignored when using the reg-
ular expression to process a string.

The r character before each string in lines 8–12 indicates that the string is a raw string.
Python handles backslash characters in raw strings differently than in “normal” strings.
Specifically, Python does not interpret backslashes as escape characters. Writing all regular
expressions as raw strings can help programmers avoid writing regular expressions that
may be interpreted in a way they did not intend. For example, without the raw-string char-
acter, the regular-expression string in line 11 would have to be written as
\\b\\w*es\\b, because \b is a backspace to Python, but a word boundary in regular
expressions.

Line 14 uses the SRE_Pattern’s search method to test searchString against
the regular expression expression1. The search method returns an SRE_Match
object. If search does not find any matching substrings, the method returns None. None
is a Python type whose value indicates that no value exists. In a Python if statement, None
evaluates to false; therefore, we only need to test the return value to determine whether any
matches were found. If a match is found, we print an appropriate message.

Character Matches

^ Beginning of string.

$ End of string.

. Any character, except a newline.

* Zero or more occurrences of the pattern.

+ One or more occurrences of the preceding pattern.

? Zero or one occurrences of the preceding pattern.

{m, n} Between m and n occurrences of the preceding pattern.

\b Word boundary (i.e., the beginning or end of a word).

\B Non-word boundary.

\d Digit ([0–9]).

\D Non-digit.

\w Any alpha-numeric character.

[...] Any character defined by the set.

[^...] Any character not defined by the set.

Fig. 28.13Fig. 28.13Fig. 28.13Fig. 28.13 Some of the re module’s regular expression characters.

iw3htp2_28.fm Page 978 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 979

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 17 uses SRE_Pattern’s match method to test searchString against regular
expression expression2. The match method returns an SRE_Match object only if the
string matches the pattern exactly.

Line 23 uses SRE_Pattern’s findall method to store in variable result a list
of all substrings in searchString that match the regular expression expression4. If
findall returns any matches, we print a message that indicates how many words were
found (lines 25–27) by using Python function len. When run on a list, function len
returns the number of elements in that list. Lines 29–30 print each item in the list, followed
by a space.

Lines 34–41 perform similar processing with expression5 to print all substrings in
searchString that match the pattern of the letter t followed by a vowel. Remember
that expression5 was compiled using the re.I flag. Thus the letter t or the vowels in
searchString can be either lower- or uppercase. We end the program by printing a new
line.

28.5 Exception Handling
In an interpreted language such as Python, errors pose a unique problem, because many er-
rors caught at compilation time for a compiled language are not caught until run time in an
interpreted language. These errors cause exceptions in Python. When a program encounters
an exception, the program exits and displays an error message.

Exception handling enables programs and programmers to identify an error when it
occurs and to take appropriate action. Exception handling is geared to situations in which
a code block that detects an error is unable to deal with that error. Such a block of code will
raise an exception. The programmer can write code that then catches the exception and
handles the error in a “graceful” manner.

Python accomplishes exception handling through the use of try/except blocks.
Any code that causes an error raises an exception. If this code is contained in a try block,
the corresponding except block then catches the exception (i.e., handles the error). The
core Python language defines a hierarchy of exceptions. A Python except block can catch
one of these exceptions, or a subset of these exceptions, or it can specify none of these
exceptions, in which case the code block catches all exceptions. Figure 28.14 shows how
dividing a number by zero raises a ZeroDivisionError exception.

Figure 28.15 presents a simple program that illustrates exception handling in Python.
The program requests two numbers from the user, then attempts to divide the first number
by the second.

Python 2.1 (#15, Apr 16 2001, 18:25:49) [MSC 32 bit (Intel)] on win32
Type "copyright", "credits" or "license" for more information.
>>> 1 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>>

Fig. 28.14Fig. 28.14Fig. 28.14Fig. 28.14 Interactive session illustrating a ZeroDivisionError exception.

iw3htp2_28.fm Page 979 Saturday, July 21, 2001 10:09 AM

980 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 4–5 define function getFloat, which prompts the user for a number and
returns the number that the user enters. This function gets user input through Python func-
tion raw_input and then obtains the user-entered value as a floating-point value with
Python function float.

Line 7 creates two variables (number1 and number2) and assigns None to both.
Lines 9–19 use while loops to store user-entered values in these variables by using func-
tion getFloat, with exception handling. In lines 9 and 15, we use the keyword is to test
if the program has received a valid number. Lines 10–11 define a try block. Any code in
the try block that raises an exception will be “caught” and handled in the corresponding
except block (lines 12–13). The try block calls function getFloat to get the user
input.

If the user does not enter a numerical value at the prompt, the float function raises
a ValueError exception, which is caught by the except block (lines 12–13). This
block prints an appropriate message before program control returns to the top of the while
loop. Lines 15–19 repeat the same action to get a floating-point value for variable
number2.

Lines 21-26 print the results of dividing variables number1 and number2. We place
the call to divideNumbers in the try block. As we saw in Fig. 28.14, if a program
attempts to divide by zero, the program raises a ZeroDivisionError. The except
block in lines 26–27 catches this exception and prints an appropriate message to the screen.

1 # Fig. 28.15: fig28_15.py
2 # A simple program that illustrates exceptions.
3
4 def getFloat():
5 return float(raw_input("Enter a number: "))
6
7 number1 = number2 = None
8
9 while number1 == None:

10 try:
11 number1 = getFloat()
12 except ValueError:
13 print "Value entered was not a number"
14
15 while number2 == None:
16 try:
17 number2 = getFloat()
18 except ValueError:
19 print "Value entered was not a number"
20
21 try:
22 result = number1 / number2
23 except ZeroDivisionError:
24 print "Cannot divide by zero!"
25 else:
26 print "The result of division is: %f" % result

Fig. 28.15Fig. 28.15Fig. 28.15Fig. 28.15 Demonstrating exception handling.

iw3htp2_28.fm Page 980 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 981

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

A try block may optionally specify a corresponding else block (lines 25–26). If the
code in the try block does not raise an exception, the program executes the code in the
else block. If an exception is raised in the try block, the else block is not executed. In
our example, the else block prints the result of the division.

Good Programming Practice 28.2
In general, we want to minimize the amount of code contained in a try block. Usually, we only
place code in a try block that could raise an exception that we are capable of handling. In the
else block, we place code that we want to run if no exception is raised in the try block. 28.2

28.6 Introduction to CGI Programming
Python has many uses on the Web. Modules cgi (for access to XHTML forms), Cookie
(to read and write cookies), smtplib (to manipulate SMTP messages), urllib (to ma-
nipulate Web data), ftplib (to perform client-side FTP tasks) and others provide power-
ful extensions that Web programmers can use to write CGI scripts quickly for almost any
task. This section introduces Python CGI programming. Sections 28.7–28.9 present more
detailed CGI applications. We assume that the reader has installed and configured the
Apache Web server. Apache does not usually need any special configuration to run a Py-
thon script; a script need merely be placed in the specified cgi-bin directory.

Figure 28.16 gathers all CGI environment variables and values and organizes them in
an XHTML table that is displayed in a Web browser. Line 1

#!c:\Python\python.exe

is a directive (sometimes called the pound-bang or Shebang) that provides the server with
the location of the Python executable. This directive must be the first line in a CGI script.
For UNIX-based machines, this value might commonly be

#!/usr/bin/python or #!/usr/local/bin/python

depending on the actual location of the Python executable.

1 #!c:\Python\python.exe
2 # Fig 28.16: fig28_16.py
3 # Program to display CGI environment variables
4
5 import os
6 import cgi
7
8 print "Content-type: text/html"
9 print

10
11 print """<!DOCTYPE html PUBLIC
12 "-//W3C//DTD XHTML 1.0 Transitional//EN"
13 "DTD/xhtml1-transitional.dtd">"""
14
15 print """

Fig. 28.16Fig. 28.16Fig. 28.16Fig. 28.16 Displaying environment variables (part 1 of 2).

iw3htp2_28.fm Page 981 Saturday, July 21, 2001 10:09 AM

982 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 6 imports the cgi module that provides functionalities for writing CGI scripts. In
this example, we use the module to format output; in later examples, we use module cgi
to perform more complex CGI tasks.

16 <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang="en"
17 lang="en">
18 <head><title>Environment Variables</title></head>
19 <body><table style = "border: 0">"""
20
21 rowNumber = 0
22
23 for item in os.environ.keys():
24 rowNumber += 1
25
26 if rowNumber % 2 == 0:
27 backgroundColor = "white"
28 else:
29 backgroundColor = "lightgrey"
30
31 print """<tr style = "background-color: %s">
32 <td>%s</td><td>%s</td></tr>""" \
33 % (backgroundColor, item,
34 cgi.escape(os.environ[item]))
35
36 print """</table></body></html>"""

Fig. 28.16Fig. 28.16Fig. 28.16Fig. 28.16 Displaying environment variables (part 2 of 2).

iw3htp2_28.fm Page 982 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 983

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 8–9 print a valid HTTP header. Browsers use HTTP headers to determine how
to handle the incoming data, and a valid header must be sent to ensure that the browser dis-
plays the information correctly. The blank line below the header is required; without this
line, the content will not be delivered properly to the client. Lines 11–13 print the XHTML
DOCTYPE string to the browser.

The environ data member (line 23) of module os holds all the environment vari-
ables. This data member acts like a dictionary; therefore, we can access its keys via the
keys method and its values via the [] operator. In lines 23–34, we print a new row in the
table for each item returned by method os.environment.keys. This row contains the
key and the key’s value. Notice that we pass each environment variable to function
cgi.escape. This function formats text in an “XHTML-safe” way—special XHTML
characters such as < and & are formatted so that they appear in the document as they should.
After we have printed all the environment variables, we close the table, body and html
tags (line 36).

28.7 Form Processing and Business Logic
XHTML forms allow users to enter data to be sent to a Web server for processing. Once
the server receives the form, a server program processes the data. Such a program could
help people purchase products, send and receive Web-based e-mail, complete a survey, etc.
These types of Web applications allow users to interact with the server. Figure 28.17 uses
an XHTML form to allow users to input personal information for a mailing list. This type
of registration might be used to store user information in a database.

1 <!DOCTYPE html PUBLIC
2 "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "DTD/xhtml1-transitional.dtd">
4 <!-- Fig. 28.17: fig28_17.html -->
5
6 <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang="en"
7 lang="en">
8 <head>
9 <title>Sample FORM to take user input in HTML</title>

10 </head>
11
12 <body style = "font-family: Arial, sans-serif; font-size: 11pt">
13
14 <div style = "font-size: 15pt; font-weight: bold">
15 This is a sample registration form.
16 </div>
17 Please fill in all fields and click Register.
18
19 <form method = "post" action = "/cgi-bin/fig28_18.py">
20

21 <div style = "color: blue">
22 Please fill out the fields below.

23 </div>

Fig. 28.17Fig. 28.17Fig. 28.17Fig. 28.17 XHTML form to collect information from user (part 1 of 3).

iw3htp2_28.fm Page 983 Saturday, July 21, 2001 10:09 AM

984 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

24
25
26 <input type = "text" name = "firstname" />

27
28 <input type = "text" name = "lastname" />

29
30 <input type = "text" name = "email" />

31
32 <input type = "text" name = "phone" />

33
34 <div style = "font-size: 8pt">
35 Must be in the form (555)555-5555

36 </div>
37
38

39 <div style = "color: blue">
40 Which book would you like information about?

41 </div>
42
43 <select name = "book">
44 <option>XML How to Program</option>
45 <option>Python How to Program</option>
46 <option>E-business and E-commerce How to Program</option>
47 <option>Internet and WWW How to Program 2e</option>
48 <option>C++ How to Program 3e</option>
49 <option>Java How to Program 4e</option>
50 <option>Visual Basic How to Program</option>
51 </select>
52

53
54

55 <div style = "color: blue">
56 Which operating system are you
57 currently using?

58 </div>
59
60 <input type = "radio" name = "os" value = "Windows NT"
61 checked = "checked" />
62 Windows NT
63 <input type = "radio" name = "os" value = "Windows 2000" />
64 Windows 2000
65 <input type = "radio" name = "os" value = "Windows 95_98" />
66 Windows 95/98/ME

67 <input type = "radio" name = "os" value = "Linux" />
68 Linux
69 <input type = "radio" name = "os" value = "Other" />
70 Other

71 <input type = "submit" value = "Register" />
72
73 </form>
74 </body>
75 </html>

Fig. 28.17Fig. 28.17Fig. 28.17Fig. 28.17 XHTML form to collect information from user (part 2 of 3).

iw3htp2_28.fm Page 984 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 985

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The form element (line 19) specifies how the information enclosed by tags <form>
and </form> should be handled. The first attribute, method = "post", directs the
browser to send the form’s information to the server. The second attribute, action = "/
cgi-bin/fig28_18.py", directs the server to execute the fig28_18.py Python
script, located in the cgi-bin directory. The names given to the input items (e.g.,
firstname) in the Web page are important when the Python script is executed on the
server. These names allow the script to refer to the individual pieces of data the user sub-
mits. When the user clicks the button labeled Register, both the input items and the names
given to the items are sent to the fig28_18.py Python script.

Figure 28.18 takes user information from fig28_17.html and sends a Web page to
the client indicating that the information was received. Line 6 imports the cgi module,
which provides functionality for writing CGI scripts in Python, including access to
XHTML form values.

Fig. 28.17Fig. 28.17Fig. 28.17Fig. 28.17 XHTML form to collect information from user (part 3 of 3).

iw3htp2_28.fm Page 985 Saturday, July 21, 2001 10:09 AM

986 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 #!c:\Python\python.exe
2 # Fig. 28.18: fig28_18.py
3 # Program to read information sent to the server from the
4 # form in the form.html document.
5
6 import cgi
7 import re
8
9 # the regular expression for matching most US phone numbers

10 telephoneExpression = \
11 re.compile(r'^\(\d{3}\)\d{3}-\d{4}$')
12
13 def printContent():
14 print "Content-type: text/html"
15 print
16 print """
17 <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang="en"
18 lang="en">
19 <head><title>Registration results</title></head>
20 <body>"""
21
22 def printReply():
23 print """
24 Hi
25 %(firstName)s.
26 Thank you for completing the survey.

27 You have been added to the <span style = "color: blue;
28 font-weight: bold">%(book)s mailing list.

29
30
31 The following information has been saved in our database:
32

33
34 <table style = "border: 0; border-width: 0;
35 border-spacing: 10">
36 <tr><td style = "background-color: yellow">Name </td>
37 <td style = "background-color: yellow">Email</td>
38 <td style = "background-color: yellow">Phone</td>
39 <td style = "background-color: yellow">OS</td></tr>
40
41 <tr><td>%(firstName)s %(lastName)s</td><td>%(email)s</td>
42 <td>%(phone)s</td><td>%(os)s</td></tr>
43 </table>
44
45

46
47 <div style = "text-align: center; font-size: 8pt">
48 This is only a sample form.
49 You have not been added to a mailing list.
50 </div></center>
51 """ % personInfo
52

Fig. 28.18Fig. 28.18Fig. 28.18Fig. 28.18 XHTML form to get cookie values from user (part 1 of 3).

iw3htp2_28.fm Page 986 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 987

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

53 def printPhoneError():
54
55 print """
56 INVALID PHONE NUMBER

57 A valid phone number must be in the form
58 (555)555-5555
59 Click the Back button,
60 enter a valid phone number and resubmit.

61 Thank You."""
62
63 def printFormError():
64
65 print """
66 FORM ERROR

67 You have not filled in all fields.
68 Click the Back button,
69 fill out the form and resubmit.

70 Thank You."""
71
72 printContent()
73
74 form = cgi.FieldStorage()
75
76 try:
77 personInfo = { 'firstName' : form["firstname"].value,
78 'lastName' : form["lastname"].value,
79 'email' : form["email"].value,
80 'phone' : form["phone"].value,
81 'book' : form["book"].value,
82 'os' : form["os"].value }
83 except KeyError:
84 printFormError()
85
86 if telephoneExpression.match(personInfo['phone']):
87 printReply()
88 else:
89 printPhoneError()

Fig. 28.18Fig. 28.18Fig. 28.18Fig. 28.18 XHTML form to get cookie values from user (part 2 of 3).

iw3htp2_28.fm Page 987 Saturday, July 21, 2001 10:09 AM

988 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 72 begins the main portion of the script and calls function printContent to
print the proper HTTP header and XHTML DOCTYPE string. Line 74 creates an instance
of class FieldStorage and assigns the instance to variable form. This class contains
information about any posted forms. The try block (lines 76–82) creates a dictionary that
contains the appropriate values from each defined element in form. Each value is accessed
via the value data member of a particular form element. For example, line 78 assigns
the value of the lastName field of form to the dictionary key 'lastName'.

If the value of any element in form is None, the try block raises a KeyError
exception, and we call function printFormError. This function (lines 63–70) prints a
message in the browser that tells the user the form has not been completed properly and
instructs the user to click the Back button to fill out the form and resubmit it.

Line 86 tests the user-submitted phone number against the specified format. We com-
pile the regular expression telephoneExpression in lines 10–11. If the expression’s
match method does not return None, we call the printReply function (discussed
momentarily). If the match method does return None (i.e., the phone number is not in the
proper format), we call function printPhoneError. This function (lines 53–61) dis-
plays a message in the browser that informs the user that the phone number is in improper
format and instructs the user to click the Back button to change the phone number and
resubmit the form.

If the user has filled out the form correctly, we call function printReply (lines 22–
51). This function thanks the user and displays an XHTML table with the information
gathered from the form. Notice that we format the output with values from the person-
Info dictionary. For example, the beginning of line 25

%(firstName)s

inserts the value of the string variable firstName into the string after the percent sign
(%). Line 51 informs Python that the string variable firstName is a key in the dictionary
personInfo. Thus, the text at the beginning of line 25 is replaced with the value stored
in personInfo['firstName'].

Fig. 28.18Fig. 28.18Fig. 28.18Fig. 28.18 XHTML form to get cookie values from user (part 3 of 3).

iw3htp2_28.fm Page 988 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 989

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

28.8 Cookies
When a client visits a Web site, the server for that Web site may write a cookie to the cli-
ent’s machine. This cookie can be accessed by servers within the Web site’s domain at a
later time. Cookies are usually small text files used to maintain state information for a par-
ticular client. State information may contain a username, password or specific information
that might be helpful when a user returns to a Web site. Many Web sites use cookies to store
a client’s postal zip code. The zip code is used when the client requests a Web page from
the server. The server may send the current weather information or news updates for the
client’s region. The scripts in this section write cookie values to the client and retrieve the
values for display in the browser.

Figure 28.19 is an XHTML form that asks the user to enter three values. These values
are passed to the fig28_20.py script, which writes the values in a client-side cookie.

Figure 28.20 is the script that retrieves the form values from fig28_19.html and
stores those values in a client-side cookie. Line 6 imports the Cookie module. This
module provides capabilities for reading and writing client-side cookies.

Lines 9–15 define function printContent, which prints the content header and
XHTML DOCTYPE string to the browser. Line 17 retrieves the form values by using class
FieldStorage from module cgi. We handle the form values with a try/except/
else block. The try block (lines 19–22) attempts to retrieve the form values. If the user
has not completed one or more of the form fields, the code in this block raises a KeyError
exception. The exception is caught in the except block (lines 23–28), and the program
calls function printContent, then outputs an appropriate message to the browser.

1 <!DOCTYPE html PUBLIC
2 "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "DTD/xhtml1-transitional.dtd">
4 <!-- Fig. 28.19: fig28_19.html -->
5
6 <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang = "en"
7 lang = "en">
8 <head>
9 <title>Writing a cookie to the client computer</title>

10 </head>
11
12 <body style = "background-image: images/back.gif;
13 font-family: Arial,sans-serif; font-size: 11pt" >
14
15
16 Click Write Cookie to save your cookie data.
17

18
19 <form method = "post" action = "/cgi-bin/fig28_20.py">
20 Name:

21 <input type = "text" name = "name" />

22 Height:

23 <input type = "text" name = "height" />

24 Favorite Color

Fig. 28.19Fig. 28.19Fig. 28.19Fig. 28.19 XHTML form to get cookie values from user (part 1 of 2).

iw3htp2_28.fm Page 989 Saturday, July 21, 2001 10:09 AM

990 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The code in the else block (lines 29–68) executes after the program successfully
retrieves all the form values. Line 32 specifies the format for the expiration value of the
cookie. The format characters in this string are defined by the time module. For a com-
plete list of time tokens and their meanings, visit

 www.python.org/doc/current/lib/module-time.html

25 <input type = "text" name = "color" />

26 <input type = "submit" value = "Write Cookie" />
27 </form>
28
29 </body>
30 </html>

Fig. 28.19Fig. 28.19Fig. 28.19Fig. 28.19 XHTML form to get cookie values from user (part 2 of 2).

1 #!C:\Python\python.exe
2 # Fig. 28.20: fig28_20.py
3 # Writing a cookie to a client's machine
4
5 import cgi
6 import Cookie
7 import time
8
9 def printContent():

10 print "Content-type: text/html"
11 print
12 print """
13 <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang="en"
14 lang="en">

Fig. 28.20Fig. 28.20Fig. 28.20Fig. 28.20 Writing a cookie to a client’s machine (part 1 of 3).

iw3htp2_28.fm Page 990 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 991

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

15 <head><title>Cookie values</title></head>"""
16
17 form = cgi.FieldStorage() # get form information
18
19 try: # extract form values
20 name = form["name"].value
21 height = form["height"].value
22 color = form["color"].value
23 except KeyError:
24 printContent()
25 print """<body><h3>You have not filled in all fields.
26 Click the Back button,
27 fill out the form and resubmit.

28 Thank You. </h3>"""
29 else:
30
31 # construct cookie expiration date and path
32 expirationFormat = "%A, %d-%b-%y %X %Z"
33 expirationTime = time.localtime(time.time() + 300)
34 expirationDate = time.strftime(expirationFormat,
35 expirationTime)
36 path = "/"
37
38 # construct cookie contents
39 cookie = Cookie.Cookie()
40
41 cookie["Name"] = name
42 cookie["Name"]["expires"] = expirationDate
43 cookie["Name"]["path"] = path
44
45 cookie["Height"] = height
46 cookie["Height"]["expires"] = expirationDate
47 cookie["Height"]["path"] = path
48
49 cookie["Color"] = color
50 cookie["Color"]["expires"] = expirationDate
51 cookie["Color"]["path"] = path
52
53 # print cookie to user and page to browser
54 print cookie
55
56 printContent()
57 print """<body style = "background-image: /images/back.gif;
58 font-family: Arial,sans-serif; font-size: 11pt">
59 The cookie has been set with the following data:

60
61 Name: %s

62 Height: %s

63 Favorite Color:
64 %s
""" \
65 % (name, height, color, color)
66

Fig. 28.20Fig. 28.20Fig. 28.20Fig. 28.20 Writing a cookie to a client’s machine (part 2 of 3).

iw3htp2_28.fm Page 991 Saturday, July 21, 2001 10:09 AM

992 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The time function (line 33) of module time returns a floating-point value that is the
number of seconds since the epoch (i.e., January 1, 1970). We add 300 seconds to this value
to set the expirationTime for the cookie. We then format the time using the local-
time function. This function converts the time in seconds to a nine-element tuple that rep-
resents the time in local terms (i.e., according to the time zone of the machine on which the
script is running). Lines 34–35 call the strftime function to format a time tuple into a
string. This line effectively formats tuple expirationTime as a string that follows the
format specified in expirationFormat.

Line 39 creates an instance of class Cookie. An object of class Cookie acts like a
dictionary, so values can be set and retrieved using familiar dictionary syntax. Lines 41–51
set the values for the cookie, based on the user-entered values retrieved from the XHMTL
form.

Line 54 writes the cookie to the browser (assuming the user’s browser has enabled
cookies) by using the print statement. The cookie must be written before we write the
content type (line 56) to the browser. Lines 57–65 display the cookie’s values in the
browser. We then conclude the else block by creating a link to a Python script that
retrieves the stored cookie values (lines 67–68).

67 print """

68 Read cookie values"""
69
70 print """</body></html>"""

Fig. 28.20Fig. 28.20Fig. 28.20Fig. 28.20 Writing a cookie to a client’s machine (part 3 of 3).

iw3htp2_28.fm Page 992 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 993

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Figure 28.21 is the CGI script that retrieves cookie values from the client and displays
the values in the browser. Line 18 creates an instance of class Cookie. Line 19 retrieves
the cookie values from the client. Cookies are stored as a string in the environment variable
HTTP_COOKIE. The load method of class Cookie extracts cookie values from a string.
If no cookie value exists, then the program raises a KeyError exception. We catch the
exception in lines 20–22 and print an appropriate message in the browser.

If the program successfully retrieves the cookie values, the code in lines 23–37 dis-
plays the values in the browser. Because cookies act like dictionaries, we can use the keys
method (line 31) to retrieve the names of all the values in the cookie. Lines 32–35 print
these names and their corresponding values in a table.

1 #!C:\Python\python.exe
2 # Fig. 28.21: fig28_21.py
3 # Program that retrieves and displays client-side cookie values
4
5 import Cookie
6 import os
7
8 print "Content-type: text/html"
9 print

10 print """
11 <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang="en"
12 lang="en">
13 <head><title>Cookie values</title></head>
14 <body style =
15 font-family: Arial, sans-serif; font-size: 11pt">"""
16
17 try:
18 cookie = Cookie.Cookie()
19 cookie.load(os.environ["HTTP_COOKIE"])
20 except KeyError:
21 print """Error reading cookies
22 """
23 else:
24 print """
25 The following data is saved in a cookie on your computer.
26

"""
27
28 print """<table style = "border-width: 5; border-spacing: 0;
29 padding: 10">"""
30
31 for item in cookie.keys():
32 print """<tr>
33 <td style = "background-color: lavender">%s</td>
34 <td style = "background-color: white">%s</td>
35 </tr>""" % (item, cookie[item].value)
36
37 print """</table>"""
38
39 print """</body></html>"""

Fig. 28.21Fig. 28.21Fig. 28.21Fig. 28.21 CGI script that retrieves and displays client-side cookie values.

iw3htp2_28.fm Page 993 Saturday, July 21, 2001 10:09 AM

994 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

28.9 Database Application Programming Interface (DB-API)
Python’s open-source nature encourages independent developers to contribute additions to
the language. In earlier versions of Python, many developers contributed modules that pro-
vided interfaces to several databases. Unfortunately, these interfaces rarely resembled one
another; if an application developer wanted to change the application’s database, the whole
program had to be rewritten.

The Python Database Special Interest Group (SIG) was formed to develop a specifi-
cation for Python database application programming interface (DB-API). The specifica-
tion is now in version 2.0, and modules that conform to this specification exist for many
databases. In this section we illustrate the Python interface to MySQL (module MySQLdb).

28.9.1 Setup
The next programming example assumes the user has installed MySQL and the MySQLdb
module. The MySQLdb module must be downloaded and installed. [Note: The resources
for this book posted at our Web site, www.deitel.com, include step-by-step instructions
for installing MySQLdb.]

28.9.2 Simple DB-API Program

The example in this section lets the user choose an author from an XHTML drop-down list.
The user then clicks a button to query the database. The database query returns a list of all
books by that author.

Figure 28.22 is a CGI script that creates the XHTML author selection list by querying
the database. Line 4 imports the MySQLdb module. This provides access to a MySQL data-
base using the Python DB-API.

Lines 6–13 print the HTTP header and XHTML DOCTYPE string to the browser. The
remainder of the program is contained in a try/except/else block. In the try block
(lines 15–16), we attempt to connect to the MySQL database called books. Line 16 con-
nects to the database. The call to connect in module MySQLdb returns an instance of a
Connection object. In the call to connect, we pass the value "books" to the keyword
argument db. A keyword argument is a named argument defined by a function. To pass a
value to a named argument, we assign a value to the name inside the function call’s paren-
theses, as in line 16. The Connection object returned by the call is stored in local vari-
able connection.

1 #!c:\Python\python.exe
2 # Fig. 28.22: fig28_22.py
3 # A program to illustrate Python's database connectivity.
4 import MySQLdb
5
6 print "Content-type: text/html"
7 print
8 print """

Fig. 28.22Fig. 28.22Fig. 28.22Fig. 28.22 CGI script to create list of authors (part 1 of 2).

iw3htp2_28.fm Page 994 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 995

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

If the call to MySQLdb.connect succeeds, we have connected to the database. If the
call does not succeed, the program receives an OperationalError exception. We
catch this exception in lines 17–18, where we print an appropriate error message.

If the program does not encounter an OperationalError exception, we execute
the code in the else block (lines 19–38). Line 20 calls the cursor method of object

9 <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang="en"
10 lang="en">
11 <head><title>Select Author</title></head>
12 <body style =
13 font-family: Arial, sans-serif; font-size: 11pt">"""
14
15 try:
16 connection = MySQLdb.connect(db = "books")
17 except OperationalError:
18 print "Unable to connect to database: %s" % message
19 else:
20 cursor = connection.cursor()
21 cursor.execute("SELECT * FROM Authors")
22 authorList = cursor.fetchall()
23
24 cursor.close() # close cursor
25 connection.close() # close connection
26
27 print """
28 <form method = "post" action = "/cgi-bin/fig28_23.py">
29 <select name = "authorID">"""
30
31 for author in authorList:
32 print """<option value = %d>%s, %s</option>""" \
33 % (author[0], author[2], author[1])
34
35 print """
36 </select>
37 <input type = "submit" value = "Execute Query" />
38 </ form>"""
39
40 print """</body></html>"""

Fig. 28.22Fig. 28.22Fig. 28.22Fig. 28.22 CGI script to create list of authors (part 2 of 2).

iw3htp2_28.fm Page 995 Saturday, July 21, 2001 10:09 AM

996 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

connection. This method returns a Cursor object that allows us to execute queries
against the database. We store this object in local variable cursor.

Line 21 calls method execute to execute an SQL query against the database. The
execute method takes as an argument a valid SQL string and runs that string against the
database. The results of the query are stored in object cursor. We retrieve the results by
calling method fetchall (line 22). This method returns a list of all the records that
matched the query string we passed to the execute call. In our example, method
fetchall returns a list of all the records from the Authors table in the books database.
We store this list in local variable authorList. In lines 24–25, we close the cursor and
the connection by calling their respective close methods.

Good Programming Practice 28.3
The Python DB-API implementation automatically closes a connection to a database when
the program exits; still, we include this code as a matter of good practice. 28.3

The remainder of the else block (lines 29–38) writes the XHTML form that lets the
user choose an author and query the database. The form is posted to fig28_23.py,
which queries the database for the user-selected author. Lines 27–29 create the XHTML
select item from which the user will choose an author, named authorID. Lines 31–33
contain a for loop that creates an option for each author in the database. Each record in
authorList is a tuple with the following format

(authorID, firstName, lastName, birthYear)

We construct each option by assigning a value that corresponds to the ID (au-
thor[0]) and displaying the last name followed by the first name (author[2] and au-
thor[1], respectively). Lines 35–37 complete the select item and add a button to the
form, so the user can execute the query.

Figure 28.23 is the CGI script that executes a query against the database based on the
author chosen from the form in fig28_22.html. Line 10 retrieves the form using the
FieldStorage class from module cgi. Lines 21–30 contain a try/except block that
attempts to retrieve the authorID selected by the user. If the form contains a value for
authorID, we store that value in local variable authorID; otherwise, we print an error
message to the browser (lines 24–29). Line 30 calls function sys.exit, causing the pro-
gram to terminate.

1 #!c:\Python\python.exe
2 # Fig. 28.23: fig28_23.py
3 # A program to illustrate Python's database connectivity.
4
5 import cgi
6 import MySQLdb
7 import sys
8
9 # get results from form

10 form = cgi.FieldStorage()
11
12 print "Content-type: text/html"

Fig. 28.23Fig. 28.23Fig. 28.23Fig. 28.23 CGI script to create table of titles, given an author (part 1 of 3).

iw3htp2_28.fm Page 996 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 997

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

13 print
14 print """
15 <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang="en"
16 lang="en">
17 <head><title>Query results</title></head>
18 <body style =
19 font-family: Arial, sans-serif; font-size: 11pt">"""
20
21 try:
22 authorID = form["authorID"].value
23 except KeyError:
24 print """
25 FORM ERROR

26 You did not select an author.

27 Click the Back button,
28 fill out the form and resubmit.

29 Thank You.</body></html>"""
30 sys.exit()
31
32 # connect to database and get cursor
33 try:
34 connection = MySQLdb.connect(db = 'books')
35 except OperationalError:
36 print """
37 DATABASE ERROR
 Unable to connect to database.
38 </body></html>"""
39 sys.exit()
40
41 queryString = """select Titles.* from Titles, AuthorISBN
42 where AuthorISBN.AuthorID=%s and
43 Titles.ISBN=AuthorISBN.ISBN""" % authorID
44
45 cursor = connection.cursor()
46 cursor.execute(queryString)
47
48 results = cursor.fetchall()
49
50 cursor.close() # close cursor
51 connection.close() # close connection
52
53 # display results
54 print """<table style = "border: groove 2 pt;
55 border-colapse: separate">
56 <tr>
57 <th>ISBN</th>
58 <th>Title</th>
59 <th>Edition</th>
60 <th>Year</th>
61 <th>Description</th>
62 <th>Publisher ID</th>
63 </tr>"""
64

Fig. 28.23Fig. 28.23Fig. 28.23Fig. 28.23 CGI script to create table of titles, given an author (part 2 of 3).

iw3htp2_28.fm Page 997 Saturday, July 21, 2001 10:09 AM

998 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

We attempt to connect to the MySQL database called books in lines 33–39. If we are
unable to obtain a connection, we print an error message and call sys.exit to exit the
program (lines 36–39).

Lines 41–43 construct a query string to execute against the database. This query selects
all columns from table Title where the ISBN matches all ISBNs from table AuthorISBN
that correspond to the authorID specified in the form. Lines 45–46 create a cursor for the
database and execute the query string against the database. We retrieve the results of the
query using method fetchall and store the records in local variable results (line 48).
We then close the cursor and the connection (lines 50–51).

The remainder of the program (lines 54–73) displays the results of the query. We create
a table and label the headers with the column names from the database (lines 54–63). Line
65 begins a for loop that iterates over each record in local variable results. For each
record, we create a row in the table (lines 66–71). Each column value has a corresponding
entry in the row (lines 68–69). After we have printed all the records, we print a closing table
tag (line 73).

In this section we have illustrated Python’s DB-API through a specific implementation
of the DBI, module MySQLdb. Because MySQLdb conforms to the DB-API, the code in
our examples would not require many changes to work with another module that conforms

65 for row in results:
66 print "<tr>"
67
68 for entry in row:
69 print '<td style = "border: solid 2pt">%s</td>' % entry
70
71 print "</tr>"
72
73 print """</table></body></html>"""

Fig. 28.23Fig. 28.23Fig. 28.23Fig. 28.23 CGI script to create table of titles, given an author (part 3 of 3).

iw3htp2_28.fm Page 998 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 999

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

to the DB-API. In fact, we could use many other databases, such as Microsoft Access or
Informix, because their respective modules (odbc and informixdb) conform to the DB-
API.

28.10 Operator Precedence Chart
This section contains the operator precedence chart for Python (Fig. 28.24). The operators
are shown in decreasing order of precedence, from top to bottom.

Operator Type Associativity

‘ ‘ string conversion left to right

{ } dictionary creation left to right

[] list creation left to right

() tuple creation or expression grouping left to right

() function call left to right

[:] slicing left to right

[] subscript access left to right

. member access left to right

** exponentiation right to left

~ bitwise NOT left to right

+
-

unary plus
unary minus

right to left

*
/
%

multiplication
division
modulus (remainder)

left to right

+
-

addition
subtraction

left to right

<<
>>

left shift
right shift

left to right

& bitwise AND left to right

^ bitwise XOR left to right

| bitwise OR left to right

<
<=
>
>=
!=
==

less than
less than or equal
greater than
greater than or equal
not equal
equal

left to right

is, is not identity left to right

in, not in membership tests left to right

Fig. 28.24Fig. 28.24Fig. 28.24Fig. 28.24 Python operator precedence chart (part 1 of 2).

iw3htp2_28.fm Page 999 Saturday, July 21, 2001 10:09 AM

1000 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

28.11 Internet and World Wide Web Resources
www.python.org
This is the Python home page. From this site, you can download the latest version of Python for all
platforms. The site also posts all the Python documentation and provides links to other resources, such
as additional modules, tutorials, search engines, special-interest groups, an event calendar, a job
board, mailing lists and archives.

www.zope.com
This is the home page for Zope Corporation, the developers of Zope—a Web application server writ-
ten in Python.

www.zope.org
This is the home page for Zope and its community.

starship.python.net
This Web site provides resources for Python developers. Site members post Python modules and util-
ities on this site.

www.python.org/download/download_mac.html
This site provides information on and links to a MacOS version of Python.

www.vex.net/parnassus
This site contains many third-party Python modules, which are freely available for download.

www.pythonware.com
Secret Labs AB is a company that offers application development tools for Python. The Pythonware
Web site provides links to Secret Labs AB products and other Python resources.

www.corrt.com/info/pyisp-list.html
This site posts a list of Internet Service Providers (ISPs) that support Python.

starship.python.net/crew/davem/cgifaq
This site posts a Python/CGI FAQ.

www.devshed.com/Server_Side/Python/CGI
This site posts an article/tutorial on writing CGI programs in Python.

starship.python.net/crew/aaron_watters/pws.html
This site provides instructions for configuring IIS/PWS for Python / CGI scripts.

members.nbci.com/alan_gauld/tutor/tutindex.htm
This site contains a Python tutorial geared towards novice programmers. The tutorial’s goal is to teach
programming fundamentals using Python.

not boolean NOT left to right

and boolean AND left to right

or boolean OR left to right

lambda lambda expressions (anonymous functions) left to right

Operator Type Associativity

Fig. 28.24Fig. 28.24Fig. 28.24Fig. 28.24 Python operator precedence chart (part 2 of 2).

iw3htp2_28.fm Page 1000 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 1001

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

www.python.org/doc/howto/regex/regex.html
This site contains a tutorial on using Python regular expressions.

www.devshed.com/Server_Side/Zope/Intro
This article presents an introduction to Zope, a Web application server written in Python.

www.python.org/windows/win32com
This site contains resources for Python/COM development.

www.pythonware.com/library/tkinter/tkclass/index.htm
This site contains an introduction to Tkinter, a Python GUI development library.

www.chordate.com/gadfly.html
This is the home page for Gadfly, a relational database written in Python.

aspn.activestate.com/ASPN/Python/Cookbook
This site contains many Python examples to accomplish a variety of tasks.

www.python.org/windows/win32/odbc.html
An introduction to Python’s odbc module can be found at this site.

starship.python.net/crew/bwilk/access.html
This site contains a few notes on using Python and Microsoft Access.

www.python.org/doc/Comparisons.html
Guido van Rossum has posted an essay on this page that compares Python with other popular lan-
guages, such as Java, C++ and Perl.

www.vic.auug.org.au/auugvic/av_paper_python.html
This article contains an overview of Python and lists many uses and features of the language.

www.networkcomputing.com/unixworld/tutorial/005/005.html
This site contains a tutorial and an introduction to Python.

SUMMARY
• Python is an interpreted, cross-platform, object-oriented language. It is a freely distributed, open-

source technology.

• Using Python’s core modules and those freely available on the Web, programmers can develop
applications that accomplish a variety of tasks.

• Python’s interpreted nature facilitates Rapid Application Development (RAD).

• Comments in Python begin with the # character; Python ignores all text in the current line after
this character.

• Python statements can be executed in two ways. The statements can be typed into a file and then
invoking Python on that file. Python statements can also be interpreted dynamically by typing
them in at the Python interactive prompt.

• Python keywords have special meanings in Python and cannot be used as variable names, function
names and other objects. A list of Python keywords can be obtained from the keyword module.

• The keyword def marks the beginning of the function definition. The function’s parameter list is
followed by a colon (:).

• Python is a case-sensitive language.

• Python determines the beginning and end of a statement based on whitespace. Each new line be-
gins a new statement, and groups of statements that belong to the same block of code are indented
the same amount.

• Keyword return causes the program to exit and to return the specified value.

iw3htp2_28.fm Page 1001 Saturday, July 21, 2001 10:09 AM

1002 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• Python function raw_input retrieves input from the program user. This function may optionally
take a string argument that is a prompt to the user.

• The Python int function converts noninteger data types to integers.

• The backslash character (\) is the line-continuation character. Lines may also be continued freely
inside nested parentheses, brackets and braces.

• The “\n” escape code is a special Python character that represents a newline character.

• Tuples are created as a comma-separated list of values in parentheses (()). A tuple can contain
any data type (e.g., strings, integers, other tuples, etc.) and may contain elements of different types.

• Tuples are immutable—after a tuple is created, an element at a defined index cannot be replaced.

• The += statement adds an element to the end of a tuple.

• By default, the print statement writes a newline character (e.g., a carriage return) at the end of
its output; however, a comma placed at the end of a print statement tells Python to leave out the
newline.

• Python lists consist of a sequence of zero or more elements.

• Python lists are mutable—an element at an index that has been defined may be replaced.

• Method append adds an element to the end of a list.

• Each entry in a dictionary has two parts—the key and the value—and a dictionary consists of a set
of zero or more comma-separated key-value pairs.

• A value in a dictionary is accessed through that value’s key. The key must be unique and of an
immutable data type (e.g., number, string or tuple that contains only immutable data types); values
may be of any data type.

• A regular expression string defines a pattern against which text data can be compared. Regular ex-
pression processing capability is available in the standard Python module re.

• Unless otherwise specified, regular-expression characters * and + match as many occurrences of
a regular expression as possible.

• Compiling a regular expression string (using re method compile) speeds up a regular expres-
sion comparison that uses that string.

• Strings can be contained in single quotes (' '), double quotes (" ") or in a set of three single or
double quotes (''' ''' or """ """)

• The % format character acts like a place holder in the string. Python defines several format char-
acters for use in string formatting

• Importing a module enables programmers to use functions defined by that module.

• An r before a string indicates that the string is a raw string. Python handles backslash characters
in raw strings differently than in “normal” strings—Python does not interpret backslashes as es-
cape characters in raw strings.

• re module’s findall method returns a list of all substrings in a particular string that match a
specified regular expression.

• Exception handling enables programs and programmers to identify an error when the error occurs
and to take appropriate action. Python accomplishes exception handling through the use of try/
except blocks.

• Any code that causes an error raises an exception. If the code that raises an exception is contained
in a try block, the corresponding except block catches the exception (i.e., handles the error).

• An except block can and should specify a particular exception to catch.

iw3htp2_28.fm Page 1002 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 1003

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• A try block may optionally specify a corresponding else block. If the code in the try block
does not raise an exception, then the program executes the code in the else block. If an exception
is raised in the try block, then the else block is skipped.

• The pound-bang (#!) directive—the directive that specifies the location of the Python execut-
able— must be the first line in a CGI script.

• The cgi module provides functionality for writing CGI scripts in Python, including access to
XHTML form values.

• cgi method FieldStorage provides access to XHTML form values.

• The Cookie module provides access to cookies.

• An object of class Cookie acts like a dictionary, so values can be set and retrieved using familiar
dictionary syntax.

• The time function of module time returns a floating-point value that is the number of seconds
since the “epoch” (i.e., the first day of 1970).

• An object of class Cookie acts like a dictionary, so values can be set and retrieved using familiar
dictionary syntax.

• The load method of module Cookie extracts cookie values from a string. If no cookie value ex-
ists, then the program raises the KeyError exception.

TERMINOLOGY
' (single quote) character cgi module
" (double quote) character CGI scripts
""" (triple quote) characters compiling a regular expression
comment character concatenated strings
#! (pound-bang) directive connection object
% formatting character constructor
% modulo operator Cookie class
% operator Cookie module
%= operator Ctrl-Z/Ctrl-D character
**= statement cursor object
*= statement Database Application Programming Interface
, (comma) character Database Special Interest Group (SIG)
. (dot) operator debugging
. operator def
/= statement dictionary
: (colon) character else
: (slice) operator environ data member of module os
[] operator epoch
\ (backslash) character escape character
\n escape character exception handling
{} characters expiration value of a cookie
“chained” expression fetchall method of class cursor
+ operator FieldStorage class
+= statement findall method of module re
-= statement float function
and for
Apache Web server formatting character
append method get method
catch an exception greatest common divisor

iw3htp2_28.fm Page 1003 Saturday, July 21, 2001 10:09 AM

1004 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

SELF-REVIEW EXERCISES
28.1 Fill in the blanks in each of the following statements:

a) Comments in Python begin with the character.
b) Python statements can be executed in two ways. The statements can be typed into a file

and then , or statements can be .
c) The keyword marks the beginning of a Python function definition.
d) Function raw_input returns a .
e) Python defines three data types for storing complex data: , and

.
f) Tuples are (element values at defined indices may not be changed); whereas

lists are (element values at defined indices may be changed).
g) Python implements through the use of try/except blocks.
h) The Python module used to obtain XHTML form contents is .
i) Cookies are stored in the environment variable .
j) The was formed to develop a specification for Python database application-

programming interface (DB-API).

HTTP header Python prompt
HTTP_COOKIE environment variable query
if raise an exception
if/elif range
if/else rapid-application development (RAD)
immutable data type raw string
import raw_input
importing a module re module
indentation of statement re.I flag
int function regular expression
interactive mode replace method
key/value pair return
KeyError exception search method
keys self parameter
keyword module SRE_Match object
list SRE_Pattern object
load method of class Cookie strftime function of module time
localtime function of module time string formatting
match method string manipulation
min function string processing
module Structured Query Language (SQL)
mutable data type Tcl/Tk
MySQLdb module time function
newline time module
None time token
odbc module triple-quoted string
open-source technology try/except
os module try/except/else
out-of-range element tuple
packing a tuple unpacking a tuple
pass van Rossum, Guido
pound–bang directive while
print statement writing a cookie

iw3htp2_28.fm Page 1004 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 1005

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

28.2 State whether each of the following is true or false. If false, explain why.
a) Python is an interpreted language.
b) To exit Python, type exit at the Python prompt.
c) Forgetting to indent after a colon is a style error.
d) The underscore character (_) marks the continuation of a Python statement onto the next

line.
e) Elements must be added to a list by calling list method append.
f) A tuple is a valid data type for use as a dictionary key.
g) The pound-bang (#!) directive—which tells a server where to find the Python execut-

able—must be the first line in a CGI script.
h) An object of class Cookie acts like a dictionary, so values can be set and retrieved using

familiar dictionary syntax.
i) The syntax needed to manipulate a database is always dependent on that database.
j) A Cursor object is needed to execute a query against a database (for DB-API compliant

modules).

28.3 How can a Python CGI script determine a client’s IP address?

28.4 For each of the following code examples, identify and correct the error(s):
a) print hello
b) aTuple = (1, 2)

aTuple[0] = 2
c) if 0 < 3

 print "0 is less than 3."
d) for counter in range(10):

print counter

28.5 Write a one- to three-line block of code for each of the following tasks:
a) Create a string with 50 exclamation points (!) using the * operator.
b) Print out even numbers from 0 to 100.
c) Convert a user-entered number from a string to an integer.
d) Determine if a user-entered integer is odd.
e) Concatenate an empty tuple and a singleton with the += statement.

ANSWERS TO SELF-REVIEW EXERCISES
28.1 a) pound (#). b) Python is invoked on the file, dynamically interpreted in an interactive ses-
sion. c) def. d) string. e) tuples, lists, dictionaries. f) immutable, mutable. g) exception (or error)
handling. h) cgi. i) HTTP_COOKIE. j) Python Database Special Interest Group.

28.2 a) True. b) False. Type Crtl-Z in Microsoft Windows or Ctrl-D in Linux/UNIX. c) False.
Forgetting to indent after a colon is a syntax error. d) False. The backslash character (\) marks the
continuation of a Python statement onto the next line. e) False. Lists can also be augmented by calling
the extend method or the += statement, for example. f) True. g) True. h) True. i) False. Database
modules that conform to the DB-API provide similar syntaxes. j) True.

28.3 A client’s IP address is contained in the REMOTE_ADDR environment variable of the os
module.

28.4 a) Logical or syntax error. If the desired result is to output the word “hello,” the proper code
is print "hello". The code in the problem will print the value of variable hello, if a variable
by that name exists; the code raises an error if the variable does not exist. b) Runtime error. Tuple
values cannot be modified in this way. c) Syntax error. A colon (:) must follow the if statement. d)
Syntax error. The line after the for statement must be indented.

iw3htp2_28.fm Page 1005 Saturday, July 21, 2001 10:09 AM

1006 Python Chapter 28

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

28.5 a) theString = '!' * 50
b) for item in range(101):

 if item % 2 == 0:
 print item

c) number = raw_input("Enter a number")
integer = int(number)

d) number = int(raw_input("Enter an integer"))
 if number % 2 == 1:
 print "The number is odd."

e) emptyTuple = ()
 emptyTuple += (1,)

EXERCISES
28.6 Describe how input from an XHTML form is retrieved in a Python program.

28.7 Figure 28.5 defines function greatestCommonDivisor that computes the greatest com-
mon divisor of two positive integers. Euclid’s algorithm is another method of computing the greatest
common divisor. The following steps define Euclid’s algorithm for computing the greatest common
divisor of two positive integers x and y:

while y > 0
 z = y
 y = x modulo z
 x = z
return x

Write a function Euclid that takes two positive integers and computes their greatest common divi-
sor using Euclid’s algorithm.

28.8 Modify functions greatestCommonDivisor and Euclid from Exercise 28.7 so that
each function counts the number of modular divisions performed (i.e., the number of times the func-
tion uses the % operator). Each function should return a tuple that contains the calculated greatest
common divisor and the number of modular divisions performed. Run each function on the following
pairs of integers in Fig. 28.25, and fill in the rest of the table. Which function takes fewer modular
divisions, on average?

28.9 Write a Python program named states.py that declares a variable states with value
"Mississippi Alabama Texas Massachusetts Kansas". Using only the techniques dis-
cussed in this chapter, write a program that does the following:

a) Search for a word in variable states that ends in xas. Store this word in element 0 of
a list named statesList.

b) Search for a word in states that begins with k and ends in s. Perform a case-insensi-
tive comparison. [Note: Passing re.I as a second parameter to method compile per-
forms a case-insensitive comparison.] Store this word in element 1 of statesList.

c) Search for a word in states that begins with M and ends in s. Store this word in element
2 of the list.

d) Search for a word in states that ends in a. Store this word in element 3 of the list.
e) Search for a word that begins with M in states at the beginning of the string. Store this

word at element 4 of the list.
f) Output the array statesList to the screen.

28.10 In Section 28.6, we discussed CGI environment variables. Write a CGI script that displays a
user’s IP address in the user’s browser.

iw3htp2_28.fm Page 1006 Saturday, July 21, 2001 10:09 AM

Chapter 28 Python 1007

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

28.11 Write a CGI script that logs a user into a Web site. The user should be presented with a Web
page that contains a form into which users enter their login name and password. The form sends the
the user-entered information to a Python script. This script checks a database for the user’s login name
and validates the user’s password. If the login name and password are valid, the Python script writes
a "Login successful" message to the browser; if the login name and/or password are invalid,
the Python script writes a "Login unsuccessful" message to the browser.

Integer pairs
Number of modular divisions for
greatestCommonDivisor

Number of modular divisions for
Euclid

1, 101 ________ ________

3, 30 ________ ________

45, 1000 ________ ________

13, 91 ________ ________

100, 1000 ________ ________

2,2 ________ ________

777,77 ________ ________

73,12 ________ ________

26,4 ________ ________

99,27 ________ ________

Average: ________ ________

Fig. 28.25Fig. 28.25Fig. 28.25Fig. 28.25 Comparing functions greatestCommonDivisor and Euclid.

iw3htp2_28.fm Page 1007 Saturday, July 21, 2001 10:09 AM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

29
PHP

Objectives
• To understand PHP data types, operators, arrays and

control structures.
• To understand string processing and regular

expressions in PHP.
• To construct programs that process form data.
• To be able to read and write client data using cookies.
• To construct programs that interact with MySQL

databases.
Conversion for me was not a Damascus Road experience. I
slowly moved into an intellectual acceptance of what my
intuition had always known.
Madeleine L’Engle

Be careful when reading health books; you may die of a
misprint.
Mark Twain

Reckeners without their host must recken twice.
John Heywood

There was a door to which I found no key; There was the veil
through which I might not see.
Omar Khayyam

iw3htp2_29.fm Page 1008 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1009

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

29.1 Introduction
PHP, or PHP Hypertext Preprocessor, is quickly becoming one of the most popular server-
side scripting languages for creating dynamic Web pages. PHP was created in 1994 by Ras-
mus Lerdorf (who currently works for Linuxcare Inc. as a Senior Open-Source Researcher)
to track users at his Web site.1 In 1995, Lerdorf released it as a package called the “Personal
Home Page Tools.” PHP 2 featured built-in database support and form handling. In 1997,
PHP 3 was released, featuring a rewritten parser, which substantially increased perfor-
mance and led to an explosion in PHP use. It is estimated that over six million domains now
use PHP. The release of PHP 4, which features the new Zend Engine and is much faster and
more powerful than its predecessor, should further increase PHP’s popularity.2 More infor-
mation about the Zend engine can be found at www.zend.com.

PHP is an open-source technology that is supported by a large community of users and
developers. Open source software provides developers with access to the software’s source
code and free redistribution rights. PHP is platform independent; implementations exist for
all major UNIX, Linux and Windows operating systems. PHP also provides support for a
large number of databases, including MySQL.

After introducing the basics of the scripting language, we discuss viewing environment
variables. Knowing information about a client’s execution environment allows dynamic
content to be sent to the client. We then discuss form processing and business logic, which
are vital to e-commerce applications. We provide an example of implementing a private
Web site through username and password verification. Next, we build a three-tier, Web-
based application that queries a MySQL database. Finally, we show how Web sites use
cookies to store information on the client that will be retrieved during a client’s subsequent
visits to a Web site.

Outline

29.1 Introduction
29.2 PHP
29.3 String Processing and Regular Expressions
29.4 Viewing Client/Server Environment Variables
29.5 Form Processing and Business Logic
29.6 Verifying a Username and Password
29.7 Connecting to a Database
29.8 Cookies
29.9 Operator Precedence
29.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Works Cited

iw3htp2_29.fm Page 1009 Saturday, July 21, 2001 10:17 AM

1010 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

29.2 PHP
When the World Wide Web and Web browsers were introduced, the Internet began to
achieve widespread popularity. This greatly increased the volume of requests for informa-
tion from Web servers. The power of the Web resides not only in serving content to users,
but also in responding to requests from users and generating Web pages with dynamic con-
tent. It became evident that the degree of interactivity between the user and the server
would be crucial. While other languages can perform this function as well, PHP was written
specifically for interacting with the Web.

PHP code is embedded directly into XHTML documents. This allows the document
author to write XHTML in a clear, concise manner, without having to use multiple print
statements, as is necessary with other CGI-based languages. Figure 29.1 presents a simple
PHP program that displays a welcome message.

In PHP, code is inserted between the scripting delimiters <?php and ?>. PHP code
can be placed anywhere in XHTML markup, as long as the code is enclosed in these
scripting delimiters. Line 8 declares variable $name and assigns to it the string "Paul".
All variables are preceded by the $ special symbol and are created the first time they are
encountered by the PHP interpreter. PHP statements are terminated with a semicolon (;).

Common Programming Error 29.1
Failing to precede a variable name with a $ is a syntax error. 29.1

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3
4 <!-- Fig. 29.1: first.php -->
5 <!-- Our first PHP script -->
6
7 <?php
8 $name = "Paul"; // declaration
9 ?>

10
11 <html xmlns = "http://www.w3.org/1999/xhtml">
12 <head>
13 <title>A simple PHP document</title>
14 </head>
15
16 <body style = "font-size: 2em">
17 <p>
18
19
20 <!-- print variable name’s value -->
21 Welcome to PHP, <?php print("$name"); ?>!
22
23 </p>
24 </body>
25 </html>

Fig. 29.1Fig. 29.1Fig. 29.1Fig. 29.1 Simple PHP program (part 1 of 2).

iw3htp2_29.fm Page 1010 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1011

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Common Programming Error 29.2
Variable names in PHP are case sensitive. Failure to use the proper mixture of case is a syn-
tax error. 29.2

Common Programming Error 29.3
Forgetting to terminate a statement with a semicolon (;) is a syntax error. 29.3

Line 8 contains a single-line comment, which begins with two forward slashes (//).
Text to the right of the slashes is ignored by the interpreter. Comments can also begin with
the pound sign (#). Multiline comments begin with delimiter /* and end with delimiter */.

Line 21 outputs the value of variable $name by calling function print. The actual
value of $name is printed, instead of "$name". When a variable is encountered inside a
double-quoted ("") string, PHP interpolates the variable. In other words, PHP inserts the
variable’s value where the variable name appears in the string. Thus, variable $name is
replaced by Paul for printing purposes. PHP variables are "multitype", meaning that they
can contain different types of data (e.g., integers, doubles or strings) at different times.
Figure 29.2 introduces these data types.

Fig. 29.1Fig. 29.1Fig. 29.1Fig. 29.1 Simple PHP program (part 2 of 2).

Data type Description

Integer Whole numbers (i.e., numbers without a decimal point).

Double Real numbers (i.e., numbers containing a decimal point).

String Text enclosed in either single ('') or double ("") quotes.

Boolean True or false.

Array Group of elements of the same type.

Object Group of associated data and methods.

Resource An external data source.

Null No value.

Fig. 29.2Fig. 29.2Fig. 29.2Fig. 29.2 PHP data types.

iw3htp2_29.fm Page 1011 Saturday, July 21, 2001 10:17 AM

1012 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Good Programming Practice 29.1
Whitespace enhances the readability of PHP code. It also simplifies programming and de-
bugging. 29.1

PHP scripts usually end with .php, although a server can be configured to handle
other file extensions. To run a PHP script, PHP must first be installed on your system. Visit
www.deitel.com for PHP installation and configuration instructions. Although PHP
can be used from the command line, a Web server is necessary to take full advantage of the
scripting language. Figure 29.3 demonstrates the PHP data types introduced in Fig. 29.2.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.3: data.php -->
5 <!-- Demonstration of PHP data types -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>PHP data types</title>

10 </head>
11
12 <body>
13
14 <?php
15
16 // declare a string, double and integer
17 $testString = "3.5 seconds";
18 $testDouble = 79.2;
19 $testInteger = 12;
20 ?>
21
22 <!-- print each variable’s value -->
23 <?php print($testString) ?> is a string.

24 <?php print($testDouble) ?> is a double.

25 <?php print($testInteger) ?> is an integer.

26
27

28 Now, converting to other types:

29 <?php
30
31 // call function settype to convert variable
32 // testString to different data types
33 print("$testString");
34 settype($testString, "double");
35 print(" as a double is $testString
");
36 print("$testString");
37 settype($testString, "integer");
38 print(" as an integer is $testString
");
39 settype($testString, "string");
40 print("Converting back to a string results in
41 $testString

");

Fig. 29.3Fig. 29.3Fig. 29.3Fig. 29.3 Type conversion example (part 1 of 2).

iw3htp2_29.fm Page 1012 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1013

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Conversion between different data types may be necessary when performing arith-
metic operations with variables. In PHP, data-type conversion can be performed by passing
the data type as an argument to function settype. Lines 17–19 assign a string to variable
$testString, a double to variable $testDouble and an integer to variable
$testInteger. Variables are converted the to data type of the value they are assigned.
For example, variable $testString becomes a string when assigned the value "3.5
seconds". Lines 23–25 print the value of each variable. Notice that the enclosing of
a variable name in double quotes in a print statement is optional. Lines 34–39 call func-
tion settype to modify the data type of each variable. Function settype takes two
arguments: The variable whose data type is to be changed and the variable’s new data type.
Calling function settype can result in loss of data. For example, doubles are truncated
when they are converted to integers. When converting between a string and a number, PHP
uses the value of the number that appears at the beginning of the string. If no number
appears at the beginning of the string, the string evaluates to 0. In line 34, the string "3.5
seconds" is converted to a double, resulting in the value 3.5 being stored in variable

42
43 $data = "98.6 degrees";
44
45 // use type casting to cast variables to a
46 // different type
47 print("Now using type casting instead:

48 As a string - " . (string) $value .
49 "
As a double - " . (double) $value .
50 "
As an integer - " . (integer) $value);
51 ?>
52 </body>
53 </html>

Fig. 29.3Fig. 29.3Fig. 29.3Fig. 29.3 Type conversion example (part 2 of 2).

iw3htp2_29.fm Page 1013 Saturday, July 21, 2001 10:17 AM

1014 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

$testString. In line 37, double 3.5 is converted to integer 3. When we convert this
variable to a string (line 39), the variable’s value becomes "3".

Another option for conversion between types is casting (or type casting). Unlike set-
type, casting does not change a variable’s content. Rather, type casting creates a tempo-
rary copy of a variable’s value in memory. Lines 47–50 cast variable $data’s value to a
string, a double and an integer. Type casting is necessary when a specific data type
is required for an arithmetic operation.

The concatenation operator (.) concatenates strings. This combines multiple strings in
the same print statement (lines 47–50). A print statement may be split over multiple
lines; everything that is enclosed in the parentheses, terminated by a semicolon, is sent to the
client. PHP provides a variety of arithmetic operators, which we demonstrate in Fig. 29.4.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.4: operators.php -->
5 <!-- Demonstration of operators -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Using arithmetic operators</title>

10 </head>
11
12 <body>
13 <?php
14 $a = 5;
15 print("The value of variable a is $a
");
16
17 // define constant VALUE
18 define("VALUE", 5);
19
20 // add constant VALUE to variable $a
21 $a = $a + VALUE;
22 print("Variable a after adding constant VALUE
23 is $a
");
24
25 // multiply variable $a by 2
26 $a *= 2;
27 print("Multiplying variable a by 2 yields $a
");
28
29 // test if variable $a is less than 50
30 if ($a < 50)
31 print("Variable a is less than 50
");
32
33 // add 40 to variable #a
34 $a += 40;
35 print("Variable a after adding 40 is $a
");
36
37 // test if variable $a is 50 or less
38 if ($a < 51)
39 print("Variable a is still 50 or less
");

Fig. 29.4Fig. 29.4Fig. 29.4Fig. 29.4 Using PHP’s arithmetic operators (part 1 of 2).

iw3htp2_29.fm Page 1014 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1015

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

40
41 // test if variable $a is between 50 and 100, inclusive
42 elseif ($a < 101)
43 print("Variable a is now between 50 and 100,
44 inclusive
");
45 else
46 print("Variable a is now greater than 100
47
");
48
49 // print an uninitialized variable
50 print("Using a variable before initializing:
51 $nothing
");
52
53 // add constant VALUE to an uninitialized variable
54 $test = $num + VALUE;
55 print("An uninitialized variable plus constant
56 VALUE yields $test
");
57
58 // add a string to an integer
59 $str = "3 dollars";
60 $a += $str;
61 print("Adding a string to an integer yields $a
62
");
63 ?>
64 </body>
65 </html>

Fig. 29.4Fig. 29.4Fig. 29.4Fig. 29.4 Using PHP’s arithmetic operators (part 2 of 2).

iw3htp2_29.fm Page 1015 Saturday, July 21, 2001 10:17 AM

1016 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Line 14 declares variable $a and assigns it the value 5. Line 18 calls function define
to create a named constant. A constant is a value that cannot be modified once it is declared.
Function define takes two arguments: the name and value of the constant. An optional
third argument accepts a boolean value that specifies whether the constant is case insensi-
tive—constants are case sensitive by default.

Common Programming Error 29.4
Assigning a value to a constant after a constant is declared is a syntax error. 29.4

Line 21 adds constant VALUE to variable $a, which is a typical use of arithmetic oper-
ators. Line 26 uses the assignment operator *= to yield an expression equivalent to $a =
$a * 2 (thus assigning $a the value 20). These assignment operators (i.e., +=, -=, *= and
/=) are syntactical shortcuts. Line 34 adds 40 to the value of variable $a.

In PHP, uninitialized variables have the value undef, which evaluates to different
values, depending on its context. For example, when undef is used in a numeric context
(e.g., $num in line 54), it evaluates to 0. In contrast, when undef is interpreted in a string
context (such as $nothing in line 51), it evaluates to an empty string ("").

Testing and Debugging Tip 29.1
Always initialize variables before using them. Doing so helps avoid subtle errors. 29.1

Strings are converted to integers when they are used in arithmetic operations (lines 59–
60). In line 60, the string value "3 dollars" is converted to the integer 3 before being
added to integer variable $a.

Testing and Debugging Tip 29.2
Function print can be used to display the value of a variable at a particular point during
a program’s execution. This is often helpful in debugging a script. 29.2

Common Programming Error 29.5
Using an uninitialized variable might result in an incorrect numerical calculation. For ex-
ample, multiplying a number by an uninitialized variable results in 0. 29.5

The words if, elseif and else are PHP keywords (Fig. 29.5), meaning that they are
reserved for implementing language features. PHP provides the capability to store data in
arrays. Arrays are divided into elements that behave as individual variables. Script
arrays.php (Fig. 29.6) demonstrates techniques for array initialization and manipulation.

PHP keywords

and
break
case
class
continue
default

do
else
elseif
extends
false

for
foreach
function
global
if

include
list
new
not
or

require
return
static
switch
this

true
var
virtual
xor
while

Fig. 29.5Fig. 29.5Fig. 29.5Fig. 29.5 PHP keywords.

iw3htp2_29.fm Page 1016 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1017

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Individual array elements are accessed by following the array-variable name with an
index enclosed in braces ([]). If a value is assigned to an array that does not exist, then the
array is created (line 18). Likewise, assigning a value to an element where the index is
omitted appends a new element to the end of the array (line 21). The for loop (lines 24–
25) prints each element’s value. Function count returns the total number of elements
in the array. Because array indices start at 0, the index of the last element is one less than
the total number of elements. In this example, the for loop terminates once the counter
($i) is equal to the number of elements in the array.

Line 31 demonstrates a second method of initializing arrays. Function array returns
an array that contains the arguments passed to it. The first item in the list is stored as the
first array element, the second item is stored as the second array element, and so on. Lines
32–33 use another for loop to print out each array element’s value.

In addition to integer indices, arrays can have nonnumeric indices (lines 39–41). For
example, indices Harvey, Paul and Tem are assigned the values 21, 18 and 23, respec-
tively. PHP provides functions for iterating through the elements of an array (lines 45–46).
Each array has a built-in internal pointer, which points to the array element currently being
referenced. Function reset sets the iterator to the first element of the array. Function key
returns the index of the element to which the iterator points, and function next moves the
iterator to the next element. The for loop continues to execute as long as function key
returns an index. Function next returns false when there are no additional elements in
the array. When this occurs, function key cannot return an index, and the script terminates.
Line 47 prints the index and value of each element.

Function array can also be used to initialize arrays with string indices. In order to
override the automatic numeric indexing performed by function array, use operator =>
as demonstrated on lines 54–61. The value to the left of the operator is the array index, and
the value to the right is the element’s value.

The foreach loop is a control structure that is specially designed for iterating
through arrays (line 64). The syntax for a foreach loop starts with the array to iterate
through, followed by the keyword as, followed by the variables to receive the index and
the value for each element. We use the foreach loop to print each element and value
of array $fourth.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.6: arrays.php -->
5 <!-- Array manipulation -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Array manipulation</title>

10 </head>
11
12 <body>
13 <?php
14
15 // create array first

Fig. 29.6Fig. 29.6Fig. 29.6Fig. 29.6 Array manipulation (part 1 of 3).

iw3htp2_29.fm Page 1017 Saturday, July 21, 2001 10:17 AM

1018 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

16 print("Creating the first array
17
");
18 $first[0] = "zero";
19 $first[1] = "one";
20 $first[2] = "two";
21 $first[] = "three";
22
23 // print each element’s index and value
24 for ($i = 0; $i < count($first); $i++)
25 print("Element $i is $first[$i]
");
26
27 print("
Creating the second array
28
");
29
30 // call function array to create array second
31 $second = array("zero", "one", "two", "three");
32 for ($i = 0; $i < count($second); $i++)
33 print("Element $i is $second[$i]
");
34
35 print("
Creating the third array
36
");
37
38 // assign values to non-numerical indices
39 $third["Harvey"] = 21;
40 $third["Paul"] = 18;
41 $third["Tem"] = 23;
42
43 // iterate through the array elements and print each
44 // element’s name and value
45 for (reset($third); $element = key($third);
46 next($third))
47 print("$element is $third[$element]
");
48
49 print("
Creating the fourth array
50
");
51
52 // call function array to create array fourth using
53 // string indices
54 $fourth = array(
55 "January" => "first", "February" => "second",
56 "March" => "third", "April" => "fourth",
57 "May" => "fifth", "June" => "sixth",
58 "July" => "seventh", "August" => "eighth",
59 "September" => "ninth", "October" => "tenth",
60 "November" => "eleventh","December" => "twelfth"
61);
62
63 // print each element’s name and value
64 foreach ($fourth as $element => $value)
65 print("$element is the $value month
");
66 ?>
67 </body>
68 </html>

Fig. 29.6Fig. 29.6Fig. 29.6Fig. 29.6 Array manipulation (part 2 of 3).

iw3htp2_29.fm Page 1018 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1019

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

29.3 String Processing and Regular Expressions
PHP processes text data easily and efficiently, enabling straightforward searching, substi-
tution, extraction and concatenation of strings. Text manipulation in PHP is usually done
with regular expressions—a series of characters that serve as pattern-matching templates
(or search criteria) in strings, text files and databases. This feature allows complex search-
ing and string processing to be performed using relatively simple expressions.

Many string-processing tasks are accomplished by using PHP’s equality and comparison
operators (Fig. 29.7). Line 16 declares and initializes array $fruits by calling function
array. Lines 19–40 iterate through the array, comparing the array’s elements to one another.

Fig. 29.6Fig. 29.6Fig. 29.6Fig. 29.6 Array manipulation (part 3 of 3).

iw3htp2_29.fm Page 1019 Saturday, July 21, 2001 10:17 AM

1020 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 23 and 25 call function strcmp to compare two strings. If the first string alpha-
betically precedes the second string, then -1 is returned. If the strings are equal, then 0 is
returned. If the first string alphabetically follows the second string, then 1 is returned. The
for loop (line 19) iterates through each element in the $fruits array. Lines 23–29 com-
pare each element to the string "banana", printing the elements that are greater than, less
than and equal to the string.

Relational operators (==, !=, <, <=, > and >=) can also be used to compare strings. Lines
33–38 use relational operators to compare each element of the array to the string "apple".
These operators are also used for numerical comparison with integers and doubles.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.7: compare.php -->
5 <!-- String Comparison -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>String Comparison</title>

10 </head>
11
12 <body>
13 <?php
14
15 // create array fruits
16 $fruits = array("apple", "orange", "banana");
17
18 // iterate through each array element
19 for ($i = 0; $i < count($fruits); $i++) {
20
21 // call function strcmp to compare the array element
22 // to string "banana"
23 if (strcmp($fruits[$i], "banana") < 0)
24 print($fruits[$i]." is less than banana ");
25 elseif (strcmp($fruits[$i], "banana") > 0)
26 print($fruits[$i].
27 " is greater than banana ");
28 else
29 print($fruits[$i]." is equal to banana ");
30
31 // use relational operators to compare each element
32 // to string "apple"
33 if ($fruits[$i] < "apple")
34 print("and less than apple!
");
35 elseif ($fruits[$i] > "apple")
36 print("and greater than apple!
");
37 elseif ($fruits[$i] == "apple")
38 print("and equal to apple!
");
39
40 }
41 ?>

Fig. 29.7Fig. 29.7Fig. 29.7Fig. 29.7 Using the string comparison operators (part 1 of 2).

iw3htp2_29.fm Page 1020 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1021

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

For more powerful string comparisons, PHP provides functions ereg and
preg_match, which use regular expressions to search a string for a specified pattern.
Function ereg uses Portable Operating System Interface (POSIX) extended regular
expressions, whereas function preg_match provides Perl-compatible regular expres-
sions. POSIX-extended regular expressions are a standard to which PHP regular expres-
sions conform. In this section, we use function ereg. Perl regular expressions are more
widely used than POSIX regular expressions. Support for Perl regular expressions also
eases migration from Perl to PHP. For more information on Perl regular expressions, see
Chapter 27, Perl and CGI. Consult PHP’s documentation for a list of differences between
the Perl and PHP implementations. Figure 29.8 demonstrates some of PHP’s regular
expression capabilities.

42 </body>
43 </html>

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.8: expression.php -->
5 <!-- Using regular expressions -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Regular expressions</title>

10 </head>
11
12 <body>
13 <?php
14 $search = "Now is the time";
15 print("Test string is: '$search'

");
16
17 // call function ereg to search for pattern 'Now'
18 // in variable search
19 if (ereg("Now", $search))
20 print("String 'Now' was found.
");

Fig. 29.8Fig. 29.8Fig. 29.8Fig. 29.8 Using regular expressions (part 1 of 2).

Fig. 29.7Fig. 29.7Fig. 29.7Fig. 29.7 Using the string comparison operators (part 2 of 2).

iw3htp2_29.fm Page 1021 Saturday, July 21, 2001 10:17 AM

1022 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

We begin by assigning the string "Now is the time" to variable $search (line
14). Line 19’s condition calls function ereg to search for the literal characters Now inside

21
22 // search for pattern 'Now' in the beginning of
23 // the string
24 if (ereg("^Now", $search))
25 print("String 'Now' found at beginning
26 of the line.
");
27
28 // search for pattern 'Now' at the end of the string
29 if (ereg("Now$", $search))
30 print("String 'Now' was found at the end
31 of the line.
");
32
33 // search for any word ending in 'ow'
34 if (ereg("[[:<:]]([a-zA-Z]*ow)[[:>:]]", $search,
35 $match))
36 print("Word found ending in 'ow': " .
37 $match[1] . "
");
38
39 // search for any words beginning with 't'
40 print("Words beginning with 't' found: ");
41
42 while (eregi("[[:<:]](t[[:alpha:]]+)[[:>:]]",
43 $search, $match)) {
44 print($match[1] . " ");
45
46 // remove the first occurrence of a word beginning
47 // with 't' to find other instances in the string
48 $search = ereg_replace($match[1], "", $search);
49 }
50
51 print("
");
52 ?>
53 </body>
54 </html>

Fig. 29.8Fig. 29.8Fig. 29.8Fig. 29.8 Using regular expressions (part 2 of 2).

iw3htp2_29.fm Page 1022 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1023

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

variable $search. If the pattern is found, ereg returns true, and line 20 prints a mes-
sage indicating that the pattern was found. We use single quotes ('') inside the print
statement to emphasize the search pattern. Anything enclosed within single quotes is not
interpolated. For example, '$name' in a print statement would output $name. Func-
tion ereg takes two arguments: a regular expression pattern to search for (Now) and the
string to search. Although case mixture and whitespace are typically significant in patterns,
PHP provides function eregi for specifying case insensitive pattern matches.

In addition to literal characters, regular expressions can include special characters that
specify patterns. For example, the caret (^) special character matches the beginning of a
string. Line 24 searches the beginning of $search for the pattern Now.

The characters $, ^ and . are part of a special set of characters called metacharacters.
A dollar sign ($) searches for the specified pattern at the end of the string (line 29). Because
the pattern Now is not found at the end of $search, the body of the if statement (lines
30–31) is not executed. Note that Now$ is not a variable, it is a pattern that uses $ to search
for characters Now at the end of a string. Another special character is the period (.), which
matches any single character.

Lines 34–35 search (from left to right) for the first word ending with the letters ow.
Bracket expressions are lists of characters enclosed in braces ([]), which match a single
character from the list. Ranges can be specified by supplying the beginning and the end of
the range separated by a dash (-). For instance, the bracket expression [a-z] matches any
lowercase letter, and [A-Z] matches any uppercase letter. In this example, we combine
the two to create an expression that matches any letter. The special bracket expressions
[[:<:]] and [[:>]] match the beginning and end of a word, respectively.

The expression inside the parentheses, [a-zA-Z]*ow, matches any word ending in
ow. It uses the quantifier * to match the preceding pattern 0 or more times. Thus, [a-zA-
Z]*ow matches any number of characters followed by the literal characters ow. Some PHP
quantifiers are listed in Fig. 29.9.

Placing a pattern in parentheses stores the matched string in the array that is specified
in the third argument to function ereg. The first parenthetical pattern matched is stored in
the second array element, the second in the third array element, and so on. The first element
(i.e., index 0) stores the string matched for the entire pattern. The parentheses in lines 34–
35 result in Now being stored in variable $match[1].

Quantifier Matches

{n} Exactly n times.

{m,n} Between m and n times inclusive.

{n,} n or more times.

+ One or more times (same as {1,}).

* Zero or more times (same as {0,}).

? Zero or one times (same as {0,1}).

Fig. 29.9Fig. 29.9Fig. 29.9Fig. 29.9 Some PHP quantifiers.

iw3htp2_29.fm Page 1023 Saturday, July 21, 2001 10:17 AM

1024 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Searching for multiple instances of a pattern in a string is slightly more complicated,
because the ereg function matches only the first instance of the pattern. To find multiple
instances of a given pattern, we must remove any matched instances before calling ereg
again. Lines 42–49 use a while loop and the ereg_replace function to find all the
words in the string that begin with t. We will say more about this function momentarily.

The pattern used in this example, [[:<:]](t[[:alpha:]]+)[[:>:]], matches any
word beginning with the character t followed by one or more characters. The example uses
the character class [[:alpha:]] to recognize any alphabetic character. This is equiva-
lent to the [a-zA-Z] bracket expression that was used earlier. Figure 29.10 lists some
character classes that can be matched with regular expressions.

The quantifier + matches one or more instances of the preceding expression. The result
of the match is stored in $match[1]. Once a match is found, we print it on line 44.
We then remove it from the string on line 48, using function ereg_replace. Function
ereg_replace takes three arguments: the pattern to match, a string to replace the
matched string and the string to search. The modified string is returned. Here, we search for
the word that we matched with the regular expression, replace the word with an empty
string then assign the result back to $search. This allows us to match any other words
beginning with the character t in the string.

29.4 Viewing Client/Server Environment Variables
Knowledge of a client’s execution environment is useful to system administrators who
want to provide client-specific information. Environment variables contain information
about a script’s environment, such as the client’s Web browser, the HTTP host and the
HTTP connection.

Figure 29.11 generates an XHTML document that displays the values of the client’s
environment variables in a table. PHP stores the environment variables and their values in
the $GLOBALS array. Iterating through this array allows us to view all the client’s envi-
ronment variables.

In lines 19–22, we use a foreach loop to print out the keys and values for each
element in the $GLOBALS array. Individual array variables can be accessed directly by
using an element’s key from the $GLOBALS array as a variable. For example, to receive
information about the user’s browser, use the $HTTP_USER_AGENT variable. Figure
29.12 lists some global variables.

Character Class Description

alnum Alphanumeric characters (i.e., letters [a-z][A-Z] or digits [0-9]).

alpha Word characters (i.e., letters [a-z][A-Z]).

digit Digits.

space Whitespace.

lower Lowercase letters.

upper Uppercase letters.

Fig. 29.10Fig. 29.10Fig. 29.10Fig. 29.10 Some PHP character classes.

iw3htp2_29.fm Page 1024 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1025

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.11: globals.php -->
5 <!-- Program to display environment variables -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Environment Variables</title>

10 </head>
11
12 <body>
13 <table border = "0" cellpadding = "2" cellspacing = "0"
14 width = "100%">
15 <?php
16
17 // print the key and value for each element in the
18 // in the $GLOBALS array
19 foreach ($GLOBALS as $key => $value)
20 print("<tr><td bgcolor = \"#11bbff\">
21 $key</td>
22 <td>$value</td></tr>");
23 ?>
24 </table>
25 </body>
26 </html>

Fig. 29.11Fig. 29.11Fig. 29.11Fig. 29.11 Displaying the environment variables.

iw3htp2_29.fm Page 1025 Saturday, July 21, 2001 10:17 AM

1026 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

29.5 Form Processing and Business Logic
XHTML forms enable Web pages to collect data from users and send the data to a Web
server for processing. Such interaction between users and Web servers is vital to e-com-
merce applications, for example. Such capabilities allow users to purchase products, re-
quest information, send and receive Web-based e-mail, perform online paging and take
advantage of various other online services. Figure 29.13 uses an XHTML form to collect
information about users for the purpose of adding the users to a mailing list. The type of
registration form in this example could be used by a software company to acquire profile
information before allowing users to download software.

Variable Name Description

$HTTP_USER_AGENT The client’s browser type.

$REMOTE_ADDR The client’s IP address.

$SERVER_NAME Name of the server on which the script is running.

$SERVER_ADDR Address of the server on which the script is running.

$HTTP_GET_VARS Data posted to the server by the get method.

$HTTP_POST_VARS Data posted to the server by the post method.

$HTTP_COOKIE_VARS Data contained in cookies on the client’s computer.

$GLOBALS Array containing all global variables.

Fig. 29.12Fig. 29.12Fig. 29.12Fig. 29.12 Some environment variables.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.13: form.html -->
5 <!-- Form for use with the form.php program -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Sample form to take user input in XHTML</title>

10 </head>
11
12 <body>
13
14 <h1>This is a sample registration form.</h1>
15 Please fill in all fields and click Register.
16
17 <!-- post form data to form.php -->
18 <form method = "post" action = "form.php">
19

20
21 Please fill out the fields below.

22

Fig. 29.13Fig. 29.13Fig. 29.13Fig. 29.13 XHTML form for gathering user input (part 1 of 3).

iw3htp2_29.fm Page 1026 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1027

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

23
24 <!-- create four text boxes for user input -->
25
26 <input type = "text" name = "fname" />

27
28
29 <input type = "text" name = "lname" />

30
31
32 <input type = "text" name = "email" />

33
34
35 <input type = "text" name = "phone" />

36
37
38 Must be in the form (555)555-5555
39

40
41 <img src = "images/downloads.gif"
42 alt = "Publications" />

43
44
45 Which book would you like information about?
46

47
48 <!-- create drop-down list containing book names -->
49 <select name = "book">
50 <option>Internet and WWW How to Program 2e</option>
51 <option>C++ How to Program 3e</option>
52 <option>Java How to Program 4e</option>
53 <option>XML How to Program 1e</option>
54 </select>
55

56
57
58

59 Which operating system are you currently using?
60

61
62 <!-- create five radio buttons -->
63 <input type = "radio" name = "os" value = "Windows NT"
64 checked = "checked" />
65 Windows NT
66
67 <input type = "radio" name = "os" value =
68 "Windows 2000" />
69 Windows 2000
70
71 <input type = "radio" name = "os" value =
72 "Windows 98" />
73 Windows 98

74
75 <input type = "radio" name = "os" value = "Linux" />

Fig. 29.13Fig. 29.13Fig. 29.13Fig. 29.13 XHTML form for gathering user input (part 2 of 3).

iw3htp2_29.fm Page 1027 Saturday, July 21, 2001 10:17 AM

1028 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

The action attribute of the form element (line 18) indicates that, when the user
clicks Register, the form data will be posted to form.php (Fig. 29.14) for processing.
Using method = "post" appends form data to the browser request which contains the
protocol (i.e., HTTP) and the requested resource’s URL. Scripts located on the Web
server’s machine (or on a machine accessible through the network) can access the form data
sent as part of the request.

76 Linux
77
78 <input type = "radio" name = "os" value = "Other" />
79 Other

80
81 <!-- create a submit button -->
82 <input type = "submit" value = "Register" />
83 </form>
84
85 </body>
86 </html>

M

Fig. 29.13Fig. 29.13Fig. 29.13Fig. 29.13 XHTML form for gathering user input (part 3 of 3).

iw3htp2_29.fm Page 1028 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1029

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

We assign a unique name (e.g., email) to each of the form’s input fields. When
Register is clicked, each field’s name and value are sent to the Web server. Script
form.php can then accesses the submitted value for each specific field.

Good Programming Practice 29.2
Use meaningful XHTML object names for input fields. This makes PHP scripts that re-
trieve form data easier to understand. 29.2

Figure 29.14 (form.php) processes the data posted by form.html and sends
XHTML back to the client. For each form field posted to a PHP script, PHP creates a
global variable with the same name as the field. For example, in line 32 of Fig. 29.13, an
XHTML text box is created and given the name email. Later in our PHP script (line 67),
we access the field’s value by using variable $email.

In lines 18–19, we determine whether the phone number entered by the user is valid.
In this case, the phone number must begin with an opening parenthesis, followed by an area
code, a closing parenthesis, an exchange, a hyphen and a line number. It is crucial to vali-
date information that will be entered into databases or used in mailing lists. For example,
validation can be used to ensure that credit-card numbers contain the proper number of
digits before the numbers are encrypted to a merchant. The design of verifying information
is called business logic (or business rules).

The expression \(matches the opening parenthesis of the phone number. Because we
want to match the literal character (, we escape its normal meaning by preceding it with
the \ character. The parentheses in the expression must be followed by three digits ([0-
9]{3}), a closing parenthesis, three digits, a literal hyphen and four additional digits. Note
that we use the ^ and $ symbols to ensure that no extra characters appear at either end of
the string.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.14: form.php -->
5 <!-- Read information sent from form.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Form Validation</title>

10 </head>
11
12 <body style = "font-family: arial,sans-serif">
13
14 <?php
15
16 // determine if phone number is valid and print
17 // an error message if not
18 if (!ereg("^\([0-9]{3}\)[0-9]{3}-[0-9]{4}$",
19 $phone)){
20
21 print("<p><span style = \"color: red;
22 font-size: 2em\">

Fig. 29.14Fig. 29.14Fig. 29.14Fig. 29.14 Obtaining user input through forms (part 1 of 3).

iw3htp2_29.fm Page 1029 Saturday, July 21, 2001 10:17 AM

1030 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

23 INVALID PHONE NUMBER

24 A valid phone number must be in the form
25 (555)555-5555

26
27 Click the Back button, enter a valid phone
28 number and resubmit.

29 Thank You.</p></body></html>");
30
31 die(); // terminate script execution
32 }
33 ?>
34
35 <p>Hi
36
37
38 <?php print("$fname"); ?>
39
40 .
41 Thank you for completing the survey.

42
43 You have been added to the
44
45
46 <?php print("$book "); ?>
47
48
49 mailing list.
50 </p>
51 The following information has been saved
52 in our database:

53
54 <table border = "0" cellpadding = "0" cellspacing = "10">
55 <tr>
56 <td bgcolor = "#ffffaa">Name </td>
57 <td bgcolor = "#ffffbb">Email</td>
58 <td bgcolor = "#ffffcc">Phone</td>
59 <td bgcolor = "#ffffdd">OS</td>
60 </tr>
61
62 <tr>
63 <?php
64
65 // print each form field’s value
66 print("<td>$fname $lname</td>
67 <td>$email</td>
68 <td>$phone</td>
69 <td>$os</td>");
70 ?>
71 </tr>
72 </table>
73
74

75 <div style = "font-size: 10pt; text-align: center">

Fig. 29.14Fig. 29.14Fig. 29.14Fig. 29.14 Obtaining user input through forms (part 2 of 3).

iw3htp2_29.fm Page 1030 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1031

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

If the regular expression is matched, then the phone number is determined to be valid,
and an XHTML document is sent to the client, thanking the user for completing the form.
Otherwise, the body of the if statement is executed, and an error message is printed.

Function die (line 31) terminates script execution. In this case, if the user did not enter
a correct telephone number, we do not want to continue executing the rest of the script, so
we call function die.

Software Engineering Observation 29.1
Use business logic to ensure that invalid information is not stored in databases. When pos-
sible, use JavaScript to validate form data while conserving server resources. However,
some data, such as passwords, must be validated on the server-side. 29.1

29.6 Verifying a Username and Password
It is often desirable to have a private Web site—one that is accessible only to certain indi-
viduals. Implementing privacy generally involves username and password verification.
Figure 29.15 presents an XHTML form that queries the user for a username and a pass-
word. Fields USERNAME and PASSWORD are posted to the PHP script password.php
for verification. For simplicity, we do not encrypt the data before sending it to the server.
For more information regarding PHP encryption functions, visit

www.php.net/manual/en/ref.mcrypt.php

[Note: These functions are not available for Windows distributions of PHP.]

76 This is only a sample form.
77 You have not been added to a mailing list.
78 </div>
79 </body>
80 </html>

Fig. 29.14Fig. 29.14Fig. 29.14Fig. 29.14 Obtaining user input through forms (part 3 of 3).

iw3htp2_29.fm Page 1031 Saturday, July 21, 2001 10:17 AM

1032 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.15: password.html -->
5 <!-- XHTML form sent to password.php for verification -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Verifying a username and a password.</title>

10
11 <style type = "text/css">
12 td { background-color: #DDDDDD }
13 </style>
14 </head>
15
16 <body style = "font-family: arial">
17 <p style = "font-size: 13pt">
18 Type in your username and password below.
19

20 <span style = "color: #0000FF; font-size: 10pt;
21 font-weight: bold">
22 Note that password will be sent as plain text
23
24 </p>
25
26 <!-- post form data to password.php -->
27 <form action = "password.php" method = "post">
28

29
30 <table border = "0" cellspacing = "0"
31 style = "height: 90px; width: 123px;
32 font-size: 10pt" cellpadding = "0">
33
34 <tr>
35 <td colspan = "3">
36 Username:
37 </td>
38 </tr>
39
40 <tr>
41 <td colspan = "3">
42 <input size = "40" name = "USERNAME"
43 style = "height: 22px; width: 115px" />
44 </td>
45 </tr>
46
47 <tr>
48 <td colspan = "3">
49 Password:
50 </td>
51 </tr>
52

Fig. 29.15Fig. 29.15Fig. 29.15Fig. 29.15 XHTML form for obtaining a username and password (part 1 of 2).

iw3htp2_29.fm Page 1032 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1033

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Script password.php (Fig. 29.16) verifies the client’s username and password by
querying a database. The valid user list and each user’s respective password is contained
within a simple text file named password.txt (Fig. 29.17). Existing users are validated
against this text file, and new users are appended to it.

First, lines 13–16 check whether the user has submitted a form without specifying a
username or password. Variable names, when preceded by the logical negation operator
(!), return true if they are empty or are set to 0. Logical operator OR (||) returns true

53 <tr>
54 <td colspan = "3">
55 <input size = "40" name = "PASSWORD"
56 style = "height: 22px; width: 115px"
57 type = "password" />
58
</td>
59 </tr>
60
61 <tr>
62 <td colspan = "1">
63 <input type = "submit" name = "Enter"
64 value = "Enter" style = "height: 23px;
65 width: 47px" />
66 </td>
67 <td colspan = "2">
68 <input type = "submit" name = "NewUser"
69 value = "New User"
70 style = "height: 23px" />
71 </td>
72 </tr>
73 </table>
74 </form>
75 </body>
76 </html>

Fig. 29.15Fig. 29.15Fig. 29.15Fig. 29.15 XHTML form for obtaining a username and password (part 2 of 2).

iw3htp2_29.fm Page 1033 Saturday, July 21, 2001 10:17 AM

1034 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

if either of the variables are empty or are set to 0. If this is the case, function fields-
Blank is called (line 144), which notifies the client that all form fields must be completed.

We determine whether we are adding a new user (line 19 in Fig. 29.16) by calling func-
tion isset to test whether variable $NewUser has been set. When a user submits the
XHTML form in password.html, the user clicks either the New User or Enter button.
This sets either variable $NewUser or variable $Enter, respectively. If variable
$NewUser has been set, lines 22–36 are executed. If this variable has not been set, we
assume the user has pressed the Enter button, and lines 42–75 execute.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.16: password.php -->
5 <!-- Searching a database for usernames and passwords. -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <?php

10
11 // check if user has left USERNAME
12 // or PASSWORD field blank
13 if (!$USERNAME || !$PASSWORD) {
14 fieldsBlank();
15 die();
16 }
17
18 // check if the New User button was clicked
19 if (isset($NewUser)) {
20
21 // open password.txt for writing using append mode
22 if (!($file = fopen("password.txt",
23 "append"))) {
24
25 // print error message and terminate script
26 // execution if file cannot be opened
27 print("<title>Error</title></head><body>
28 Could not open password file
29 </body></html>");
30 die();
31 }
32
33 // write username and password to file and
34 // call function userAdded
35 fputs($file, "$USERNAME,$PASSWORD\n");
36 userAdded($USERNAME);
37 }
38 else {
39
40 // if a new user is not being added, open file
41 // for reading

Fig. 29.16Fig. 29.16Fig. 29.16Fig. 29.16 Verifying a username and password (part 1 of 4).

iw3htp2_29.fm Page 1034 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1035

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

42 if (!($file = fopen("password.txt",
43 "read"))) {
44 print("<title>Error</title></head>
45 <body>Could not open password file
46 </body></html>");
47 die();
48 }
49
50 $userVerified = 0;
51
52 // read each line in file and check username
53 // and password
54 while (!feof($file) && !$userVerified) {
55
56 // read line from file
57 $line = fgets($file, 255);
58
59 // remove newline character from end of line
60 $line = chop($line);
61
62 // split username and password
63 $field = split(",", $line, 2);
64
65 // verify username
66 if ($USERNAME == $field[0]) {
67 $userVerified = 1;
68
69 // call function checkPassword to verify
70 // user’s password
71 if (checkPassword($PASSWORD, $field)
72 == true)
73 accessGranted($USERNAME);
74 else
75 wrongPassword();
76 }
77 }
78
79 // close text file
80 fclose($file);
81
82 // call function accessDenied if username has
83 // not been verified
84 if (!$userVerified)
85 accessDenied();
86 }
87
88 // verify user password and return a boolean
89 function checkPassword($userpassword, $filedata)
90 {
91 if ($userpassword == $filedata[1])
92 return true;
93 else
94 return false;
95 }

Fig. 29.16Fig. 29.16Fig. 29.16Fig. 29.16 Verifying a username and password (part 2 of 4).

iw3htp2_29.fm Page 1035 Saturday, July 21, 2001 10:17 AM

1036 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

96
97 // print a message indicating the user has been added
98 function userAdded($name)
99 {
100 print("<title>Thank You</title></head>
101 <body style = \"font-family: arial;
102 font-size: 1em; color: blue\">
103 You have been added
104 to the user list, $name.
105
Enjoy the site.");
106 }
107
108 // print a message indicating permission
109 // has been granted
110 function accessGranted($name)
111 {
112 print("<title>Thank You</title></head>
113 <body style = \"font-family: arial;
114 font-size: 1em; color: blue\">
115 Permission has been
116 granted, $name.

117 Enjoy the site.");
118 }
119
120 // print a message indicating password is invalid
121 function wrongPassword()
122 {
123 print("<title>Access Denied</title></head>
124 <body style = \"font-family: arial;
125 font-size: 1em; color: red\">
126 You entered an invalid
127 password.
Access has
128 been denied.");
129 }
130
131 // print a message indicating access has been denied
132 function accessDenied()
133 {
134 print("<title>Access Denied</title></head>
135 <body style = \"font-family: arial;
136 font-size: 1em; color: red\">
137
138 You were denied access to this server.
139
");
140 }
141
142 // print a message indicating that fields
143 // have been left blank
144 function fieldsBlank()
145 {
146 print("<title>Access Denied</title></head>
147 <body style = \"font-family: arial;
148 font-size: 1em; color: red\">
149

Fig. 29.16Fig. 29.16Fig. 29.16Fig. 29.16 Verifying a username and password (part 3 of 4).

iw3htp2_29.fm Page 1036 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1037

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

150 Please fill in all form fields.
151
");
152 }
153 ?>
154 </body>
155 </html>

1 account1,password1
2 account2,password2
3 account3,password3
4 account4,password4
5 account5,password5
6 account6,password6
7 account7,password7
8 account8,password8
9 account9,password9

10 account10,password10

Fig. 29.17Fig. 29.17Fig. 29.17Fig. 29.17 Database password.txt containing usernames and passwords.

Fig. 29.16Fig. 29.16Fig. 29.16Fig. 29.16 Verifying a username and password (part 4 of 4).

iw3htp2_29.fm Page 1037 Saturday, July 21, 2001 10:17 AM

1038 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

To add a new user, we open the file password.txt by calling function fopen and
assigning the file handle that is returned to variable $file (lines 22–23). A file handle is
a number assigned to the file by the Web server for purposes of identification. Function
fopen takes two arguments: The name of the file and the mode in which to open it. The
possible modes include read, write and append. Here, we open the file in append
mode, which opens it for writing, but does not write over the previous contents of the file.
If an error occurs in opening the file, function fopen does not return a file handle and an
error message is printed (lines 27–29), and script execution is terminated by calling func-
tion die (line 30). If the file opens properly, function fputs (line 35) writes the name and
password to the file. To specify a new line, we use the newline character (\n). This places
each username and password pair on a separate line in the file. On line 36, we pass the vari-
able $USERNAME to function userAdded (line 98). Function userAdded prints a
message to the client to indicate that the username and password were added to the file.

If we are not adding a new user, we open the file password.txt for reading. This
is accomplished by using function fopen and assigning the file handle that is returned to
variable $file (lines 42–43). Lines 44–47 execute if an error occurs in opening the file.
The while loop (line 54) repeatedly executes the code enclosed in its curly braces (lines
57–75) until the test condition in parentheses evaluates to false. Before we enter the
while loop, we set the value of variable $userVerified to 0. In this case, the test con-
dition (line 54) checks to ensure that the end of the file has not been reached and that the
user has not been found in the password file. Logical operator AND (&&) connects the two
conditions. Function feof, preceded by the logical negation operator (!), returns true
when there are more lines to be read in the specified file. When the logical negation oper-
ator (!) is applied to the $userVerified variable, true is returned if the variable is
empty or is set to 0.

Each line in password.txt consists of a username and password pair that is separated
by a comma and followed by a newline character. A line from this file is read using function
fgets (line 57) and is assigned to variable $line.

This function takes two arguments: The file handle to read, and the maximum number of
characters to read. The function reads until a newline character is encountered, the end of the
file is encountered or the number of characters read reaches one less than the number speci-
fied in the second argument.

For each line read, function chop is called (line 60) to remove the newline character
from the end of the line. Then, function split is called to divide the string into substrings
at the specified separator, or delimiter (in this case, a comma). For example, function
split returns an array containing ("account1" and "password1") from the first
line in password.txt. This array is assigned to variable $field.

Line 66 determines whether the username entered by the user matches the one returned
from the text file (stored in the variable $field[0]). If the condition evaluates to true,
then the $userVerified variable is set to 1, and lines 71–75 execute. On line 71, func-
tion checkPassword (line 89) is called to verify the user’s password. Variables
$PASSWORD and $field are passed to the function. Function checkPassword com-
pares the user’s password to the password in the file. If they match, true is returned (line
92), whereas false is returned if they do not (line 94). If the condition evaluates to true,
then function accessGranted (line 110) is invoked. Variable $USERNAME is passed to
the function, and a message notifies the client that permission has been granted. However,

iw3htp2_29.fm Page 1038 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1039

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

if the condition evaluates to false, then function wrongPassword is invoked (line
121), which notifies the client that an invalid password was entered.

When the while loop is complete, either as a result of matching a username or of
reaching the end of the file, we are finished reading from password.txt. We call func-
tion fclose (line 80) to close the file. Line 84 checks whether the $userVerified
variable is empty or has a value of 0, which indicates that the username was not found in
the password.txt file. If this returns true, function accessDenied is called (line
132). This function notifies the client that access to the server has been denied.

29.7 Connecting to a Database
Databases enable companies to enter the world of e-commerce by maintaining crucial data,
and database connectivity allows system administrators to maintain and update such infor-
mation as user accounts, passwords, credit-card numbers, mailing lists and product inven-
tories. PHP offers built-in support for a wide variety of databases. In this example, we use
MySQL. Visit www.deitel.com to locate information on setting up a MySQL database.
From a Web browser, the client enters a database field name that is sent to the Web server.
The PHP script is then executed; the script builds the select query, queries the database and
sends a record set in the form of XHTML to the client. The rules and syntax for writing
such a query string are discussed in Chapter 22, Database: SQL, MySQL, DBI and ADO.

Figure 29.18 (data.html) is a Web page that posts form data containing a data-
base field to the server. PHP script database.php (Fig. 29.19) processes the form data

Line 17 (Fig. 29.18) creates an XHTML form, specifying that the data submitted from
the form will be sent to script database.php (Fig. 29.19). Lines 22–28 add a select box
to the form, set the name of the select box to select, and set its default selection to *.
This value specifies that all records are to be retrieved from the database. Each database
field is set as an option in the select box.
.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.18: data.html -->
5 <!-- Querying a MySQL Database -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Sample Database Query</title>

10 </head>
11
12 <body style = "background-color: #F0E68C">
13 <h2 style = "font-family: arial color: blue">
14 Querying a MySQL database.
15 </h2>
16
17 <form method = "post" action = "database.php">
18 <p>Select a field to display:
19

Fig. 29.18Fig. 29.18Fig. 29.18Fig. 29.18 Form to query a MySQL database (part 1 of 2).

iw3htp2_29.fm Page 1039 Saturday, July 21, 2001 10:17 AM

1040 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

20 <!-- add a select box containing options -->
21 <!-- for SELECT query -->
22 <select name = "select">
23 <option selected = "selected">*</option>
24 <option>ID</option>
25 <option>Title</option>
26 <option>Category</option>
27 <option>ISBN</option>
28 </select>
29 </p>
30
31 <input type = "submit" value = "Send Query"
32 style = "background-color: blue;
33 color: yellow; font-weight: bold" />
34 </form>
35 </body>
36 </html>

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.19: database.php -->
5 <!-- Program to query a database and -->
6 <!-- send results to the client. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Search Results</title>
11 </head>
12
13 <body style = "font-family: arial, sans-serif"
14 style = "background-color: #F0E68C">

Fig. 29.19Fig. 29.19Fig. 29.19Fig. 29.19 Querying a database and displaying the results (part 1 of 3).

Fig. 29.18Fig. 29.18Fig. 29.18Fig. 29.18 Form to query a MySQL database (part 2 of 2).

iw3htp2_29.fm Page 1040 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1041

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

15 <?php
16
17 // build SELECT query
18 $query = "SELECT " . $select . " FROM Books";
19
20 // Connect to MySQL
21 if (!($database = mysql_connect("localhost",
22 "httpd", "")))
23 die("Could not connect to database");
24
25 // open Products database
26 if (!mysql_select_db("Products", $database))
27 die("Could not open Products database");
28
29 // query Products database
30 if (!($result = mysql_query($query, $database))) {
31 print("Could not execute query!
");
32 die(mysql_error());
33 }
34 ?>
35
36 <h3 style = "color: blue">
37 Search Results</h3>
38
39 <table border = "1" cellpadding = "3" cellspacing = "2"
40 style = "background-color: #ADD8E6">
41
42 <?php
43
44 // fetch each record in result set
45 for ($counter = 0;
46 $row = mysql_fetch_row($result);
47 $counter++){
48
49 // build table to display results
50 print("<tr>");
51
52 foreach ($row as $key => $value)
53 print("<td>$value</td>");
54
55 print("</tr>");
56 }
57
58 mysql_close($database);
59 ?>
60
61 </table>
62
63
Your search yielded
64 <?php print("$counter") ?> results.

65
66 <h5>Please email comments to
67

Fig. 29.19Fig. 29.19Fig. 29.19Fig. 29.19 Querying a database and displaying the results (part 2 of 3).

iw3htp2_29.fm Page 1041 Saturday, July 21, 2001 10:17 AM

1042 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Script database.php is responsible for building an SQL-query string with the spec-
ified field name and sending it to the database-management system. Line 18 concatenates
the posted field name to a SELECT query. Line 21 calls function mysql_connect to
connect to the MySQL database. We pass three arguments to function mysql_connect:
The server’s hostname, a username and a password. This function returns a database
handle—a reference to the object that is used to represent PHP’s connection to the data-
base—which we assign to variable $database. If the connection to MySQL fails, func-
tion die is called, which outputs an error message and terminates the script. Line 26 calls
function mysql_select_db to specify the database to be queried (in this case, Prod-
ucts). Function die is called if the database cannot be opened. To query the database,
line 30 calls function mysql_query, specifying the query string and the database to
query. Function mysql_query returns an object containing the result set of the query,
which we assign to variable $result. If the query of the database fails, a message is
output to the client indicating that the query failed to execute. Function die is then called,
accepting function mysql_error as a parameter instead of a string message. In the event
that the query fails, function mysql_error returns any error strings from the database.
Function mysql_query can also be used to execute SQL statements, such as INSERT or
DELETE, that do not return results.

Lines 45–56 use a for loop to iterate through each record in the result set while con-
structing an XHTML table from the results. The loop condition calls function

68 Deitel and Associates, Inc.
69
70 </h5>
71
72 </body>
73 </html>

Fig. 29.19Fig. 29.19Fig. 29.19Fig. 29.19 Querying a database and displaying the results (part 3 of 3).

iw3htp2_29.fm Page 1042 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1043

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

mysql_fetch_row to return an array containing the elements of each row in the result
set of our query ($result). The array is then stored in variable $row. Lines 52–53 use a
foreach loop to construct individual cells for each of the elements in the row. The
foreach loop takes the name of the array ($row), iterates through each index value of
the array ($key) and stores the element in variable $value. Each element of the array is
then printed as an individual cell. For each row retrieved, variable $counter is incre-
mented by one. When the end of the result set has been reached, undef (false) is
returned by function mysql_fetch_row, which terminates the for loop.

After all rows of the result set have been displayed, the database is closed (line 58), and
the table’s closing tag is written (line 61). The number of results contained in $counter
is printed in line 64.

29.8 Cookies
A cookie is a text file that a Web site stores on a client’s computer to maintain information
about that client during and between browsing sessions. A Web site can store a cookie on
a client’s computer to record user preferences and other information, which the Web site
can retrieve during that client’s subsequent visits. For example, many Web sites use cook-
ies to store clients’ zip codes. The Web site can retrieve the zip code from the cookie and
provide weather reports and news updates tailored to the user’s region. Web sites also can
use cookies to track information about client activity. Analysis of information collected via
cookies can reveal the popularity of various Web sites or products. In addition, marketers
can use cookies to determine the effects of particular advertising campaigns.

Web sites store cookies on users’ hard drives, which raises issues regarding security
and privacy. Web sites should not store critical information, such as credit-card numbers or
passwords in cookies, because cookies are text files that any program can read. Several
cookie features address security and privacy concerns. A particular server can access only
the cookies that server placed on the client. For example, a Web application running on
www.deitel.com cannot access cookies that the Web site www.prenhall.com/
deitel may have placed on the client’s computer. A cookie also has a maximum age,
after which the Web browser deletes that cookie. Users who are concerned about the pri-
vacy and security implications of cookies can disable cookies in their Web browsers. How-
ever, the disabling of cookies can prevent those users from interacting with Web sites that
rely on cookies to function properly.

Microsoft Internet Explorer stores cookies as small text files on the client’s hard drive.
The information stored in the cookie is sent back to the Web server from which it originated
whenever the user requests a Web page from that particular server. The Web server can
send the client XHTML output that reflects the preferences or information that is stored in
the cookie.

 Figure 29.20 uses a script to write a cookie to the client’s machine. The
cookies.html file is used to display an XHTML form that allows a user to enter a
name, height and favorite color. When the user clicks the Write Cookie button, the
cookies.php script (Fig. 29.21) is executed.

Software Engineering Observation 29.2
Some clients do not accept cookies. When a client declines a cookie, the browser application
normally informs the client that the site may not function correctly without cookies enabled. 29.2

iw3htp2_29.fm Page 1043 Saturday, July 21, 2001 10:17 AM

1044 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Software Engineering Observation 29.3
Cookies cannot be used to retrieve e-mail addresses or data from the hard drive of a client’s
computer. 29.3

Script cookies.php (Fig. 29.21) calls function setcookie to set the cookies to
the values passed from cookies.html. Function setcookie prints XHTML header
information, therefore, it needs to be called before any other XHTML (including com-
ments) is printed.

Function setcookie takes the name of the cookie to be set as the first argument, fol-
lowed by the value to be stored in the cookie. For example, line 7 sets the name of the
cookie to "Name" and the value to variable $NAME, which is passed to the script from
cookies.html. The optional third argument indicates the expiration date of the cookie.
In this example, we set the cookies to expire in five days by taking the current time, which
is returned by function time, and adding the number of seconds after which the cookie
should expire (60 seconds * 60 minutes * 24 hours * 5 days). If no expiration date is spec-
ified, the cookie only lasts until the end of the current session, which is the total time until
the user closes the browser. If only the name argument is passed to function setcookie,
the cookie is deleted from the cookie database. Lines 12–37 send a Web page to the client
indicating that the cookie has been written and listing the values that are stored in the
cookie. Lines 34–35 provide a link to readCookies.php (Fig. 29.24).

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.20: cookies.html -->
5 <!-- Writing a Cookie -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Writing a cookie to the client computer</title>

10 </head>
11
12 <body style = "font-family: arial, sans-serif;
13 background-color: #99CCFF">
14
15 <h2>Click Write Cookie to save your cookie data.</h2>
16
17 <form method = "post" action = "cookies.php"
18 style = "font-size: 10pt">
19 Name:

20 <input type = "text" name = "NAME" />

21
22 Height:

23 <input type = "text" name = "HEIGHT" />

24
25 Favorite Color:

26 <input type = "text" name = "COLOR" />

27
28 <input type = "submit" value = "Write Cookie"

Fig. 29.20Fig. 29.20Fig. 29.20Fig. 29.20 Gathering data to be written as a cookie (part 1 of 2).

iw3htp2_29.fm Page 1044 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1045

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

29 style = "background-color: #F0E86C; color: navy;
30 font-weight: bold" /></p>
31 </form>
32 </body>
33 </html>

1 <?php
2 // Fig. 29.21: cookies.php
3 // Program to write a cookie to a client's machine
4
5 // write each form field’s value to a cookie and set the
6 // cookie’s expiration date
7 setcookie("Name", $NAME, time() + 60 * 60 * 24 * 5);
8 setcookie("Height", $HEIGHT, time() + 60 * 60 * 24 * 5);
9 setcookie("Color", $COLOR, time() + 60 * 60 * 24 * 5);

10 ?>
11
12 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
13 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
14
15 <html xmlns = "http://www.w3.org/1999/xhtml">
16 <head>
17 <title>Cookie Saved</title>
18 </head>
19
20 <body style = "font-family: arial, sans-serif">
21 <p>The cookie has been set with the following data:</p>
22

Fig. 29.21Fig. 29.21Fig. 29.21Fig. 29.21 Writing a cookie to the client (part 1 of 2).

Fig. 29.20Fig. 29.20Fig. 29.20Fig. 29.20 Gathering data to be written as a cookie (part 2 of 2).

iw3htp2_29.fm Page 1045 Saturday, July 21, 2001 10:17 AM

1046 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

If the client is Internet Explorer, cookies are stored in the Cookies directory on the
client’s machine. Figure 29.22 shows the contents of this directory prior to the execution of
cookies.php. After the cookie is written, a text file is added to the directory. In Fig.
29.23, the file petel@localhost appears in the Cookies directory.

23 <!-- print each form field’s value -->
24
Name:
25 <?php print($NAME) ?>

26
27 Height:
28 <?php print($HEIGHT) ?>

29
30 Favorite Color:
31
32 <span style = "color: <?php print("$COLOR\">$COLOR") ?>
33

34 <p>Click here
35 to read the saved cookie.</p>
36 </body>
37 </html>

Fig. 29.22Fig. 29.22Fig. 29.22Fig. 29.22 Cookies directory before a cookie is written.

Fig. 29.21Fig. 29.21Fig. 29.21Fig. 29.21 Writing a cookie to the client (part 2 of 2).

iw3htp2_29.fm Page 1046 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1047

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Figure 29.24 (readCookies.php) reads the cookie that is written in Fig. 29.21 and
displays the cookie’s information in a table.

PHP creates variables containing contents of a cookie, similar to when values are
posted via forms. Thus, the next time a script is run from a location where the cookie is vis-
ible, a cookie set with the name "Color" is assigned to variable $Color along with its
corresponding value. PHP also creates array $HTTP_COOKIE_VARS, which contains all
the cookie values indexed by their names.

Fig. 29.23Fig. 29.23Fig. 29.23Fig. 29.23 Cookies directory after a cookie is written.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4 <!-- Fig. 29.24: readCookies.php -->
5 <!-- Program to read cookies from the client's computer -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head><title>Read Cookies</title></head>
9

10 <body style = "font-family: arial, sans-serif">
11
12 <p>
13
14 The following data is saved in a cookie on your
15 computer.
16
17 </p>
18
19 <table border = "5" cellspacing = "0" cellpadding = "10">
20 <?php
21
22 // iterate through array $HTTP_COOKIE_VARS and print
23 // name and value of each cookie
24 foreach ($HTTP_COOKIE_VARS as $key => $value)
25 print("<tr>
26 <td bgcolor=\"#F0E68C\">$key</td>
27 <td bgcolor=\"#FFA500\">$value</td>
28 </tr>");
29 ?>

Fig. 29.24Fig. 29.24Fig. 29.24Fig. 29.24 Displaying the cookie’s contents (part 1 of 2).

iw3htp2_29.fm Page 1047 Saturday, July 21, 2001 10:17 AM

1048 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

Lines 24–28 iterate through this array using a foreach loop, printing out the name
and value of each cookie in an XHTML table. The foreach loop takes the name of the
array ($HTTP_COOKIE_VARS) and iterates through each index value of the array
($key). In this case, the index value is the name of each cookie. Each element is then stored
in variable $value, and these values become the individual cells of the table.

29.9 Operator Precedence
This section contains the operator precedence chart for PHP. In Fig. 29.25, the operators
are shown from top to bottom in decreasing order of precedence.

29.10 Internet and World Wide Web Resources
www.php.net
This official PHP site contains the latest versions of PHP, as well as documentation, a list of FAQs,
support and links to many other PHP resources.

www.zend.com
This site is the home of Zend Technologies, the developers of the Zend scripting engine. The site also
provides code, tips and applications for PHP developers.

www.phpbuilder.com
This site contains resources for PHP developers. The site also includes a search feature and provides
links to articles, code and forums.

30
31 </table>
32 </body>
33 </html>

Fig. 29.24Fig. 29.24Fig. 29.24Fig. 29.24 Displaying the cookie’s contents (part 2 of 2).

iw3htp2_29.fm Page 1048 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1049

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

www.phpworld.com
This site provides PHP-related resources, including articles, documentation, links and a help board.

php.resourceindex.com
This site provides access to the PHP community, helping visitors find jobs, chats, developer sites and
more. The code section of the site contains scripts, functions and classes. In addition, visitors can sign
up to receive e-mail updates regarding new resources.

www.phpwizard.net
This site contains resources for PHP development. It provides tutorials, links and many other resources.

phpclub.unet.ru
This Web page contains manuals, forums, links, books, databases, a FAQ list and other PHP resources.

OperatorOperatorOperatorOperator TypeTypeTypeType AssociativityAssociativityAssociativityAssociativity

new constructor none

[] subscript right to left

~
!
++
--
-
@
(double)
(integer)
(string)
(array)
(object)

bitwise not
not
increment
decrement
unary negative
error control
double type cast
integer type cast
string type cast
array type cast
object type cast

right to left

*
/
%

multiplication
division
modulus

left to right

+
-
.

addition
subtraction
concatenation

left to right

<<
>>

bitwise shift left
bitwise shift right

left to right

<
>
<=
>=

less than
greater than
less than or equal
greater than or equal

none

==
!=
===
!==

equal
not equal
identical
not identical

none

Fig. 29.25Fig. 29.25Fig. 29.25Fig. 29.25 PHP operator precedence and associativity (part 1 of 2).

iw3htp2_29.fm Page 1049 Saturday, July 21, 2001 10:17 AM

1050 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

SUMMARY
• PHP is an open-source technology that is supported by a large community of users and developers.

PHP is platform independent; implementations exist for all major UNIX, Linux and Windows op-
erating systems.

• PHP code is embedded directly into XHTML documents and provides support for a wide variety
of different databases. PHP scripts typically have the file extension .php.

• In PHP, code is inserted in special scripting delimiters that begin with <?php and end with ?>.

• Variables are preceded by the $ special symbol. A variable is created automatically when it is first
encountered by the PHP interpreter.

• PHP statements are terminated with a semicolon (;). Comments begin with two forward slashes
(//). Text to the right of the slashes is ignored by the interpreter.

& bitwise AND left to right

^ bitwise XOR left to right

| bitwise OR left to right

&& logical AND left to right

|| logical OR left to right

=
+=
-=
*=
/=
&=
|=
^=
.=
<<=
>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
bitwise AND assignment
bitwise OR assignment
bitwise exclusive OR assignment
concatenation assignment
bitwise shift left assignment
bitwise shift right assignment

left to right

and logical AND left to right

xor exclusive OR left to right

or logical OR left to right

, list left to right

OperatorOperatorOperatorOperator TypeTypeTypeType AssociativityAssociativityAssociativityAssociativity

Fig. 29.25Fig. 29.25Fig. 29.25Fig. 29.25 PHP operator precedence and associativity (part 2 of 2).

iw3htp2_29.fm Page 1050 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1051

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• When a variable is encountered inside a double-quoted ("") string, PHP uses interpolation to re-
place the variable with its associated data.

• PHP variables are multitype, meaning that they can contain different types of data— integers,
floating-point numbers or strings.

• Type casting converts between data types without changing the value of the variable itself.

• The concatenation operator (.) appends the string on the right of the operator to the string on the
left.

• Uninitialized variables have the value undef, which evaluates to different values, depending on
the context. When undef is used in a numeric context, it evaluates to 0. When undef is inter-
preted in a string context, it evaluates to an empty string ("").

• Strings are automatically converted to integers when they are used in arithmetic operations.

• PHP provides the capability to store data in arrays. Arrays are divided into elements that behave
as individual variables.

• Individual array elements are accessed by following the array-variable name with the index num-
ber in braces ([]). If a value is assigned to an array that does not exist, the array is created. In ad-
dition to integer indices, arrays can also have nonnumeric indices.

• Function count returns the total number of elements in the array. Function array takes a list of
arguments and returns an array. Function array may also be used to initialize arrays with string
indices.

• Function reset sets the iterator to the first element of the array. Function key returns the index
of the current element. Function next moves the iterator to the next element.

• The foreach loop is a control structure that is specifically designed for iterating through arrays.

• Text manipulation in PHP is usually done with regular expressions—a series of characters that
serve as pattern-matching templates (or search criteria) in strings, text files and databases. This
feature allows complex searching and string processing to be performed using relatively simple
expressions.

• Function strcmp compares two strings. If the first string alphabetically precedes the second
string, -1 is returned. If the strings are equal, 0 is returned. If the first string alphabetically follows
the second string, 1 is returned.

• Relational operators (==, !=, <, <=, > and >=) can be used to compare strings. These operators
can also be used for numerical comparison of integers and doubles.

• For more powerful string comparisons, PHP provides functions ereg and preg_match, which
use regular expressions to search a string for a specified pattern.

• Function ereg uses POSIX extended regular expressions, whereas function preg_match pro-
vides Perl compatible regular expressions.

• The caret (^) matches the beginning of a string. A dollar sign ($) searches for the specified pattern
at the end of the string. The period (.) is a special character that is used to match any single char-
acter. The \ character is an escape character in regular expressions.

• Bracket expressions are lists of characters enclosed in square brackets ([]) that match a single
character from the list. Ranges can be specified by supplying the beginning and the end of the
range separated by a dash (-).

• The special bracket expressions [[:<:]] and [[:>]] match the beginning and end of a word.

• Character class [[:alpha:]] matches any alphabetic character.

• The quantifier + matches one or more instances of the preceding expression.

iw3htp2_29.fm Page 1051 Saturday, July 21, 2001 10:17 AM

1052 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

• Function ereg_replace takes three arguments: The pattern to search, a string to replace the
matched string and the string to search.

• PHP stores environment variables and their values in the $GLOBALS array. Individual array vari-
ables can be accessed directly by using an element’s key from the $GLOBALS array as a variable.

• For each form field posted to a PHP script, PHP creates a variable with the same name as the field.

• Function die terminates script execution.

• Passing a string argument to the die function prints that string a message before stopping program
execution.

• Function isset tests whether a variable has been set.

• Function fopen opens a text file.

• A file handle is a number that the server assigns to the file and is used when the server accesses
the file.

• Function fopen takes two arguments: The name of the file and the mode in which to open the
file. The possible modes include read, write and append.

• Function feof, preceded by the logical negation operator (!), returns true when there are more
lines to be read in a specified file.

• A line from a text file is read using function fgets. This function takes two arguments: The file
handle to read and the maximum number of characters to read.

• Function chop removes newline characters from the end of a line. Function split divides a
string into substrings at the specified separator or delimiter. Function fclose closes a file.

• Function mysql_connect connects to a MySQL database. This function returns a database han-
dle—a reference to the object which is used to represent PHP’s connection to the database. Function
mysql_query returns an object that contains the result set of the query. Function mysql_error
returns any error strings from the database if the query fails. Function mysql_fetch_row returns
an array that contains the elements of each row in the result set of a query.

• Cookies maintain state information for a particular client who uses a Web browser. Cookies are
often used to record user preferences or other information that will be retrieved during a client’s
subsequent visits to a Web site. On the server side, cookies can be used to track information about
client activity.

• The data stored in the cookie is sent back to the Web server from which it originated whenever the
user requests a Web page from that particular server.

• Function setcookie sets a cookie. Function setcookie takes as the first argument the name
of the cookie to be set, followed by the value to be stored in the cookie.

• PHP creates variables containing contents of a cookie, similar to when values are posted via forms.

• PHP creates array $HTTP_COOKIE_VARS, which contains all the cookie values indexed by their
names.

TERMINOLOGY
$ metacharacter assignment operator
$GLOBALS variable backslash
$HTTP_COOKIE_VARS bracket expression
append caret metacharacter (^) in PHP
array function character class
array_splice function chomp function
as comparison operator

iw3htp2_29.fm Page 1052 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1053

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

SELF-REVIEW EXERCISES
29.1 State whether the following are true or false. If false, explain why.

a) PHP code is embedded directly into XHTML.
b) PHP function names are case sensitive.
c) The strval function permanently changes the type of a variable into a string.
d) Conversion between data types happens automatically when a variable is used in a con-

text that requires a different data type.
e) The foreach loop is a control structure that is designed specifically for iterating over

arrays.
f) Relational operators can be used for alphabetic and numeric comparison.
g) The quantifier +, when used in a regular expression, matches any number of the preced-

ing pattern.
h) Opening a file in append mode causes the file to be overwritten.
i) Cookies are stored on the server computer.
j) The * arithmetic operator has higher precedence than the + operator.

concatenation operator mysql_error function
count function mysql_fetch_row function
current function mysql_query function
database connectivity mysql_selectdb function
database handle newline character
delimiter next function
die function parenthetical memory in PHP
doubleval function Perl compatible regular expression
environment variable PHP (Hypertext Preprocessor)
equality operator PHP comment
ereg function PHP keyword
ereg_replace function pos function
eregi function POSIX extended regular expression
fclose function preg_match function
feof function print function
fgets function printf function
filehandle quantifier
fopen function read
foreach loop regular expression
fputs function reset
HTTP connection result set
HTTP host setcookie function
Hypertext Preprocessor settype function
index value split function
interpolation SQL query string
intval function strcmp function
isset function string context
key function strval function
literal character typecasting operator
logical AND operator undef
logical negation operator (!) validation
metacharacter Web server
MySQL while loop
mysql_connect function write

iw3htp2_29.fm Page 1053 Saturday, July 21, 2001 10:17 AM

1054 PHP Chapter 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

29.2 Fill in the blanks in each of the following statements:
a) PHP scripts typically have the file extension .
b) The two numeric data types that PHP variables can store are and

.
c) In PHP, uninitialized variables have the value .
d) are divided into individual elements, each of which act like individual vari-

ables.
e) Function returns the total number of elements in an array.
f) To use Perl compatible regular expressions, use the function.
g) A in a regular expression matches a predefined set of characters.
h) PHP stores all global variables in array .
i) Function terminates script execution.
j) can be used to maintain state information on a client’s computer.

ANSWERS TO SELF-REVIEW EXERCISES
29.1 a) True. b) False. Function names are not case sensitive. c) False. The strval function re-
turns the converted value, but does not affect the original variable. d) True. e) True. f) True. g) False.
The quantifier + matches one or more of the preceding patterns. h) False. Opening a file in write
mode causes the file to be overwritten. i) False. Cookies are stored on the client’s computer. j) True.

29.1 a) .php. b) integers, double. c) undef. d) Arrays.
e) count. f) preg_match. g) character class. h) $GLOBALS. i) die. j) Cookies.

EXERCISES
29.3 Identify and correct the error in each of the following PHP code examples.

a)

<?php print("Hello World"); // printing text ?>

b)

<?php
 $name = "Paul";
 print("$Name");
?>

29.4 How can a PHP program determine the type of browser that a Web client is using?

29.5 Describe how input from an XHTML form is retrieved in a PHP program.

29.6 Describe how a text file can be opened and the different modes that are used to read/write to/
from the file.

29.7 Describe how cookies can be used to store information on a computer and how the informa-
tion can be retrieved by a PHP program. Assume that cookies are not disabled on the client.

29.8 Write a PHP program named states.php that creates a scalar value $states with the
value "Mississippi Alabama Texas Massachusetts Kansas". Write a program that
does the following:

a) Search for a word in scalar $states that ends in xas. Store this word in element 0 of
an array named $statesArray.

b) Search for a word in $states that begins with k and ends in s. Perform a case-insen-
sitive comparison. Store this word in element 1 of $statesArray.

iw3htp2_29.fm Page 1054 Saturday, July 21, 2001 10:17 AM

Chapter 29 PHP 1055

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/21/01

c) Search for a word in $states that begins with M and ends in s. Store this element in
element 2 of the array.

d) Search for a word in $states that ends in a. Store this word in element 3 of the array.
e) Search for a word in $states at the beginning of the string that starts with M. Store this

word in element 4 of the array.
f) Output the array $statesArray to the screen.

29.9 In the text, we presented environment variables. Develop a program that determines whether
the client is using Internet Explorer. If so, determine the version number and send that information
back to the client.

29.10 Modify the program in Fig. 29.14 to save information sent to the server into a text file. Each
time a user submits a form, open the text file and print the file’s contents.

29.11 Write a PHP program that tests whether an e-mail address is input correctly. Verify that the in-
put begins with series of characters, followed by the @ character, another series of characters, a period
(.) and a final series of characters. Test your program, using both valid and invalid email addresses.

29.12 Using environment variables, write a program that logs the address (obtained with the
REMOTE_ADDR environment variable) requesting information from the Web server.

29.13 Write a PHP program that obtains a URL and a description of that URL from a user and stores
the information into a database using MySQL. The database should be named URLs, and the table
should be named Urltable. The first field of the database, which is named URL, should contain an
actual URL, and the second, which is named Description, should contain a description of that
URL. Use www.deitel.com as the first URL, and input Cool site! as its description. The sec-
ond URL should be www.php.net, and the description should be The official PHP site. Af-
ter each new URL is submitted, print the complete results of the database in a table.

WORKS CITED
1. S.S. Bakken, et al., “Introduction to PHP,” 17 April 2000 <www.zend.com/zend/hof/
rasmus.php>.

2. S.S. Bakken, et al., “A Brief History of PHP,” January 2001 <www.php.net/manual/en/
intro-history.php>.

iw3htp2_29.fm Page 1055 Saturday, July 21, 2001 10:17 AM

30
Servlets: Bonus for
Java™ Developers

Objectives
• To execute servlets with the Apache Tomcat server.
• To be able to respond to HTTP requests from an
HttpServlet.

• To be able to redirect requests to static and dynamic
Web resources.

• To be able to maintain session information with
cookies and HttpSession objects.

• To be able to access a database from a servlet.
A fair request should be followed by the deed in silence.
Dante Alighieri

The longest part of the journey is said to be the passing of the
gate.
Marcus Terentius Varro

If nominated, I will not accept; if elected, I will not serve.
General William T. Sherman

Me want cookie!
The Cookie Monster, Sesame Street

That’s the way the cookie crumbles.
Anonymous

Friends share all things.
Pythagorus

If at first you don’t succeed, destroy all evidence that you
tried.
Newt Heilscher

iw3htp2_30.fm Page 1056 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1057

30.1 Introduction1

There is much excitement over the Internet and the World Wide Web. The Internet ties the
“information world” together. The World Wide Web makes the Internet easy to use and
gives it the flair and sizzle of multimedia. Organizations see the Internet and the Web as
crucial to their information systems strategies. Java provides a number of built-in network-
ing capabilities that make it easy to develop Internet-based and Web-based applications.
Not only can Java specify parallelism through multithreading, but it can enable programs
to search the world for information and to collaborate with programs running on other com-
puters internationally, nationally or just within an organization. Java can even enable ap-
plets and applications running on the same computer to communicate with one another,
subject to security constraints.

Networking is a massive and complex topic. Computer science and computer engi-
neering students typically take a full-semester, upper-level course in computer networking

Outline

30.1 Introduction
30.2 Servlet Overview and Architecture

30.2.1 Interface Servlet and the Servlet Life Cycle
30.2.2 HttpServlet Class
30.2.3 HttpServletRequest Interface
30.2.4 HttpServletResponse Interface

30.3 Handling HTTP get Requests
30.3.1 Setting Up the Apache Tomcat Server
30.3.2 Deploying a Web Application

30.4 Handling HTTP get Requests Containing Data
30.5 Handling HTTP post Requests
30.6 Redirecting Requests to Other Resources
30.7 Session Tracking

30.7.1 Cookies
30.7.2 Session Tracking with HttpSession

30.8 Multi-tier Applications: Using JDBC from a Servlet
30.9 HttpUtils Class
30.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. We include this chapter as a bonus for Java developers who also are familiar with Java Database
Connectivity (JDBC). Of the seven examples in this chapter, six of them will execute using the
techniques and software we describe. The last example uses JDBC to interact with an Informix
Cloudscape database. Informix provides a developer version of Cloudscape at the Web site
www.cloudscape.com. The installation and configuration instructions are available at the
Cloudscape Web site. We provide instructions for creating the database as part of that example.

iw3htp2_30.fm Page 1057 Saturday, July 21, 2001 3:16 PM

1058 Servlets: Bonus for Java™ Developers Chapter 30

and continue with further study at the graduate level. Java provides a rich complement of
networking capabilities and will likely be used as an implementation vehicle in computer
networking courses. In Advanced Java 2 Platform How to Program we introduce several
Java networking concepts and capabilities.

Java’s networking capabilities are grouped into several packages. The fundamental
networking capabilities are defined by classes and interfaces of package java.net,
through which Java offers socket-based communications that enable applications to view
networking as streams of data—a program can read from a socket or write to a socket as
simply as reading from a file or writing to a file. The classes and interfaces of package
java.net also offer packet-based communications that enable individual packets of
information to be transmitted—commonly used to transmit audio and video over the
Internet. Our book Java How to Program, Fourth Edition shows how to create and manip-
ulate sockets and how to communicate with packets of data.

Higher-level views of networking2 are provided by classes and interfaces in the
java.rmi packages (five packages) for Remote Method Invocation (RMI) and org.omg
packages (seven packages) for Common Object Request Broker Architecture (CORBA) that
are part of the Java 2 API. The RMI packages allow Java objects running on separate Java
Virtual Machines (normally on separate computers) to communicate via remote method
calls. Such method calls appear to be to an object in the same program, but actually have
built-in networking (based on the capabilities of package java.net) that communicates
the method calls to another object on a separate computer. The CORBA packages provide
similar functionality to the RMI packages. A key difference between RMI and CORBA is
that RMI can only be used between Java objects, whereas CORBA can be used between
any two applications that understand CORBA—including applications written in other pro-
gramming languages.

Our discussion of networking over the next two chapters focuses on both sides of a
client-server relationship. The client requests that some action be performed and the server
performs the action and responds to the client. This request-response model of communica-
tion is the foundation for the highest-level views of networking in Java—servlets and Java-
Server Pages (JSP). A servlet extends the functionality of a server. Packages
javax.servlet and javax.servlet.http provide the classes and interfaces to
define servlets. Packages javax.servlet.jsp and javax.servlet.jsp.tagext
provide the classes and interfaces that extend the servlet capabilities for JavaServer Pages.
Using special syntax, JSP allows Web-page implementors to create pages that use encapsu-
lated Java functionality and even to write scriptlets of actual Java code directly in the page.

A common implementation of the request-response model is between World Wide
Web browsers and World Wide Web servers. When a user selects a Web site to browse
through their browser (the client application), a request is sent to the appropriate Web
server (the server application). The server normally responds to the client by sending the
appropriate XHTML Web page. Servlets are effective for developing Web-based solutions
that help provide secure access to a Web site, interact with databases on behalf of a client,
dynamically generate custom XHTML documents to be displayed by browsers and main-
tain unique session information for each client.

2. Our text Advanced Java 2 Platform How to Program discusses several higher-level Java network-
ing capabilities.

iw3htp2_30.fm Page 1058 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1059

Software Engineering Observation 30.1
Although servlets typically are used in distributed Web applications, not all servlets are re-
quired to enhance the functionality of a Web server. 30.1

This chapter begins our networking discussions with servlets that enhance the func-
tionality of World Wide Web servers—the most common form of servlet today. Chapter 31
discusses JSPs, which are translated into servlets. JSPs are a convenient and powerful way
to implement the request/response mechanism of the Web without getting into the lower-
level details of servlets. Together, servlets and JSPs form the Web tier of the Java 2 Enter-
prise Edition (J2EE).

Many developers feel that servlets are the right solution for database-intensive appli-
cations that communicate with so-called thin clients—applications that require minimal
client-side support. The server is responsible for database access. Clients connect to the
server using standard protocols available on most client platforms. Thus, the presentation-
logic code for generating dynamic content can be written once and reside on the server for
access by clients, to allow programmers to create efficient thin clients.

Sun Microsystems, through the Java Community Process, is responsible for the develop-
ment of the servlet and JavaServer Pages specifications. The reference implementation of
both these standards is under development by the Apache Software Foundation
(www.apache.org) as part of the Jakarta Project (jakarta.apache.org). As stated
on the Jakarta Project’s home page, “The goal of the Jakarta Project is to provide commercial-
quality server solutions based on the Java Platform that are developed in an open and coop-
erative fashion.” There are many subprojects under the Jakarta project to help commercial
server-side developers. The servlet and JSP part of the Jakarta Project is called Tomcat. This
is the official reference implementation of the JSP and servlet standards. We use Tomcat to
demonstrate the servlets in this chapter. The most recent implementation of Tomcat at the
time of this writing was version 3.2.3. For your convenience, Tomcat 3.2.3 is included on the
CD that accompanies Advanced Java 2 Platform How to Program. However, the most recent
version always can be downloaded from the Apache Group’s Web site. To execute the serv-
lets in this chapter, you must install Tomcat or an equivalent servlet and JavaServer Pages
implementation. We discuss the set up and configuration of Tomcat in Section 30.3.1 and
Section 30.3.2 after we introduce our first example.

In our directions for testing each of the examples in this chapter, we indicate that you
should copy files into specific Tomcat directories. All the example files for this chapter are
located on the CD that accompanies this book and on our Web site www.deitel.com.

[Note: At the end of Section 30.10, we provide a list of Internet specifications (as dis-
cussed in the Servlet 2.2 Specification) for technologies related to servlet development.
Each is listed with its RFC (Request for Comments) number. We provide the URL of a Web
site that allows you to locate each specification for your review.]

30.2 Servlet Overview and Architecture
In this section, we overview Java servlet technology. We discuss at a high level the servlet-
related classes, methods and exceptions. The next several sections present live-code exam-
ples in which we build multi-tier client–server systems using servlet and JDBC technology.

The Internet offers many protocols. The HTTP (Hypertext Transfer Protocol) that
forms the basis of the World Wide Web uses URIs (Uniform Resource Identifiers— some-

iw3htp2_30.fm Page 1059 Saturday, July 21, 2001 3:16 PM

1060 Servlets: Bonus for Java™ Developers Chapter 30

times called Universal Resource Locators or URLs) to locate resources on the Internet.
Common URIs represent files or directories and can represent complex tasks such as data-
base lookups and Internet searches. For more information on URL formats, visit

www.w3.org/Addressing

For more information on the HTTP protocol, visit

www.w3.org/Protocols/HTTP

For information on a variety of World Wide Web topics, visit

www.w3.org

JavaServer Pages technology is an extension of servlet technology. Normally, JSPs are
used primarily when most of the content sent to the client is static text and markup, and only
a small portion of the content is generated dynamically with Java code. Normally, servlets
are used when a small portion of the content sent to the client is static text or markup. In
fact, some servlets do not produce content. Rather, they perform a task on behalf of the
client, then invoke other servlets or JSPs to provide a response. Note that in most cases
servlet and JSP technologies are interchangeable. The server that executes a servlet often
is referred to as the servlet container or servlet engine.

Servlets and JavaServer Pages have become so popular that they are now supported
directly or with third-party plug-ins by most major Web servers and application servers,
including the Netscape iPlanet Application Server, Microsoft’s Internet Information
Server (IIS), the Apache HTTP Server, BEA’s WebLogic application server, IBM’s
WebSphere application server, the World Wide Web Consortium’s Jigsaw Web server,
and many more.

The servlets in this chapter demonstrate communication between clients and servers
via the HTTP protocol. A client sends an HTTP request to the server or servlet container.
The server or servlet container receives the request and directs it to be processed by the
appropriate servlet. The servlet does its processing, which may include interacting with a
database or other server-side components such as other servlets, JSPs or Enterprise Java-
Beans.3 The servlet returns its results to the client—normally in the form of an HTML,
XHTML or XML document to display in a browser, but other data formats, such as images
and binary data, can be returned.

30.2.1 Interface Servlet and the Servlet Life Cycle

Architecturally, all servlets must implement the Servlet interface. As with many key ap-
plet methods, the methods of interface Servlet are invoked automatically (by the server
on which the servlet is installed, also known as the servlet container). This interface defines
five methods described in Fig. 30.1.

Software Engineering Observation 30.2
All servlets must implement the Servlet interface of package javax.servlet. 30.2

3. Our text Advanced Java 2 Platform How to Program covers Enterprise JavaBeans (EJBs) in detail.

iw3htp2_30.fm Page 1060 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1061

A servlet’s life cycle begins when the servlet container loads the servlet into
memory—normally, in response to the first request that the servlet receives. Before the
servlet can handle that request, the servlet container invokes the servlet’s init method.
After init completes execution, the servlet can respond to its first request. All requests
are handled by a servlet’s service method, which receives the request, processes the
request and sends a response to the client. During a servlet’s life cycle, method service
is called once per request. Each new request typically results in a new thread of execution
(created by the servlet container) in which method service executes. When the servlet
container terminates the servlet, the servlet’s destroy method is called to release servlet
resources.

Performance Tip 30.1
Starting a new thread for each request is more efficient than starting an entirely new process,
as is the case in some other server-side technologies such as CGI. [Note: Like servlets, Fast
CGI eliminates the overhead of starting a new process for each request.] 30.1

The servlet packages define two abstract classes that implement the interface
Servlet—class GenericServlet (from the package javax.servlet) and class
HttpServlet (from the package javax.servlet.http). These classes provide
default implementations of all the Servlet methods. Most servlets extend either
GenericServlet or HttpServlet and override some or all of their methods.

Method Description

void init(ServletConfig config)

This method is automatically called once during a servlet’s execution cycle
to initialize the servlet. The ServletConfig argument is supplied by the
servlet container that executes the servlet.

ServletConfig getServletConfig()

This method returns a reference to an object that implements interface
ServletConfig. This object provides access to the servlet’s configura-
tion information such as servlet initialization parameters and the servlet’s
ServletContext, which provides the servlet with access to its environ-
ment (i.e., the servlet container in which the servlet executes).

String getServletInfo()

This method is defined by a servlet programmer to return a String contain-
ing servlet information such as the servlet’s author and version.

void service(ServletRequest request, ServletResponse response)

The servlet container calls this method to respond to a client request to the
servlet.

void destroy()

This “cleanup” method is called when a servlet is terminated by its servlet
container. Resources used by the servlet, such as an open file or an open
database connection, should be deallocated here.

Fig. 30.1Fig. 30.1Fig. 30.1Fig. 30.1 Methods of interface Servlet (package javax.servlet).

iw3htp2_30.fm Page 1061 Saturday, July 21, 2001 3:16 PM

1062 Servlets: Bonus for Java™ Developers Chapter 30

The examples in this chapter all extend class HttpServlet, which defines
enhanced processing capabilities for servlets that extend the functionality of a Web server.
The key method in every servlet is service, which receives both a ServletRequest
object and a ServletResponse object. These objects provide access to input and
output streams that allow the servlet to read data from the client and send data to the client.
These streams can be either byte based or character based. If problems occur during the
execution of a servlet, either ServletExceptions or IOExceptions are thrown to
indicate the problem.

Software Engineering Observation 30.3
It is possible for multiple calls to method service to execute in parallel. For this reason,
it may be necessary for programmers to serialize access to resources with synchronization
techniques. 30.3

Software Engineering Observation 30.4
Servlets can implement tagging interface javax.servlet.SingleThreadModel to
indicate that only one thread of execution may enter method service on a particular serv-
let instance at a time. When a servlet implements SingleThreadModel, the servlet con-
tainer can create multiple instances of the servlet to handle multiple requests to the servlet
in parallel. In this case, you may need to provide synchronized access to shared resources
used by method service. 30.4

30.2.2 HttpServlet Class

Web-based servlets typically extend class HttpServlet. Class HttpServlet over-
rides method service to distinguish between the typical requests received from a client
Web browser. The two most common HTTP request types (also known as request methods)
are get and post. A get request gets (or retrieves) information from a server. Common
uses of get requests are to retrieve an HTML document or an image. A post request posts
(or sends) data to a server. Common uses of post requests are to send information to a
server—such as authentication information, data from a form that obtains user input, infor-
mation that the server uses to search the Internet or query a database, etc.

Class HttpServlet defines methods doGet and doPost to respond to get and
post requests from a client, respectively. These methods are called by the service
method, which is called when a request arrives at the server. Method service first deter-
mines the request type, then calls the appropriate method for handling such a request. Other
less common request types are beyond the scope of this book. Methods of class HttpS-
ervlet that respond to the other request types are shown in Fig. 30.2. They all receive
parameters of type HttpServletRequest and HttpServletResponse and return
void. The methods of Fig. 30.2 are not frequently used. For more information on the
HTTP protocol, visit

http://www.w3.org/Protocols/

Software Engineering Observation 30.5
Do not override method service in an HttpServlet subclass. Doing so prevents the serv-
let from distinguishing between request types. 30.5

iw3htp2_30.fm Page 1062 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1063

.

Methods doGet and doPost receive as arguments an HttpServletRequest
object and an HttpServletResponse object that enable interaction between the client
and the server. The methods of HttpServletRequest make it easy to access the data
supplied as part of the request. The HttpServletResponse methods make it easy to
return the servlet’s results to the Web client. Interfaces HttpServletRequest and
HttpServletResponse are discussed in the next two sections.

30.2.3 HttpServletRequest Interface

Every call to doGet or doPost for an HttpServlet receives an object that imple-
ments interface HttpServletRequest. The Web server that executes the servlet cre-
ates an HttpServletRequest object and passes this to the servlet’s service method
(which, in turn, passes it to doGet or doPost). This object contains the request from the
client. A variety of methods are provided to enable the servlet to process the client’s re-
quest. Some of these methods are from interface ServletRequest—the interface that
HttpServletRequest extends. A few key methods used in this chapter are presented
in Fig. 30.3. You can view a complete list of HttpServletRequest methods online at

java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/
HttpServletRequest.html

or you can download and install Tomcat (discussed in Section 30.3.1) and view the docu-
mentation on your local computer.

Method Description

doDelete Called in response to an HTTP delete request. Such a request is
normally used to delete a file from a server. This may not be available
on some servers, because of its inherent security risks (i.e., the client
could delete a file that is critical to the execution of the server or an
application).

doOptions Called in response to an HTTP options request. This returns infor-
mation to the client indicating the HTTP options supported by the
server, such as the version of HTTP (1.0 or 1.1) and the request meth-
ods the server supports.

doPut Called in response to an HTTP put request. Such a request is nor-
mally used to store a file on the server. This may not be available on
some servers, because of its inherent security risks (i.e., the client
could place an executable application on the server, which, if exe-
cuted, could damage the server—perhaps by deleting critical files or
occupying resources).

doTrace Called in response to an HTTP trace request. Such a request is nor-
mally used for debugging. The implementation of this method auto-
matically returns an HTML document to the client containing the
request header information (data sent by the browser as part of the
request).

Fig. 30.2Fig. 30.2Fig. 30.2Fig. 30.2 Other methods of class HttpServlet.

iw3htp2_30.fm Page 1063 Saturday, July 21, 2001 3:16 PM

1064 Servlets: Bonus for Java™ Developers Chapter 30

30.2.4 HttpServletResponse Interface

Every call to doGet or doPost for an HttpServlet receives an object that imple-
ments interface HttpServletResponse. The Web server that executes the servlet cre-
ates an HttpServletResponse object and passes it to the servlet’s service method
(which, in turn, passes it to doGet or doPost). This object provides a variety of methods
that enable the servlet to formulate the response to the client. Some of these methods are
from interface ServletResponse—the interface that HttpServletResponse ex-
tends. A few key methods used in this chapter are presented in Fig. 30.4. You can view a
complete list of HttpServletResponse methods online at

java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/
HttpServletResponse.html

or you can download and install Tomcat (discussed in Section 30.3.1) and view the docu-
mentation on your local computer.

30.3 Handling HTTP get Requests
The primary purpose of an HTTP get request is to retrieve the content of a specified
URL—normally the content is an HTML or XHTML document (i.e., a Web page). The
servlet of Fig. 30.5 and the XHTML document of Fig. 30.6 demonstrate a servlet that han-
dles HTTP get requests. When the user clicks the Get HTML Document button

Method Description

String getParameter(String name)

Obtains the value of a parameter sent to the servlet as part of a get or post
request. The name argument represents the parameter name.

Enumeration getParameterNames()

Returns the names of all the parameters sent to the servlet as part of a post
request.

String[] getParameterValues(String name)

For a parameter with multiple values, this method returns an array of Strings
containing the values for a specified servlet parameter.

Cookie[] getCookies()

Returns an array of Cookie objects stored on the client by the server. Cookies
can be used to uniquely identify clients to the servlet.

HttpSession getSession(boolean create)

Returns an HttpSession object associated with the client’s current browsing
session. An HttpSession object can be created by this method (true argu-
ment) if an HttpSession object does not already exist for the client.
HttpSession objects can be used in similar ways to Cookies for uniquely
identifying clients.

Fig. 30.3Fig. 30.3Fig. 30.3Fig. 30.3 Some methods of interface HttpServletRequest.

iw3htp2_30.fm Page 1064 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1065

(Fig. 30.6), a get request is sent to the servlet WelcomeServlet (Fig. 30.5). The servlet
responds to the request by generating dynamically an XHTML document for the client that
displays “Welcome to Servlets!”. Figure 30.5 shows the WelcomeServlet
source code. Figure 30.6 shows the XHTML document the client loads to access the servlet
and shows screen captures of the client’s browser window before and after the interaction
with the servlet. [Note: Section 30.3.1 discusses how to set up and configure Tomcat to ex-
ecute this example.]

Method Description

void addCookie(Cookie cookie)

Used to add a Cookie to the header of the response to the client. The Cookie’s
maximum age and whether Cookies are enabled on the client determine if
Cookies are stored on the client.

ServletOutputStream getOutputStream()

Obtains a byte-based output stream that enables binary data to be sent to the client.

PrintWriter getWriter()

Obtains a character-based output stream that enables text data to be sent to the cli-
ent.

void setContentType(String type)

Specifies the MIME type of the response to the browser. The MIME type helps the
browser determine how to display the data (or possibly what other application to
execute to process the data). For example, MIME type "text/html" indicates
that the response is an HTML document, so the browser displays the HTML page.
For more information on

Fig. 30.4Fig. 30.4Fig. 30.4Fig. 30.4 Some methods of interface HttpServletResponse.

1 // Fig. 9.5: WelcomeServlet.java
2 // A simple servlet to process get requests.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.io.*;
8
9 public class WelcomeServlet extends HttpServlet {

10
11 // process "get" requests from clients
12 protected void doGet(HttpServletRequest request,
13 HttpServletResponse response)
14 throws ServletException, IOException
15 {
16 response.setContentType("text/html");
17 PrintWriter out = response.getWriter();

Fig. 30.5Fig. 30.5Fig. 30.5Fig. 30.5 WelcomeServlet handles a simple HTTP get request (part 1 of 2).

iw3htp2_30.fm Page 1065 Saturday, July 21, 2001 3:16 PM

1066 Servlets: Bonus for Java™ Developers Chapter 30

Lines 5 and 6 import the javax.servlet and javax.servlet.http packages.
We use several data types from these packages in the example.

Package javax.servlet.http provides superclass HttpServlet for servlets
that handle HTTP get requests and HTTP post requests. This class implements interface
javax.servlet.Servlet and adds methods that support HTTP protocol requests.
Class WelcomeServlet extends HttpServlet (line 9) for this reason.

Superclass HttpServlet provides method doGet to respond to get requests. Its
default functionality is to indicate a “Method not allowed” error. Typically, this error is
indicated in Internet Explorer with a Web page that states “This page cannot be displayed”
and in Netscape Navigator with a Web page that states “Error: 405.” We override method
doGet (lines 12–44) to provide custom get request processing. Method doGet receives
two arguments—an object that implements interface HttpServletRequest and an
object that implements interface HttpServletResponse (both from package
javax.servlet.http). The HttpServletRequest object represents the client’s
request, and the HttpServletResponse object represents the server’s response to the
client. If method doGet is unable to handle a client’s request, it throws an exception of
type javax.servlet.ServletException. If doGet encounters an error during
stream processing (reading from the client or writing to the client), it throws a
java.io.IOException.

18
19 // send XHTML page to client
20
21 // start XHTML document
22 out.println("<?xml version = \"1.0\"?>");
23
24 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
25 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
26 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
27
28 out.println(
29 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
30
31 // head section of document
32 out.println("<head>");
33 out.println("<title>A Simple Servlet Example</title>");
34 out.println("</head>");
35
36 // body section of document
37 out.println("<body>");
38 out.println("<h1>Welcome to Servlets!</h1>");
39 out.println("</body>");
40
41 // end XHTML document
42 out.println("</html>");
43 out.close(); // close stream to complete the page
44 }
45 }

Fig. 30.5Fig. 30.5Fig. 30.5Fig. 30.5 WelcomeServlet handles a simple HTTP get request (part 2 of 2).

iw3htp2_30.fm Page 1066 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1067

To demonstrate a response to a get request, our servlet creates an XHTML document
containing the text “Welcome to Servlets!”. The text of the XHTML document is the
response to the client. The response is sent to the client through the PrintWriter object
obtained from the HttpServletResponse object.

Line 16 uses the response object’s setContentType method to specify the con-
tent type of the data to be sent as the response to the client. This enables the client browser
to understand and handle the content. The content type also is known as the MIME type
(Multipurpose Internet Mail Extension) of the data. In this example, the content type is
text/html to indicate to the browser that the response is an XHTML document. The
browser knows that it must read the XHTML tags in the document, format the document
according to the tags and display the document in the browser window. For more informa-
tion on MIME types visit www.irvine.com/~mime.

Line 17 uses the response object’s getWriter method to obtain a reference to the
PrintWriter object that enables the servlet to send content to the client. [Note: If the
response is binary data, such as an image, method getOutputStream is used to obtain
a reference to a ServletOutputStream object.]

Lines 22–42 create the XHTML document by writing strings with the out object’s
println method. This method outputs a newline character after its String argument.
When rendering the Web page, the browser does not use the newline character. Rather, the
newline character appears in the XHTML source that you can see by selecting Source
from the View menu in Internet Explorer or Page Source from the View menu in
Netscape Navigator. Line 43 closes the output stream, flushes the output buffer and sends
the information to the client. This commits the response to the client.

The XHTML document in Fig. 30.6 provides a form that invokes the servlet defined
in Fig. 30.5. The form’s action

/advjhtp1/welcome1

specifies the URL path that invokes the servlet, and the form’s method indicates that the
browser sends a get request to the server, which results in a call to the servlet’s doGet
method. The URL specified as the action in this example is discussed in detail in
Section 30.3.2 after we show how to set up and configure the Apache Tomcat server to ex-
ecute the servlet in Fig. 30.5.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.6: WelcomeServlet.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Handling an HTTP Get Request</title>

10 </head>
11

Fig. 30.6Fig. 30.6Fig. 30.6Fig. 30.6 HTML document in which the form’s action invokes WelcomeServlet
through the alias welcome1 specified in web.xml (part 1 of 2).

iw3htp2_30.fm Page 1067 Saturday, July 21, 2001 3:16 PM

1068 Servlets: Bonus for Java™ Developers Chapter 30

Note that the sample screen captures show a URL containing the server name local-
host—a well-known server host name on most computers that support TCP/IP-based net-
working protocols such as HTTP. We often use localhost to demonstrate networking
programs on the local computer, so that readers without a network connection can still learn
network programming concepts. In this example, localhost indicates that the server on
which the servlet is installed is running on the local machine. The server host name is fol-
lowed by :8080, specifying the TCP port number at which the Tomcat server awaits
requests from clients. Web browsers assume TCP port 80 by default as the server port at
which clients make requests, but the Tomcat server awaits client requests at TCP port 8080.
This allows Tomcat to execute on the same computer as a standard Web server application
without affecting the Web server application’s ability to handle requests. If we do not
explicitly specify the port number in the URL, the servlet never will receive our request and
an error message will be displayed in the browser.

Software Engineering Observation 30.6
The Tomcat documentation specifies how to integrate Tomcat with popular Web server ap-
plications such as the Apache HTTP Server and Microsoft’s IIS. 30.6

12 <body>
13 <form action = "/advjhtp1/welcome1" method = "get">
14
15 <p><label>Click the button to invoke the servlet
16 <input type = "submit" value = "Get HTML Document" />
17 </label></p>
18
19 </form>
20 </body>
21 </html>

Fig. 30.6Fig. 30.6Fig. 30.6Fig. 30.6 HTML document in which the form’s action invokes WelcomeServlet
through the alias welcome1 specified in web.xml (part 2 of 2).

iw3htp2_30.fm Page 1068 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1069

Ports in this case are not physical hardware ports to which you attach cables; rather,
they are logical locations named with integer values that allow clients to request different
services on the same server. The port number specifies the logical location where a server
waits for and receives connections from clients—this is also called the handshake point.
When a client connects to a server to request a service, the client must specify the port
number for that service; otherwise, the client request cannot be processed. Port numbers
are positive integers with values up to 65,535, and there are separate sets of these port
numbers for both the TCP and UDP protocols. Many operating systems reserve port num-
bers below 1024 for system services (such as email and World Wide Web servers). Gen-
erally, these ports should not be specified as connection ports in your own server
programs. In fact, some operating systems require special access privileges to use port
numbers below 1024.

With so many ports from which to choose, how does a client know which port to use
when requesting a service? The term well-known port number often is used when
describing popular services on the Internet such as Web servers and email servers. For
example, a Web server waits for clients to make requests at port 80 by default. All Web
browsers know this number as the well-known port on a Web server where requests for
HTML documents are made. So when you type a URL into a Web browser, the browser
normally connects to port 80 on the server. Similarly, the Tomcat server uses port 8080 as
its port number. Thus, requests to Tomcat for Web pages or to invoke servlets and Java-
Server Pages must specify that the Tomcat server waiting for requests on port 8080.

The client can access the servlet only if the servlet is installed on a server that can
respond to servlet requests. In some cases, servlet support is built directly into the Web
server, and no special configuration is required to handle servlet requests. In other cases, it
is necessary to integrate a servlet container with a Web server (as can be done with Tomcat
and the Apache or IIS Web servers). Web servers that support servlets normally have an
installation procedure for servlets. If you intend to execute your servlet as part of a Web
server, please refer to your Web server’s documentation on how to install a servlet. For our
examples, we demonstrate servlets with the Apache Tomcat server. Section 30.3.1 dis-
cusses the setup and configuration of Tomcat for use with this chapter. Section 30.3.2 dis-
cusses the deployment of the servlet in Fig. 30.5.

30.3.1 Setting Up the Apache Tomcat Server
Tomcat is a fully functional implementation of the JSP and servlet standards. It includes a
Web server, so it can be used as a standalone test container for JSPs and servlets. Tomcat
also can be specified as the handler for JSP and servlet requests received by popular Web
servers such as the Apache Software Foundation’s Apache Web server or Microsoft’s In-
ternet Information Server (IIS). Tomcat is integrated into the Java 2 Enterprise Edition ref-
erence implementation from Sun Microsystems.

The most recent release of Tomcat (version 3.2.3) can be downloaded from

jakarta.apache.org/builds/jakarta-tomcat/release/v3.2.3/bin/

where there are a number of archive files. The complete Tomcat implementation is con-
tained in the files that begin with the name jakarta-tomcat-3.2.3. Zip, tar and com-
pressed tar files are provided for Windows, Linux and Solaris.

iw3htp2_30.fm Page 1069 Saturday, July 21, 2001 3:16 PM

1070 Servlets: Bonus for Java™ Developers Chapter 30

Extract the contents of the archive file to a directory on your hard disk. By default, the
name of the directory containing Tomcat is jakarta-tomcat-3.2.3. For Tomcat to
work correctly, you must define environment variables JAVA_HOME and TOMCAT_HOME.
JAVA_HOME should point to the directory containing your Java installation (ours is
d:\jdk1.3.1), and TOMCAT_HOME should point to the directory that contains Tomcat
(ours is d:\jakarta-tomcat-3.2.3).

Testing and Debugging Tip 30.1
On some platforms you may need to restart your computer for the new environment variables
to take effect. 30.1

After setting the environment variables, you can start the Tomcat server. Open a com-
mand prompt (or shell) and change directories to bin in jakarta-tomcat-3.2.3. In
this directory are the files tomcat.bat and tomcat.sh, for starting the Tomcat server
on Windows and UNIX (Linux or Solaris), respectively. To start the server, type

tomcat start

This launches the Tomcat server. The Tomcat server executes on TCP port 8080 to prevent
conflicts with standard Web servers that typically execute on TCP port 80. To prove that
Tomcat is executing and can respond to requests, open your Web browser and enter the URL

http://localhost:8080/

This should display the Tomcat documentation home page (Fig. 30.7). The host local-
host indicates to the Web browser that it should request the home page from the Tomcat
server on the local computer.

Fig. 30.7Fig. 30.7Fig. 30.7Fig. 30.7 Tomcat documentation home page. (Courtesy of The Apache Software
Foundation.)

iw3htp2_30.fm Page 1070 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1071

If the Tomcat documentation home page does not display, try the URL

http://127.0.0.1:8080/

The host localhost translates to the IP address 127.0.0.1.

Testing and Debugging Tip 30.2
If the host name localhost does not work on your computer, substitute the IP address
127.0.0.1 instead. 30.2

To shut down the Tomcat server, issue the command

tomcat stop

from a command prompt (or shell).

30.3.2 Deploying a Web Application
JSPs, servlets and their supporting files are deployed as part of Web applications. Normal-
ly, Web applications are deployed in the webapps subdirectory of jakarta-tomcat-
3.2.3. A Web application has a well-known directory structure in which all the files that
are part of the application reside. This directory structure can be created by the server ad-
ministrator in the webapps directory, or the entire directory structure can be archived in
a Web application archive file. Such an archive is known as a WAR file and ends with the
.war file extension. If a WAR file is placed in the webapps directory, then, when the
Tomcat server begins execution, it extracts the contents of the WAR file into the appropri-
ate webapps subdirectory structure. For simplicity as we teach servlets and JavaServer
Pages, we create the already expanded directory structure that will be used for all the ex-
amples in this chapter and Chapter 31.

The Web application directory structure has a context root—the top-level directory for
an entire Web application—and several subdirectories. These are described in Fig. 30.8.

Directory Description

context root This is the root directory for the Web application. The name of this directory is
chosen by the Web application developer. All the JSPs, HTML documents,
servlets and supporting files such as images and class files reside in this direc-
tory or its subdirectories. The name of this directory is specified by the Web
application creator. To provide structure in a Web application, subdirectories
can be placed in the context root. For example, if your application uses many
images, you might place an images subdirectory in this directory.

WEB-INF This directory contains the Web application deployment descriptor (web.xml).

WEB-INF/
classes

This directory contains the servlet class files and other supporting class files
used in a Web application. If the classes are part of a package, the complete
package directory structure would begin here.

WEB-INF/lib This directory contains Java archive (JAR) files. The JAR files can contain
servlet class files and other supporting class files used in a Web application.

Fig. 30.8Fig. 30.8Fig. 30.8Fig. 30.8 Web application standard directories.

iw3htp2_30.fm Page 1071 Saturday, July 21, 2001 3:16 PM

1072 Servlets: Bonus for Java™ Developers Chapter 30

Common Programming Error 30.1
Using “servlet” or “servlets” as a context root may prevent a servlet from working correctly
on some servers. 30.1

Before we can deploy our Web application for the WelcomeServlet of Fig. 30.5,
we must make the servlet container (i.e., Tomcat) aware of the context root for our Web
application. We accomplish this by editing the file server.xml in the conf subdirec-
tory of jakarta-tomcat-3.2.3. This XML file describes the configuration of the
Tomcat server. Open this file, scroll toward the bottom and locate the section that starts
with the comment “Special webapps.” In this section, there are XML Context ele-
ments that describe the context roots for the Tomcat examples and admin Web appli-
cations.

We will create a Context called advjhtp1 to serve as the context root for most of
our JSP and servlet examples. To create the advjhtp1 context root, edit the
server.xml file, and insert the Context element of Fig. 30.9 after the Context ele-
ment for admin; then save the server.xml file.

Testing and Debugging Tip 30.3
The Tomcat server should be restarted after modifying server.xml. Otherwise, Tomcat
will not recognize your new Web application context root. 30.3

Line 2 begins the Context element and specifies its path attribute. The server uses
the path to determine which Web application receives the request. In particular, attribute
path specifies the initial part of the path in a URL that requests a Web application. The
path is the part of the URL following the host name and optional port number. Attribute
docBase specifies the subdirectory of webapps in which the Web application files are
located.

Now that Tomcat is configured for our context root, we need to configure our Web
application to handle the requests. To simplify the deployment of the examples in this
chapter, WAR files are not used. Rather, we place the example files in directory
advjhtp1 or the relevant subdirectory. We discuss WAR files in detail as part of the
servlet case study in the next chapter.

Deploying a Web application requires the creation of a deployment descriptor
(stored in a file called web.xml) that specifies various configuration parameters such as
the name used to invoke the servlet, a description of the servlet, the class name of the
servlet class and a servlet mapping, i.e., the path or paths that cause the servlet to be
invoked. You must create the web.xml file for this example. Many Java Web applica-
tion deployment tools create this file for you. The web.xml file for the first example in
this chapter is shown in Fig. 30.10. This file will be enhanced as we add other servlets to
the Web application.

1 <!-- Advanced Java How to Program JSP/servlet context -->
2 <Context path = "/advjhtp1"
3 docBase = "webapps/advjhtp1"
4 reloadable = "true">
5 </Context>

Fig. 30.9Fig. 30.9Fig. 30.9Fig. 30.9 Context element for servlet and JSP examples in Chapters 30 and 31.

iw3htp2_30.fm Page 1072 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1073

Lines 1–3 specify the document type for the Web application deployment descriptor
and the location of the DTD for this XML file. Element web-app (lines 5–37) defines the
configuration of each servlet in the Web application and the servlet mapping for each
servlet. Element display-name (lines 8–11) specifies a name that can be displayed to
the administrator of the server on which the Web application is installed. Element
description (lines 13–16) specifies a description of the Web application that might be
displayed to the administrator of the server.

Element servlet (lines 19–29) describes a servlet. Element servlet-name (line
20) is the name we chose for the servlet (welcome1). Element description (lines 22–
24) specifies a description for this particular servlet. Again, this can be displayed to the
administrator of the Web server. Element servlet-class (lines 26–28) specifies com-

1 <!DOCTYPE web-app PUBLIC
2 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
3 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
4
5 <web-app>
6
7 <!-- General description of your Web application -->
8 <display-name>
9 Advanced Java How to Program JSP

10 and Servlet Chapter Examples
11 </display-name>
12
13 <description>
14 This is the Web application in which we
15 demonstrate our JSP and Servlet examples.
16 </description>
17
18 <!-- Servlet definitions -->
19 <servlet>
20 <servlet-name>welcome1</servlet-name>
21
22 <description>
23 A simple servlet that handles an HTTP get request.
24 </description>
25
26 <servlet-class>
27 com.deitel.advjhtp1.servlets.WelcomeServlet
28 </servlet-class>
29 </servlet>
30
31 <!-- Servlet mappings -->
32 <servlet-mapping>
33 <servlet-name>welcome1</servlet-name>
34 <url-pattern>/welcome1</url-pattern>
35 </servlet-mapping>
36
37 </web-app>

Fig. 30.10Fig. 30.10Fig. 30.10Fig. 30.10 Deployment descriptor for the advjhtp1 Web application.

iw3htp2_30.fm Page 1073 Saturday, July 21, 2001 3:16 PM

1074 Servlets: Bonus for Java™ Developers Chapter 30

piled servlet’s fully qualified class name. Thus, the servlet welcome1 is defined by class
com.deitel.advjhtp1.servlets.WelcomeServlet.

Element servlet-mapping (lines 32–35) specifies servlet-name and url-
pattern elements. The URL pattern helps the server determine which requests are sent
to the servlet (welcome1). Our Web application will be installed as part of the
advjhtp1 context root—specified as part of the Context element discussed in
Fig. 30.9 that we added to the server.xml file). Thus, the URL we supply to the browser
to invoke the servlet in this example is

/advjhtp1/welcome1

where /advjhtp1 specifies the context root that helps the server determine which Web
application handles the request and /welcome1 specifies the URL pattern that is mapped
to servlet welcome1 to handle the request. Note that the server on which the servlet re-
sides is not specified here, although it is possible to do so as follows:

http://localhost:8080/advjhtp1/welcome1

If the explicit server and port number are not specified as part of the URL, the browser as-
sumes that the form handler (i.e., the servlet specified in the action property of the form
element) resides at the same server and port number from which the browser downloaded
the Web page containing the form.

There are several URL pattern formats that can be used. The /welcome1 URL pat-
tern requires an exact match of the pattern. You can also specify path mappings, extension
mappings and a default servlet for a Web application. A path mapping begins with a / and
ends with a /*. For example, the URL pattern

/advjhtp1/example/*

indicates that any URL path beginning with /advjhtp1/example/ will be sent to the
servlet that has the preceding URL pattern. An extension mapping begins with *. and ends
with a file name extension. For example, the URL pattern

*.jsp

indicates that any request for a file with the extension .jsp will be sent to the servlet that
handles JSP requests. In fact, servers with JSP containers have an implicit mapping of the
.jsp extension to a servlet that handles JSP requests. The URL pattern / represents the
default servlet for the Web application. This is similar to the default document of a Web
server. For example, if you type the URL www.deitel.com into your Web browser, the
document you receive from our Web server is the default document index.html. If the
URL pattern matches the default servlet for a Web application, that servlet is invoked to
return a default response to the client. This can be useful for personalizing Web content to
specific users. We discuss personalization in Section 30.7, Session Tracking.

Finally, we are ready to place our files into the appropriate directories to complete the
deployment of our first servlet, so we can test it. There are three files we must place in the
appropriate directories—WelcomeServlet.html, WelcomeServlet.class and
web.xml. In the webapps subdirectory of your jakarta-tomcat-3.2.3 directory,
create the advjhtp1 subdirectory that represents the context root for our Web applica-

iw3htp2_30.fm Page 1074 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1075

tion. In this directory, create subdirectories named servlets and WEB-INF. We place
our HTML files for this servlets chapter in the servlets directory. Copy the Wel-
comeServlet.html file into the servlets directory. In the WEB-INF directory,
create the subdirectory classes, then copy the web.xml file into the WEB-INF direc-
tory, and copy the WelcomeServlet.class file, including all its package name direc-
tories, into the classes directory. Thus, the directory and file structure under the
webapps directory should be as shown in Fig. 30.11 (file names are in italics).

Testing and Debugging Tip 30.4
Restart the Tomcat server after modifying the web.xml deployment descriptor file. Other-
wise, Tomcat will not recognize your new Web application. 30.4

After the files are placed in the proper directories, start the Tomcat server, open your
browser and type the following URL—

http://localhost:8080/advjhtp1/servlets/WelcomeServlet.html

—to load WelcomeServlet.html into the Web browser. Then, click the Get HTML
Document button to invoke the servlet. You should see the results shown in Fig. 30.6.
You can try this servlet from several different Web browsers to demonstrate that the results
are the same across Web browsers.

Common Programming Error 30.2
Not placing servlet or other class files in the appropriate package directory structure pre-
vents the server from locating those classes properly. This, in turn, results in an error re-
sponse to the client Web browser. This error response normally is “Not Found (404)” in
Netscape Navigator and “The page cannot be found” plus an explanation in Microsoft In-
ternet Explorer. 30.2

WelcomeServlet Web application directory and file structure

advjhtp1

 servlets

 WelcomeServlet.html

 WEB-INF

 web.xml

 classes

 com

 deitel

 advjhtp1

 servlets

 WelcomeServlet.class

Fig. 30.11Fig. 30.11Fig. 30.11Fig. 30.11 Web application directory and file structure for WelcomeServlet.

iw3htp2_30.fm Page 1075 Saturday, July 21, 2001 3:16 PM

1076 Servlets: Bonus for Java™ Developers Chapter 30

Actually, the HTML file in Fig. 30.6 was not necessary to invoke this servlet. A get
request can be sent to a server simply by typing the URL in the Web browser. In fact, that
is exactly what you are doing when you request a Web page in the browser. In this example,
you can type

http://localhost:8080/advjhtp1/welcome1

in the Address or Location field of your browser to invoke the servlet directly.

Testing and Debugging Tip 30.5
You can test a servlet that handles HTTP get requests by typing the URL that invokes the
servlet directly into your browser’s Address or Location field. 30.5

30.4 Handling HTTP get Requests Containing Data
When requesting a document or resource from a Web server, it is possible to supply data
as part of the request. The servlet WelcomeServlet2 of Fig. 30.12 responds to an HTTP
get request that contains a name supplied by the user. The servlet uses the name as part of
the response to the client.

1 // Fig. 9.12: WelcomeServlet2.java
2 // Processing HTTP get requests containing data.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.io.*;
8
9 public class WelcomeServlet2 extends HttpServlet {

10
11 // process "get" request from client
12 protected void doGet(HttpServletRequest request,
13 HttpServletResponse response)
14 throws ServletException, IOException
15 {
16 String firstName = request.getParameter("firstname");
17
18 response.setContentType("text/html");
19 PrintWriter out = response.getWriter();
20
21 // send XHTML document to client
22
23 // start XHTML document
24 out.println("<?xml version = \"1.0\"?>");
25
26 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
27 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
28 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
29
30 out.println(
31 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");

Fig. 30.12Fig. 30.12Fig. 30.12Fig. 30.12 WelcomeServlet2 handles a get request containing data (part 1 of 2).

iw3htp2_30.fm Page 1076 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1077

Parameters are passed as name/value pairs in a get request. Line 16 demonstrates how
to obtain information that was passed to the servlet as part of the client request. The
request object’s getParameter method receives the parameter name as an argument
and returns the corresponding String value, or null if the parameter is not part of the
request. Line 41 uses the result of line 16 as part of the response to the client.

The WelcomeServlet2.html document (Fig. 30.13) provides a form in which the
user can input a name in the text input element firstname (line 17) and click the
Submit button to invoke WelcomeServlet2. When the user presses the Submit button,
the values of the input elements are placed in name/value pairs as part of the request to the
server. In the second screen capture of Fig. 30.13, notice that the browser appended

?firstname=Paul

to the end of the action URL. The ? separates the query string (i.e., the data passed as
part of the get request) from the rest of the URL in a get request. The name/value pairs
are passed with the name and the value separated by =. If there is more than one name/value
pair, each name/value pair is separated by &.

32
33 // head section of document
34 out.println("<head>");
35 out.println(
36 "<title>Processing get requests with data</title>");
37 out.println("</head>");
38
39 // body section of document
40 out.println("<body>");
41 out.println("<h1>Hello " + firstName + ",
");
42 out.println("Welcome to Servlets!</h1>");
43 out.println("</body>");
44
45 // end XHTML document
46 out.println("</html>");
47 out.close(); // close stream to complete the page
48 }
49 }

Fig. 30.12Fig. 30.12Fig. 30.12Fig. 30.12 WelcomeServlet2 handles a get request containing data (part 2 of 2).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.13: WelcomeServlet2.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Processing get requests with data</title>

10 </head>

Fig. 30.13Fig. 30.13Fig. 30.13Fig. 30.13 HTML document in which the form’s action invokes Welcome-
Servlet2 using alias welcome2 specified in web.xml (part 1 of 2).

iw3htp2_30.fm Page 1077 Saturday, July 21, 2001 3:16 PM

1078 Servlets: Bonus for Java™ Developers Chapter 30

Once again, we use our advjhtp1 context root to demonstrate the servlet of Fig. 30.12.
Place WelcomeServlet2.html in the servlets directory created in Section 30.3.2.
Place WelcomeServlet2.class in the classes subdirectory of WEB-INF in the
advjhtp1 context root. Remember that classes in a package must be placed in the appro-
priate package directory structure. Then, edit the web.xml deployment descriptor in the
WEB-INF directory to include the information specified in Fig. 30.14. This table contains the
information for the servlet and servlet-mapping elements that you will add to the
web.xml deployment descriptor. You should not type the italic text into the deployment
descriptor. Restart Tomcat and type the following URL in your Web browser:

http://localhost:8080/advjhtp1/servlets/WelcomeServlet2.html

Type your name in the text field of the Web page, then click Submit to invoke the servlet.

11
12 <body>
13 <form action = "/advjhtp1/welcome2" method = "get">
14
15 <p><label>
16 Type your first name and press the Submit button
17
<input type = "text" name = "firstname" />
18 <input type = "submit" value = "Submit" />
19 </p></label>
20
21 </form>
22 </body>
23 </html>

Fig. 30.13Fig. 30.13Fig. 30.13Fig. 30.13 HTML document in which the form’s action invokes Welcome-
Servlet2 using alias welcome2 specified in web.xml (part 2 of 2).

form data
specified in
URL’s query
string as part
of a get
request

iw3htp2_30.fm Page 1078 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1079

Once again, note that the get request could have been typed directly into the
browser’s Address or Location field as follows:

http://localhost:8080/advjhtp1/welcome2?firstname=Paul

Try it with your own name.

30.5 Handling HTTP post Requests
An HTTP post request is often used to post data from an HTML form to a server-side
form handler that processes the data. For example, when you respond to a Web-based sur-
vey, a post request normally supplies the information you specify in the HTML form to
the Web server.

Browsers often cache (save on disk) Web pages so they can quickly reload the pages.
If there are no changes between the last version stored in the cache and the current version
on the Web, this helps speed up your browsing experience. The browser first asks the server
if the document has changed or expired since the date the file was cached. If not, the
browser loads the document from the cache. Thus, the browser minimizes the amount of
data that must be downloaded for you to view a Web page. Browsers typically do not cache
the server’s response to a post request, because the next post might not return the same
result. For example, in a survey, many users could visit the same Web page and respond to
a question. The survey results could then be displayed for the user. Each new response
changes the overall results of the survey.

When you use a Web-based search engine, the browser normally supplies the informa-
tion you specify in an HTML form to the search engine with a get request. The search
engine performs the search, then returns the results to you as a Web page. Such pages are
often cached by the browser in case you perform the same search again. As with post
requests, get requests can supply parameters as part of the request to the Web server.

The WelcomeServlet3 servlet of Fig. 30.15 is identical to the servlet of Fig. 30.12,
except that it defines a doPost method (line 12) to respond to post requests rather than a
doGet method. The default functionality of doPost is to indicate a “Method not allowed”
error. We override this method to provide custom post request processing. Method
doPost receives the same two arguments as doGet—an object that implements interface
HttpServletRequest to represent the client’s request and an object that implements

Descriptor element Value

servlet element

servlet-name welcome2

description Handling HTTP get requests with data.

servlet-class com.deitel.advjhtp1.servlets.WelcomeServlet2

servlet-mapping element

servlet-name welcome2

url-pattern /welcome2

Fig. 30.14Fig. 30.14Fig. 30.14Fig. 30.14 Deployment descriptor information for servlet WelcomeServlet2.

iw3htp2_30.fm Page 1079 Saturday, July 21, 2001 3:16 PM

1080 Servlets: Bonus for Java™ Developers Chapter 30

interface HttpServletResponse to represent the servlet’s response. As with doGet,
method doPost throws a ServletException if it is unable to handle a client’s request
and throws an IOException if a problem occurs during stream processing.

1 // Fig. 9.15: WelcomeServlet3.java
2 // Processing post requests containing data.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.io.*;
8
9 public class WelcomeServlet3 extends HttpServlet {

10
11 // process "post" request from client
12 protected void doPost(HttpServletRequest request,
13 HttpServletResponse response)
14 throws ServletException, IOException
15 {
16 String firstName = request.getParameter("firstname");
17
18 response.setContentType("text/html");
19 PrintWriter out = response.getWriter();
20
21 // send XHTML page to client
22
23 // start XHTML document
24 out.println("<?xml version = \"1.0\"?>");
25
26 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
27 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
28 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
29
30 out.println(
31 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
32
33 // head section of document
34 out.println("<head>");
35 out.println(
36 "<title>Processing post requests with data</title>");
37 out.println("</head>");
38
39 // body section of document
40 out.println("<body>");
41 out.println("<h1>Hello " + firstName + ",
");
42 out.println("Welcome to Servlets!</h1>");
43 out.println("</body>");
44
45 // end XHTML document
46 out.println("</html>");
47 out.close(); // close stream to complete the page
48 }
49 }

Fig. 30.15Fig. 30.15Fig. 30.15Fig. 30.15 WelcomeServlet3 responds to a post request that contains data.

iw3htp2_30.fm Page 1080 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1081

The WelcomeServlet3.html document (Fig. 30.16) provides a form (lines 13–
21) in which the user can input a name in the text input element firstname (line 17),
then click the Submit button to invoke WelcomeServlet3. When the user presses the
Submit button, the values of the input elements are sent to the server as part of the
request. However, note that the values are not appended to the request URL. Note that the
form’s method in this example is post. Also, note that a post request cannot be typed
into the browser’s Address or Location field and users cannot bookmark post requests
in their browsers.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.16: WelcomeServlet3.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Handling an HTTP Post Request with Data</title>

10 </head>
11
12 <body>
13 <form action = "/advjhtp1/welcome3" method = "post">
14
15 <p><label>
16 Type your first name and press the Submit button
17
<input type = "text" name = "firstname" />
18 <input type = "submit" value = "Submit" />
19 </label></p>
20
21 </form>
22 </body>
23 </html>

Fig. 30.16Fig. 30.16Fig. 30.16Fig. 30.16 HTML document in which the form’s action invokes Welcome-
Servlet3 through the alias welcome3 specified in web.xml.

iw3htp2_30.fm Page 1081 Saturday, July 21, 2001 3:16 PM

1082 Servlets: Bonus for Java™ Developers Chapter 30

We use our advjhtp1 context root to demonstrate the servlet of Fig. 30.15. Place
WelcomeServlet3.html in the servlets directory created in Section 30.3.2. Place
WelcomeServlet3.class in the classes subdirectory of WEB-INF in the
advjhtp1 context root. Then, edit the web.xml deployment descriptor in the WEB-INF
directory to include the information specified in Fig. 30.17. Restart Tomcat and type the
following URL in your Web browser:

http://localhost:8080/advjhtp1/servlets/WelcomeServlet3.html

Type your name in the text field of the Web page, then click Submit to invoke the servlet.

30.6 Redirecting Requests to Other Resources
Sometimes it is useful to redirect a request to a different resource. For example, a servlet
could determine the type of the client browser and redirect the request to a Web page that
was designed specifically for that browser. The RedirectServlet of Fig. 30.18 re-
ceives a page parameter as part of a get request, then uses that parameter to redirect the
request to a different resource.

Descriptor element Value

servlet element

servlet-name welcome3

description Handling HTTP post requests with data.

servlet-class com.deitel.advjhtp1.servlets.WelcomeServlet3

servlet-mapping element

servlet-name welcome3

url-pattern /welcome3

Fig. 30.17Fig. 30.17Fig. 30.17Fig. 30.17 Deployment descriptor information for servlet WelcomeServlet3.

1 // Fig. 9.18: RedirectServlet.java
2 // Redirecting a user to a different Web page.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.io.*;
8
9 public class RedirectServlet extends HttpServlet {

10
11 // process "get" request from client
12 protected void doGet(HttpServletRequest request,
13 HttpServletResponse response)
14 throws ServletException, IOException
15 {

Fig. 30.18Fig. 30.18Fig. 30.18Fig. 30.18 Redirecting requests to other resources (part 1 of 2).

iw3htp2_30.fm Page 1082 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1083

Line 16 obtains the page parameter from the request. If the value returned is not
null, the if/else structure at lines 20–24 determines if the value is either “deitel” or
“welcome1.” If the value is “deitel,” the response object’s sendRedirect
method (line 21) redirects the request to www.deitel.com. If the value is
“welcome1,” line 24 redirect the request to the servlet of Fig. 30.5. Note that line 24 does
not explicitly specify the advjhtp1 context root for our Web application. When a servlet

16 String location = request.getParameter("page");
17
18 if (location != null)
19
20 if (location.equals("deitel"))
21 response.sendRedirect("http://www.deitel.com");
22 else
23 if (location.equals("welcome1"))
24 response.sendRedirect("welcome1");
25
26 // code that executes only if this servlet
27 // does not redirect the user to another page
28
29 response.setContentType("text/html");
30 PrintWriter out = response.getWriter();
31
32 // start XHTML document
33 out.println("<?xml version = \"1.0\"?>");
34
35 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
36 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
37 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
38
39 out.println(
40 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
41
42 // head section of document
43 out.println("<head>");
44 out.println("<title>Invalid page</title>");
45 out.println("</head>");
46
47 // body section of document
48 out.println("<body>");
49 out.println("<h1>Invalid page requested</h1>");
50 out.println("<p><a href = " +
51 "\"servlets/RedirectServlet.html\">");
52 out.println("Click here to choose again</p>");
53 out.println("</body>");
54
55 // end XHTML document
56 out.println("</html>");
57 out.close(); // close stream to complete the page
58 }
59 }

Fig. 30.18Fig. 30.18Fig. 30.18Fig. 30.18 Redirecting requests to other resources (part 2 of 2).

iw3htp2_30.fm Page 1083 Saturday, July 21, 2001 3:16 PM

1084 Servlets: Bonus for Java™ Developers Chapter 30

uses a relative path to reference another static or dynamic resource, the servlet assumes the
same base URL and context root as the one that invoked the servlet—unless a complete
URL is specified for the resource. So, line 24 actually is requesting the resource located at

http://localhost:8080/advjhtp1/welcome1

Similarly, line 51 actually is requesting the resource located at

http://localhost:8080/advjhtp1/servlets/RedirectServlet.html

Software Engineering Observation 30.7
Using relative paths to reference resources in the same context root makes your Web appli-
cation more flexible. For example, you can change the context root without making changes
to the static and dynamic resources in the application. 30.7

Once method sendRedirect executes, processing of the original request by the
RedirectServlet terminates. If method sendRedirect is not called, the remainder
of method doPost outputs a Web page indicating that an invalid request was made. The
page allows the user to try again by returning to the XHTML document of Fig. 30.19. Note
that one of the redirects is sent to a static XHTML Web page and the other is sent to a
servlet.

The RedirectServlet.html document (Fig. 30.19) provides two hyperlinks
(lines 15–16 and 17–18) that allow the user to invoke the servlet RedirectServlet.
Note that each hyperlink specifies a page parameter as part of the URL. To demonstrate
passing an invalid page, you can type the URL into your browser with no value for the
page parameter.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.19: RedirectServlet.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Redirecting a Request to Another Site</title>

10 </head>
11
12 <body>
13 <p>Click a link to be redirected to the appropriate page</p>
14 <p>
15
16 www.deitel.com

17
18 Welcome servlet
19 </p>
20 </body>
21 </html>

Fig. 30.19Fig. 30.19Fig. 30.19Fig. 30.19 RedirectServlet.html document to demonstrate redirecting
requests to other resources.

iw3htp2_30.fm Page 1084 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1085

We use our advjhtp1 context root to demonstrate the servlet of Fig. 30.18. Place
RedirectServlet.html in the servlets directory created in Section 30.3.2. Place
RedirectServlet.class in the classes subdirectory of WEB-INF in the
advjhtp1 context root. Then, edit the web.xml deployment descriptor in the WEB-INF
directory to include the information specified in Fig. 30.20. Restart Tomcat, and type the
following URL in your Web browser:

http://localhost:8080/advjhtp1/servlets/RedirectServlet.html

Click a hyperlink in the Web page to invoke the servlet.

Fig. 30.19Fig. 30.19Fig. 30.19Fig. 30.19 RedirectServlet.html document to demonstrate redirecting
requests to other resources.

Descriptor element Value

servlet element

servlet-name redirect

description Redirecting to static Web pages and other serv-
lets.

servlet-class com.deitel.advjhtp1.servlets.RedirectServlet

servlet-mapping element

servlet-name redirect

url-pattern /redirect

Fig. 30.20Fig. 30.20Fig. 30.20Fig. 30.20 Deployment descriptor information for servlet RedirectServlet.

iw3htp2_30.fm Page 1085 Saturday, July 21, 2001 3:16 PM

1086 Servlets: Bonus for Java™ Developers Chapter 30

When redirecting requests, the request parameters from the original request are passed
as parameters to the new request. Additional request parameters also can be passed. For
example, the URL passed to sendRedirect could contain name/value pairs. Any new
parameters are added to the existing parameters. If a new parameter has the same name as
an existing parameter, the new parameter value takes precedence over the original value.
However, all the values are still passed. In this case, the complete set of values for a given
parameter name can be obtained by calling method getParameterValues from inter-
face HttpServletRequest. This method receives the parameter name as an argument
and returns an array of Strings containing the parameter values in order from most recent
to least recent.

30.7 Session Tracking
Many e-businesses can personalize users’ browsing experiences, tailoring Web pages to
their users’ individual preferences and letting users bypass irrelevant content. This is done
by tracking the consumer’s movement through the Internet and combining that data with in-
formation provided by the consumer, which could include billing information, interests and
hobbies, among other things. Personalization is making it easier and more pleasant for many
people to surf the Internet and find what they want. Consumers and companies can benefit
from the unique treatment resulting from personalization. Providing content of special inter-
est to your visitor can help establish a relationship that you can build upon each time that
person returns to your site. Targeting consumers with personal offers, advertisements, pro-
motions and services may lead to more customer loyalty—many customers enjoy the indi-
vidual attention that a customized site provides. Originally, the Internet lacked personal
assistance when compared with the individual service often experienced in bricks-and-mor-
tar stores. Sophisticated technology helps many Web sites offer a personal touch to their vis-
itors. For example, Web sites such as MSN.com and CNN.com allow you to customize their
home page to suit your needs. Online shopping sites often customize their Web pages to in-
dividuals, and such sites must distinguish between clients so the company can determine the
proper items and charge the proper amount for each client. Personalization is important for
Internet marketing and for managing customer relationships to increase customer loyalty.

Hand in hand with the promise of personalization, however, comes the problem of pri-
vacy invasion. What if the e-business to which you give your personal data sells or gives
those data to another organization without your knowledge? What if you do not want your
movements on the Internet to be tracked by unknown parties? What if an unauthorized
party gains access to your private data, such as credit-card numbers or medical history?
These are some of the many questions that must be addressed by consumers, e-businesses
and lawmakers alike.

As we have discussed, the request/response mechanism of the Web is based on HTTP.
Unfortunately, HTTP is a stateless protocol—it does not support persistent information
that could help a Web server determine that a request is from a particular client. As far as
a Web server is concerned, every request could be from the same client or every request
could be from a different client. Thus, sites like MSN.com and CNN.com need a mecha-
nism to identify individual clients. To help the server distinguish between clients, each
client must identify itself to the server. There are a number of popular techniques for dis-
tinguishing between clients. We introduce two techniques to track clients individually—
cookies (Section 30.7.1) and session tracking (Section 30.7.2). Two other techniques not

iw3htp2_30.fm Page 1086 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1087

discussed in this chapter are using input form elements of type "hidden" and URL
rewriting. With "hidden" form elements, the servlet can write session-tracking data into
a form in the Web page it returns to the client to satisfy a prior request. When the user sub-
mits the form in the new Web page, all the form data, including the "hidden" fields, are
sent to the form handler on the server. With URL rewriting, the servlet embeds session-
tracking information as get parameters directly in the URLs of hyperlinks that the user
might click to make the next request to the Web server.

30.7.1 Cookies

A popular way to customize Web pages is via cookies. Browsers can store cookies on the
user’s computer for retrieval later in the same browsing session or in future browsing ses-
sions. For example, cookies could be used in a shopping application to store unique identi-
fiers for the users. When users add items to their online shopping carts or perform other
tasks resulting in a request to the Web server, the server receives cookies containing unique
identifiers for each user. The server then uses the unique identifier to locate the shopping
carts and perform the necessary processing. Cookies could also be used to indicate the cli-
ent’s shopping preferences. When the servlet receives the client’s next communication, the
servlet can examine the cookie(s) it sent to the client in a previous communication, identify
the client’s preferences and immediately display products of interest to the client.

Cookies are text-based data that are sent by servlets (or other similar server-side tech-
nologies) as part of responses to clients. Every HTTP-based interaction between a client
and a server includes a header containing information about the request (when the commu-
nication is from the client to the server) or information about the response (when the com-
munication is from the server to the client). When an HttpServlet receives a request,
the header includes information such as the request type (e.g., get or post) and the
cookies that are sent by the server to be stored on the client machine. When the server for-
mulates its response, the header information includes any cookies the server wants to store
on the client computer and other information such as the MIME type of the response.

Testing and Debugging Tip 30.6
Some clients do not accept cookies. When a client declines a cookie, the browser application
normally informs the client that the site may not function correctly without cookies enabled. 30.6

Depending on the maximum age of a cookie, the Web browser either maintains the
cookie for the duration of the browsing session (i.e., until the user closes the Web browser)
or stores the cookie on the client computer for future use. When the browser requests a
resource from a server, cookies previously sent to the client by that server are returned to
the server as part of the request formulated by the browser. Cookies are deleted automati-
cally when they expire (i.e., reach their maximum age).

Figure 30.21 demonstrates cookies. The example allows the user to select a favorite
programming language and post the choice to the server. The response is a Web page in
which the user can select another favorite language or click a link to view a list of book
recommendations. When the user selects the list of book recommendations, a get request
is sent to the server. The cookies previously stored on the client are read by the servlet and
used to form a Web page containing the book recommendations.

CookieServlet (Fig. 30.21) handles both the get and the post requests. The
CookieSelectLanguage.html document of Fig. 30.22 contains four radio buttons

iw3htp2_30.fm Page 1087 Saturday, July 21, 2001 3:16 PM

1088 Servlets: Bonus for Java™ Developers Chapter 30

(C, C++, Java and VB 6) and a Submit button. When the user presses Submit, the
CookieServlet is invoked with a post request. The servlet adds a cookie containing
the selected language to the response header and sends an XHTML document to the client.
Each time the user clicks Submit, a cookie is sent to the client.

1 // Fig. 9.21: CookieServlet.java
2 // Using cookies to store data on the client computer.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.io.*;
8 import java.util.*;
9

10 public class CookieServlet extends HttpServlet {
11 private final Map books = new HashMap();
12
13 // initialize Map books
14 public void init()
15 {
16 books.put("C", "0130895725");
17 books.put("C++", "0130895717");
18 books.put("Java", "0130125075");
19 books.put("VB6", "0134569555");
20 }
21
22 // receive language selection and send cookie containing
23 // recommended book to the client
24 protected void doPost(HttpServletRequest request,
25 HttpServletResponse response)
26 throws ServletException, IOException
27 {
28 String language = request.getParameter("language");
29 String isbn = books.get(language).toString();
30 Cookie cookie = new Cookie(language, isbn);
31
32 response.addCookie(cookie); // must precede getWriter
33 response.setContentType("text/html");
34 PrintWriter out = response.getWriter();
35
36 // send XHTML page to client
37
38 // start XHTML document
39 out.println("<?xml version = \"1.0\"?>");
40
41 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
42 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
43 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
44
45 out.println(
46 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
47

Fig. 30.21Fig. 30.21Fig. 30.21Fig. 30.21 Storing user data on the client computer with cookies (part 1 of 3).

iw3htp2_30.fm Page 1088 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1089

48 // head section of document
49 out.println("<head>");
50 out.println("<title>Welcome to Cookies</title>");
51 out.println("</head>");
52
53 // body section of document
54 out.println("<body>");
55 out.println("<p>Welcome to Cookies! You selected " +
56 language + "</p>");
57
58 out.println("<p><a href = " +
59 "\"/advjhtp1/servlets/CookieSelectLanguage.html\">" +
60 "Click here to choose another language</p>");
61
62 out.println("<p>" +
63 "Click here to get book recommendations</p>");
64 out.println("</body>");
65
66 // end XHTML document
67 out.println("</html>");
68 out.close(); // close stream
69 }
70
71 // read cookies from client and create XHTML document
72 // containing recommended books
73 protected void doGet(HttpServletRequest request,
74 HttpServletResponse response)
75 throws ServletException, IOException
76 {
77 Cookie cookies[] = request.getCookies(); // get cookies
78
79 response.setContentType("text/html");
80 PrintWriter out = response.getWriter();
81
82 // start XHTML document
83 out.println("<?xml version = \"1.0\"?>");
84
85 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
86 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
87 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
88
89 out.println(
90 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
91
92 // head section of document
93 out.println("<head>");
94 out.println("<title>Recommendations</title>");
95 out.println("</head>");
96
97 // body section of document
98 out.println("<body>");
99

Fig. 30.21Fig. 30.21Fig. 30.21Fig. 30.21 Storing user data on the client computer with cookies (part 2 of 3).

iw3htp2_30.fm Page 1089 Saturday, July 21, 2001 3:16 PM

1090 Servlets: Bonus for Java™ Developers Chapter 30

Line 11 defines Map books as a HashMap in which we store key/value pairs that use
the programming language as the key and the ISBN number of the recommended book as the
value. The CookieServlet init method (line 14–20) populates books with four key/
value pairs of books. Method doPost (lines 24–69) is invoked in response to the post
request from the XHTML document of Fig. 30.22. Line 28 uses method getParameter to
obtain the user’s language selection (the value of the selected radio button on the Web
page). Line 29 obtains the ISBN number for the selected language from books.

Line 30 creates a new Cookie object (package javax.servlet.http), using the
language and isbn values as the cookie name and cookie value, respectively. The
cookie name identifies the cookie; the cookie value is the information associated with the
cookie. Browsers that support cookies must be able to store a minimum of 20 cookies per
Web site and 300 cookies per user. Browsers may limit the cookie size to 4K (4096 bytes).
Each cookie stored on the client includes a domain. The browser sends a cookie only to the
domain stored in the cookie.

Software Engineering Observation 30.8
Browser users can disable cookies, so Web applications that use cookies may not function
properly for clients with cookies disabled. 30.8

Software Engineering Observation 30.9
By default, cookies exist only for the current browsing session (until the user closes the
browser). To make cookies persist beyond the current session, call Cookie method set-
MaxAge to indicate the number of seconds until the cookie expires. 30.9

100 // if there are any cookies, recommend a book for each ISBN
101 if (cookies != null && cookies.length != 0) {
102 out.println("<h1>Recommendations</h1>");
103 out.println("<p>");
104
105 // get the name of each cookie
106 for (int i = 0; i < cookies.length; i++)
107 out.println(cookies[i].getName() +
108 " How to Program. ISBN#: " +
109 cookies[i].getValue() + "
");
110
111 out.println("</p>");
112 }
113 else { // there were no cookies
114 out.println("<h1>No Recommendations</h1>");
115 out.println("<p>You did not select a language.</p>");
116 }
117
118 out.println("</body>");
119
120 // end XHTML document
121 out.println("</html>");
122 out.close(); // close stream
123 }
124 }

Fig. 30.21Fig. 30.21Fig. 30.21Fig. 30.21 Storing user data on the client computer with cookies (part 3 of 3).

iw3htp2_30.fm Page 1090 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1091

Line 32 adds the cookie to the response with method addCookie of interface
HttpServletResponse. Cookies are sent to the client as part of the HTTP header. The
header information is always provided to the client first, so the cookies should be added to
the response with addCookie before any data is written as part of the response. After
the cookie is added, the servlet sends an XHTML document to the client (see the second
screen capture of Fig. 30.22).

Common Programming Error 30.3
Writing response data to the client before calling method addCookie to add a cookie to the
response is a logic error. Cookies must be added to the header first. 30.3

The XHTML document sent to the client in response to a post request includes a
hyperlink that invokes method doGet (lines 73–123). The method reads any Cookies
that were written to the client in doPost. For each Cookie written, the servlet recom-
mends a Deitel book on the subject. Up to four books are displayed on the Web page created
by the servlet.

Line 77 retrieves the cookies from the client using HttpServletRequest method
getCookies, which returns an array of Cookie objects. When a get or post opera-
tion is performed to invoke a servlet, the cookies associated with that server’s domain are
automatically sent to the servlet.

If method getCookies does not return null (i.e., there were no cookies), lines
106–109 retrieve the name of each Cookie using Cookie method getName, retrieve the
value of each Cookie using Cookie method getValue and write a line to the client
indicating the name of a recommended book and its ISBN number.

Software Engineering Observation 30.10
Normally, each servlet class handles one request type (e.g., get or post, but not both). 30.10

Figure 30.22 shows the XHTML document the user loads to select a language. When
the user presses Submit, the value of the currently selected radio button is sent to the
server as part of the post request to the CookieServlet, which we refer to as
cookies in this example.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.22: CookieSelectLanguage.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Using Cookies</title>

10 </head>
11
12 <body>
13 <form action = "/advjhtp1/cookies" method = "post">
14

Fig. 30.22Fig. 30.22Fig. 30.22Fig. 30.22 CookieSelectLanguage.html document for selecting a program-
ming language and posting the data to the CookieServlet (part 1 of 3).

iw3htp2_30.fm Page 1091 Saturday, July 21, 2001 3:16 PM

1092 Servlets: Bonus for Java™ Developers Chapter 30

15 <p>Select a programming language:</p>
16 <p>
17 <input type = "radio" name = "language"
18 value = "C" />C

19
20 <input type = "radio" name = "language"
21 value = "C++" />C++

22
23 <!-- this radio button checked by default -->
24 <input type = "radio" name = "language"
25 value = "Java" checked = "checked" />Java

26
27 <input type = "radio" name = "language"
28 value = "VB6" />VB 6
29 </p>
30
31 <p><input type = "submit" value = "Submit" /></p>
32
33 </form>
34 </body>
35 </html>

Fig. 30.22Fig. 30.22Fig. 30.22Fig. 30.22 CookieSelectLanguage.html document for selecting a program-
ming language and posting the data to the CookieServlet (part 2 of 3).

iw3htp2_30.fm Page 1092 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1093

We use our advjhtp1 context root to demonstrate the servlet of Fig. 30.21. Place
CookieSelectLanguage.html in the servlets directory created previously.
Place CookieServlet.class in the classes subdirectory of WEB-INF in the
advjhtp1 context root. Then, edit the web.xml deployment descriptor in the WEB-INF
directory to include the information specified in Fig. 30.23. Restart Tomcat and type the
following URL in your Web browser:

Fig. 30.22Fig. 30.22Fig. 30.22Fig. 30.22 CookieSelectLanguage.html document for selecting a program-
ming language and posting the data to the CookieServlet (part 3 of 3).

iw3htp2_30.fm Page 1093 Saturday, July 21, 2001 3:16 PM

1094 Servlets: Bonus for Java™ Developers Chapter 30

http://localhost:8080/advjhtp1/servlets/
CookieSelectLanguage.html

When the Web page appears, select a language and press the Submit button in the Web
page to invoke the servlet.

Various Cookie methods are provided to manipulate the members of a Cookie.
Some of these methods are listed in Fig. 30.24.

Descriptor element Value

servlet element

servlet-name cookies

description Using cookies to maintain state information.

servlet-class com.deitel.advjhtp1.servlets.CookieServlet

servlet-mapping element

servlet-name cookies

url-pattern /cookies

Fig. 30.23Fig. 30.23Fig. 30.23Fig. 30.23 Deployment descriptor information for servlet CookieServlet.

Method Description

getComment() Returns a String describing the purpose of the cookie (null if
no comment has been set with setComment).

getDomain() Returns a String containing the cookie’s domain. This deter-
mines which servers can receive the cookie. By default, cookies
are sent to the server that originally sent the cookie to the client.

getMaxAge() Returns an int representing the maximum age of the cookie in
seconds.

getName() Returns a String containing the name of the cookie as set by
the constructor.

getPath() Returns a String containing the URL prefix for the cookie.
Cookies can be “targeted” to specific URLs that include directo-
ries on the Web server. By default, a cookie is returned to services
operating in the same directory as the service that sent the cookie
or a subdirectory of that directory.

getSecure() Returns a boolean value indicating if the cookie should be
transmitted using a secure protocol (true).

getValue() Returns a String containing the value of the cookie as set with
setValue or the constructor.

Fig. 30.24Fig. 30.24Fig. 30.24Fig. 30.24 Important methods of class Cookie (part 1 of 2).

iw3htp2_30.fm Page 1094 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1095

30.7.2 Session Tracking with HttpSession

Java provides enhanced session tracking support with the servlet API’s HttpSession in-
terface. To demonstrate basic session-tracking techniques, we modified the servlet from
Fig. 30.21 to use HttpSession objects (Fig. 30.25). Once again, the servlet handles both
get and post requests. The document SessionSelectLanguage.html of
Fig. 30.26 contains four radio buttons (C, C++, Java and VB 6) and a Submit button.
When the user presses Submit, SessionServlet is invoked with a post request. The
servlet responds by creating an object of type HttpSession for the client (or using an
existing session for the client) and adds the selected language and an ISBN number for the
recommended book to the HttpSession object. Then, the servlet sends an XHTML page
to the client. Each time the user clicks Submit, a new language/ISBN pair is added to the
HttpSession object.

getVersion() Returns an int containing the version of the cookie protocol
used to create the cookie. A value of 0 (the default) indicates the
original cookie protocol as defined by Netscape. A value of 1
indicates the current version, which is based on Request for Com-
ments (RFC) 2109.

setComment(String) The comment describing the purpose of the cookie that is pre-
sented by the browser to the user. (Some browsers allow the user
to accept cookies on a per-cookie basis.)

setDomain(String) This determines which servers can receive the cookie. By default,
cookies are sent to the server that originally sent the cookie to the
client. The domain is specified in the form ".deitel.com",
indicating that all servers ending with .deitel.com can
receive this cookie.

setMaxAge(int) Sets the maximum age of the cookie in seconds.

setPath(String) Sets the “target” URL prefix indicating the directories on the
server that lead to the services that can receive this cookie.

setSecure(boolean) A true value indicates that the cookie should only be sent using
a secure protocol.

setValue(String) Sets the value of a cookie.

setVersion(int) Sets the cookie protocol for this cookie.

1 // Fig. 9.25: SessionServlet.java
2 // Using HttpSession to maintain client state information.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;

Fig. 30.25Fig. 30.25Fig. 30.25Fig. 30.25 Maintaining state information with HttpSession objects (part 1 of 4).

Method Description

Fig. 30.24Fig. 30.24Fig. 30.24Fig. 30.24 Important methods of class Cookie (part 2 of 2).

iw3htp2_30.fm Page 1095 Saturday, July 21, 2001 3:16 PM

1096 Servlets: Bonus for Java™ Developers Chapter 30

6 import javax.servlet.http.*;
7 import java.io.*;
8 import java.util.*;
9

10 public class SessionServlet extends HttpServlet {
11 private final Map books = new HashMap();
12
13 // initialize Map books
14 public void init()
15 {
16 books.put("C", "0130895725");
17 books.put("C++", "0130895717");
18 books.put("Java", "0130125075");
19 books.put("VB6", "0134569555");
20 }
21
22 // receive language selection and create HttpSession object
23 // containing recommended book for the client
24 protected void doPost(HttpServletRequest request,
25 HttpServletResponse response)
26 throws ServletException, IOException
27 {
28 String language = request.getParameter("language");
29
30 // Get the user's session object.
31 // Create a session (true) if one does not exist.
32 HttpSession session = request.getSession(true);
33
34 // add a value for user's choice to session
35 session.setAttribute(language, books.get(language));
36
37 response.setContentType("text/html");
38 PrintWriter out = response.getWriter();
39
40 // send XHTML page to client
41
42 // start XHTML document
43 out.println("<?xml version = \"1.0\"?>");
44
45 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
46 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
47 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
48
49 out.println(
50 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
51
52 // head section of document
53 out.println("<head>");
54 out.println("<title>Welcome to Sessions</title>");
55 out.println("</head>");
56
57 // body section of document
58 out.println("<body>");

Fig. 30.25Fig. 30.25Fig. 30.25Fig. 30.25 Maintaining state information with HttpSession objects (part 2 of 4).

iw3htp2_30.fm Page 1096 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1097

59 out.println("<p>Welcome to Sessions! You selected " +
60 language + ".</p>");
61
62 // display information about the session
63 out.println("<p>Your unique session ID is: " +
64 session.getId() + "
");
65
66 out.println(
67 "This " + (session.isNew() ? "is" : "is not") +
68 " a new session
");
69
70 out.println("The session was created at: " +
71 new Date(session.getCreationTime()) + "
");
72
73 out.println("You last accessed the session at: " +
74 new Date(session.getLastAccessedTime()) + "
");
75
76 out.println("The maximum inactive interval is: " +
77 session.getMaxInactiveInterval() + " seconds</p>");
78
79 out.println("<p><a href = " +
80 "\"servlets/SessionSelectLanguage.html\">" +
81 "Click here to choose another language</p>");
82
83 out.println("<p>" +
84 "Click here to get book recommendations</p>");
85 out.println("</body>");
86
87 // end XHTML document
88 out.println("</html>");
89 out.close(); // close stream
90 }
91
92 // read session attributes and create XHTML document
93 // containing recommended books
94 protected void doGet(HttpServletRequest request,
95 HttpServletResponse response)
96 throws ServletException, IOException
97 {
98 // Get the user's session object.
99 // Do not create a session (false) if one does not exist.
100 HttpSession session = request.getSession(false);
101
102 // get names of session object's values
103 Enumeration valueNames;
104
105 if (session != null)
106 valueNames = session.getAttributeNames();
107 else
108 valueNames = null;
109
110 PrintWriter out = response.getWriter();
111 response.setContentType("text/html");

Fig. 30.25Fig. 30.25Fig. 30.25Fig. 30.25 Maintaining state information with HttpSession objects (part 3 of 4).

iw3htp2_30.fm Page 1097 Saturday, July 21, 2001 3:16 PM

1098 Servlets: Bonus for Java™ Developers Chapter 30

Most of class SessionServlet is identical to CookieServlet (Fig. 30.21), so
we concentrate on only the new features here. When the user selects a language from the

112
113 // start XHTML document
114 out.println("<?xml version = \"1.0\"?>");
115
116 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
117 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
118 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
119
120 out.println(
121 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
122
123 // head section of document
124 out.println("<head>");
125 out.println("<title>Recommendations</title>");
126 out.println("</head>");
127
128 // body section of document
129 out.println("<body>");
130
131 if (valueNames != null &&
132 valueNames.hasMoreElements()) {
133 out.println("<h1>Recommendations</h1>");
134 out.println("<p>");
135
136 String name, value;
137
138 // get value for each name in valueNames
139 while (valueNames.hasMoreElements()) {
140 name = valueNames.nextElement().toString();
141 value = session.getAttribute(name).toString();
142
143 out.println(name + " How to Program. " +
144 "ISBN#: " + value + "
");
145 }
146
147 out.println("</p>");
148 }
149 else {
150 out.println("<h1>No Recommendations</h1>");
151 out.println("<p>You did not select a language.</p>");
152 }
153
154 out.println("</body>");
155
156 // end XHTML document
157 out.println("</html>");
158 out.close(); // close stream
159 }
160 }

Fig. 30.25Fig. 30.25Fig. 30.25Fig. 30.25 Maintaining state information with HttpSession objects (part 4 of 4).

iw3htp2_30.fm Page 1098 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1099

document SessionSelectLanguage.html (Fig. 30.26) and presses Submit,
method doPost (lines 24–90) is invoked. Line 28 gets the user’s language selection.
Then, line 32 uses method getSession of interface HttpServletRequest to obtain
the HttpSession object for the client. If the server has an existing HttpSession
object for the client from a previous request, method getSession returns that
HttpSession object. Otherwise, the true argument to method getSession indi-
cates that the servlet should create a unique new HttpSession object for the client. A
false argument would cause method getSession to return null if the HttpSes-
sion object for the client did not already exist. Using a false argument could help deter-
mine whether a client has logged into a Web application.

Like a cookie, an HttpSession object can store name/value pairs. In session termi-
nology, these are called attributes, and they are placed into an HttpSession object with
method setAttribute. Line 35 uses setAttribute to put the language and the cor-
responding recommended book’s ISBN number into the HttpSession object. One of the
primary benefits of using HttpSession objects rather than cookies is that HttpSes-
sion objects can store any object (not just Strings) as the value of an attribute. This
allows Java programmers flexibility in determining the type of state information they wish
to maintain for clients of their Web applications. If an attribute with a particular name
already exists when setAttribute is called, the object associated with that attribute
name is replaced.

Software Engineering Observation 30.11
Name/value pairs added to an HttpSession object with setAttribute remain avail-
able until the client’s current browsing session ends or until the session is invalidated explic-
itly by a call to the HttpSession object’s invalidate method. Also, if the servlet
container is restarted, these attributes may be lost. 30.11

After the values are added to the HttpSession object, the servlet sends an XHTML
document to the client (see the second screen capture of Fig. 30.26). In this example, the
document contains various information about the HttpSession object for the current
client. Line 64 uses HttpSession method getID to obtain the session’s unique ID
number. Line 67 determines whether the session is new or already exists with method
isNew, which returns true or false. Line 71 obtains the time at which the session was
created with method getCreationTime. Line 74 obtains the time at which the session
was last accessed with method getLastAccessedTime. Line 77 uses method get-
MaxInactiveInterval to obtain the maximum amount of time that an HttpSes-
sion object can be inactive before the servlet container discards it.

The XHTML document sent to the client in response to a post request includes a
hyperlink that invokes method doGet (lines 94–159). The method obtains the HttpSes-
sion object for the client with method getSession (line 100). We do not want to make
any recommendations if the client does not have an existing HttpSession object. So,
this call to getSession uses a false argument. Thus, getSession returns an
HttpSession object only if one already exists for the client.

If method getSession does not return null, line 106 uses HttpSession method
getAttributeNames to retrieve an Enumeration of the attribute names (i.e., the
names used as the first argument to HttpSession method setAttribute). Each
name is passed as an argument to HttpSession method getAttribute (line 141) to
retrieve the ISBN of a book from the HttpSession object. Method getAttribute

iw3htp2_30.fm Page 1099 Saturday, July 21, 2001 3:16 PM

1100 Servlets: Bonus for Java™ Developers Chapter 30

receives the name and returns an Object reference to the corresponding value. Next, a
line is written in the response to the client containing the title of the recommended book
and that book’s ISBN number.

Figure 30.26 shows the XHTML document the user loads to select a language. When
the user presses Submit, the value of the currently selected radio button is sent to the
server as part of the post request to the SessionServlet, which we refer to as ses-
sions in this example.

We use our advjhtp1 context root to demonstrate the servlet of Fig. 30.25. Place
SessionSelectLanguage.html in the servlets directory created previously.
Place SessionServlet.class in the classes subdirectory of WEB-INF in the
advjhtp1 context root. Then, edit the web.xml deployment descriptor in the WEB-INF
directory to include the information specified in Fig. 30.27. Restart Tomcat and type the
following URL in your Web browser:

http://localhost:8080/advjhtp1/servlets/
SessionSelectLanguage.html

When the Web page appears, select a language, and press the Submit button in the Web
page to invoke the servlet.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.26: SessionSelectLanguage.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Using Sessions</title>

10 </head>
11
12 <body>
13 <form action = "/advjhtp1/sessions" method = "post">
14
15 <p>Select a programming language:</p>
16 <p>
17 <input type = "radio" name = "language"
18 value = "C" />C

19
20 <input type = "radio" name = "language"
21 value = "C++" />C++

22
23 <!-- this radio button checked by default -->
24 <input type = "radio" name = "language"
25 value = "Java" checked = "checked" />Java

26
27 <input type = "radio" name = "language"
28 value = "VB6" />VB 6

Fig. 30.26Fig. 30.26Fig. 30.26Fig. 30.26 SessionSelectLanguage.html document for selecting a
programming language and posting the data to the SessionServlet
(part 1 of 3).

iw3htp2_30.fm Page 1100 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1101

29 </p>
30
31 <p><input type = "submit" value = "Submit" /></p>
32
33 </form>
34 </body>
35 </html>

Fig. 30.26Fig. 30.26Fig. 30.26Fig. 30.26 SessionSelectLanguage.html document for selecting a
programming language and posting the data to the SessionServlet
(part 2 of 3).

iw3htp2_30.fm Page 1101 Saturday, July 21, 2001 3:16 PM

1102 Servlets: Bonus for Java™ Developers Chapter 30

Fig. 30.26Fig. 30.26Fig. 30.26Fig. 30.26 SessionSelectLanguage.html document for selecting a
programming language and posting the data to the SessionServlet
(part 3 of 3).

iw3htp2_30.fm Page 1102 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1103

30.8 Multi-tier Applications: Using JDBC from a Servlet
Servlets can communicate with databases via JDBC (Java Database Connectivity), which
provides a uniform way for a Java program to connect with a variety of databases in a
general manner without having to deal with the specifics of those database systems.

Many of today’s applications are three-tier distributed applications, consisting of a
user interface, business logic and database access. The user interface in such an appli-
cation is often created using HTML, XHTML (as shown in this chapter) or Dynamic
HTML. In some cases, Java applets are also used for this tier. HTML and XHTML are
the preferred mechanisms for representing the user interface in systems where portability
is a concern. Because HTML is supported by all browsers, designing the user interface
to be accessed through a Web browser guarantees portability across all platforms that
have browsers. Using the networking provided automatically by the browser, the user
interface can communicate with the middle-tier business logic. The middle tier can then
access the database to manipulate the data. The three tiers can reside on separate com-
puters that are connected to a network.

In multi-tier architectures, Web servers often represent the middle tier. They provide
the business logic that manipulates data from databases and that communicates with
client Web browsers. Servlets, through JDBC, can interact with popular database sys-
tems. Developers do not need to be familiar with the specifics of each database system.
Rather, developers use SQL-based queries and the JDBC driver handles the specifics of
interacting with each database system.

The SurveyServlet of Fig. 30.28 and the Survey.html document of
Fig. 30.29 demonstrate a three-tier distributed application that displays the user interface
in a browser using XHTML. The middle tier is a Java servlet that handles requests from
the client browser and provides access to the third tier—a Cloudscape database accessed
via JDBC. The servlet in this example is a survey servlet that allows users to vote for their
favorite animal. When the servlet receives a post request from the Survey.html doc-
ument, the servlet updates the total number of votes for that animal in the database and
returns a dynamically generated XHTML document containing the survey results to the
client.

Descriptor element Value

servlet element

servlet-name sessions

description Using sessions to maintain state information.

servlet-class com.deitel.advjhtp1.servlets.SessionServlet

servlet-mapping element

servlet-name sessions

url-pattern /sessions

Fig. 30.27Fig. 30.27Fig. 30.27Fig. 30.27 Deployment descriptor information for servlet WelcomeServlet2.

iw3htp2_30.fm Page 1103 Saturday, July 21, 2001 3:16 PM

1104 Servlets: Bonus for Java™ Developers Chapter 30

1 // Fig. 9.27: SurveyServlet.java
2 // A Web-based survey that uses JDBC from a servlet.
3 package com.deitel.advjhtp1.servlets;
4
5 import java.io.*;
6 import java.text.*;
7 import java.sql.*;
8 import javax.servlet.*;
9 import javax.servlet.http.*;

10
11 public class SurveyServlet extends HttpServlet {
12 private Connection connection;
13 private PreparedStatement updateVotes, totalVotes, results;
14
15 // set up database connection and prepare SQL statements
16 public void init(ServletConfig config)
17 throws ServletException
18 {
19 // attempt database connection and create PreparedStatements
20 try {
21 Class.forName("COM.cloudscape.core.RmiJdbcDriver");
22 connection = DriverManager.getConnection(
23 "jdbc:rmi:jdbc:cloudscape:animalsurvey");
24
25 // PreparedStatement to add one to vote total for a
26 // specific animal
27 updateVotes =
28 connection.prepareStatement(
29 "UPDATE surveyresults SET votes = votes + 1 " +
30 "WHERE id = ?"
31);
32
33 // PreparedStatement to sum the votes
34 totalVotes =
35 connection.prepareStatement(
36 "SELECT sum(votes) FROM surveyresults"
37);
38
39 // PreparedStatement to obtain surveyoption table's data
40 results =
41 connection.prepareStatement(
42 "SELECT surveyoption, votes, id " +
43 "FROM surveyresults ORDER BY id"
44);
45 }
46
47 // for any exception throw an UnavailableException to
48 // indicate that the servlet is not currently available
49 catch (Exception exception) {
50 exception.printStackTrace();
51 throw new UnavailableException(exception.getMessage());
52 }
53

Fig. 30.28Fig. 30.28Fig. 30.28Fig. 30.28 Multi-tier Web-based survey using XHTML, servlets and JDBC (part 1 of 3).

iw3htp2_30.fm Page 1104 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1105

54 } // end of init method
55
56 // process survey response
57 protected void doPost(HttpServletRequest request,
58 HttpServletResponse response)
59 throws ServletException, IOException
60 {
61 // set up response to client
62 response.setContentType("text/html");
63 PrintWriter out = response.getWriter();
64 DecimalFormat twoDigits = new DecimalFormat("0.00");
65
66 // start XHTML document
67 out.println("<?xml version = \"1.0\"?>");
68
69 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
70 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
71 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
72
73 out.println(
74 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
75
76 // head section of document
77 out.println("<head>");
78
79 // read current survey response
80 int value =
81 Integer.parseInt(request.getParameter("animal"));
82
83 // attempt to process a vote and display current results
84 try {
85
86 // update total for current survey response
87 updateVotes.setInt(1, value);
88 updateVotes.executeUpdate();
89
90 // get total of all survey responses
91 ResultSet totalRS = totalVotes.executeQuery();
92 totalRS.next();
93 int total = totalRS.getInt(1);
94
95 // get results
96 ResultSet resultsRS = results.executeQuery();
97 out.println("<title>Thank you!</title>");
98 out.println("</head>");
99
100 out.println("<body>");
101 out.println("<p>Thank you for participating.");
102 out.println("
Results:</p><pre>");
103
104 // process results
105 int votes;
106

Fig. 30.28Fig. 30.28Fig. 30.28Fig. 30.28 Multi-tier Web-based survey using XHTML, servlets and JDBC (part 2 of 3).

iw3htp2_30.fm Page 1105 Saturday, July 21, 2001 3:16 PM

1106 Servlets: Bonus for Java™ Developers Chapter 30

Lines 12 and 13 begin by declaring a Connection reference to manage the database
connection and three PreparedStatement references. The PreparedStatements

107 while (resultsRS.next()) {
108 out.print(resultsRS.getString(1));
109 out.print(": ");
110 votes = resultsRS.getInt(2);
111 out.print(twoDigits.format(
112 (double) votes / total * 100));
113 out.print("% responses: ");
114 out.println(votes);
115 }
116
117 resultsRS.close();
118
119 out.print("Total responses: ");
120 out.print(total);
121
122 // end XHTML document
123 out.println("</pre></body></html>");
124 out.close();
125 }
126
127 // if database exception occurs, return error page
128 catch (SQLException sqlException) {
129 sqlException.printStackTrace();
130 out.println("<title>Error</title>");
131 out.println("</head>");
132 out.println("<body><p>Database error occurred. ");
133 out.println("Try again later.</p></body></html>");
134 out.close();
135 }
136
137 } // end of doPost method
138
139 // close SQL statements and database when servlet terminates
140 public void destroy()
141 {
142 // attempt to close statements and database connection
143 try {
144 updateVo\tes.close();
145 totalVotes.close();
146 results.close();
147 connection.close();
148 }
149
150 // handle database exceptions by returning error to client
151 catch(SQLException sqlException) {
152 sqlException.printStackTrace();
153 }
154 } // end of destroy method
155 }

Fig. 30.28Fig. 30.28Fig. 30.28Fig. 30.28 Multi-tier Web-based survey using XHTML, servlets and JDBC (part 3 of 3).

iw3htp2_30.fm Page 1106 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1107

will be used to update the vote count for an animal, to total all the votes and to obtain the
complete survey results.

Servlets are initialized by overriding method init (lines 16–54). Method init is
called exactly once in a servlet’s lifetime, before any client requests are accepted. Method
init takes a ServletConfig argument and throws a ServletException. The argu-
ment provides the servlet with information about its initialization parameters (i.e., parameters
not associated with a request, but passed to the servlet for initializing servlet variables). These
parameters are specified in the web.xml deployment descriptor file as part of a servlet
element. Each parameter appears in an init-param element of the following form:

<init-param>
 <param-name>parameter name goes here</param-name>
 <param-value>parameter value goes here</param-value>
</init-param>

Servlets can obtain initialization parameter values by invoking ServletConfig method
getInitParameter, which receives a string representing the name of the parameter.

In this example, the servlet’s init method (lines 16–54) performs the connection to the
Cloudscape database. Line 21 loads the driver (COM.cloudscape.core.Rmi-
JdbcDriver). Lines 22–23 attempt to open a connection to the animalsurvey database.
The database contains one table (surveyresults) that consists of three fields—a unique
integer to identify each record called id, a string representing the survey option called sur-
veyoption and an integer representing the number of votes for a survey option called
votes. See Section 30.8.1 for instructions on creating the animalsurvey database, exe-
cuting the Cloudscape server and configuring this example to execute in Tomcat.

Lines 27–44 create PreparedStatement objects called updateVotes,
totalVotes and results. The updateVotes statement adds one to the votes
value for the record with the specified ID. The totalVotes statement uses SQL’s built-
in sum capability to total all the votes in the surveyresults table. The results state-
ment returns all the data in the surveyresults table.

When a user submits a survey response, method doPost (lines 57–137) handles the
request. Lines 80–81 obtain the survey response, then the try block (lines 84–125)
attempts to process the response. Lines 87–88 set the first parameter of Prepared-
Statement updateVotes to the survey response and update the database. Lines 91–
93 execute PreparedStatement totalVotes to retrieve the total number of votes
received. Then, lines 96–123 execute PreparedStatement results and process the
ResultSet to create the survey summary for the client. When the servlet container ter-
minates the servlet, method destroy (lines 140–154) closes each PreparedState-
ment, then closes the database connection. Figure 30.29 shoes survey.html, which invokes
SurveyServlet with the alias animalsurvey when the user submits the form.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Survey.html -->

Fig. 30.29Fig. 30.29Fig. 30.29Fig. 30.29 Survey.html document that allows users to submit survey responses to
SurveyServlet (part 1 of 3).

iw3htp2_30.fm Page 1107 Saturday, July 21, 2001 3:16 PM

1108 Servlets: Bonus for Java™ Developers Chapter 30

6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Survey</title>

10 </head>
11
12 <body>
13 <form method = "post" action = "/advjhtp1/animalsurvey">
14
15 <p>What is your favorite pet?</p>
16
17 <p>
18 <input type = "radio" name = "animal"
19 value = "1" />Dog

20 <input type = "radio" name = "animal"
21 value = "2" />Cat

22 <input type = "radio" name = "animal"
23 value = "3" />Bird

24 <input type = "radio" name = "animal"
25 value = "4" />Snake

26 <input type = "radio" name = "animal"
27 value = "5" checked = "checked" />None
28 </p>
29
30 <p><input type = "submit" value = "Submit" /></p>
31
32 </form>
33 </body>
34 </html>

Fig. 30.29Fig. 30.29Fig. 30.29Fig. 30.29 Survey.html document that allows users to submit survey responses to
SurveyServlet (part 2 of 3).

iw3htp2_30.fm Page 1108 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1109

30.8.1 Configuring animalsurvey Database and
SurveyServlet

The example in Fig. 30.28 and Fig. 30.29 cannot execute until we create the Cloudscape
database animalsurvey and configure the advjhtp1 Web application to recognize
SurveyServlet. Before proceeding, ensure that you have installed and configured
Cloudscape on your system. If you have not, download Cloudscape from the Web site
www.cloudscape.com. Follow the provided instructions to install Cloudscape. Cloud-
scape executes on many platforms including Windows, Solaris, Linux, Macintosh and oth-
ers. For a complete list of platforms on which Cloudscape 3.6 has been tested, visit

cloudweb1.cloudscape.com/support/servepage.jsp?
 page=fyi_cert36vms.html

The Cloudscape server must be executing to create and manipulate databases in Cloud-
scape. To execute the server, begin by opening a command window (i.e., an MS-DOS
prompt, Command Prompt or UNIX/Linux shell). Change directories to the Cloudscape
installation directory (Cloudscape_3.6, by default). The installation directory contains
a frameworks subdirectory. Cloudscape comes with two frameworks in which it can
execute—embedded and RmiJdbc. The embedded framework enables Cloudscape to
execute as part of a Java application. The RmiJdbc framework enables Cloudscape to exe-
cute as a standalone database server. We use the standalone database server in this book.
Each framework directory has a bin subdirectory containing batch files (Windows) and
shell scripts (Linux/UNIX) to set environment variables and execute Cloudscape. Change
directories to the bin directory in the RmiJdbc framework. Execute the batch file or shell
script starting with the name setServerCloudscapeCP to set the environment vari-
ables required by the server. Then, execute batch file or shell script starting with the name
startCS to launch the Cloudscape database server.

The examples for this chapter include a SQL script (animalsurvey.sql) that cre-
ates the database and its tables. Cloudscape provides an interactive command-line tool

Fig. 30.29Fig. 30.29Fig. 30.29Fig. 30.29 Survey.html document that allows users to submit survey responses to
SurveyServlet (part 3 of 3).

iw3htp2_30.fm Page 1109 Saturday, July 21, 2001 3:16 PM

1110 Servlets: Bonus for Java™ Developers Chapter 30

called ij that can execute this script. We provide a Windows batch file called
createDatabase.bat that you can use to start ij and execute the SQL scripts. Both
animalsurvey.sql and createDatabase.bat are included in the examples
directory for this chapter on the CD that accompanies this book. To create database ani-
malsurvey, ensure that the Cloudscape server is executing. Next, open a new command
prompt and change directories to the RmiJdbc framework’s bin directory in the Cloud-
scape installation directory. Then, execute the batch file setClientCloud-
scapeCP.bat. In that command prompt, change to the directory containing our
examples for this chapter and type

createDatabase animalsurvey.sql

to execute the SQL script. After completing this task, the animalsurvey database is
ready for use in SurveyServlet. Next, we configure the advjhtp1 Web application.

We use our advjhtp1 context root to demonstrate the servlet of Fig. 30.28. Place
Survey.html in the servlets directory created previously. Place Survey-
Servlet.class in the classes subdirectory of WEB-INF in the advjhtp1 context
root. Then, edit the web.xml deployment descriptor in the WEB-INF directory to include
the information specified in Fig. 30.30. Also, this program cannot execute in Tomcat unless
the Web application is aware of the JAR files cloudscape.jar and RmiJdbc.jar
that contain the Cloudscape database driver and its supporting classes. A copy of these files
should be placed in the advjhtp1 context root’s WEB-INF subdirectory called lib. The
file cloudscape.jar is located in the Cloudscape installation’s lib subdirectory. The
file RmiJdbc.jar is located in the RmiJdbc framework’s classes subdirectory.
After copying these files, restart Tomcat and type the following URL in your Web browser:

http://localhost:8080/advjhtp1/servlets/Survey.html

When the Web page appears, select a survey response and press the Submit button in the
Web page to invoke the servlet.

Common Programming Error 30.4
Moving the files cloudscape.jar and RmiJdbc.jar from their original locations in
the Cloudscape installation prevents Cloudscape from executing properly. 30.4

Descriptor element Value

servlet element

servlet-name animalsurvey

description Connecting to a database from a servlet.

servlet-class com.deitel.advjhtp1.servlets.SurveyServlet

servlet-mapping element

servlet-name animalsurvey

url-pattern /animalsurvey

Fig. 30.30Fig. 30.30Fig. 30.30Fig. 30.30 Deployment descriptor information for servlet SurveyServlet.

iw3htp2_30.fm Page 1110 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1111

30.9 HttpUtils Class
Class HttpUtils provides three static utility methods to simplify servlet program-
ming. These methods are discussed in Fig. 30.31.

30.10 Internet and World Wide Web Resources
This section lists a variety of servlet resources available on the Internet and provides a brief
description of each.

java.sun.com/products/servlet/index.html
The servlet page at the Sun Microsystems, Inc., Java Web site provides access to the latest servlet in-
formation and servlet resources.

jakarta.apache.org
This is the Apache Project’s home page for the Jakarta Project. Tomcat—the servlets and JavaServer
Pages reference implementation— is one of many subprojects of the Jakarta Project.

jakarta.apache.org/tomcat/index.html
Home page for the Tomcat servlets and JavaServer Pages reference implementation.

java.apache.org
This is the Apache Project’s home page for all Java-related technologies. This site provides access to
many Java packages useful to servlet and JSP developers.

www.servlets.com
This is the Web site for the book Java Servlet Programming published by O’Reilly. The book provides
a variety of resources. This book is an excellent resource for programmers who are learning servlets.

theserverside.com
TheServerSide.com is dedicated to information and resources for Enterprise Java.

www.servletsource.com
ServletSource.com is a general servlet resource site containing code, tips, tutorials and links to many
other Web sites with information on servlets.

Method Description

getRequestURL This method takes the HttpServletRequest object as an argu-
ment and returns a StringBuffer containing the original URL that
initiated the request.

parsePostData This method receives an integer and ServletInputStream as
arguments. The integer represents the number of bytes in the Serv-
letInputStream. The ServletInputStream contains the key/
value pairs posted to the servlet from a form. The method returns a
Hashtable containing the key/value pairs.

parseQueryString This method receives a String representing the query string in a get
request as an argument and returns a Hashtable containing the key/
value pairs in the query string. The value of each key is an array of
Strings. The query string can be obtained with HttpServletRe-
quest method getQueryString.

Fig. 30.31Fig. 30.31Fig. 30.31Fig. 30.31 HttpUtils class methods.

iw3htp2_30.fm Page 1111 Saturday, July 21, 2001 3:16 PM

1112 Servlets: Bonus for Java™ Developers Chapter 30

www.cookiecentral.com
A good all-around resource site for cookies.

www.javacorporate.com
Home of the open-source Expresso Framework, which includes a library of extensible servlet com-
ponents to help speed Web application development.

www.servlet.com/srvdev.jhtml
ServletInc’s Servlet Developers Forum provides resources for server-side Java developers and infor-
mation about Web servers that support servlet technologies.

www.servletforum.com
ServletForum.com is a newsgroup where you can post questions and have them answered by your peers.

www.coolservlets.com
Provides free open-source Java servlets.

www.cetus-links.org/oo_java_servlets.html
Provides a list of links to resources on servlets and other technologies.

www.javaskyline.com
Java Skyline is an online magazine for servlet developers.

www.rfc-editor.org
The RFC Editor provides a search engine for RFCs (Request for Comments). Many of these RFCs
provide details of Web-related technologies. RFCs of interest to servlet developers include URIs
(RFC 1630), URLs (RFC 1738)URL, Relative URLs (RFC 1808), HTTP/1.0 (RFC 1945), MIME
(RFCs 2045–2049), HTTP State Management Mechanism (RFC 2109), Use and Interpretation of
HTTP Version Numbers (RFC 2145), Hypertext Coffee Pot Control Protocol (RFC 2324), HTTP/1.1
(RFC 2616) and HTTP Authentication: Basic and Digest Authentication (RFC 2617).

www.irvine.com/~mime
The Multipurpose Internet Mail Extensions FAQ provides information on MIME and a list of many
registered MIME types, as well as links to other MIME resources.

SUMMARY
• The classes and interfaces used to define servlets are found in packages javax.servlet and
javax.servlet.http.

• The Internet offers many protocols. The HTTP protocol (Hypertext Transfer Protocol) that forms
the basis of the World Wide Web uses URIs (Uniform Resource Identifiers) to locate resources on
the Internet.

• Common URLs represent files or directories and can represent complex tasks such as database
lookups and Internet searches.

• JavaServer Pages technology is an extension of servlet technology.

• Servlets are normally executed as part of a Web server (also known as the servlet container).

• Servlets and JavaServer Pages have become so popular that they are now supported by most major
Web servers and application servers.

• All servlets must implement the Servlet interface. The methods of interface Servlet are in-
voked automatically by the servlet container.

• A servlet’s life cycle begins when the servlet container loads the servlet into memory—normally
in response to the first request to that servlet. Before the servlet can handle the first request, the
servlet container invokes the servlet’s init method. After init completes execution, the servlet
can respond to its first request. All requests are handled by a servlet’s service method, which

iw3htp2_30.fm Page 1112 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1113

may be called many times during the life cycle of a servlet. When the servlet container terminates
the servlet, the servlet’s destroy method is called to release servlet resources.

• The servlet packages define two abstract classes that implement the interface Servlet—
class GenericServlet and class HttpServlet. Most servlets extend one of these classes
and override some or all of their methods with appropriate customized behaviors.

• The key method in every servlet is method service, which receives both a ServletRequest
object and a ServletResponse object. These objects provide access to input and output
streams that allow the servlet to read data from the client and send data to the client.

• Web-based servlets typically extend class HttpServlet. Class HttpServlet overrides
method service to distinguish between the typical requests received from a client Web browser.
The two most common HTTP request types (also known as request methods) are get and post.

• Class HttpServlet defines methods doGet and doPost to respond to get and post re-
quests from a client, respectively. These methods are called by the HttpServlet class’s ser-
vice method, which is called when a request arrives at the server.

• Methods doGet and doPost receive as arguments an HttpServletRequest object and an
HttpServletResponse object that enable interaction between the client and the server.

• A response is sent to the client through a PrintWriter object returned by the getWriter
method of the HttpServletResponse object.

• The HttpServletResponse object’s setContentType method specifies the MIME type
of the response to the client. This enables the client browser to understand and handle the content.

• The server localhost (IP address 127.0.0.1) is a well-known server host name on most
computers that support TCP/IP-based networking protocols such as HTTP. This host name can be
used to test TCP/IP applications on the local computer.

• The Tomcat server awaits requests from clients on port 8080. This port number must be specified
as part of the URL to request a servlet running in Tomcat.

• The client can access a servlet only if that servlet is installed on a server that can respond to servlet
requests. Web servers that support servlets normally have an installation procedure for servlets.

• Tomcat is a fully functional implementation of the JSP and servlet standards. It includes a Web
server, so it can be used as a stand-alone test container for JSPs and servlets.

• Tomcat can be specified as the handler for JSP and servlet requests received by popular Web serv-
ers such as Apache and IIS. Tomcat also is integrated into the Java 2 Enterprise Edition reference
implementation from Sun Microsystems.

• JSPs, servlets and their supporting files are deployed as part of Web applications. In Tomcat, Web
applications are deployed in the webapps subdirectory of the Tomcat installation.

• A Web application has a well-known directory structure in which all the files that are part of the
application reside. This directory structure can be set up by the Tomcat server administrator in the
webapps directory, or the entire directory structure can be archived in a Web application archive
file. Such an archive is known as a WAR file and ends with the .war file extension.

• If a WAR file is placed in the webapps directory, when the Tomcat server starts up it extracts the
contents of the WAR file into the appropriate webapps subdirectory structure.

• The Web application directory structure is separated into a context root—the top-level directory
for an entire Web application—and several subdirectories. The context root is the root directory
for the Web application. All the JSPs, HTML documents, servlets and supporting files such as im-
ages and class files reside in this directory or its subdirectories. The WEB-INF directory contains
the Web application deployment descriptor (web.xml). The WEB-INF/classes directory
contains the servlet class files and other supporting class files used in a Web application. The

iw3htp2_30.fm Page 1113 Saturday, July 21, 2001 3:16 PM

1114 Servlets: Bonus for Java™ Developers Chapter 30

WEB-INF/lib directory contains Java archive (JAR) files that may include servlet class files and
other supporting class files used in a Web application.

• Before deploying a Web application, the servlet container must be made aware of the context root
for the Web application. In Tomcat, a Context element must be created in the file serv-
er.xml in the conf subdirectory of jakarta-tomcat-3.2.3.

• Deploying a Web application requires the creation of a deployment descriptor (web.xml).

• HTTP get requests can be typed directly into your browser’s Address or Location field.

• Parameters are passed as name/value pairs in a get request. A ? separates the URL from the data
passed as part of a get request. Name/value pairs are passed with the name and the value separat-
ed by =. If there is more than one name/value pair, each name/value pair is separated by &.

• Method getParameter of interface HttpServletRequest receives the parameter name as
an argument and returns the corresponding String value, or null if the parameter is not part of
the request.

• An HTTP post request is often used to post data from an Web-page form to a server-side form
handler that processes the data.

• Browsers often cache (save on disk) Web pages so they can quickly reload the pages. Browsers do
not cache the server’s response to a post request.

• Method doPost receives the same two arguments as doGet—an object that implements inter-
face HttpServletRequest to represent the client’s request and an object that implements in-
terface HttpServletResponse to represent the servlet’s response.

• Method sendRedirect of HttpServletResponse redirects a request to the specified URL.

• When a servlet uses a relative path to reference another static or dynamic resource, the servlet as-
sumes the same context root unless a complete URL is specified for the resource.

• Once method sendRedirect executes, processing of the request by the servlet that called
sendRedirect terminates.

• When redirecting requests, the request parameters from the original request are passed as param-
eters to the new request. Additional request parameters also can be passed.

• New parameters are added to the existing request parameters. If a new parameter has the same
name as an existing parameter, the new parameter value takes precedence over the original value.
However, all the values are still passed.

• The complete set of values for a given request-parameter name can be obtained by calling method
getParameterValues from interface HttpServletRequest, which receives the param-
eter name as an argument and returns an array of Strings containing the parameter values in or-
der from the most recently added value for that parameter to the least recently added.

• Many Web sites today provide custom Web pages and/or functionality on a client-by-client basis.

• HTTP is a stateless protocol—it does not support persistent information that could help a Web
server determine that a request is from a particular client.

• Cookies can store information on the user’s computer for retrieval later in the same or in future
browsing sessions.

• Cookies are text-based data that are sent by servlets (or other similar technologies) as part of re-
sponses to clients.

• Every HTTP-based interaction between a client and a server includes a header containing infor-
mation about the request (when the communication is from the client to the server) or information
about the response (when the communication is from the server to the client).

iw3htp2_30.fm Page 1114 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1115

• When the server receives a request, the header includes information such as the request type (e.g.,
get or post) and the cookies stored on the client machine by the server.

• When the server formulates its response, the header information includes any cookies the server
wants to store on the client computer and other information such as the MIME type of the response.

• Depending on the maximum age of a cookie, the Web browser either maintains the cookie for the
duration of the browsing session or stores the cookie on the client computer for future use. When
the browser requests a resource from a server, cookies previously sent to the client by that server
are returned to the server as part of the request formulated by the browser. Cookies are deleted au-
tomatically when they expire.

• By default, cookies only exist for the current browsing session (until the user closes the browser).
To make cookies persist beyond the current session, call Cookie method setMaxAge to indi-
cate the number of seconds until the cookie expires.

• Method addCookie of interface HttpServletResponse adds a cookie to the response.
Cookies are sent to the client as part of the HTTP header. The header information is always pro-
vided to the client first, so the cookies should be added before the response is output.

• HttpServletRequest method getCookies returns an array of Cookie objects. Method
getCookies returns null if there are no cookies in the request.

• Cookie method getName retrieves the name of a cookie. Cookie method getValue re-
trieves the value of a cookie.

• Java provides enhanced session An alternative approach to cookies is to track a session with
HttpSessions, which eliminate the problems associated with clients disabling cookies in their
browsers by making the session-tracking mechanism transparent to the programmer.

• Method getSession of interface HttpServletRequest obtains an HttpSession object
for the client.

• Like a cookie, an HttpSession object can store name/value pairs. In sessions, these are called
attributes, and they are stored with setAttribute and retrieved with getAttribute.

• Name/value pairs added to an HttpSession object with setAttribute remain available un-
til the client’s current browsing session ends or until the session is explicitly invalidated by a call
to the HttpSession object’s invalidate method.

• HttpSession method getID obtains the session’s unique ID number.

• HttpSession method isNew determines whether a session is new or already exists. Method
getCreationTime obtains the time at which the session was created.

• HttpSession method getLastAccessedTime obtains the time at which the session was
last accessed.

• HttpSession method getMaxInactiveInterval obtains the maximum amount of time
that an HttpSession object can be inactive before the servlet container discards it.

• Many of today’s applications are three-tier distributed applications, consisting of a user interface,
business logic and database access.

• In multi-tier architectures, Web servers often represent the middle tier. They provide the business
logic that manipulates data from databases and that communicates with client Web browsers.

• Servlet method init takes a ServletConfig argument and throws a Servlet-
Exception. The argument provides the servlet with information about its initialization param-
eters that are specified in a servlet element in the deployment descriptor. Each parameter
appears in an init-param element with child elements param-name and param-value.

iw3htp2_30.fm Page 1115 Saturday, July 21, 2001 3:16 PM

1116 Servlets: Bonus for Java™ Developers Chapter 30

TERMINOLOGY
addCookie method of
 HttpServletResponse

HttpServletResponse interface
HttpSession interface

Apache Tomcat server init method of Servlet
cache a Web page initialization parameter
commit a response invalidate method of HttpSession
Context element of server.xml file isNew method of HttpSession
context root Jakarta project
Cookie class JAVA_HOME environment variable
delete request javax.servlet package
deploy a Web application javax.servlet.http package
deployment descriptor Jigsaw Web server
destroy method of Servlet localhost (127.0.0.1)
doGet method of HttpServlet maximum age of a cookie
doPost method of HttpServlet MIME type
GenericServlet class options request
get request path attribute
getAttribute method of HttpSession port
getAttributeNames method of
 HttpSession

post request
put request

getCookies method of
 HttpServletRequest

redirect a request
request method

getCreationTime method of HttpSession request parameter
getID method of HttpSession sendRedirect method of

 HttpServletResponse getLastAccessedTime method of
 HttpSession server.xml (Tomcat configuration file)
getMaxInactiveInterval method of
 HttpSession

service method of Servlet
servlet

getName method of Cookie servlet container
getOutputStream method of
 HTTPServletResponse

Servlet interface
servlet life cycle

getParameter method of
 HttpServletRequest

servlet mapping
ServletConfig interface

getParameterNames method of
 HttpServletRequest

ServletContext interface
ServletException class

getParameterValues method of
 HttpServletRequest

ServletOutputStream class
ServletRequest interface

getServletConfig method of Servlet ServletResponse interface
getServletInfo method of Servlet session tracking
getSession method of
 HttpServletRequest

setAttribute method of HttpSession
setContentType method of
 HttpServletResponse getValue method of Cookie

getWriter method of
 HTTPServletResponse

shopping cart
text/html MIME type

host name thin client
HTTP (Hypertext Transfer Protocol) TOMCAT_HOME environment variable
HTTP header trace request
HTTP request URL pattern
HttpServlet interface WAR (Web application archive) file
HttpServletRequest interface Web application

iw3htp2_30.fm Page 1116 Saturday, July 21, 2001 3:16 PM

Chapter 30 Servlets: Bonus for Java™ Developers 1117

SELF-REVIEW EXERCISES
30.1 Fill in the blanks in each of the following statements:

a) Classes HttpServlet and GenericServlet implement the interface.
b) Class HttpServlet defines the methods and to respond to

get and post requests from a client.
c) HttpServletResponse method obtains a character-based output

stream that enables text data to be sent to the client.
d) The form attribute specifies the server-side form handler, i.e., the program

that handles the request.
e) is the well-known host name that refers to your own computer.
f) Cookie method returns a String the name of the cookie as set with

 or the constructor.
g) HttpServletRequest method getSession returns an object for the

client.

30.2 State whether each of the following is true or false. If false, explain why.
a) Servlets usually are used on the client side of a networking application.
b) Servlet methods are executed automatically.
c) The two most common HTTP requests are get and put.
d) The well-known port number for Web requests is 55.
e) Cookies never expire.
f) HttpSessions expire only when the browsing session ends or when the invali-

date method is called.
g) The HttpSession method getAttribute returns the object associated with a par-

ticular name.

ANSWERS TO SELF-REVIEW EXERCISES
30.1 a) Servlet. b) doGet, doPost. c) getWriter. d) action. e) localhost. f) get-
Name, setName. g) HttpSession.

30.2 a) False. Servlets are usually used on the server side. b) True. c) False. The two most com-
mon HTTP request types are get and post. d) False. The well-known port number for Web re-
quests is 80. e) False. Cookies expire when they reach their maximum age. f) True. g) True.

EXERCISES
30.3 Modify the Cookie example of Fig. 30.21 to list prices for each book in the book recom-
mendations. Also, allow the user to select some or all of the recommended books and “order” them.
Deploy your Web application on the Tomcat server.

30.4 Modify the HttpSession example of Fig. 30.25 to list prices for each book in the book
recommendations. Also, allow the user to select some or all of the recommended books and “order”
them. Deploy your Web application on the Tomcat server.

30.5 Create a Web application for dynamic FAQs. The application should obtain the information
to create the dynamic FAQ Web page from a database that consists of a Topics table and an FAQ
table. The Topics table should have two fields—a unique integer ID for each topic (topicID) and

Web application deployment
 descriptor (web.xml)

WEB-INF/classes directory
WEB-INF/lib directory

webapps directory well-known port number
WEB-INF directory

iw3htp2_30.fm Page 1117 Saturday, July 21, 2001 3:16 PM

1118 Servlets: Bonus for Java™ Developers Chapter 30

a name for each topic (topicName). The FAQ table should have three fields—the topicID (a for-
eign key), a string representing the question (question) and the answer to the question (answer).
When the servlet is invoked, it should read the data from the database and return a dynamically cre-
ated Web page containing each question and answer, sorted by topic.

30.6 Modify the Web application of Exercise 30.5 so that the initial request to the servlet returns
a Web page of topics in the FAQ database. Then, the user can hyperlink to another servlet that returns
only the frequently asked questions for a particular topic.

30.7 Modify the Web application of Fig. 30.28 to allow the user to see the survey results without
responding to the survey.

30.8 Fig. 30.28 would allow users to vote as many times as they want by simply returning to the
survey Web page and submitting additional votes. Modify your solution to Exercise 30.7 such that it
uses cookies that last for one day to prevent users from voting more than once a day. When a user
returns to the site, the cookie previously stored on their system is sent to the server. The servlet should
check for the cookie and, if it exists, indicate that the client already voted in the last 24 hours. The
servlet should also return the current survey results.

30.9 Modify the Web application of Fig. 30.28 to make it generic for use with any survey of the
appropriate form. Use servlet parameters (as discussed in Section 30.8) to specify the survey options.
When the user requests the survey, dynamically generate a form containing the survey options. De-
ploy this Web application twice using different context roots. Note: You may need to modify the da-
tabase in this example so that it can store multiple surveys at once.

30.10 Write a Web application that consists of a servlet (DirectoryServlet) and several Web
documents. Document index.html should be the first document the user sees. In that document,
you should have a series of hyperlinks for other Web pages in your site. When clicked, each hyperlink
should invoke the servlet with a get request that contains a page parameter. The servlet should ob-
tain parameter page and redirect the request to the appropriate document.

30.11 Modify the Web application of Exercise 30.10 so that the first document the user sees in the
browser is dynamically generated from servlet initialization parameters (as discussed in Section 30.8)
by servlet HomePageServlet. There should be a separate initialization parameter for each page in
the Web site. The HomePageServlet reads each parameter name and value and creates a Hash-
Map of the parameter name/value pairs. This information should be used to create the initial home
page dynamically. The HashMap also should be placed in the ServletContext with method
setAttribute, so that the HashMap can be used in the DirectoryServlet to determine
where to direct each request. The dynamic home page should have hyperlinks to each document in
the Web site. As in Exercise 30.10, when the user clicks a link, servlet DirectoryServlet should
be invoked and passed a page parameter. Then, the DirectoryServlet should obtain the Hash-
Map from the ServletContext, look up the corresponding document and redirect the user to that
document.

iw3htp2_30.fm Page 1118 Saturday, July 21, 2001 3:16 PM

31
JavaServer Pages (JSP):

Bonus for Java™
Developers

Objectives
• To be able to create and deploy JavaServer Pages.
• To use JSP’s implicit objects and Java to create

dynamic Web pages.
• To specify global JSP information with directives.
• To use actions to manipulate JavaBeans in a JSP, to

include other resources dynamically and to forward
requests to other JSPs.

• To create custom tag libraries that encapsulate
complex functionality in new tags that can be reused
by JSP programmers and Web-page designers.

A tomato does not communicate with a tomato, we believe.
We could be wrong.
Gustav Eckstein

A donkey appears to me like a horse translated into Dutch.
Georg Christoph Licthtenberg

A fair request should be followed by the deed in silence.
Dante Alighieri

Talent is a question of quantity. Talent does not write one
page: it writes three hundred.
Jules Renard

Every action must be due to one or other of seven causes:
chance, nature, compulsion, habit, reasoning, anger, or
appetite
Aristotle

iw3htp2_31.fm Page 1119 Monday, July 23, 2001 4:27 PM

1120 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

31.1 Introduction
Our discussion of client–server networking continues in this chapter with JavaServer Pag-
es (JSP)—an extension of servlet technology. JavaServer Pages simplify the delivery of dy-
namic Web content. They enable Web application programmers to create dynamic content
by reusing predefined components and by interacting with components using server-side
scripting. JavaServer Page programmers can reuse JavaBeans and create custom tag librar-
ies that encapsulate complex, dynamic functionality. Custom-tag libraries even enable
Web-page designers who are not familiar with Java to enhance Web pages with powerful
dynamic content and processing capabilities.

In addition to the classes and interfaces for programming servlets (from packages
javax.servlet and javax.servlet.http), classes and interfaces specific to
JavaServer Pages programming are located in packages javax.servlet.jsp and
javax.servlet.jsp.tagext. We discuss many of these classes and interfaces
throughout this chapter as we present JavaServer Pages fundamentals. For a complete
description of JavaServer Pages, see the JavaServer Pages 1.1 specification, which can be

Outline

31.1 Introduction
31.2 JavaServer Pages Overview
31.3 A First JavaServer Page Example
31.4 Implicit Objects
31.5 Scripting

31.5.1 Scripting Components
31.5.2 Scripting Example

31.6 Standard Actions
31.6.1 <jsp:include> Action
31.6.2 <jsp:forward> Action
31.6.3 <jsp:plugin> Action
31.6.4 <jsp:useBean> Action

31.7 Directives
31.7.1 page Directive
31.7.2 include Directive

31.8 Custom Tag Libraries
31.8.1 Simple Custom Tag
31.8.2 Custom Tag with Attributes
31.8.3 Evaluating the Body of a Custom Tag

31.9 World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_31.fm Page 1120 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1121

downloaded from java.sun.com/products/jsp/download.html. We also
include other JSP resources in Section 31.9. [Note: The source code and images for all the
examples in this chapter can be found on the CD that accompanies this book and on our
Web site www.deitel.com.]

31.2 JavaServer Pages Overview
There are four key components to JSPs: directives, actions, scriptlets and tag libraries. Di-
rectives are messages to the JSP container that enable the programmer to specify page set-
tings, to include content from other resources and to specify custom tag libraries for use in
a JSP. Actions encapsulate functionality in predefined tags that programmers can embed in
a JSP. Actions often are performed based on the information sent to the server as part of a
particular client request. They also can create Java objects for use in JSP scriptlets. Script-
lets, or scripting elements, enable programmers to insert Java code that interacts with com-
ponents in a JSP (and possibly other Web application components) to perform request
processing. Tag libraries are part of the tag extension mechanism that enables programmers
to create custom tags. Such tags enable programmers to manipulate JSP content. These JSP
component types are discussed in detail in subsequent sections.

In many ways, Java Server Pages look like standard XHTML or XML documents. In
fact, JSPs normally include XHTML or XML markup. Such markup is known as fixed-tem-
plate data or fixed-template text. Fixed-template data often help a programmer decide
whether to use a servlet or a JSP. Programmers tend to use JSPs when most of the content
sent to the client is fixed template data and only a small portion of the content is generated
dynamically with Java code. Programmers use servlets when only a small portion of the
content sent to the client is fixed-template data. In fact, some servlets do not produce con-
tent. Rather, they perform a task on behalf of the client, then invoke other servlets or JSPs
to provide a response. Note that in most cases, servlet and JSP technologies are inter-
changeable. As with servlets, JSPs normally execute as part of a Web server. The server
often is referred to as the JSP container.

Software Engineering Observation 31.1
Literal text in a JSP becomes string literals in the servlet that represents the translated JSP. 31.1

When a JSP-enabled server receives the first request for a JSP, the JSP container trans-
lates that JSP into a Java servlet that handles the current request and future requests to the
JSP. If there are any errors compiling the new servlet, these errors result in translation-time
errors. The JSP container places the Java statements that implement the JSP’s response in
method _jspService at translation time. If the new servlet compiles properly, the JSP
container invokes method _jspService to process the request. The JSP may respond
directly to the request or may invoke other Web application components to assist in pro-
cessing the request. Any errors that occur during request processing are known as request-
time errors.

Performance Tip 31.1
Some JSP containers translate JSPs to servlets at installation time. This eliminates the trans-
lation overhead for the first client that requests each JSP. 31.1

iw3htp2_31.fm Page 1121 Monday, July 23, 2001 4:27 PM

1122 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

Overall, the request/response mechanism and life cycle of a JSP is the same as that of
a servlet. JSPs can define methods jspInit and jspDestroy (similar to servlet
methods init and destroy), which the JSP container invokes when initializing a JSP
and terminating a JSP, respectively. JSP programmers can define these methods using JSP
declarations—part of the JSP scripting mechanism.

31.3 A First JavaServer Page Example
We begin our introduction to JavaServer Pages with a simple example (Fig. 31.1) in which
the current date and time are inserted into a Web page using a JSP expression.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.1: clock.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <meta http-equiv = "refresh" content = "60" />
11
12 <title>A Simple JSP Example</title>
13
14 <style type = "text/css">
15 .big { font-family: helvetica, arial, sans-serif;
16 font-weight: bold;
17 font-size: 2em; }
18 </style>
19 </head>
20
21 <body>
22 <p class = "big">Simple JSP Example</p>
23
24 <table style = "border: 6px outset;">
25 <tr>
26 <td style = "background-color: black;">
27 <p class = "big" style = "color: cyan;">
28
29 <!-- JSP expression to insert date/time -->
30 <%= new java.util.Date() %>
31
32 </p>
33 </td>
34 </tr>
35 </table>
36 </body>
37
38 </html>

Fig. 31.1Fig. 31.1Fig. 31.1Fig. 31.1 Using a JSP expression to insert the date and time into a Web page (part 1
of 2).

iw3htp2_31.fm Page 1122 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1123

As you can see, most of clock.jsp consists of XHTML markup. In cases like this,
JSPs are easier to implement than servlets. In a servlet that performs the same task as this
JSP, each line of XHTML markup typically is a separate Java statement that outputs the
string representing the markup as part of the response to the client. Writing code to output
markup can often lead to errors. Most JSP editors provide syntax coloring to help program-
mers check that their markup follows proper syntax.

Software Engineering Observation 31.2
JavaServer Pages are easier to implement than servlets when the response to a client request
consists primarily of markup that remains constant between requests. 31.2

The JSP of Fig. 31.1 generates an XHTML document that displays the current date and
time. The key line in this JSP (line 30) is the expression

<%= new java.util.Date() %>

JSP expressions are delimited by <%= and %>. This particular expression creates a new in-
stance of class Date from package java.util. When the client requests this JSP, the
preceding expression inserts the String representation of the date and time in the re-
sponse to the client.

Fig. 31.1Fig. 31.1Fig. 31.1Fig. 31.1 Using a JSP expression to insert the date and time into a Web page (part 2
of 2).

iw3htp2_31.fm Page 1123 Monday, July 23, 2001 4:27 PM

1124 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

Software Engineering Observation 31.3
The JSP container converts the result of every JSP expression into a String that is output
as part of the response to the client. 31.3

Note that we use the XHTML meta element on line 10 to set a refresh interval of 60
seconds for the document. This causes the browser to request clock.jsp every 60 sec-
onds. For each request to clock.jsp, the JSP container reevaluates the expression on
line 30, creating a new Date object with the server’s current date and time.

As in Chapter 30, we use Apache Tomcat to test our JSPs in the advjhtp1 Web
application we created previously. For details on creating and configuring the advjhtp1
Web application, review Section 30.3.1 and Section 30.3.2. To test clock.jsp, create a
new directory called jsp in the advjhtp1 subdirectory of Tomcat’s webapps directory.
Next, copy clock.jsp into the jsp directory. Open your Web browser and enter the fol-
lowing URL to test clock.jsp:

http://localhost:8080/advjhtp1/jsp/clock.jsp

When you first invoke the JSP, notice the delay as Tomcat translates the JSP into a servlet
and invokes the servlet to respond to your request. [Note: It is not necessary to create a di-
rectory named jsp in a Web application. We use this directory to separate the examples in
this chapter from the servlet examples in Chapter 30.]

31.4 Implicit Objects
Implicit objects provide programmers with access to many servlet capabilities in the con-
text of a JavaServer Page. Implicit objects have four scopes: application, page, request and
session. The JSP and servlet container application owns objects with application scope.
Any servlet or JSP can manipulate such objects. Objects with page scope exist only in the
page that defines them. Each page has its own instances of the page-scope implicit objects.
Objects with request scope exist for the duration of the request. For example, a JSP can par-
tially process a request, then forward the request to another servlet or JSP for further pro-
cessing. Request-scope objects go out of scope when request processing completes with a
response to the client. Objects with session scope exist for the client’s entire browsing ses-
sion. Figure 31.2 describes the JSP implicit objects and their scopes. This chapter demon-
strates several of these objects.

Note that many of the implicit objects extend classes or implement interfaces discussed
in Chapter 30. Thus, JSPs can use the same methods that servlets use to interact with such
objects, as described in Chapter 30. Most of the examples in this chapter use one or more
of the implicit objects in Fig. 31.2.

Implicit Object Description

Application Scope

application This javax.servlet.ServletContext object represents the con-
tainer in which the JSP executes.

Fig. 31.2Fig. 31.2Fig. 31.2Fig. 31.2 JSP implicit objects (part 1 of 2).

iw3htp2_31.fm Page 1124 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1125

31.5 Scripting
JavaServer Pages often present dynamically generated content as part of an XHTML doc-
ument sent to the client in response to a request. In some cases, the content is static, but is
output only if certain conditions are met during a request (such as providing values in a
form that submits a request). JSP programmers can insert Java code and logic in a JSP us-
ing scripting.

Software Engineering Observation 31.4
JavaServer Pages currently support scripting only with Java. Future JSP versions may sup-
port other scripting languages. 31.4

Page Scope

config This javax.servlet.ServletConfig object represents the JSP con-
figuration options. As with servlets, configuration options can be specified in
a Web application descriptor.

exception This java.lang.Throwable object represents the exception that is
passed to the JSP error page. This object is available only in a JSP error page.

out This javax.servlet.jsp.JspWriter object writes text as part of the
response to a request. This object is used implicitly with JSP expressions and
actions that insert string content in a response.

page This java.lang.Object object represents the this reference for the
current JSP instance.

pageContext This javax.servlet.jsp.PageContext object hides the implemen-
tation details of the underlying servlet and JSP container and provides JSP
programmers with access to the implicit objects discussed in this table.

response This object represents the response to the client. The object normally is an
instance of a class that implements HttpServletResponse (package
javax.servlet.http). If a protocol other than HTTP is used, this
object is an instance of a class that implements javax.servlet.Serv-
letResponse.

Request Scope

request This object represents the client request. The object normally is an instance
of a class that implements HttpServletRequest (package
javax.servlet.http). If a protocol other than HTTP is used, this
object is an instance of a subclass of javax.servlet.Servlet-
Request.

Session Scope

session This javax.servlet.http.HttpSession object represents the cli-
ent session information if such a session has been created. This object is
available only in pages that participate in a session.

Implicit Object Description

Fig. 31.2Fig. 31.2Fig. 31.2Fig. 31.2 JSP implicit objects (part 2 of 2).

iw3htp2_31.fm Page 1125 Monday, July 23, 2001 4:27 PM

1126 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

31.5.1 Scripting Components
JSP scripting components include scriptlets, comments, expressions, declarations and es-
cape sequences. This section describes each of these scripting components. Many of these
scripting components are demonstrated in Fig. 31.4 at the end of Section 31.5.2.

Scriptlets are blocks of code delimited by <% and %>. They contain Java statements
that the container places in method _jspService at translation time.

JSPs support three comment styles: JSP comments, XHTML comments and comments
from the scripting language. JSP comments are delimited by <%-- and --%>. Such com-
ments can be placed throughout a JSP, but not inside scriptlets. XHTML comments are
delimited with <!-- and -->. These comments can be placed throughout a JSP, but not
inside scriptlets. Scripting language comments are currently Java comments, because Java
is the only JSP scripting language at the present time. Scriptlets can use Java’s single-line
comments (delimited by/ and /) and multiline comments (delimited by /* and */).

Common Programming Error 31.1
Placing a JSP comment or XHTML comment inside a scriptlet is a translation-time syntax
error that prevents the JSP from being translated properly. 31.1

JSP comments and scripting-language comments are ignored and do not appear in the
response to a client. When clients view the source code of a JSP response, they will see only
the XHTML comments in the source code. The different comment styles are useful for sep-
arating comments that the user should be able to see from comments that document logic
processed on the server.

A JSP expression, delimited by <%= and %>, contains a Java expression that is evalu-
ated when a client requests the JSP containing the expression. The container converts the
result of a JSP expression to a String object, then outputs the String as part of the
response to the client.

Declarations (delimited by <%! and %>) enable a JSP programmer to define variables
and methods. Variables become instance variables of the servlet class that represents the
translated JSP. Similarly, methods become members of the class that represents the trans-
lated JSP. Declarations of variables and methods in a JSP use Java syntax. Thus, a variable
declaration must end in a semicolon, as in

<%! int counter = 0; %>

Common Programming Error 31.2
Declaring a variable without using a terminating semicolon is a syntax error. 31.2

Software Engineering Observation 31.5
Variables and methods declared in JSP declarations are initialized when the JSP is initial-
ized and are available for use in all scriptlets and expressions in that JSP. Variables de-
clared in this manner become instance variables of the servlet class that represents the
translated JSP. 31.5

Software Engineering Observation 31.6
As with servlets, JSPs should not store client state information in instance variables. Rather,
JSPs should use the JSP implicit session object. 31.6

iw3htp2_31.fm Page 1126 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1127

Special characters or character sequences that the JSP container normally uses to
delimit JSP code can be included in a JSP as literal characters in scripting elements, fixed
template data and attribute values using escape sequences. Figure 31.3 shows the literal
character or characters and the corresponding escape sequences and discusses where to use
the escape sequences.

31.5.2 Scripting Example

The JSP of Fig. 31.4 demonstrates basic scripting capabilities by responding to get re-
quests. The JSP enables the user to input a first name, then outputs that name as part of the
response. Using scripting, the JSP determines whether a firstName parameter was
passed to the JSP as part of the request; if not, the JSP returns an XHTML document con-
taining a form through which the user can input a first name. Otherwise, the JSP obtains
the firstName value and uses it as part of an XHTML document that welcomes the user
to JavaServer Pages.

Literal Escape sequence Description

<% <\% The character sequence <% normally indicates the beginning of
a scriptlet. The <\% escape sequence places the literal charac-
ters <% in the response to the client.

%> %\> The character sequence %> normally indicates the end of a
scriptlet. The %\> escape sequence places the literal characters
%> in the response to the client.

'
"
\

\'
\"
\\

As with string literals in a Java program, the escape sequences
for characters ', " and \ allow these characters to appear in
attribute values. Remember that the literal text in a JSP
becomes string literals in the servlet that represents the trans-
lated JSP.

Fig. 31.3Fig. 31.3Fig. 31.3Fig. 31.3 JSP escape sequences.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.4: welcome.jsp -->
6 <!-- JSP that processes a "get" request containing data. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9

10 <!-- head section of document -->
11 <head>
12 <title>Processing "get" requests with data</title>
13 </head>
14

Fig. 31.4Fig. 31.4Fig. 31.4Fig. 31.4 Scripting a JavaServer Page (welcome.jsp) (part 1 of 3).

iw3htp2_31.fm Page 1127 Monday, July 23, 2001 4:27 PM

1128 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

15 <!-- body section of document -->
16 <body>
17 <% // begin scriptlet
18
19 String name = request.getParameter("firstName");
20
21 if (name != null) {
22
23 %> <%-- end scriptlet to insert fixed template data --%>
24
25 <h1>
26 Hello <%= name %>,

27 Welcome to JavaServer Pages!
28 </h1>
29
30 <% // continue scriptlet
31
32 } // end if
33 else {
34
35 %> <%-- end scriptlet to insert fixed template data --%>
36
37 <form action = "welcome.jsp" method = "get">
38 <p>Type your first name and press Submit</p>
39
40 <p><input type = "text" name = "firstName" />
41 <input type = "submit" value = "Submit" />
42 </p>
43 </form>
44
45 <% // continue scriptlet
46
47 } // end else
48
49 %> <%-- end scriptlet --%>
50 </body>
51
52 </html> <!-- end XHTML document -->

Fig. 31.4Fig. 31.4Fig. 31.4Fig. 31.4 Scripting a JavaServer Page (welcome.jsp) (part 2 of 3).

iw3htp2_31.fm Page 1128 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1129

Notice that the majority of the code in Fig. 31.4 is XHTML markup (i.e., fixed tem-
plate data). Throughout the body element are several scriptlets (lines 17–23, 30–35 and
45–49) and a JSP expression (line 26). Note that three comment styles appear in this JSP.

The scriptlets define an if/else structure that determines whether the JSP received
a value for the first name as part of the request. Line 19 uses method getParameter of
JSP implicit object request (an HttpServletRequest object) to obtain the value for
parameter firstName and assigns the result to variable name. Line 21 determines if
name is not null, (i.e., a value for the first name was passed to the JSP as part of the
request). If this condition is true, the scriptlet terminates temporarily so the fixed template
data at lines 25–28 can be output. The JSP expression in line 26 outputs the value of vari-
able name (i.e., the first name passed to the JSP as a request parameter. The scriptlet con-
tinues at lines 30–35 with the closing curly brace of the if structure’s body and the
beginning of the else part of the if/else structure. If the condition at line 21 is false,
lines 25–28 are not output. Instead, lines 37–43 output a form element. The user can type
a first name in the form and press the Submit button to request the JSP again and execute
the if structure’s body (lines 25–28).

Software Engineering Observation 31.7
Scriptlets, expressions and fixed template data can be intermixed in a JSP to create different
responses based on information in a request to a JSP. 31.7

Testing and Debugging Tip 31.1
It is sometimes difficult to debug errors in a JSP, because the line numbers reported by a JSP
container normally refer to the servlet that represents the translated JSP, not the original
JSP line numbers. Program development environments such as Sun Microsystems, Inc.’s
Forte for Java Community Edition enable JSPs to be compiled in the environment, so you
can see syntax error messages. These messages include the statement in the servlet that rep-
resents the translated JSP, which can be helpful in determining the error. 31.1

Testing and Debugging Tip 31.2
Many JSP containers store the servlets representing the translated JSPs. For example, the
Tomcat installation directory contains a subdirectory called work in which you can find the
source code for the servlets translated by Tomcat. 31.2

Fig. 31.4Fig. 31.4Fig. 31.4Fig. 31.4 Scripting a JavaServer Page (welcome.jsp) (part 3 of 3).

iw3htp2_31.fm Page 1129 Monday, July 23, 2001 4:27 PM

1130 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

To test Fig. 31.4 in Tomcat, copy welcome.jsp into the jsp directory created in
Section 31.3. Open your Web browser and enter the following URL to test wel-
come.jsp:

http://localhost:8080/advjhtp1/jsp/welcome.jsp

When you first execute the JSP, it displays the form in which you can enter your first
name, because the preceding URL does not pass a firstName parameter to the JSP. After
you submit your first name, your browser should appear as shown in the second screen cap-
ture of Fig. 31.4. Note: As with servlets, it is possible to pass get request arguments as part
of the URL. The following URL supplies the firstName parameter to welcome.jsp:

http://localhost:8080/advjhtp1/jsp/welcome.jsp?firstName=Paul

31.6 Standard Actions
We continue our JSP discussion with the JSP standard actions (Fig. 31.5). These actions
provide JSP implementors with access to several of the most common tasks performed in
a JSP, such as including content from other resources, forwarding requests to other resourc-
es and interacting with JavaBeans. JSP containers process actions at request time. Actions
are delimited by <jsp:action> and </jsp:action>, where action is the standard action
name. In cases where nothing appears between the starting and ending tags, the XML emp-
ty element syntax <jsp:action /> can be used. Figure 31.5 summarizes the JSP standard
actions. We use the actions in the next several subsections.

Action Description

<jsp:include> Dynamically includes another resource in a JSP. As the JSP exe-
cutes, the referenced resource is included and processed.

<jsp:forward> Forwards request processing to another JSP, servlet or static page.
This action terminates the current JSP’s execution.

<jsp:plugin> Allows a plug-in component to be added to a page in the form of a
browser-specific object or embed HTML element. In the case
of a Java applet, this action enables the downloading and installa-
tion of the Java Plug-in, if it is not already installed on the client
computer.

<jsp:param> Used with the include, forward and plugin actions to
specify additional name/value pairs of information for use by
these actions.

JavaBean Manipulation

<jsp:useBean> Specifies that the JSP uses a JavaBean instance. This action spec-
ifies the scope of the bean and assigns it an ID that scripting com-
ponents can use to manipulate the bean.

Fig. 31.5Fig. 31.5Fig. 31.5Fig. 31.5 JSP standard actions (part 1 of 2).

iw3htp2_31.fm Page 1130 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1131

31.6.1 <jsp:include> Action
JavaServer Pages support two include mechanisms—the <jsp:include> action and the
include directive. Action <jsp:include> enables dynamic content to be included in
a JavaServer Page. If the included resource changes between requests, the next request to
the JSP containing the <jsp:include> action includes the new content of the resource.
On the other hand, the include directive copies the content into the JSP once, at JSP
translation time. If the included resource changes, the new content will not be reflected in
the JSP that used the include directive unless that JSP is recompiled. Figure 31.6 de-
scribes the attributes of action <jsp:include>.

Software Engineering Observation 31.8
According to the JavaServer Pages 1.1 specification, a JSP container is allowed to determine
whether a resource included with the include directive has changed. If so, the container
can recompile the JSP that included the resource. However, the specification does not pro-
vide a mechanism to indicate a change in an included resource to the container. 31.8

Performance Tip 31.2
The <jsp:include> action is more flexible than the include directive, but requires
more overhead when page contents change frequently. Use the <jsp:include> action
only when dynamic content is necessary. 31.2

Common Programming Error 31.3
Setting the <jsp:include> action’s flush attribute to false is a translation-time er-
ror. Currently, the flush attribute supports only true values. 31.3

<jsp:setProperty> Sets a property in the specified JavaBean instance. A special fea-
ture of this action is automatic matching of request parameters to
bean properties of the same name.

<jsp:getProperty> Gets a property in the specified JavaBean instance and converts
the result to a string for output in the response.

Action Description

Fig. 31.5Fig. 31.5Fig. 31.5Fig. 31.5 JSP standard actions (part 2 of 2).

Attribute Description

page Specifies the relative URI path of the resource to include. The resource
must be part of the same Web application.

flush Specifies whether the buffer should be flushed after the include is
performed. In JSP 1.1, this attribute is required to be true.

Fig. 31.6Fig. 31.6Fig. 31.6Fig. 31.6 Action <jsp:include> attributes.

iw3htp2_31.fm Page 1131 Monday, July 23, 2001 4:27 PM

1132 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

Common Programming Error 31.4
Not specifying the <jsp:include> action’s flush attribute is a translation-time error.
Specifying this attribute is mandatory. 31.4

Common Programming Error 31.5
Specifying in a <jsp:include> action a page that is not part of the same Web application
is a request-time error. In such a case, the <jsp:include> action does not include any
content. 31.5

The next example demonstrates action <jsp:include> using four XHTML and
JSP resources that represent both static and dynamic content. JavaServer Page
include.jsp (Fig. 31.10) includes three other resources: banner.html (Fig. 31.7),
toc.html (Fig. 31.8) and clock2.jsp (Fig. 31.9). JavaServer Page include.jsp
creates an XHTML document containing a table in which banner.html spans two
columns across the top of the table, toc.html is the left column of the second row
and clock2.jsp (a simplified version of Fig. 31.1) is the right column of the second
row. Figure 31.10 uses three <jsp:include> actions (lines 38–39, 48 and 55–56) as
the content in td elements of the table. Using two XHTML documents and a JSP in
Fig. 31.10 demonstrates that JSPs can include both static and dynamic content. The
output windows in Fig. 31.10 demonstrate the results of two separate requests to
include.jsp.

To test Fig. 31.10 in Tomcat, copy banner.html, toc.html, clock2.jsp,
include.jsp and the images directory into the jsp directory created in Section 31.3.
Open your Web browser and enter the following URL to test welcome.jsp:

http://localhost:8080/advjhtp1/jsp/include.jsp

1 <!-- Fig. 10.7: banner.html -->
2 <!-- banner to include in another document -->
3 <div style = "width: 580px">
4 <p>
5 Java(TM), C, C++, Visual Basic(R),
6 Object Technology, and
 Internet and
7 World Wide Web Programming Training

8 On-Site Seminars Delivered Worldwide
9 </p>

10
11 <p>
12
13 deitel@deitel.com

14
15 978.579.9911

16 490B Boston Post Road, Suite 200,
17 Sudbury, MA 01776
18 </p>
19 </div>

Fig. 31.7Fig. 31.7Fig. 31.7Fig. 31.7 Banner (banner.html) to include across the top of the XHTML document
created by Fig. 31.10.

iw3htp2_31.fm Page 1132 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1133

1 <!-- Fig. 10.8: toc.html -->
2 <!-- contents to include in another document -->
3
4 <p>
5 Publications/BookStore
6 </p>
7
8 <p>
9 What's New

10 </p>
11
12 <p>
13 Downloads/Resources
14 </p>
15
16 <p>
17 FAQ (Frequently Asked Questions)
18 </p>
19
20 <p>
21 Who we are
22 </p>
23
24 <p>
25 Home Page
26 </p>
27
28 <p>Send questions or comments about this site to
29
30 deitel@deitel.com
31

32 Copyright 1995-2002 by Deitel & Associates, Inc.
33 All Rights Reserved.
34 </p>

Fig. 31.8Fig. 31.8Fig. 31.8Fig. 31.8 Table of contents (toc.html) to include down the left side of the XHTML
document created by Fig. 31.10.

1 <!-- Fig. 10.9: clock2.jsp -->
2 <!-- date and time to include in another document -->
3
4 <table>
5 <tr>
6 <td style = "background-color: black;">
7 <p class = "big" style = "color: cyan; font-size: 3em;
8 font-weight: bold;">
9

10 <%= new java.util.Date() %>
11 </p>

Fig. 31.9Fig. 31.9Fig. 31.9Fig. 31.9 JSP clock2.jsp to include as the main content in the XHTML document
created by Fig. 31.10 (part 1 of 2).

iw3htp2_31.fm Page 1133 Monday, July 23, 2001 4:27 PM

1134 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

12 </td>
13 </tr>
14 </table>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.7: include.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>Using jsp:include</title>
11
12 <style type = "text/css">
13 body {
14 font-family: tahoma, helvetica, arial, sans-serif;
15 }
16
17 table, tr, td {
18 font-size: .9em;
19 border: 3px groove;
20 padding: 5px;
21 background-color: #dddddd;
22 }
23 </style>
24 </head>
25
26 <body>
27 <table>
28 <tr>
29 <td style = "width: 160px; text-align: center">
30 <img src = "images/logotiny.png"
31 width = "140" height = "93"
32 alt = "Deitel & Associates, Inc. Logo" />
33 </td>
34
35 <td>
36
37 <%-- include banner.html in this JSP --%>
38 <jsp:include page = "banner.html"
39 flush = "true" />
40
41 </td>
42 </tr>
43

Fig. 31.10Fig. 31.10Fig. 31.10Fig. 31.10 JSP include.jsp Includes resources with <jsp:include> (part 1 of 2).

Fig. 31.9Fig. 31.9Fig. 31.9Fig. 31.9 JSP clock2.jsp to include as the main content in the XHTML document
created by Fig. 31.10 (part 2 of 2).

iw3htp2_31.fm Page 1134 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1135

31.6.2 <jsp:forward> Action

Action <jsp:forward> enables a JSP to forward request processing to a different re-
source. Request processing by the original JSP terminates as soon as the JSP forwards the re-
quest. Action <jsp:forward> has only a page attribute that specifies the relative URI of
the resource (in the same Web application) to which the request should be forwarded.

44 <tr>
45 <td style = "width: 160px">
46
47 <%-- include toc.html in this JSP --%>
48 <jsp:include page = "toc.html" flush = "true" />
49
50 </td>
51
52 <td style = "vertical-align: top">
53
54 <%-- include clock2.jsp in this JSP --%>
55 <jsp:include page = "clock2.jsp"
56 flush = "true" />
57
58 </td>
59 </tr>
60 </table>
61 </body>
62 </html>

Fig. 31.10Fig. 31.10Fig. 31.10Fig. 31.10 JSP include.jsp Includes resources with <jsp:include> (part 2 of 2).

iw3htp2_31.fm Page 1135 Monday, July 23, 2001 4:27 PM

1136 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

Software Engineering Observation 31.9
When using the <jsp:forward> action, the resource to which the request will be forwarded
must be in the same context (Web application) as the JSP that originally received the request. 31.9

JavaServer Page forward1.jsp (Fig. 31.11) is a modified version of wel-
come.jsp (Fig. 31.4). The primary difference is in lines 22–25 in which JavaServer Page
forward1.jsp forwards the request to JavaServer Page forward2.jsp (Fig. 31.12).
Notice the <jsp:param> action in lines 23–24. This action adds a request parameter rep-
resenting the date and time at which the initial request was received to the request object
that is forwarded to forward2.jsp.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.11: forward1.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>Forward request to another JSP</title>
11 </head>
12
13 <body>
14 <% // begin scriptlet
15
16 String name = request.getParameter("firstName");
17
18 if (name != null) {
19
20 %> <%-- end scriptlet to insert fixed template data --%>
21
22 <jsp:forward page = "forward2.jsp">
23 <jsp:param name = "date"
24 value = "<%= new java.util.Date() %>" />
25 </jsp:forward>
26
27 <% // continue scriptlet
28
29 } // end if
30 else {
31
32 %> <%-- end scriptlet to insert fixed template data --%>
33
34 <form action = "forward1.jsp" method = "get">
35 <p>Type your first name and press Submit</p>
36
37 <p><input type = "text" name = "firstName" />
38 <input type = "submit" value = "Submit" />

Fig. 31.11Fig. 31.11Fig. 31.11Fig. 31.11 JSP forward1.jsp receives a firstName parameter, adds a date to
the request parameters and forwards the request to forward2.jsp for
further processing (part 1 of 2).

iw3htp2_31.fm Page 1136 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1137

The <jsp:param> action specifies name/value pairs of information that are passed
to the <jsp:include>, <jsp:forward> and <jsp:plugin> actions. Every
<jsp:param> action has two required attributes: name and value. If a
<jsp:param> action specifies a parameter that already exists in the request, the new
value for the parameter takes precedence over the original value. All values for that param-
eter can be obtained by using the JSP implicit object request’s getParameter-
Values method, which returns an array of Strings.

JSP forward2.jsp uses the name specified in the <jsp:param> action ("date")
to obtain the date and time. It also uses the firstName parameter originally passed to
forward1.jsp to obtain the user’s first name. JSP expressions in Fig. 31.12 (lines 23 and
31) insert the request parameter values in the response to the client. The screen capture in
Fig. 31.11 shows the initial interaction with the client. The screen capture in Fig. 31.12 shows
the results returned to the client after the request was forwarded to forward2.jsp.

39 </p>
40 </form>
41
42 <% // continue scriptlet
43
44 } // end else
45
46 %> <%-- end scriptlet --%>
47 </body>
48
49 </html> <!-- end XHTML document -->

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- forward2.jsp -->
6

Fig. 31.12Fig. 31.12Fig. 31.12Fig. 31.12 JSP forward2.jsp receives a request (from forward1.jsp in this
example) and uses the request parameters as part of the response to the
client (part 1 of 2).

Fig. 31.11Fig. 31.11Fig. 31.11Fig. 31.11 JSP forward1.jsp receives a firstName parameter, adds a date to
the request parameters and forwards the request to forward2.jsp for
further processing (part 2 of 2).

iw3htp2_31.fm Page 1137 Monday, July 23, 2001 4:27 PM

1138 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

7 <html xmlns = "http://www.w3.org/1999/xhtml"v
8
9 <head>

10 <title>Processing a forwarded request</title>
11
12 <style type = "text/css">
13 .big {
14 font-family: tahoma, helvetica, arial, sans-serif;
15 font-weight: bold;
16 font-size: 2em;
17 }
18 </style>
19 </head>
20
21 <body>
22 <p class = "big">
23 Hello <%= request.getParameter("firstName") %>,

24 Your request was received
 and forwarded at
25 </p>
26
27 <table style = "border: 6px outset;">
28 <tr>
29 <td style = "background-color: black;">
30 <p class = "big" style = "color: cyan;">
31 <%= request.getParameter("date") %>
32 </p>
33 </td>
34 </tr>
35 </table>
36 </body>
37
38 </html>

Fig. 31.12Fig. 31.12Fig. 31.12Fig. 31.12 JSP forward2.jsp receives a request (from forward1.jsp in this
example) and uses the request parameters as part of the response to the
client (part 2 of 2).

iw3htp2_31.fm Page 1138 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1139

To test Fig. 31.11 and Fig. 31.12 in Tomcat, copy forward1.jsp and
forward2.jsp into the jsp directory created in Section 31.3. Open your Web browser
and enter the following URL to test welcome.jsp:

http://localhost:8080/advjhtp1/jsp/forward1.jsp

31.6.3 <jsp:plugin> Action

Action <jsp:plugin> adds an applet or JavaBean to a Web page in the form of a brows-
er-specific object or embed XHTML element. This action also enables the client to
download and install the Java Plug-in if it is not already installed. Figure 31.13 describes
the attributes of action <jsp:plugin>.

Figure 31.14 defines an applet that draws a picture using the Java2D API. The applet
has three parameters that enable the JSP implementor to specify the background color for
the drawing. The parameters represent the red, green and blue portions of an RGB
color with values in the range 0–255. The applet obtains the parameter values in lines 21–
23. If any exceptions occur while processing the parameters, the exceptions are caught at
line 32 and ignored, leaving the applet with its default white background color.

Attribute Description

type Component type—bean or applet.

code Class that represents the component.

codebase Location of the class specified in the code attribute and the archives
specified in the archive attribute.

align Alignment of the component.

archive A space-separated list of archive files that contain resources used by the
component. Such an archive may include the class specified by the
code attribute.

height Component height in the page specified in pixels or percentage.

hspace Number of pixels of space that appear to the left and to the right of the
component.

jreversion Version of the Java Runtime Environment and plug-in required to exe-
cute the component. The default value is 1.1.

name Name of the component.

vspace Number of pixels of space that appear above and below the component.

title Text that describes the component.

width Component width in the page specified in pixels or percentage.

nspluginurl Location for download of the Java Plug-in for Netscape Navigator.

iepluginurl Location for download of the Java Plug-in for Internet Explorer.

Fig. 31.13Fig. 31.13Fig. 31.13Fig. 31.13 Attributes of the <jsp:plugin> action.

iw3htp2_31.fm Page 1139 Monday, July 23, 2001 4:27 PM

1140 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

1 // Fig. 10.14: ShapesApplet.java
2 // Applet that demonstrates a Java2D GeneralPath.
3 package com.deitel.advjhtp1.jsp.applet;
4
5 // Java core packages
6 import java.applet.*;
7 import java.awt.event.*;
8 import java.awt.*;
9 import java.awt.geom.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 public class ShapesApplet extends JApplet {
15
16 // initialize the applet
17 public void init()
18 {
19 // obtain color parameters from XHTML file
20 try {
21 int red = Integer.parseInt(getParameter("red"));
22 int green = Integer.parseInt(getParameter("green"));
23 int blue = Integer.parseInt(getParameter("blue"));
24
25 Color backgroundColor = new Color(red, green, blue);
26
27 setBackground(backgroundColor);
28 }
29
30 // if there is an exception while processing the color
31 // parameters, catch it and ignore it
32 catch (Exception exception) {
33 // do nothing
34 }
35 }
36
37 public void paint(Graphics g)
38 {
39 // create arrays of x and y coordinates
40 int xPoints[] =
41 { 55, 67, 109, 73, 83, 55, 27, 37, 1, 43 };
42 int yPoints[] =
43 { 0, 36, 36, 54, 96, 72, 96, 54, 36, 36 };
44
45 // obtain reference to a Graphics2D object
46 Graphics2D g2d = (Graphics2D) g;
47
48 // create a star from a series of points
49 GeneralPath star = new GeneralPath();
50
51 // set the initial coordinate of the GeneralPath
52 star.moveTo(xPoints[0], yPoints[0]);
53

Fig. 31.14Fig. 31.14Fig. 31.14Fig. 31.14 An applet to demonstrate <jsp:plugin> in Fig. 31.15 (part 1 of 2).

iw3htp2_31.fm Page 1140 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1141

Most Web browsers in use today do not support applets written for the Java 2 platform.
Executing such applets in most of today’s browsers requires the Java Plug-in. Figure 31.15
uses the <jsp:plugin> action (lines 10–22) to embed the Java Plug-in. Line 11 indi-
cates the package name and class name of the applet class. Line 12 indicates the code-
base from which the applet should be downloaded. Line 13 indicates that the applet
should be 400 pixels wide and line 14 indicates that the applet should be 400 pixels tall.
Lines 16–20 specify the applet parameters. You can change the background color in the
applet by changing the red, green and blue values. Note that the <jsp:plugin> action
requires any <jsp:param> actions to appear in a <jsp:params> action.

54 // create the star--this does not draw the star
55 for (int k = 1; k < xPoints.length; k++)
56 star.lineTo(xPoints[k], yPoints[k]);
57
58 // close the shape
59 star.closePath();
60
61 // translate the origin to (200, 200)
62 g2d.translate(200, 200);
63
64 // rotate around origin and draw stars in random colors
65 for (int j = 1; j <= 20; j++) {
66 g2d.rotate(Math.PI / 10.0);
67
68 g2d.setColor(
69 new Color((int) (Math.random() * 256),
70 (int) (Math.random() * 256),
71 (int) (Math.random() * 256)));
72
73 g2d.fill(star); // draw a filled star
74 }
75 }
76 }

1 <!-- Fig. 10.15: plugin.jsp -->
2
3 <html>
4
5 <head>
6 <title>Using jsp:plugin to load an applet</title>
7 </head>
8
9 <body>

10 <jsp:plugin type = "applet"
11 code = "com.deitel.advjhtp1.jsp.applet.ShapesApplet"
12 codebase = "/advjhtp1/jsp"
13 width = "400"
14 height = "400">

Fig. 31.15Fig. 31.15Fig. 31.15Fig. 31.15 Using <jsp:plugin> to incorporate a Java applet into a JSP (part 1 of 2).

Fig. 31.14Fig. 31.14Fig. 31.14Fig. 31.14 An applet to demonstrate <jsp:plugin> in Fig. 31.15 (part 2 of 2).

iw3htp2_31.fm Page 1141 Monday, July 23, 2001 4:27 PM

1142 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

15
16 <jsp:params>
17 <jsp:param name = "red" value = "255" />
18 <jsp:param name = "green" value = "255" />
19 <jsp:param name = "blue" value = "0" />
20 </jsp:params>
21
22 </jsp:plugin>
23 </body>
24 </html>

Fig. 31.15Fig. 31.15Fig. 31.15Fig. 31.15 Using <jsp:plugin> to incorporate a Java applet into a JSP (part 2 of 2).

iw3htp2_31.fm Page 1142 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1143

To test the <jsp:plugin> action in Tomcat, copy plugin.jsp and ShapesAp-
plet.class into the jsp directory created in Section 31.3. [Note: ShapesApplet is
defined in package com.deitel.advjhtp1.jsp.applet. This example will work
only if the proper package directory structure is defined in the classes directory.] Open
your Web browser and enter the following URL to test plugin.jsp:

http://localhost:8080/advjhtp1/jsp/plugin.jsp

The screen captures in Fig. 31.15 show the applet executing in Microsoft Internet Explorer
5.5 and Netscape Navigator 6.0.

31.6.4 <jsp:useBean> Action
Action <jsp:useBean> enables a JSP to manipulate a Java object. This action creates
a Java object or locates an existing object for use in the JSP. Figure 31.16 summarizes
action <jsp:useBean>’s attributes. If attributes class and beanName are not spec-
ified, the JSP container attempts to locate an existing object of the type specified in at-
tribute type. Like JSP implicit objects, objects specified with action <jsp:useBean>
have page, request, session or application scope that indicates where they
can be used in a Web application. Objects with page scope are accessible only to the
page in which they are defined. Multiple JSP pages potentially can access objects with
other scopes. For example, all JSPs that process a single request can access an object with
request scope.

Common Programming Error 31.6
One or both of the <jsp:useBean> attributes class and type must be specified; oth-
erwise, a translation-time error occurs. 31.6

Attribute Description

id The name used to manipulate the Java object with actions <jsp:setProp-
erty> and <jsp:getProperty>. A variable of this name is also declared
for use in JSP scripting elements. The name specified here is case sensitive.

scope The scope in which the Java object is accessible—page, request, session
or application. The default scope is page.

class The fully qualified class name of the Java object.

beanName The name of a bean that can be used with method instantiate of class
java.beans.Beans to load a JavaBean into memory.

type The type of the JavaBean. This can be the same type as the class attribute, a
superclass of that type or an interface implemented by that type. The default
value is the same as for attribute class. A ClassCastException occurs
if the Java object is not of the type specified with attribute type.

Fig. 31.16Fig. 31.16Fig. 31.16Fig. 31.16 Attributes of the <jsp:useBean> action.

iw3htp2_31.fm Page 1143 Monday, July 23, 2001 4:27 PM

1144 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

Many Web sites today place rotating advertisements on their Web pages. Each visit to
one of these pages typically results in a different advertisement being displayed in the user’s
Web browser. Typically, clicking an advertisement takes you to the Web site of the company
that placed the advertisement. Our first example of <jsp:useBean> demonstrates a simple
advertisement rotator bean that cycles through a list of five advertisements. In this example,
the advertisements are covers for some of our books. Clicking a cover takes you to the
Amazon.com Web site where you can read about and possibly order the book.

The Rotator bean (Fig. 31.17) has three methods: getImage, getLink and
nextAd. Method getImage returns the image file name for the book cover image. Method
getLink returns the hyperlink to the book at Amazon.com. Method nextAd updates the
Rotator so the next calls to getImage and getLink return information for a different
advertisement. Methods getImage and getLink each represent a read-only JavaBean
property—image and link, respectively. Rotator keeps track of the current advertise-
ment with its selectedIndex variable, which is updated by invoking method nextAd.

1 // Fig. 10.17: Rotator.java
2 // A JavaBean that rotates advertisements.
3 package com.deitel.advjhtp1.jsp.beans;
4
5 public class Rotator {
6 private String images[] = { "images/jhtp3.jpg",
7 "images/xmlhtp1.jpg", "images/ebechtp1.jpg",
8 "images/iw3htp1.jpg", "images/cpphtp3.jpg" };
9

10 private String links[] = {
11 "http://www.amazon.com/exec/obidos/ASIN/0130125075/" +
12 "deitelassociatin",
13 "http://www.amazon.com/exec/obidos/ASIN/0130284173/" +
14 "deitelassociatin",
15 "http://www.amazon.com/exec/obidos/ASIN/013028419X/" +
16 "deitelassociatin",
17 "http://www.amazon.com/exec/obidos/ASIN/0130161438/" +
18 "deitelassociatin",
19 "http://www.amazon.com/exec/obidos/ASIN/0130895717/" +
20 "deitelassociatin" };
21
22 private int selectedIndex = 0;
23
24 // returns image file name for current ad
25 public String getImage()
26 {
27 return images[selectedIndex];
28 }
29
30 // returns the URL for ad's corresponding Web site
31 public String getLink()
32 {
33 return links[selectedIndex];
34 }
35

Fig. 31.17Fig. 31.17Fig. 31.17Fig. 31.17 Rotator bean that maintains a set of advertisements (part 1 of 2).

iw3htp2_31.fm Page 1144 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1145

Lines 7–8 of JavaServer Page adrotator.jsp (Fig. 31.18) obtain a reference to
an instance of class Rotator. The id for the bean is rotator. The JSP uses this name
to manipulate the bean. The scope of the object is session, so that each individual
client will see the same sequence of ads during their browsing session. When adro-
tator.jsp receives a request from a new client, the JSP container creates the bean and
stores it in JSP that client’s session (an HttpSession object). In each request to this
JSP, line 22 uses the rotator reference created in line 7 to invoke the Rotator bean’s
nextAd method. Thus, each request will receive the next advertisement maintained by
the Rotator bean. Lines 29–34 define a hyperlink to the Amazon.com site for a partic-
ular book. Lines 29–30 introduce action <jsp:getProperty> to obtain the value of
the Rotator bean’s link property. Action <jsp:getProperty> has two
attributes—name and property—that specify the bean object to manipulate and the
property to get. If the JavaBean object uses standard JavaBean naming conventions, the
method used to obtain the link property value from the bean should be getLink.
Action <jsp:getProperty> invokes getLink on the bean referenced with
rotator, converts the return value into a String and outputs the String as part of
the response to the client. The link property becomes the value of the hyperlink’s href
attribute. The hyperlink is represented in the resulting Web page as the book cover image.
Lines 32–33 create an img element and use another <jsp:getProperty> action to
obtain the Rotator bean’s image property value.

36 // update selectedIndex so next calls to getImage and
37 // getLink return a different advertisement
38 public void nextAd()
39 {
40 selectedIndex = (selectedIndex + 1) % images.length;
41 }
42 }

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.18: adrotator.jsp -->
6
7 <jsp:useBean id = "rotator" scope = "application"
8 class = "com.deitel.advjhtp1.jsp.beans.Rotator" />
9

10 <html xmlns = "http://www.w3.org/1999/xhtml">
11
12 <head>
13 <title>AdRotator Example</title>

Fig. 31.18Fig. 31.18Fig. 31.18Fig. 31.18 JSP adrotator.jsp uses a Rotator bean to display a different
advertisement on each request to the page (part 1 of 2).

Fig. 31.17Fig. 31.17Fig. 31.17Fig. 31.17 Rotator bean that maintains a set of advertisements (part 2 of 2).

iw3htp2_31.fm Page 1145 Monday, July 23, 2001 4:27 PM

1146 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

14
15 <style type = "text/css">
16 .big { font-family: helvetica, arial, sans-serif;
17 font-weight: bold;
18 font-size: 2em }
19 </style>
20
21 <%-- update advertisement --%>
22 <% rotator.nextAd(); %>
23 </head>
24
25 <body>
26 <p class = "big">AdRotator Example</p>
27
28 <p>
29 <a href = "<jsp:getProperty name = "rotator"
30 property = "link" />">
31
32 <img src = "<jsp:getProperty name = "rotator"
33 property = "image" />" alt = "advertisement" />
34
35 </p>
36 </body>
37 </html>

Fig. 31.18Fig. 31.18Fig. 31.18Fig. 31.18 JSP adrotator.jsp uses a Rotator bean to display a different
advertisement on each request to the page (part 2 of 2).

iw3htp2_31.fm Page 1146 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1147

Note that the link and image properties also can be obtained with JSP expressions. For
example, the <jsp:getProperty> action in lines 29–30 can be replaced with the
expression

<%= rotator.getLink() %>

Similarly, the <jsp:getProperty> action in lines 32–33 can be replaced with the ex-
pression

<%= rotator.getImage() %>

To test adrotator.jsp in Tomcat, copy adrotator.jsp into the jsp directory
created in Section 31.3. You should have copied the images directory into the jsp direc-
tory when you tested Fig. 31.10. If not, you must copy the images directory there now.
Copy Rotator.class into the advjhtp1 Web application’s WEB-INF\classes
directory in Tomcat. [Note: This example will work only if the proper package directory
structure for Rotator is defined in the classes directory. Rotator is defined in
package com.deitel.advjhtp1.jsp.beans.] Open your Web browser and enter
the following URL to test adrotator.jsp:

http://localhost:8080/advjhtp1/jsp/adrotator.jsp

Try reloading this JSP several times in your browser to see the advertisement change with
each request.

Action <jsp:setProperty> can set JavaBean property values. This action is
particularly useful for mapping request parameter values to JavaBean properties. Request
parameters can be used to set properties of primitive types boolean, byte, char,
int, long, float and double and java.lang types String, Boolean, Byte,
Character, Integer, Long, Float and Double. Figure 31.19 summarizes the
<jsp:setProperty> attributes.

Attribute Description

name The ID of the JavaBean for which a property (or properties) will be set.

property The name of the property to set. Specifying "*" for this attribute causes the
JSP to match the request parameters to the properties of the bean. For each
request parameter that matches (i.e., the name of the request parameter is identi-
cal to the bean’s property name), the corresponding property in the bean is set to
the value of the parameter. If the value of the request parameter is "", the prop-
erty value in the bean remains unchanged.

param If request parameter names do not match bean property names, this attribute can
be used to specify which request parameter should be used to obtain the value
for a specific bean property. This attribute is optional. If this attribute is omitted,
the request parameter names must match bean property names.

Fig. 31.19Fig. 31.19Fig. 31.19Fig. 31.19 Attributes of the <jsp:setProperty> action (part 1 of 2).

iw3htp2_31.fm Page 1147 Monday, July 23, 2001 4:27 PM

1148 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

Common Programming Error 31.7
Use action <jsp:setProperty>’s value attribute to set JavaBean property types that
cannot be set with request parameters; otherwise, conversion errors occur. 31.7

Software Engineering Observation 31.10
Action <jsp:setProperty> can use request-parameter values to set JavaBean proper-
ties only for properties of the following types: Strings, primitive types (boolean, byte,
char, short, int, long, float and double) and type wrapper classes (Boolean,
Byte, Character, Short, Integer, Long, Float and Double). 31.10

Our next example is a guest book that enables users to place their first name, last name
and e-mail address into a guest book database. After submitting their information, users see
a Web page containing all the users in the guest book. Each person’s e-mail address is dis-
played as a hyperlink that allows the user to send an e-mail message to the person. The
example demonstrates action <jsp:setProperty>. In addition, the example intro-
duces the JSP page directive and JSP error pages.

The guest book example consists of JavaBeans GuestBean (Fig. 31.20) and
GuestDataBean (Fig. 31.21), and JSPs guestBookLogin.jsp (Fig. 31.22),
guestBookView.jsp (Fig. 31.23) and guestBookErrorPage.jsp (Fig. 31.24).
Sample outputs from this example are shown in Fig. 31.25.

JavaBean GuestBean (Fig. 31.20) defines three guest properties: firstName,
lastName and email. Each is a read/write property with set and get methods to manip-
ulate the property.

value The value to assign to a bean property. The value typically is the result of a JSP
expression. This attribute is particularly useful for setting bean properties that
cannot be set using request parameters. This attribute is optional. If this
attribute is omitted, the JavaBean property must be of a data type that can be set
using request parameters.

Attribute Description

Fig. 31.19Fig. 31.19Fig. 31.19Fig. 31.19 Attributes of the <jsp:setProperty> action (part 2 of 2).

1 // Fig. 10.20: GuestBean.java
2 // JavaBean to store data for a guest in the guest book.
3 package com.deitel.advjhtp1.jsp.beans;
4
5 public class GuestBean {
6 private String firstName, lastName, email;
7
8 // set the guest's first name
9 public void setFirstName(String name)

10 {
11 firstName = name;
12 }
13

Fig. 31.20Fig. 31.20Fig. 31.20Fig. 31.20 GuestBean stores information for one guest (part 1 of 2).

iw3htp2_31.fm Page 1148 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1149

JavaBean GuestDataBean (Fig. 31.21) connects to the guestbook database and
provides methods getGuestList and addGuest to manipulate the database. The
guestbook database has a single table (guests) containing three columns (firstName,
lastName and email). We provide an SQL script (guestbook.sql) with this
example that can be used with the Cloudscape DBMS to create the guestbook database.
For further details on creating a database with Cloudscape, refer back to Chapter 30.

14 // get the guest's first name
15 public String getFirstName()
16 {
17 return firstName;
18 }
19
20 // set the guest's last name
21 public void setLastName(String name)
22 {
23 lastName = name;
24 }
25
26 // get the guest's last name
27 public String getLastName()
28 {
29 return lastName;
30 }
31
32 // set the guest's email address
33 public void setEmail(String address)
34 {
35 email = address;
36 }
37
38 // get the guest's email address
39 public String getEmail()
40 {
41 return email;
42 }
43 }

1 // Fig. 10.21: GuestDataBean.java
2 // Class GuestDataBean makes a database connection and supports
3 // inserting and retrieving data from the database.
4 package com.deitel.advjhtp1.jsp.beans;
5
6 // Java core packages
7 import java.io.*;
8 import java.sql.*;
9 import java.util.*;

10

Fig. 31.21Fig. 31.21Fig. 31.21Fig. 31.21 GuestDataBean performs database access on behalf of
guestBookLogin.jsp (part 1 of 3).

Fig. 31.20Fig. 31.20Fig. 31.20Fig. 31.20 GuestBean stores information for one guest (part 2 of 2).

iw3htp2_31.fm Page 1149 Monday, July 23, 2001 4:27 PM

1150 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

11 public class GuestDataBean {
12 private Connection connection;
13 private PreparedStatement addRecord, getRecords;
14
15 // construct TitlesBean object
16 public GuestDataBean() throws Exception
17 {
18 // load the Cloudscape driver
19 Class.forName("COM.cloudscape.core.RmiJdbcDriver");
20
21 // connect to the database
22 connection = DriverManager.getConnection(
23 "jdbc:rmi:jdbc:cloudscape:guestbook");
24
25 getRecords =
26 connection.prepareStatement(
27 "SELECT firstName, lastName, email FROM guests"
28);
29
30 addRecord =
31 connection.prepareStatement(
32 "INSERT INTO guests (" +
33 "firstName, lastName, email) " +
34 "VALUES (?, ?, ?)"
35);
36 }
37
38 // return an ArrayList of GuestBeans
39 public List getGuestList() throws SQLException
40 {
41 List guestList = new ArrayList();
42
43 // obtain list of titles
44 ResultSet results = getRecords.executeQuery();
45
46 // get row data
47 while (results.next()) {
48 GuestBean guest = new GuestBean();
49
50 guest.setFirstName(results.getString(1));
51 guest.setLastName(results.getString(2));
52 guest.setEmail(results.getString(3));
53
54 guestList.add(guest);
55 }
56
57 return guestList;
58 }
59
60 // insert a guest in guestbook database
61 public void addGuest(GuestBean guest) throws SQLException
62 {

Fig. 31.21Fig. 31.21Fig. 31.21Fig. 31.21 GuestDataBean performs database access on behalf of
guestBookLogin.jsp (part 2 of 3).

iw3htp2_31.fm Page 1150 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1151

GuestDataBean method getGuestList (lines 39–58) returns a List of Guest-
Bean objects representing the guests in the database. Method getGuestList creates
GuestBeans from the ResultSet returned by PreparedStatement getRecords
(defined at lines 25–28 and executed at line 44). GuestDataBean method addGuest
(lines 61–68) receives a GuestBean as an argument and uses the GuestBean’s properties
as the arguments to PreparedStatement addRecord (defined at lines 30–35). This
PreparedStatement (executed at line 67) inserts a new guest in the database.

Note that the GuestDataBean’s constructor, getGuestList and addGuest
methods do not process potential exceptions. In the constructor, line 19 can throw a
ClassNotFoundException, and the other statements can throw SQLExceptions.
Similarly, SQLExceptions can be thrown from the bodies of methods getGuestList
and addGuest. In this example, we purposely let any exceptions that occur get passed
back to the JSP that invokes the GuestDataBean’s constructor or methods. This enables
us to demonstrate JSP error pages. When a JSP performs an operation that causes an excep-
tion, the JSP can include scriptlets that catch the exception and process it. Exceptions that
are not caught can be forwarded to a JSP error page for handling.

JavaServer Page guestBookLogin.jsp (Fig. 31.22) is a modified version of
forward1.jsp (Fig. 31.11) that displays a form in which users can enter their first name,
last name and e-mail address. When the user submits the form, guestBookLogin.jsp
is requested again, so it can ensure that all the data values were entered. If not, the guest-
BookLogin.jsp responds with the form again, so the user can fill in missing field(s). If
the user supplies all three pieces of information, guestBookLogin.jsp forwards the
request to guestBookView.jsp, which displays the guest book contents.

63 addRecord.setString(1, guest.getFirstName());
64 addRecord.setString(2, guest.getLastName());
65 addRecord.setString(3, guest.getEmail());
66
67 addRecord.executeUpdate();
68 }
69
70 // close statements and terminate database connection
71 protected void finalize()
72 {
73 // attempt to close database connection
74 try {
75 getRecords.close();
76 addRecord.close();
77 connection.close();
78 }
79
80 // process SQLException on close operation
81 catch (SQLException sqlException) {
82 sqlException.printStackTrace();
83 }
84 }
85 }

Fig. 31.21Fig. 31.21Fig. 31.21Fig. 31.21 GuestDataBean performs database access on behalf of
guestBookLogin.jsp (part 3 of 3).

iw3htp2_31.fm Page 1151 Monday, July 23, 2001 4:27 PM

1152 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.22: guestBookLogin.jsp -->
6
7 <%-- page settings --%>
8 <%@ page errorPage = "guestBookErrorPage.jsp" %>
9

10 <%-- beans used in this JSP --%>
11 <jsp:useBean id = "guest" scope = "page"
12 class = "com.deitel.advjhtp1.jsp.beans.GuestBean" />
13 <jsp:useBean id = "guestData" scope = "request"
14 class = "com.deitel.advjhtp1.jsp.beans.GuestDataBean" />
15
16 <html xmlns = "http://www.w3.org/1999/xhtml">
17
18 <head>
19 <title>Guest Book Login</title>
20
21 <style type = "text/css">
22 body {
23 font-family: tahoma, helvetica, arial, sans-serif;
24 }
25
26 table, tr, td {
27 font-size: .9em;
28 border: 3px groove;
29 padding: 5px;
30 background-color: #dddddd;
31 }
32 </style>
33 </head>
34
35 <body>
36 <jsp:setProperty name = "guest" property = "*" />
37
38 <% // start scriptlet
39
40 if (guest.getFirstName() == null ||
41 guest.getLastName() == null ||
42 guest.getEmail() == null) {
43
44 %> <%-- end scriptlet to insert fixed template data --%>
45
46 <form method = "post" action = "guestBookLogin.jsp">
47 <p>Enter your first name, last name and email
48 address to register in our guest book.</p>
49
50 <table>
51 <tr>

Fig. 31.22Fig. 31.22Fig. 31.22Fig. 31.22 JavaServer page guestBookLogin.jsp enables the user to submit a
first name, a last name and an e-mail address to be placed in the guest
book (part 1 of 2).

iw3htp2_31.fm Page 1152 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1153

52 <td>First name</td>
53
54 <td>
55 <input type = "text" name = "firstName" />
56 </td>
57 </tr>
58
59 <tr>
60 <td>Last name</td>
61
62 <td>
63 <input type = "text" name = "lastName" />
64 </td>
65 </tr>
66
67 <tr>
68 <td>Email</td>
69
70 <td>
71 <input type = "text" name = "email" />
72 </td>
73 </tr>
74
75 <tr>
76 <td colspan = "2">
77 <input type = "submit"
78 value = "Submit" />
79 </td>
80 </tr>
81 </table>
82 </form>
83
84 <% // continue scriptlet
85
86 } // end if
87 else {
88 guestData.addGuest(guest);
89
90 %> <%-- end scriptlet to insert jsp:forward action --%>
91
92 <%-- forward to display guest book contents --%>
93 <jsp:forward page = "guestBookView.jsp" />
94
95 <% // continue scriptlet
96
97 } // end else
98
99 %> <%-- end scriptlet --%>
100 </body>
101
102 </html>

Fig. 31.22Fig. 31.22Fig. 31.22Fig. 31.22 JavaServer page guestBookLogin.jsp enables the user to submit a
first name, a last name and an e-mail address to be placed in the guest
book (part 2 of 2).

iw3htp2_31.fm Page 1153 Monday, July 23, 2001 4:27 PM

1154 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

Line 8 of guestBookLogin.jsp introduces the page directive, which defines
information that is globally available in a JSP. Directives are delimited by <%@ and %>. In
this case, the page directive’s errorPage attribute is set to guestBookEr-
rorPage.jsp (Fig. 31.24), indicating that all uncaught exceptions are forwarded to
guestBookErrorPage.jsp for processing. A complete description of the page
directive appears in Section 31.7.

Lines 11–14 define two <jsp:useBean> actions. Lines 11–12 create an instance of
GuestBean called guest. This bean has page scope—it exists for use only in this page.
Lines 14–14 create an instance of GuestDataBean called guestData. This bean has
request scope—it exists for use in this page and any other page that helps process a
single client request. Thus, when guestBookLogin.jsp forwards a request to
guestBookView.jsp, the GuestDataBean is still available for use in guest-
BookView.jsp.

Line 36 demonstrates setting properties of the GuestBean called guest with
request parameter values. The input elements on lines 55, 63 and 71 have the same names
as the GuestBean properties. So, we use action <jsp:setProperty>’s ability to
match request parameters to properties by specifying "*" for attribute property. Line
36 also can set the properties individually with the following lines:

<jsp:setProperty name = "guest" property = "firstName"
 param = "firstName" />

<jsp:setProperty name = "guest" property = "lastName"
 param = "lastName" />

<jsp:setProperty name = "guest" property = "email"
 param = "email" />

If the request parameters had names that differed from GuestBean’s properties, the
param attribute in each of the preceding <jsp:setProperty> actions could be
changed to the appropriate request parameter name.

JavaServer Page guestBookView.jsp (Fig. 31.23) outputs an XHTML document
containing the guest book entries in tabular format. Lines 8–10 define three page direc-
tives. Line 8 specifies that the error page for this JSP is guestBookErrorPage.jsp.
Lines 9–10 introduce attribute import of the page directive. Attribute import enables
programmers to specify Java classes and packages that are used in the context of the JSP.
Line 9 indicates that classes from package java.util are used in this JSP, and line 10
indicates that classes from our package com.deitel.advjhtp1.jsp.beans also
are used.

Lines 13–14 specify a <jsp:useBean> action that obtains a reference to an object
of class GuestDataBean. If a GuestDataBean object already exists, the action
returns a reference to the existing object. If a GuestDataBean object does no exist, the
action creates a GuestDataBean for use in this JSP. Lines 50–59 define a scriptlet that
gets the guest list from the GuestDataBean and begin a loop to output the entries.
Lines 61–70 combine fixed template text with JSP expressions to create rows in the table
of guest book data that will be displayed on the client. The scriptlet at lines 72–76 termi-
nates the loop.

iw3htp2_31.fm Page 1154 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1155

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.23: guestBookView.jsp -->
6
7 <%-- page settings --%>
8 <%@ page errorPage = "guestBookErrorPage.jsp" %>
9 <%@ page import = "java.util.*" %>

10 <%@ page import = "com.deitel.advjhtp1.jsp.beans.*" %>
11
12 <%-- GuestDataBean to obtain guest list --%>
13 <jsp:useBean id = "guestData" scope = "request"
14 class = "com.deitel.advjhtp1.jsp.beans.GuestDataBean" />
15
16 <html xmlns = "http://www.w3.org/1999/xhtml">
17
18 <head>
19 <title>Guest List</title>
20
21 <style type = "text/css">
22 body {
23 font-family: tahoma, helvetica, arial, sans-serif;
24 }
25
26 table, tr, td, th {
27 text-align: center;
28 font-size: .9em;
29 border: 3px groove;
30 padding: 5px;
31 background-color: #dddddd;
32 }
33 </style>
34 </head>
35
36 <body>
37 <p style = "font-size: 2em;">Guest List</p>
38
39 <table>
40 <thead>
41 <tr>
42 <th style = "width: 100px;">Last name</th>
43 <th style = "width: 100px;">First name</th>
44 <th style = "width: 200px;">Email</th>
45 </tr>
46 </thead>
47
48 <tbody>
49

Fig. 31.23Fig. 31.23Fig. 31.23Fig. 31.23 JavaServer page guestBookView.jsp displays the contents of the
guest book (part 1 of 2).

iw3htp2_31.fm Page 1155 Monday, July 23, 2001 4:27 PM

1156 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

JavaServer Page guestBookErrorPage.jsp (Fig. 31.24) outputs an XHTML
document containing an error message based on the type of exception that causes this error
page to be invoked. Lines 8–10 define several page directives. Line 8 introduces page
directive attribute isErrorPage. Setting this attribute to true makes the JSP an error
page and enables access to the JSP implicit object exception that refers to an exception
object indicating the problem that occurred.
 Common Programming Error 31.8

JSP implicit object exception can be used only in error pages. Using this object in other
JSPs results in a translation-time error. 31.8

Lines 29–46 define scriptlets that determine the type of exception that occurred and
begin outputting an appropriate error message with fixed template data. The actual error
message from the exception is output at line 56.

50 <% // start scriptlet
51
52 List guestList = guestData.getGuestList();
53 Iterator guestListIterator = guestList.iterator();
54 GuestBean guest;
55
56 while (guestListIterator.hasNext()) {
57 guest = (GuestBean) guestListIterator.next();
58
59 %> <%-- end scriptlet; insert fixed template data --%>
60
61 <tr>
62 <td><%= guest.getLastName() %></td>
63
64 <td><%= guest.getFirstName() %></td>
65
66 <td>
67 <a href = "mailto:<%= guest.getEmail() %>">
68 <%= guest.getEmail() %>
69 </td>
70 </tr>
71
72 <% // continue scriptlet
73
74 } // end while
75
76 %> <%-- end scriptlet --%>
77
78 </tbody>
79 </table>
80 </body>
81
82 </html>

Fig. 31.23Fig. 31.23Fig. 31.23Fig. 31.23 JavaServer page guestBookView.jsp displays the contents of the
guest book (part 2 of 2).

iw3htp2_31.fm Page 1156 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1157

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.24: guestBookErrorPage.jsp -->
6
7 <%-- page settings --%>
8 <%@ page isErrorPage = "true" %>
9 <%@ page import = "java.util.*" %>

10 <%@ page import = "java.sql.*" %>
11
12 <html xmlns = "http://www.w3.org/1999/xhtml">
13
14 <head>
15 <title>Error!</title>
16
17 <style type = "text/css">
18 .bigRed {
19 font-size: 2em;
20 color: red;
21 font-weight: bold;
22 }
23 </style>
24 </head>
25
26 <body>
27 <p class = "bigRed">
28
29 <% // scriptlet to determine exception type
30 // and output beginning of error message
31 if (exception instanceof SQLException)
32 %>
33
34 An SQLException
35
36 <%
37 else if (exception instanceof ClassNotFoundException)
38 %>
39
40 A ClassNotFoundException
41
42 <%
43 else
44 %>
45
46 An exception
47
48 <%-- end scriptlet to insert fixed template data --%>
49
50 <%-- continue error message output --%>
51 occurred while interacting with the guestbook database.
52 </p>

Fig. 31.24Fig. 31.24Fig. 31.24Fig. 31.24 JavaServer page guestBookErrorPage.jsp responds to exceptions
in guestBookLogin.jsp and guestBookView.jsp (part 1 of 2).

iw3htp2_31.fm Page 1157 Monday, July 23, 2001 4:27 PM

1158 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

Figure 31.25 shows sample interactions between the user and the JSPs in the guest
book example. In the first two rows of output, separate users entered their first name, last
name and e-mail. In each case, the current contents of the guest book are returned and dis-
played for the user. In the final interaction, a third user specified an e-mail address that
already existed in the database. The e-mail address is the primary key in the guests table
of the guestbook database, so its values must be unique. Thus, the database prevents the
new record from being inserted, and an exception occurs. The exception is forwarded to
guestBookErrorPage.jsp for processing, which results in the last screen capture.

To test the guest book in Tomcat, copy guestBookLogin.jsp, guestBook-
View.jsp and guestBookErrorPage.jsp into the jsp directory created in
Section 31.3. Copy GuestBean.class and GuestDataBean.class into the
advjhtp1 Web application’s WEB-INF\classes directory in Tomcat. [Note: This
example will work only if the proper package directory structure for GuestBean and
GuestDataBean is defined in the classes directory. These classes are defined in
package com.deitel.advjhtp1.jsp.beans.] Open your Web browser and enter
the following URL to test guestBookLogin.jsp:

http://localhost:8080/advjhtp1/jsp/guestBookLogin.jsp

53
54 <p class = "bigRed">
55 The error message was:

56 <%= exception.getMessage() %>
57 </p>
58
59 <p class = "bigRed">Please try again later</p>
60 </body>
61
62 </html>

Fig. 31.24Fig. 31.24Fig. 31.24Fig. 31.24 JavaServer page guestBookErrorPage.jsp responds to exceptions
in guestBookLogin.jsp and guestBookView.jsp (part 2 of 2).

Fig. 31.25Fig. 31.25Fig. 31.25Fig. 31.25 JSP guest book sample output windows (part 1 of 2).

iw3htp2_31.fm Page 1158 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1159

Fig. 31.25Fig. 31.25Fig. 31.25Fig. 31.25 JSP guest book sample output windows (part 2 of 2).

iw3htp2_31.fm Page 1159 Monday, July 23, 2001 4:27 PM

1160 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

31.7 Directives
Directives are messages to the JSP container that enable the programmer to specify page
settings (such as the error page), to include content from other resources and to specify cus-
tom-tag libraries for use in a JSP. Directives (delimited by <%@ and %>) are processed at
translation time. Thus, directives do not produce any immediate output, because they are
processed before the JSP accepts any requests. Figure 31.26 summarizes the three directive
types. These directives are discussed in the next several subsections.

31.7.1 page Directive
The page directive specifies global settings for the JSP in the JSP container. There can
be many page directives, provided that there is only one occurrence of each attribute.
The only exception to this rule is the import attribute, which can be used repeatedly to
import Java packages used in the JSP. Figure 31.27 summarizes the attributes of the
page directive.

Common Programming Error 31.9
Providing multiple page directives with one or more attributes in common is a JSP transla-
tion-time error. 31.9

Common Programming Error 31.10
Providing a page directive with an attribute or value that is not recognized is a JSP trans-
lation-time error. 31.10

Directive Description

page Defines page settings for the JSP container to process.

include Causes the JSP container to perform a translation-time insertion of another
resource’s content. As the JSP is translated into a servlet and compiled, the ref-
erenced file replaces the include directive and is translated as if it were orig-
inally part of the JSP.

taglib Allows programmers to include their own new tags in the form of tag libraries.
These libraries can be used to encapsulate functionality and simplify the coding
of a JSP.

Fig. 31.26Fig. 31.26Fig. 31.26Fig. 31.26 JSP directives.

Attribute Description

language The scripting language used in the JSP. Currently, the only valid value for
this attribute is java.

extends Specifies the class from which the translated JSP will be inherited. This
attribute must be a fully qualified package and class name.

Fig. 31.27Fig. 31.27Fig. 31.27Fig. 31.27 Attributes of the page directive (part 1 of 2).

iw3htp2_31.fm Page 1160 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1161

import Specifies a comma-separated list of fully qualified class names and/or
packages that will be used in the current JSP. When the scripting language
is java, the default import list is java.lang.*, javax.serv-
let.*, javax.servlet.jsp.* and javax.servlet.http.*.
If multiple import properties are specified, the package names are
placed in a list by the container.

session Specifies whether the page participates in a session. The values for this
attribute are true (participates in a session—the default) or false (does
not participate in a session). When the page is part of a session, the JSP
implicit object session is available for use in the page. Otherwise,
session is not available. In the latter case, using session in the
scripting code results in a translation-time error.

buffer Specifies the size of the output buffer used with the implicit object out.
The value of this attribute can be none for no buffering, or a value such as
8kb (the default buffer size). The JSP specification indicates that the
buffer used must be at least the size specified.

autoFlush When set to true (the default value), this attribute indicates that the out-
put buffer used with implicit object out should be flushed automatically
when the buffer fills. If set to false, an exception occurs if the buffer
overflows. This attribute’s value must be true if the buffer attribute is set
to none.

isThreadSafe Specifies if the page is thread safe. If true (the default), the page is consid-
ered to be thread safe, and it can process multiple requests at the same time.
If false, the servlet that represents the page implements interface
java.lang.SingleThreadModel and only one request can be pro-
cessed by that JSP at a time. The JSP standard allows multiple instances of a
JSP to exists for JSPs that are not thread safe. This enables the container to
handle requests more efficiently. However, this does not guarantee that
resources shared across JSP instances are accessed in a thread-safe manner.

info Specifies an information string that describes the page. This string is
returned by the getServletInfo method of the servlet that represents
the translated JSP. This method can be invoked through the JSP’s implicit
page object.

errorPage Any exceptions in the current page that are not caught are sent to the error
page for processing. The error page implicit object exception refer-
ences the original exception.

isErrorPage Specifies if the current page is an error page that will be invoked in
response to an error on another page. If the attribute value is true, the
implicit object exception is created and references the original excep-
tion that occurred. If false (the default), any use of the exception
object in the page results in a translation-time error.

contentType Specifies the MIME type of the data in the response to the client. The
default type is text/html.

Attribute Description

Fig. 31.27Fig. 31.27Fig. 31.27Fig. 31.27 Attributes of the page directive (part 2 of 2).

iw3htp2_31.fm Page 1161 Monday, July 23, 2001 4:27 PM

1162 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

Software Engineering Observation 31.11
According to the JSP specification section 2.7.1, the extends attribute “should not be used
without careful consideration as it restricts the ability of the JSP container to provide spe-
cialized superclasses that may improve on the quality of rendered service.” Rememeber that
a Java class can extend exactly one other class. If your JSP specifies an explicit superclass,
the JSP container cannot translate your JSP into a sublcass of one of the container applica-
tion’s own enhanced servlet classes. 31.11

Common Programming Error 31.11
Using JSP implicit object session in a JSP that does not have its page directive attribute
session set to true is a translation-time error. 31.11

31.7.2 include Directive
The include directive includes the content of another resource once, at JSP translation
time. The include directive has only one attribute—file—that specifies the URL of
the page to include. The difference between directive include and action <jsp:in-
clude> is noticeable only if the included content changes. For example, if the definition
of an XHTML document changes after it is included with directive include, future invo-
cations of the JSP will show the original content of the XHTML document, not the new
content. In contrast, action <jsp:include> is processed in each request to the JSP.
Therefore, changes to included content would be apparent in the next request to the JSP that
uses action <jsp:include>.

Software Engineering Observation 31.12
The JavaServer Pages 1.1 specification does not provide a mechanism for updating text includ-
ed in a JSP with the include directive. Version 1.2 of the JSP specification allows the con-
tainer to provide such a mechanism, but the specification does not provide for this directly. 31.12

JavaServer Page includeDirective.jsp (Fig. 31.28) reimplements JavaServer
Page include.jsp (Fig. 31.10) using include directives. To test includeDirec-
tive.jsp in Tomcat, copy includeDirective.jsp into the jsp directory created
in Section 31.3. Open your Web browser and enter the following URL to test include-
Directive.jsp:

http://localhost:8080/advjhtp1/jsp/includeDirective.jsp

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.28: includeDirective.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>Using the include directive</title>

Fig. 31.28Fig. 31.28Fig. 31.28Fig. 31.28 JSP includeDirective.jsp demonstrates including content at
translation-time with directive include (part 1 of 3).

iw3htp2_31.fm Page 1162 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1163

11
12 <style type = "text/css">
13 body {
14 font-family: tahoma, helvetica, arial, sans-serif;
15 }
16
17 table, tr, td {
18 font-size: .9em;
19 border: 3px groove;
20 padding: 5px;
21 background-color: #dddddd;
22 }
23 </style>
24 </head>
25
26 <body>
27 <table>
28 <tr>
29 <td style = "width: 160px; text-align: center">
30 <img src = "images/logotiny.png"
31 width = "140" height = "93"
32 alt = "Deitel & Associates, Inc. Logo" />
33 </td>
34
35 <td>
36
37 <%-- include banner.html in this JSP --%>
38 <%@ include file = "banner.html" %>
39
40 </td>
41 </tr>
42
43 <tr>
44 <td style = "width: 160px">
45
46 <%-- include toc.html in this JSP --%>
47 <%@ include file = "toc.html" %>
48
49 </td>
50
51 <td style = "vertical-align: top">
52
53 <%-- include clock2.jsp in this JSP --%>
54 <%@ include file = "clock2.jsp" %>
55
56 </td>
57 </tr>
58 </table>
59 </body>
60 </html>

Fig. 31.28Fig. 31.28Fig. 31.28Fig. 31.28 JSP includeDirective.jsp demonstrates including content at
translation-time with directive include (part 2 of 3).

iw3htp2_31.fm Page 1163 Monday, July 23, 2001 4:27 PM

1164 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

31.8 Custom Tag Libraries
Throughout this chapter, you have seen how JavaServer Pages can simplify the delivery of
dynamic Web content. Our discussion continues with JSP custom tag libraries, which pro-
vide another mechanism for encapsulating complex functionality for use in JSPs. Custom
tag libraries define one or more custom tags that JSP implementors can use to create dy-
namic content. The functionality of these custom tags is defined in Java classes that imple-
ment interface Tag (package javax.servlet.jsp.tagext), normally by extending
class TagSupport or BodyTagSupport. This mechanism enables Java programmers
to create complex functionality for Web page designers who have no Java programming
knowledge.

Previously, we introduced action <jsp:useBean> and JavaBeans to incorporate
complex, encapsulated functionality in a JSP. In many cases, action <jsp:useBean>
and JavaBeans can perform the same tasks as custom tags can. However, action
<jsp:useBean> and JavaBeans have disadvantages—JavaBeans cannot manipulate
JSP content and Web page designers must have some Java knowledge to use JavaBeans in
a page. With custom tags, it is possible for Web page designers to use complex function-
ality without knowing any Java.

In this section, we present three examples of custom tags. Each tag is part of a single
custom tag library that we refer to as advjhtp1. A JSP includes a custom tag library with
the taglib directive. Figure 31.29 summarizes the taglib directive’s attributes.

Fig. 31.28Fig. 31.28Fig. 31.28Fig. 31.28 JSP includeDirective.jsp demonstrates including content at
translation-time with directive include (part 3 of 3).

iw3htp2_31.fm Page 1164 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1165

Each of the examples in this section uses directive taglib. There are several types
of custom tags that have different levels of complexity. We demonstrate simple tags, simple
tags with attributes and tags that can process their body elements. For complete details on
custom tag libraries, see the resources in Section 31.9.

31.8.1 Simple Custom Tag

Our first custom tag example implements a simple custom tag that inserts the string “Wel-
come to JSP Tag Libraries” in a JSP. When implementing custom tags, you must
define a tag-handler class for each tag that implements the tag’s functionality, a tag library
descriptor that provides information about the tag library and its custom tags to the JSP
container and a JSP that uses the custom tag. Figure 31.30 (customTagWelcome.jsp)
demonstrates our first custom tag. At the end of this section, we discuss how to configure
this example for testing on Tomcat.

Attribute Description

uri Specifies the relative or absolute URI of the tag library descriptor.

tagPrefix Specifies the required prefix that distinguishes custom tags from built-
in tags. The prefix names jsp, jspx, java, javax, servlet, sun
and sunw are reserved.

Fig. 31.29Fig. 31.29Fig. 31.29Fig. 31.29 Attributes of the taglib directive.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.30: customTagWelcome.jsp -->
6 <!-- JSP that uses a custom tag to output content. -->
7
8 <%-- taglib directive --%>
9 <%@ taglib uri = "advjhtp1-taglib.tld" prefix = "advjhtp1" %>

10
11 <html xmlns = "http://www.w3.org/1999/xhtml">
12
13 <head>
14 <title>Simple Custom Tag Example</title>
15 </head>
16
17 <body>
18 <p>The following text demonstrates a custom tag:</p>
19 <h1>
20 <advjhtp1:welcome />
21 </h1>
22 </body>
23
24 </html>

Fig. 31.30Fig. 31.30Fig. 31.30Fig. 31.30 JSP customTagWelcome.jsp uses a simple custom tag (part 1 of 2).

iw3htp2_31.fm Page 1165 Monday, July 23, 2001 4:27 PM

1166 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

The taglib directive at line 9 enables the JSP to use the tags in our tag library. The
directive specifies the uri of the tag library descriptor file (advjhtp1-taglib.tld;
Fig. 31.32) that provides information about our tag library to the JSP container and the
prefix for each tag (advjhtp1). JSP programmers use the tag library prefix when
referring to tags in a specific tag library. Line 20 uses a custom tag called welcome to
insert text in the JSP. Note that the prefix advjhtp1: precedes the tag name. This enables
the JSP container to interpret the meaning of the tag and invoke the appropriate tag handler.
Also note that line 20 can be written with start and end tags as follows:

<advjhtp1:welcome> </advjhtp1:welcome>

Figure 31.31 defines class WelcomeTagHandler—the tag handler that implements
the functionality of our custom tag welcome. Every tag handler must implement interface
Tag, which defines the methods a JSP container invokes to incorporate a tag’s function-
ality in a JSP. Most tag handler classes implement interface Tag by extending either class
TagSupport or class BodyTagSupport.

Software Engineering Observation 31.13
Classes that define custom tag handlers must implement interface Tag from package jav-
ax.servlet.jsp.tagext. 31.13

Software Engineering Observation 31.14
A custom tag handler class should extend class TagSupport if the body of the tag is ig-
nored or simply output during custom tag processing. 31.14

Software Engineering Observation 31.15
A custom tag handler class should extend class BodyTagSupport if the handler interacts
with the tag’s body content. 31.15

Software Engineering Observation 31.16
Custom tag handlers must be defined in Java packages. 31.16

Fig. 31.30Fig. 31.30Fig. 31.30Fig. 31.30 JSP customTagWelcome.jsp uses a simple custom tag (part 2 of 2).

iw3htp2_31.fm Page 1166 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1167

Class WelcomeTagHandler implements interface Tag by extending class Tag-
Support (both from package java.servlet.jsp.tagext). The most important
methods of interface Tag are doStartTag and doEndTag. The JSP container invokes
these methods when it encounters the starting custom tag and the ending custom tag,
respectively. These methods throw JspExceptions if problems are encountered during
custom-tag processing.

Software Engineering Observation 31.17
If exceptions other than JspExceptions occur in a custom tag handler class, the excep-
tions should be caught and processed. If such exceptions would prevent proper tag process-
ing, the exceptions should be rethrown as JspExceptions. 31.17

In this example, class WelcomeTagHandler overrides method doStartTag to
output text that becomes part of the JSP’s response. Line 20 uses the custom tag handler’s
pageContext object (inherited from class TagSupport) to obtain the JSP’s Jsp-
Writer object that method doStartTag uses to output text. Line 23 uses the Jsp-
Writer to output a string. Line 31 returns the static integer constant SKIP_BODY

1 // Fig. 10.31: WelcomeTagHandler.java
2 // Custom tag handler that handles a simple tag.
3 package com.deitel.advjhtp1.jsp.taglibrary;
4
5 // Java core packages
6 import java.io.*;
7
8 // Java extension packages
9 import javax.servlet.jsp.*;

10 import javax.servlet.jsp.tagext.*;
11
12 public class WelcomeTagHandler extends TagSupport {
13
14 // Method called to begin tag processing
15 public int doStartTag() throws JspException
16 {
17 // attempt tag processing
18 try {
19 // obtain JspWriter to output content
20 JspWriter out = pageContext.getOut();
21
22 // output content
23 out.print("Welcome to JSP Tag Libraries!");
24 }
25
26 // rethrow IOException to JSP container as JspException
27 catch(IOException ioException) {
28 throw new JspException(ioException.getMessage());
29 }
30
31 return SKIP_BODY; // ignore the tag's body
32 }
33 }

Fig. 31.31Fig. 31.31Fig. 31.31Fig. 31.31 WelcomeTagHandler custom tag handler.

iw3htp2_31.fm Page 1167 Monday, July 23, 2001 4:27 PM

1168 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

(defined in interface Tag) to indicate that the JSP container should ignore any text or other
elements that appear in the tag’s body. To include the body content as part of the response,
specify static integer constant EVAL_BODY_INCLUDE as the return value. This
example does not require any processing when the ending tag is encountered by the JSP
container, so we did not override doEndTag.

Figure 31.32 defines the custom tag library descriptor file. This XML document spec-
ifies information required by the JSP container such as the version number of the tag library
(element tlibversion), the JSP version number (element jspversion), information
about the library (element info) and information about the tags in the library (one tag
element for each tag). In this tag library descriptor, the tag element at lines 18–30
describes our welcome tag. Line 19 specifies the tag’s name—used by JSP programmers
to access the custom functionality in a JSP. Lines 21–23 specify the tagclass—the
custom tag handler class.This element associates the tag name with a specific tag handler
class. Element bodycontent (line 25) specifies that our custom tag has an empty body.
This value can also be tagdependent or JSP. Lines 27–29 specify information about
the tag with an info element. [Note: We introduce other elements of the tag library
descriptor as necessary. For a complete description of the tag library descriptor, see the
JavaServer Pages 1.1 specification, which can be downloaded from java.sun.com/
products/jsp/download.html.]

Software Engineering Observation 31.18
The custom tag handler class must be specified with its full package name in the tagclass
element of the tag library descriptor. 31.18

1 <?xml version = "1.0" encoding = "ISO-8859-1" ?>
2 <!DOCTYPE taglib PUBLIC
3 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
4 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
5
6 <!-- a tag library descriptor -->
7
8 <taglib>
9 <tlibversion>1.0</tlibversion>

10 <jspversion>1.1</jspversion>
11 <shortname>advjhtp1</shortname>
12
13 <info>
14 A simple tab library for the examples
15 </info>
16
17 <!-- A simple tag that outputs content -->
18 <tag>
19 <name>welcome</name>
20
21 <tagclass>
22 com.deitel.advjhtp1.jsp.taglibrary.WelcomeTagHandler
23 </tagclass>
24
25 <bodycontent>empty</bodycontent>

Fig. 31.32Fig. 31.32Fig. 31.32Fig. 31.32 Custom tag library descriptor file (advjhtp1-taglib.tld) (part 1 of 2).

iw3htp2_31.fm Page 1168 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1169

To test customTagWelcome.jsp in Tomcat, copy customTagWelcome.jsp
and advjhtp1-taglib.tld into the jsp directory created in Section 31.3. Copy
WelcomeTagHandler.class into the advjhtp1 Web application’s WEB-
INF\classes directory in Tomcat. [Note: Class WelcomeTagHandler must appear
in its proper package director structure in classes directory. WelcomeTagHandler is
defined in package com.deitel.advjhtp1.jsp.taglibrary.] Open your Web
browser and enter the following URL to test customTagWelcome.jsp:

http://localhost:8080/advjhtp1/jsp/customTagWelcome.jsp

31.8.2 Custom Tag with Attributes
Many XHTML and JSP elements use attributes to customize functionality. For example, an
XHTML element can specify a style attribute that indicates how the element should be
formatted in a client’s Web browser. Similarly, the JSP action elements have attributes that
help customize their behavior in a JSP. Our next example demonstrates how to specify at-
tributes for your custom tags.

Figure 31.33 (customTagAttribute.jsp) is similar to Fig. 31.30. This example
uses a new tag called, welcome2, to insert text in the JSP that is customized based on the
value of attribute firstName. The screen capture shows the results of the welcome2
tags on lines 20 and 30. The tag at line 20 specifies the value "Paul" for attribute first-
Name. Lines 26–28 define a scriptlet that obtains the value of request parameter name and
assign it to String reference name. Line 30 uses the name in a JSP expression as the
value for the firstName attribute. In the sample screen capture, this JSP was invoked
with the following URL:

http://localhost:8080/advjhtp1/jsp/
customTagAttribute.jsp?firstName=Sean

26
27 <info>
28 Inserts content welcoming user to tag libraries
29 </info>
30 </tag>
31 </taglib>

Fig. 31.32Fig. 31.32Fig. 31.32Fig. 31.32 Custom tag library descriptor file (advjhtp1-taglib.tld) (part 2 of 2).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.x: customTagAttribute.jsp -->
6 <!-- JSP that uses a custom tag to output content. -->
7
8 <%-- taglib directive --%>
9 <%@ taglib uri = "advjhtp1-taglib.tld" prefix = "advjhtp1" %>

10

Fig. 31.33Fig. 31.33Fig. 31.33Fig. 31.33 Specifying attributes for a custom tag (part 1 of 2).

iw3htp2_31.fm Page 1169 Monday, July 23, 2001 4:27 PM

1170 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

When defining the custom tag handler for a tag with attributes, you must provide
methods that enable the JSP container to set the attribute values in the tag handler. Methods
that manipulate attributes follow the same set- and get-method naming conventions as do
JavaBean properties. Thus, the custom tag’s firstName attribute is set with method

11 <html xmlns = "http://www.w3.org/1999/xhtml">
12
13 <head>
14 <title>Specifying Custom Tag Attributes</title>
15 </head>
16
17 <body>
18 <p>Demonstrating an attribute with a string value</p>
19 <h1>
20 <advjhtp1:welcome2 firstName = "Paul" />
21 </h1>
22
23 <p>Demonstrating an attribute with an expression value</p>
24 <h1>
25 <%-- scriptlet to obtain "name" request parameter --%>
26 <%
27 String name = request.getParameter("name");
28 %>
29
30 <advjhtp1:welcome2 firstName = "<%= name %>" />
31 </h1>
32 </body>
33
34 </html>

Fig. 31.33Fig. 31.33Fig. 31.33Fig. 31.33 Specifying attributes for a custom tag (part 2 of 2).

iw3htp2_31.fm Page 1170 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1171

setFirstName. Similarly, the method to obtain the firstName attribute’s value
would be getFirstName (we did not define this method for this example). Class
Welcome2TagHandler (Fig. 31.34) defines its firstName variable at line 13 and a
corresponding set method setFirstName (lines 37–40). When the JSP container
encounters a welcome2 tag in a JSP, it creates a new Welcome2TagHandler object to
process the tag and sets the tag’s attributes. Next, the container invokes method
doStartTag (lines 16–34) to perform the custom tag processing. Lines 24–25 use the
firstName attribute value as part of the text output by the custom tag.

1 // Fig. 10.34: Welcome2TagHandler.java
2 // Custom tag handler that handles a simple tag.
3 package com.deitel.advjhtp1.jsp.taglibrary;
4
5 // Java core packages
6 import java.io.*;
7
8 // Java extension packages
9 import javax.servlet.jsp.*;

10 import javax.servlet.jsp.tagext.*;
11
12 public class Welcome2TagHandler extends TagSupport {
13 private String firstName = "";
14
15 // Method called to begin tag processing
16 public int doStartTag() throws JspException
17 {
18 // attempt tag processing
19 try {
20 // obtain JspWriter to output content
21 JspWriter out = pageContext.getOut();
22
23 // output content
24 out.print("Hello " + firstName +
25 ",
Welcome to JSP Tag Libraries!");
26 }
27
28 // rethrow IOException to JSP container as JspException
29 catch(IOException ioException) {
30 throw new JspException(ioException.getMessage());
31 }
32
33 return SKIP_BODY; // ignore the tag's body
34 }
35
36 // set firstName attribute to the users first name
37 public void setFirstName(String username)
38 {
39 firstName = username;
40 }
41 }

Fig. 31.34Fig. 31.34Fig. 31.34Fig. 31.34 Welcome2TagHandler custom tag handler for a tag with an attribute.

iw3htp2_31.fm Page 1171 Monday, July 23, 2001 4:27 PM

1172 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

Before the welcome2 tag can be used in a JSP, we must make the JSP container aware
of the tag by adding it to a tag library. To do this, add the tag element of Fig. 31.35 as a
child of element taglib in the tag library descriptor advjhtp1-taglib.tld. As in
the previous example, element tag contains elements name, tagclass, bodycon-
tent and info. Lines 16–20 introduce element attribute for specifying the charac-
teristics of a tag’s attributes. Each attribute must have a separate attribute element that
contains the name, required and rtexprvalue elements. Element name (line 17)
specifies the attribute’s name. Element required specifies whether the attribute is
required (true) or optional (false). Element rtexprvalue specifies whether the
value of the attribute can be the result of a JSP expression evaluated at runtime (true) or
whether it must be a string literal (false).

To test customTagAttribute.jsp in Tomcat, copy customTagAt-
tribute.jsp and the updated advjhtp1-taglib.tld into the jsp directory cre-
ated in Section 31.3. Copy Welcome2TagHandler.class into the advjhtp1 Web
application’s WEB-INF\classes directory in Tomcat. [Note: This example will work
only if the proper package-directory structure for Welcome2TagHandler is defined in
the classes directory.] Open your Web browser and enter the following URL to test
customTagAttribute.jsp:

http://localhost:8080/advjhtp1/jsp/
customTagAttribute.jsp?firstName=Sean

The text ?firstName=Sean in the preceding URL specifies the value for request pa-
rameter name that is used by the custom tag welcome2 at line 30 in Fig. 31.33.

1 <!-- A tag with an attribute -->
2 <tag>
3 <name>welcome2</name>
4
5 <tagclass>
6 com.deitel.advjhtp1.jsp.taglibrary.Welcome2TagHandler
7 </tagclass>
8
9 <bodycontent>empty</bodycontent>

10
11 <info>
12 Inserts content welcoming user to tag libraries. Uses
13 attribute "name" to insert the user's name.
14 </info>
15
16 <attribute>
17 <name>firstName</name>
18 <required>true</required>
19 <rtexprvalue>true</rtexprvalue>
20 </attribute>
21 </tag>

Fig. 31.35Fig. 31.35Fig. 31.35Fig. 31.35 Element tag for the welcome2 custom tag.

iw3htp2_31.fm Page 1172 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1173

31.8.3 Evaluating the Body of a Custom Tag
Custom tags are particularly powerful for processing the element body. When a custom tag
interacts with the element body, additional methods are required to perform those interac-
tions. The methods are defined in class BodyTagSupport. In our next example, we re-
implement guestBookView.jsp (Fig. 31.23) and replace the JavaBean processing
performed in the JSP with a custom guestlist tag.

Figure 31.36 (customTagBody.jsp) uses the custom guestlist tag at lines
41–52. Note that the JSP expressions in the body of element guestlist use variable
names that are not defined in the JSP. These variables are defined by the custom tag handler
when the custom tag is encountered. The custom tag handler places the variables in the
JSP’s PageContext, so the variables can be used throughout the page. Although no rep-
etition is defined in the JSP, the custom tag handler is defined to iterate over all the guests
in the guestbook database. This action results in the creation of a table row in the
resulting Web page for each guest in the database.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- customTagBody.jsp -->
6
7 <%-- taglib directive --%>
8 <%@ taglib uri = "advjhtp1-taglib.tld" prefix = "advjhtp1" %>
9

10 <html xmlns = "http://www.w3.org/1999/xhtml">
11
12 <head>
13 <title>Guest List</title>
14
15 <style type = "text/css">
16 body {
17 font-family: tahoma, helvetica, arial, sans-serif
18 }
19
20 table, tr, td, th {
21 text-align: center;
22 font-size: .9em;
23 border: 3px groove;
24 padding: 5px;
25 background-color: #dddddd
26 }
27 </style>
28 </head>
29
30 <body>
31 <p style = "font-size: 2em">Guest List</p>
32
33 <table>
34 <thead>

Fig. 31.36Fig. 31.36Fig. 31.36Fig. 31.36 Using a custom tag that interacts with its body (part 1 of 2).

iw3htp2_31.fm Page 1173 Monday, July 23, 2001 4:27 PM

1174 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

As in guestBookView.jsp, the custom tag handler GuestBookTag (Fig. 31.37)
creates a GuestDataBean to access the guestbook database. Class GuestBookTag
extends BodyTagSupport, which contains several new methods including doInit-
Body and doAfterBody (from interface BodyTag). Method doInitBody is called
once, after doStartTag and before doAfterBody. Method doAfterBody can be
called many times to process the body of a custom tag.

Software Engineering Observation 31.19
Method doInitBody typically performs one-time processing before method doAfter-
Body processes the body of a custom tag. If method doStartTag returns
Tag.SKIP_BODY, method doInitBody will not be called. 31.19

35 <th style = "width: 100px">Last name</th>
36 <th style = "width: 100px">First name</th>
37 <th style = "width: 200px">Email</th>
38 </thead>
39
40 <%-- guestlist custom tag --%>
41 <advjhtp1:guestlist>
42 <tr>
43 <td><%= lastName %></td>
44
45 <td><%= firstName %></td>
46
47 <td>
48 <a href = "mailto:<%= email %>">
49 <%= email %>
50 </td>
51 </tr>
52 </advjhtp1:guestlist>
53 </table>
54 </body>
55
56 </html>

Fig. 31.36Fig. 31.36Fig. 31.36Fig. 31.36 Using a custom tag that interacts with its body (part 2 of 2).

iw3htp2_31.fm Page 1174 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1175

1 // Fig. 10.37: GuestBookTag.java
2 // Custom tag handler that reads information from the guestbook
3 // database and makes that data available in a JSP.
4 package com.deitel.advjhtp1.jsp.taglibrary;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.servlet.jsp.*;
12 import javax.servlet.jsp.tagext.*;
13
14 // Deitel packages
15 import com.deitel.advjhtp1.jsp.beans.*;
16
17 public class GuestBookTag extends BodyTagSupport {
18 private String firstName;
19 private String lastName;
20 private String email;
21
22 private GuestDataBean guestData;
23 private GuestBean guest;
24 private Iterator iterator;
25
26 // Method called to begin tag processing
27 public int doStartTag() throws JspException
28 {
29 // attempt tag processing
30 try {
31 guestData = new GuestDataBean();
32
33 List list = guestData.getGuestList();
34 iterator = list.iterator();
35
36 if (iterator.hasNext()) {
37 processNextGuest();
38
39 return EVAL_BODY_TAG; // continue body processing
40 }
41 else
42 return SKIP_BODY; // terminate body processing
43 }
44
45 // if any exceptions occur, do not continue processing
46 // tag's body
47 catch(Exception exception) {
48 exception.printStackTrace();
49 return SKIP_BODY; // ignore the tag's body
50 }
51 }
52

Fig. 31.37Fig. 31.37Fig. 31.37Fig. 31.37 GuestBookTag custom tag handler (part 1 of 2).

iw3htp2_31.fm Page 1175 Monday, July 23, 2001 4:27 PM

1176 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

The JSP container invokes method doStartTag (lines 27–51) when it encounters the
custom guestlist tag in a JSP. Lines 31–34 create a new GuestDataBean, obtain a
List of GuestBeans from the GuestDataBean and create an Iterator for manipu-
lating the ArrayList contents. If there are no elements in the list (tested at line 36), line 42
returns SKIP_BODY to indicate that the container should perform no further processing of
the guestlist tag’s body. Otherwise, line 37 invokes private method processNex-
tGuest (lines 80–93) to extract the information for the first guest and create variables con-
taining that information in the JSP’s PageContext (represented with variable

53 // process body and determine if body processing
54 // should continue
55 public int doAfterBody()
56 {
57 // attempt to output body data
58 try {
59 bodyContent.writeOut(getPreviousOut());
60 }
61
62 // if exception occurs, terminate body processing
63 catch (IOException ioException) {
64 ioException.printStackTrace();
65 return SKIP_BODY; // terminate body processing
66 }
67
68 bodyContent.clearBody();
69
70 if (iterator.hasNext()) {
71 processNextGuest();
72
73 return EVAL_BODY_TAG; // continue body processing
74 }
75 else
76 return SKIP_BODY; // terminate body processing
77 }
78
79 // obtains the next GuestBean and extracts its data
80 private void processNextGuest()
81 {
82 // get next guest
83 guest = (GuestBean) iterator.next();
84
85 pageContext.setAttribute(
86 "firstName", guest.getFirstName());
87
88 pageContext.setAttribute(
89 "lastName", guest.getLastName());
90
91 pageContext.setAttribute(
92 "email", guest.getEmail());
93 }
94 }

Fig. 31.37Fig. 31.37Fig. 31.37Fig. 31.37 GuestBookTag custom tag handler (part 2 of 2).

iw3htp2_31.fm Page 1176 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1177

pageContext that was inherited from BodyTagSupport). Method process-
NextGuest uses PageContext method setAttribute to specify each variable’s
name and value. The container is responsible for creating the actual variables used in the JSP.
This is accomplished with the help of class GuestBookTagExtraInfo (Fig. 31.38).

Method doAfterBody (lines 55–77)performs the repetitive processing of the
guestlist tag’s body. The JSP container determines whether method doAfterBody
should be called again, based on the method’s return value. If doAfterBody returns
EVAL_BODY_TAG, the container calls method doAfterBody again. If doAfterBody
returns SKIP_BODY, the container stops processing the body and invokes the custom tag
handler’s doEndTag method to complete the custom processing. Line 59 invokes
writeOut on variable bodyContent (inherited from BodyTagSupport) to process
the first client’s data (stored when doStartTag was called). Variable bodyContent
refers to an object of class BodyContent (package javax.servlet.jsp.tagext).
The argument to method writeOut is the result of method getPreviousOut (inherited
from class BodyTagSupport), which returns the JspWriter object for the JSP that
invokes the custom tag. This enables the custom tag to continue building the response to the
client using the same output stream as the JSP. Next, line 68 invokes bodyContent’s
method clearBody to ensure that the body content that was just output does not get pro-
cessed as part of the next call to doAfterBody. Lines 70–76 determine whether there are
more guests to process. If so, doAfterBody invokes private method processNext-
Guest to obtain the data for the next guest and returns EVAL_BODY_TAG to indicate that
the container should call doAfterBody again. Otherwise, doAfterBody returns
SKIP_BODY to terminate processing of the body.

The JSP container cannot create variables in the PageContext unless the container
knows the names and types of those variables. This information is specified by a class with
the same name as the custom tag handler and that ends with ExtraInfo (GuestBook-
TagExtraInfo in Fig. 31.38). ExtraInfo classes extend class TagExtraInfo
(package javax.servlet.jsp.tagext). The container uses the information speci-
fied by a subclass of TagExtraInfo to determine what variables it should create (or use)
in the PageContext. To specify variable information, override method getVari-
ableInfo. This method returns an array of VariableInfo objects that the container
uses either to create new variables in the PageContext or to enable a custom tag to use
existing variables in the PageContext. The VariableInfo constructor receives four
arguments—a String representing the name of the variable, a String representing the
variable’s class name, a boolean indicating whether or not the variable should be created
by the container (true if so) and a static integer constant representing the variable’s
scope in the JSP. The constants in class VariableInfo are NESTED, AT_BEGIN and
AT_END. NESTED indicates that the variable can be used only in the custom tag’s body.
AT_BEGIN indicates that the variable can be used anywhere in the JSP after the starting
tag of the custom tag is encountered. AT_END indicates that the variable can be used any-
where in the JSP after the ending tag of the custom tag.

Before using the guestlist tag in a JSP, we must make the JSP container aware of
the tag by adding it to a tag library. Add the tag element of Fig. 31.39 as a child of element
taglib in the tag library descriptor advjhtp1-taglib.tld. As in the previous
example, element tag contains elements name, tagclass, bodycontent and info.
Lines 10–12 introduce element teiclass to specify the custom tag’s ExtraInfo class.

iw3htp2_31.fm Page 1177 Monday, July 23, 2001 4:27 PM

1178 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

1 // Fig. 10.38: GuestBookTagExtraInfo.java
2 // Class that defines the variable names and types created by
3 // custom tag handler GuestBookTag.
4 package com.deitel.advjhtp1.jsp.taglibrary;
5
6 // Java core packages
7 import javax.servlet.jsp.tagext.*;
8
9 public class GuestBookTagExtraInfo extends TagExtraInfo {

10
11 // method that returns information about the variables
12 // GuestBookTag creates for use in a JSP
13 public VariableInfo [] getVariableInfo(TagData tagData)
14 {
15 VariableInfo firstName = new VariableInfo("firstName",
16 "String", true, VariableInfo.NESTED);
17
18 VariableInfo lastName = new VariableInfo("lastName",
19 "String", true, VariableInfo.NESTED);
20
21 VariableInfo email = new VariableInfo("email",
22 "String", true, VariableInfo.NESTED);
23
24 VariableInfo varableInfo [] =
25 { firstName, lastName, email };
26
27 return varableInfo;
28 }
29 }

Fig. 31.38Fig. 31.38Fig. 31.38Fig. 31.38 GuestBookTagExtraInfo used by the container to define scripting
variables in a JSP that uses the guestlist custom tag.

1 <!-- A tag that iterates over an ArrayList of GuestBean -->
2 <!-- objects, so they can be output in a JSP -->
3 <tag>
4 <name>guestlist</name>
5
6 <tagclass>
7 com.deitel.advjhtp1.jsp.taglibrary.GuestBookTag
8 </tagclass>
9

10 <teiclass>
11 com.deitel.advjhtp1.jsp.taglibrary.GuestBookTagExtraInfo
12 </teiclass>
13
14 <bodycontent>JSP</bodycontent>
15
16 <info>
17 Iterates over a list of GuestBean objects
18 </info>
19 </tag>

Fig. 31.39Fig. 31.39Fig. 31.39Fig. 31.39 Element tag for the guestlist custom tag.

iw3htp2_31.fm Page 1178 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1179

To test customTagBody.jsp in Tomcat, copy customTagBody.jsp and the
updated advjhtp1-taglib.tld into the jsp directory created in Section 31.3. Copy
GuestBookTag.class and GuestBookTagExtraInfo.class into the
advjhtp1 Web application’s WEB-INF\classes directory in Tomcat. [Note: This
example will work only if the proper package directory structure for GuestBookTag and
GuestBookTagExtraInfo is defined in the classes directory.] Open your Web
browser and enter the following URL to test customTagBody.jsp:

http://localhost:8080/advjhtp1/jsp/customTagBody.jsp

This chapter has presented many JSP capabilities. However, there are additional fea-
tures that are beyond the scope of this book. For a complete description of JavaServer
Pages, see the JavaServer Pages 1.1 specification, which can be downloaded from
java.sun.com/products/jsp/download.html. Other JSP resources are listed
in Section 31.9.

31.9 World Wide Web Resources
java.sun.com/products/jsp
The home page for information about JavaServer Pages at the Sun Microsystems Java site.

java.sun.com/products/servlet
The home page for information about servlets at the Sun Microsystems Java site.

java.sun.com/j2ee
The home page for the Java 2 Enterprise Edition at the Sun Microsystems Java site.

www.w3.org
The World Wide Web Consortium home page. This site provides information about current and de-
veloping Internet and Web standards, such as XHTML, XML and CSS.

jsptags.com
This site includes tutorials, tag libraries, software and other resources for JSP programmers.

jspinsider.com
This Web programming site concentrates on resources for JSP programmers. It includes software, tu-
torials, articles, sample code, references and links to other JSP and Web programming resources.

SUMMARY
• JavaServer Pages (JSPs) are an extension of servlet technology.

• JavaServer Pages enable Web application programmers to create dynamic content by reusing pre-
defined components and by interacting with components using server-side scripting.

• JSP programmers can create custom tag libraries that enable Web-page designers who are not fa-
miliar with Java programming to enhance their Web pages with powerful dynamic content and
processing capabilities.

• Classes and interfaces specific to JavaServer Pages programming are located in packages jav-
ax.servlet.jsp and javax.servlet.jsp.tagext.

• The JavaServer Pages 1.1 specification can be downloaded from java.sun.com/products/
jsp/download.html.

• There are four key components to JSPs—directives, actions, scriptlets and tag libraries.

iw3htp2_31.fm Page 1179 Monday, July 23, 2001 4:27 PM

1180 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

• Directives specify global information that is not associated with a particular JSP request.

• Actions encapsulate functionality in predefined tags that programmers can embed in a JSP.

• Scriptlets, or scripting elements, enable programmers to insert Java code that interacts with com-
ponents in a JSP (and possibly other Web application components) to perform request processing.

• Tag libraries are part of the tag extension mechanism that enables programmers to create new tags
that encapsulate complex Java functionality.

• JSPs normally include XHTML or XML markup. Such markup is known as fixed template data
or fixed template text.

• Programmers tend to use JSPs when most of the content sent to the client is fixed template data
and only a small portion of the content is generated dynamically with Java code.

• Programmers use servlets when a small portion of the content is fixed template data.

• JSPs normally execute as part of a Web server. The server often is referred to as the JSP container.

• When a JSP-enabled server receives the first request for a JSP, the JSP container translates that
JSP into a Java servlet that handles the current request and future requests to the JSP.

• The JSP container places the Java statements that implement a JSP’s response in method
_jspService at translation time.

• The request/response mechanism and life cycle of a JSP are the same as those of a servlet.

• JSPs can define methods jspInit and jspDestroy that are invoked when the container ini-
tializes a JSP and when the container terminates a JSP, respectively.

• JSP expressions are delimited by <%= and %>. Such expressions are converted to Strings by the
JSP container and are output as part of the response.

• The XHTML meta element can set a refresh interval for a document that is loaded into a browser.
This causes the browser to request the document repeatedly at the specified interval in seconds.

• When you first invoke a JSP in Tomcat, there is a delay as Tomcat translates the JSP into a servlet
and invokes the servlet to respond to your request.

• Implicit objects provide programmers with servlet capabilities in the context of a JavaServer Page.

• Implicit objects have four scopes—application, page, request and session.

• Objects with application scope are part of the JSP and servlet container application.

• Objects with page scope exist only as part of the page in which they are used. Each page has its
own instances of the page-scope implicit objects.

• Objects with request scope exist for the duration of the request. Request-scope objects go out of
scope when request processing completes with a response to the client.

• Objects with session scope exist for the client’s entire browsing session.

• JSP scripting components include scriptlets, comments, expressions, declarations and escape se-
quences.

• Scriptlets are blocks of code delimited by <% and %>. They contain Java statements that are placed
in method _jspService when the container translates a JSP into a servlet.

• JSP comments are delimited by <%-- and --%>. XHTML comments are delimited by <!-- and
-->. Java’s single-line comments (//) and multiline comments (delimited by /* and */) can be
used inside scriptlets.

• JSP comments and scripting language comments are ignored and do not appear in the response.

• A JSP expression, delimited by <%= and %>, contains a Java expression that is evaluated when a
client requests the JSP containing the expression. The container converts the result of a JSP ex-
pression to a String object, then outputs the String as part of the response to the client.

iw3htp2_31.fm Page 1180 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1181

• Declarations, delimited by <%! and %>, enable a JSP programmer to define variables and meth-
ods. Variables become instance variables of the class that represents the translated JSP. Similarly,
methods become members of the class that represents the translated JSP.

• Special characters or character sequences that the JSP container normally uses to delimit JSP code
can be included in a JSP as literal characters in scripting elements, fixed template data and attribute
values by using escape sequences.

• JSP standard actions provide JSP implementors with access to several of the most common tasks
performed in a JSP. JSP containers process actions at request time.

• JavaServer Pages support two include mechanisms—the <jsp:include> action and the in-
clude directive.

• Action <jsp:include> enables dynamic content to be included in a JavaServer Page. If the in-
cluded resource changes between requests, the next request to the JSP containing the <jsp:in-
clude> action includes the new content of the resource.

• The include directive is processed once, at JSP translation time, and causes the content to be
copied into the JSP. If the included resource changes, the new content will not be reflected in the
JSP that used the include directive unless that JSP is recompiled.

• Action <jsp:forward> enables a JSP to forward the processing of a request to a different re-
source. Processing of the request by the original JSP terminates as soon as the request is forwarded.

• Action <jsp:param> specifies name/value pairs of information that are passed to the in-
clude, forward and plugin actions. Every <jsp:param> action has two required at-
tributes—name and value. If a param action specifies a parameter that already exists in the
request, the new value for the parameter takes precedence over the original value. All values for
that parameter can be obtained with the JSP implicit object request’s getParameterVal-
ues method, which returns an array of Strings.

• JSP action <jsp:plugin> enables an applet or JavaBean to be added to a Web page in the form
of a browser-specific object or embed XHTML element. This action also enables the down-
loading and installation of the Java Plug-in if it is not already installed on the client computer.

• Action <jsp:useBean> enables a JSP to manipulate a Java object. This action can be used to
create a Java object for use in the JSP or to locate an existing object.

• Like JSP implicit objects, objects specified with action <jsp:useBean> have page, request,
session or application scope that indicates where they can be used in a Web application.

• Action <jsp:getProperty> obtains the value of JavaBean’s property. Action <jsp:get-
Property> has two attributes—name and property—that specify the bean object to manip-
ulate and the property to get.

• JavaBean property values can be set with action <jsp:setProperty>. This action is particu-
larly useful for mapping request parameter values to JavaBean properties. Request parameters can
be used to set properties of primitive types boolean, byte, char, int, long, float and
double and java.lang types String, Boolean, Byte, Character, Integer, Long,
Float and Double.

• The page directive defines information that is globally available in a JSP. Directives are delimited
by <%@ and %>. The page directive’s errorPage attribute indicates where all uncaught excep-
tions are forwarded for processing.

• Action <jsp:setProperty> has the ability to match request parameters to properties of the
same name in a bean by specifying "*" for attribute property.

• Attribute import of the page directive enables programmers to specify Java classes and pack-
ages that are used in the context of a JSP.

iw3htp2_31.fm Page 1181 Monday, July 23, 2001 4:27 PM

1182 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

• If the attribute isErrorPage of the page directive is set to true, the JSP is an error page. This
condition enables access to the JSP implicit object exception that refers to an exception object
indicating the problem that occurred.

• Directives are messages to the JSP container that enable the programmer to specify page settings
(such as the error page), to include content from other resources and to specify custom tag libraries
that can be used in a JSP. Directives are processed at the time a JSP is translated into a servlet and
compiled. Thus, directives do not produce any immediate output.

• The page directive specifies global settings for a JSP in the JSP container. There can be many
page directives, provided that there is only one occurrence of each attribute. The exception to this
rule is the import attribute, which can be used repeatedly to import Java packages.

• Custom tag libraries define one or more custom tags that JSP implementors can use to create dy-
namic content. The functionality of these custom tags is defined in Java classes that implement
interface Tag (package javax.servlet.jsp.tagext), normally by extending class Tag-
Support or BodyTagSupport.

• A JSP can include a custom tag library with the taglib directive.

• When implementing custom tags, you must define a tag handler class for each tag that provides
the tag’s functionality, a tag library descriptor that provides information about the tag library and
its custom tags to the JSP container and a JSP that uses the custom tag.

• The most important methods of interface Tag are doStartTag and doEndTag. The JSP con-
tainer invokes these methods when it encounters the starting custom tag and the ending custom
tag, respectively.

• A custom tag library descriptor file is an XML document that specifies information about the tag
library that is required by the JSP container.

• Class BodyTagSupport contains several methods for interacting with the body of a custom tag,
including doInitBody and doAfterBody (from interface BodyTag). Method doInit-
Body is called once after doStartTag and once before doAfterBody. Method doAfter-
Body can be called many times to process the body of a custom tag.

TERMINOLOGY
%\> escape sequence for %> BodyContent interface
<!-- and --> XHTML comment delimiters BodyTag interface
<%-- and --%> JSP comment delimiters BodyTagSupport class
<% and %> scriptlet delimiters buffer attribute of page directive
<%! and %> declaration delimiters class attribute of <jsp:useBean> action
<%= and %> JSP expression delimiters client-server networking
<%@ and %> directive delimiters code attribute of <jsp:plugin> action
<\% escape sequence for <% codebase attribute of <jsp:plugin> action
action comment
align attribute of <jsp:plugin> action config implicit object
application implicit object container
application scope contentType attribute of page directive
archive attribute of <jsp:plugin> action custom tag
AT_BEGIN constant custom tag attribute
AT_END constant custom tag handler
attribute of tag library descriptor custom tag library
autoFlush attribute of page directive custom tag with attributes
beanName attribute of <jsp:useBean> action declaration
bodycontent element of tag library descriptor directive

iw3htp2_31.fm Page 1182 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1183

doAfterBody method of interface BodyTag jspversion element of tag library descriptor
doEndTag method of interface Tag JspWriter (package javax.servlet.jsp)
doInitBody method of interface BodyTag language attribute of page directive
doStartTag method of interface Tag match request parameters
dynamic content meta element
error page name attribute of <jsp:param>
errorPage attribute of page directive name attribute of <jsp:plugin>
escape sequence name attribute of <jsp:setProperty>
EVAL_BODY_INCLUDE constant name element of tag library descriptor
exception implicit object name/value pair
expression NESTED constant
extends attribute of page directive nspluginurl attribute of <jsp:plugin>
file attribute of include directive out implicit object
fixed template data page attribute of <jsp:forward>
fixed template text page attribute of <jsp:include>
flush attribute of <jsp:include> action page directive
forward a request page implicit object
getParameterValues method of
 request object

page scope
PageContext interface

getVariableInfo method of
 TagExtraInfo

pageContext implicit object
param attribute of <jsp:setProperty>

height attribute of <jsp:plugin> prefix attribute of taglib directive
hspace attribute of <jsp:plugin> property attribute of <jsp:setProperty>
HttpSession (javax.servlet.http) refresh interval
id attribute of <jsp:useBean> action request implicit object
iepluginurl attribute of <jsp:plugin> request scope
implicit object request-time error
implicit object scopes required element of tag library descriptor
import attribute of page directive response implicit object
include a resource rtexprvalue element of tag library descriptor
include directive scope attribute of <jsp:useBean>
info attribute of page directive scope of a bean
isErrorPage attribute of page directive scripting element
isThreadSafe attribute of page directive scriptlet
Java Plug-in session attribute of page directive
JavaServer Pages (JSPs) session implicit object
JavaServer Pages 1.1 specification session scope
javax.servlet.jsp package setAttribute method of PageContext
javax.servlet.jsp.tagext package simple custom tag
jreversion attribute of <jsp:plugin> SKIP_BODY constant
<jsp:forward> action specify attributes of a custom tag
<jsp:getProperty> action standard actions
<jsp:include> action tag element of tag library descriptor
<jsp:param> action tag extension mechanism
<jsp:plugin> action tag handler
<jsp:setProperty> action Tag interface
<jsp:useBean> action tag library
jspDestroy method tag library descriptor
jspInit method tagclass element of tag library descriptor
_jspService method TagExtraInfo class

iw3htp2_31.fm Page 1183 Monday, July 23, 2001 4:27 PM

1184 JavaServer Pages (JSP): Bonus for Java™ Developers Chapter 31

SELF-REVIEW EXERCISES
31.1 Fill in the blanks in each of the following statements:

a) JSP action enables an applet or JavaBean to be added to a Web page in the
form of a browser-specific object or embed XHTML element.

b) Action has the ability to match request parameters to properties of the same
name in a bean by specifying "*" for attribute property.

c) There are four key components to JSPs: , , and
.

d) A JSP can include a custom tag library with the directive.
e) The implicit objects have four scopes: , , and

.
f) The directive is processed once, at JSP translation time and causes content

to be copied into the JSP.
g) Classes and interfaces specific to JavaServer Pages programming are located in packages

 and .
h) JSPs normally execute as part of a Web server that is referred to as the .
i) Method can be called repeatedly to process the body of a custom tag.
j) JSP scripting components include , , , and

.

31.2 State whether each of the following is true or false. If false, explain why.
a) An object with page scope exists in every JSP of a particular Web application.
b) Directives specify global information that is not associated with a particular JSP request.
c) The JSP container invokes methods doInitBody and doAfterBody when it encoun-

ters the starting custom tag and the ending custom tag, respectively.
d) Tag libraries are part of the tag extension mechanism that enables programmers to create

new tags that encapsulate complex Java functionality.
e) Action <jsp:include> is evaluated once at page translation time.
f) Like XHTML comments, JSP comments and script language comments appear in the re-

sponse to the client.
g) Objects with application scope are part of a particular Web application.
h) Each page has its own instances of the page-scope implicit objects.
i) Action <jsp:setProperty> has the ability to match request parameters to proper-

ties of the same name in a bean by specifying "*" for attribute property.
j) Objects with session scope exist for the client’s entire browsing session.

ANSWERS TO SELF-REVIEW EXERCISES
31.1 a) <jsp:plugin>. b) <jsp:setProperty>. c) directives, actions, scriptlets, tag libraries.
d) taglib. e) application, page, request and session. f) include. g) javax.servlet.jsp,

taglib directive type attribute of <jsp:plugin>
tagPrefix attribute of taglib directive type attribute of <jsp:useBean>
TagSupport class uri attribute of taglib directive
teiclass element of tag library descriptor value attribute of <jsp:param>
title attribute of <jsp:plugin> value attribute of <jsp:setProperty>
tlibversion element of tag library descriptor vspace attribute of <jsp:plugin>
translation-time error width attribute of <jsp:plugin>
translation-time include

iw3htp2_31.fm Page 1184 Monday, July 23, 2001 4:27 PM

Chapter 31 JavaServer Pages (JSP): Bonus for Java™ Developers 1185

javax.servlet.jsp.tagext. h) JSP container. i) doAfterBody. j) scriptlets, comments, ex-
pressions, declarations, escape sequences.

31.2 a) False. Objects with page scope exist only as part of the page in which they are used.
b) True. c) False. The JSP container invokes methods doStartTag and doEndTag when it en-
counters the starting custom tag and the ending custom tag, respectively. d) True. e) False. Action
<jsp:include> enables dynamic content to be included in a JavaServer Page. f) False. JSP com-
ments and script language comments are ignored and do not appear in the response. g) False. Objects
with application scope are part of the JSP and servlet container application. h) True. i) True. j) True.

EXERCISES
31.3 Create class ResultSetTag (a custom tag handler) that can display information from any
ResultSet. Use class GuestBookTag of Fig. 31.37 as a guide. The pageContext attribute
names should be the column names in the ResultSet. The column names can be obtained through
the ResultSetMetaData associated with the ResultSet. Create the tag library descriptor for
the custom tag in this exercise and test the custom tag in a JSP.

31.4 Create a JSP and JDBC-based address book. Use the guest book example of Fig. 31.20
through Fig. 31.24 as a guide. Your address book should allow one to insert entries, delete entries and
search for entries.

31.5 Incorporate the ResultSetTag of Exercise 31.3 into the address book example in
Exercise 31.4.

31.6 Reimplement your solution to Exercise 30.5 (Dynamic Web FAQs) using JSPs rather than
servlets. Create a custom tag handler similar to the one you created in Exercise 31.3 to help display
the FAQs information.

31.7 Modify your solution to Exercise 31.6 so that the first JSP invoked by the user returns a list
of FAQs topics from which to choose. Each topic should be a hyperlink that invokes another JSP with
an argument indicating which topic the user would like to view. The JSP should query the FAQs da-
tabase and return an XHTML document containing only FAQs for that topic.

31.8 Reimplement the Web application of Fig. 30.28 (favorite animal survey) using JSPs.

31.9 Modify your solution to Exercise 31.8 to allow the user to see the survey results without re-
sponding to the survey.

31.10 Reimplement Fig. 30.25 (book recommendations) using JSPs. Use the JSP implicit object
session to track the user’s selections and determine appropriate book recommendations. Remem-
ber to use the page directive to indicate that each JSP participates in a session.

iw3htp2_31.fm Page 1185 Monday, July 23, 2001 4:27 PM

32
e-Business &
e-Commerce

Objectives
• To understand how the Internet and World Wide Web

are revolutionizing business processes.
• To introduce various business models used on the

Web.
• To explore the advantages and disadvantages of

creating an online business.
• To examine marketing, payment, security and legal

issues that affect e-businesses.
O Gold! I still prefer thee unto paper, Which makes bank
credit look like a bark of vapour!
Lord Byron

It is an immutable law in business that words are words,
explanations are explanations, promises are promises—but
only performance is reality.
Harold S. Green

My name is Sherlock Holmes. It is my business to know what
other people don’t know.
Sir Arthur Conan Doyle

When you stop talking, you’ve lost your customer.
Estee Lauder

iw3htp2_32.fm Page 1186 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1187

Outline
32.1 Introduction
32.2 E-Business Models

32.2.1 Storefront Model
32.2.2 Shopping-Cart Technology
32.2.3 Auction Model
32.2.4 Portal Model
32.2.5 Name-Your-Price Model
32.2.6 Comparison-Pricing Model
32.2.7 Demand-Sensitive Pricing Model
32.2.8 Bartering Model

32.3 Building an e-Business
32.4 e-Marketing

32.4.1 Branding
32.4.2 Marketing Research
32.4.3 e-Mail Marketing
32.4.5 Consumer Tracking
32.4.6 Electronic Advertising
32.4.8 Affiliate Programs
32.4.4 Promotions
32.4.9 Public Relations
32.4.10 Customer Relationship Management (CRM)

32.5 Online Payments
32.5.1 Credit-Card Payment
32.5.2 Digital Cash and e-Wallets
32.5.3 Micropayments
32.5.4 Smart Cards

32.6 Security
32.6.1 Public-Key Cryptography
32.6.2 Secure Sockets Layer (SSL)
32.6.3 WTLS
32.6.4 IPSec and Virtual Private Networks (VPN)
32.6.5 Security Attacks
32.6.6 Network Security

32.7 Legal Issues
32.7.1 Privacy
32.7.2 Defamation
32.7.3 Sexually Explicit Speech
32.7.4 Copyright and Patents

iw3htp2_32.fm Page 1187 Monday, July 23, 2001 4:28 PM

1188 e-Business & e-Commerce Chapter 32

32.1 Introduction
We have entered the Age of Knowledge. The phrases “knowledge is power” and “content is
king” are often used in reference to business conducted on the Internet. In the short history of
e-business and e-commerce, events have demonstrated that successful e-businesses are those
that recognize the needs of their target audiences and match those needs with relevant content.
However, the ability to construct such an e-business is not limited to seasoned profession-
als—many successful online ventures have been started by students on college campuses.

The terms e-business and e-commerce, often used interchangeably, in fact have dif-
ferent meanings. According to Andrew Bartel, vice president and research leader of e-com-
merce trends at Giga Information Group, Inc., e-commerce refers to aspects of online
business involving exchanges among customers, business partners and vendors. For
example, suppliers interact with manufacturers, customers interact with sales representa-
tives and shipment providers interact with distributors. E-business encompasses these ele-
ments, but also includes operations that are handled within the business itself. For example,
production, development, corporate infrastructure and product management are aspects of
e-business not included under the category of e-commerce.1

The introduction of e-business and e-commerce has increased the speed and ease with
which business can be transacted, resulting in intense competition among online vendors.
To remain viable, e-businesses must adjust to evolving technologies, continually integrate
new systems and satisfy a wide variety of consumers. If a business fails to do so, its cus-
tomers do not have far to go to buy from competitors.

Currently, the online medium enables people to pay bills, write and cash checks, trade
stocks, take out loans, mortgage their homes and manage assets from the comfort of their
homes or offices. In the future, money as we know it could cease to exist, having been
replaced by such technologies as smart cards and digital cash. Intelligent programs will
handle the financial and logistical aspects of interactions between individuals and corpora-
tions on the Internet. People will need only a connection, a computer or handheld wireless
device and a digital form of payment to shop online. (Online monetary transactions are dis-
cussed in Section 32.5.)

The construction and maintenance of an e-business, especially one that processes a
large number of transactions, requires technical, marketing and advertising expertise. Cus-
tomers want access to products and services on a 24-by-7 basis (24 hours per day, 7 days
per week). They also expect reliable, functional, fast and user-friendly services; companies
that provide such services have higher success rates. One option for the improvement of e-
business processes is personalization, which facilitates efficient online shopping and the
smooth conduction of e-business transactions. Personalization is achieved by tracking a
consumer’s movement through the Internet, combining this data with personal information

32.8 XML and e-Commerce
32.9 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Works Cited

Outline (Cont.)

iw3htp2_32.fm Page 1188 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1189

provided by the consumer and employing the compiled information to customize interac-
tions with Web sites and applications. (Personalization, marketing and customer relation-
ship management are discussed in Section 32.4.)

Although personalization can increase the convenience of Internet navigation, some
people consider it to be an invasion of privacy. Similar Internet privacy concerns arise
regarding the sale of personal data collected by online organizations. Such information can
include customers’ names, addresses, purchasing history, credit-card numbers and medical
history. We explore Internet privacy and legal issues in Section 32.7.

The conversion of brick-and-mortar businesses (businesses that have only a physical
presence) into click-and-mortar businesses (businesses that have both an online and an
offline presence) is occurring worldwide in nearly every industry. Businesses can now
operate effectively without offices, because employees can communicate via phone, voice
mail, fax, e-mail and the emerging capabilities of the Internet.

32.2 E-Business Models
The transition of a business into an e-business provides many benefits. An e-business can
offer personalization, effective customer service and streamlined supply-chain manage-
ment (the strategic management of distribution channels and the processes that support
them). In this section, we explore the different types of businesses operating on the Internet,
as well as introducing the technologies needed to build and run an e-commerce Web site.

Although the term “e-commerce” is relatively new (it was coined in the early 90s), large
corporations have been conducting de facto e-commerce for decades by networking their
computing systems with those of business partners and clients. For example, the banking
industry uses Electronic Funds Transfer (EFT) to transfer money between accounts. In addi-
tion, many companies employ Electronic Data Interchange (EDI), which facilitates the stan-
dardization of such business forms as purchase orders and invoices, allowing companies to
share information with customers, vendors and business partners electronically. Until
recently, e-commerce was feasible only for large companies. However, by using the Internet
and the World Wide Web, even the smallest businesses can use EDI.

Amazon.com, eBay™, Yahoo! and other e-commerce sites have assisted in defining
industry categories and business models on the Web. Entrepreneurs starting e-businesses
and people interested in e-commerce should be aware of the various e-business models cur-
rently in use. In the subsections that follow, we review the storefront model, the auction
model, dynamic pricing models, the portal model and other Web business models.

32.2.1 Storefront Model

The storefront model is what many people think of when they hear the word “e-business.”
By providing a combination of transaction processing, security, online payment and infor-
mation storage, the storefront model enables merchants to sell their products online. This
model is a basic form of e-commerce in which buyers and sellers interact directly.

To conduct storefront e-commerce, merchants must organize online product catalogs,
take orders through their Web sites, accept payments securely, send merchandise to cus-
tomers and manage customer data (such as customer profiles). They must also market their
sites to potential customers through various media.

iw3htp2_32.fm Page 1189 Monday, July 23, 2001 4:28 PM

1190 e-Business & e-Commerce Chapter 32

32.2.2 Shopping-Cart Technology
One of the most commonly used e-commerce enablers is the shopping cart. This order-pro-
cessing technology allows customers to accumulate items they wish to buy as they browse an
e-business Web site. (See the Amazon.com feature.) Support for the shopping cart is provid-
ed by a product catalog, which resides on the merchant server in the form of a database. The
merchant server is the data storage and management system employed by the merchant. Often,
a network of computers performs all the functions necessary to run a Web site. A database is
a section of the merchant server designed to store and report on large amounts of information.
For example, a database for an online clothing retailer would typically include such product
specifications as item description, size, availability, shipping information, stock level and on-
order information. Databases also store customer information, including names, addresses,
credit-card data and past purchases. The Amazon.com feature contains further information
regarding these technologies and their implementations. Additional examples of e-businesses
that use shopping-cart technology can be found at www.kbkids.com, www.eddie-
bauer.com® and www.cdnow.com.

Amazon.com

Perhaps the most widely recognized example of an e-business that uses shopping-cart
technology is Amazon.com.2 Founded in 1994, the company has grown to become
one of the world's largest online retailers. Amazon.com offers millions of products to
more than 17 million customers in 160 countries.3 The site also hosts online auctions.
Although Amazon.com originally served as a mail-order book retailer, its product
line has expanded to include music, videos, DVDs, electronic cards, consumer elec-
tronics, hardware, tools, beauty items and toys. Amazon.com’s catalog is growing
constantly, and the site facilitates convenient navigation among millions of products.

Amazon.com uses a database on the server side (the merchant’s computer sys-
tems) that offers customers on the client side (the customer’s computer or handheld
device) multiple ways to search for products. This system exemplifies a client/server
application. The Amazon.com database consists of product specifications, avail-
ability, shipping information, prices, sales histories, reviews and in-depth product
descriptions. In addition to providing customers with details on items for sale, this
extensive database enables Amazon.com to cross-reference products. For example, a
novel can be listed under various categories, including fiction, bestsellers and rec-
ommended titles.

Amazon.com provides personalized service to returning customers. A database
keeps records of users’ previous transactions, including items purchased, shipping
addresses and credit-card information. Upon returning to the site, customers are greeted
by name and presented with lists of titles that are recommended to them on the basis of
their previous purchases. This enables the company to offer personalization that would
otherwise be handled by sales representatives. Amazon.com also uses customer data
to search for patterns and trends among its clientele. Such analysis of consumer
behavior can assist the company in the improvement of its products and services.

iw3htp2_32.fm Page 1190 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1191

32.2.3 Auction Model

The Web offers a wide variety of auction sites, as well as sites that search auction sites to pin-
point the lowest prices on available items. Usually, auction sites act as forums through which
Internet users can assume the role of either seller or bidder. Sellers can post items they wish
to sell, the minimum prices they require to sell the items and deadlines to close the auctions.
Some sites allow users to provide additional information, such as a photograph or a descrip-
tion of an item’s condition. Bidders may search the site for items they are seeking, view the
current bidding activity and place bids—usually in designated increments. Some sites auto-

The purchase process at Amazon.com is simple. The company’s home page pro-
vides various search features and categorical options, allowing users to select the
product or type of product they wish to locate. For example, the book Internet & World
Wide Web How to Program, Second Edition, can be found by using the Search Box
in the top-left corner of the home page. To purchase an item once it is found, users
simply select the Add to Shopping Cart option in the top-right corner of the page.
The shopping-cart technology processes the information and displays a list of the prod-
ucts in the shopping cart. Users then can change the quantity of each item, remove an
item from the shopping cart, check out or continue shopping.

When users are ready to place their orders, they proceed to checkout. First-time
visitors are prompted to fill out a personal-identification form in which they provide
their names, billing addresses, shipping addresses, shipping preferences and credit-card
information. Users are also asked to enter a password that they will use to access
account data during future transactions. Once the shipping, billing and password infor-
mation is confirmed, orders can be placed.

Customers returning to Amazon.com can use its 1-ClickSM system. This patented
system allows consumers to reuse previously entered payment and shipping informa-
tion, enabling them to place orders with a single click of the mouse. The 1-Click system
exemplifies how an intelligently designed database application can improve the effi-
ciency and convenience of business transactions.4

When the order process is complete, Amazon.com sends a confirmation e-mail
to the user. A second e-mail is sent when an order is shipped, and a database monitors
the status of all shipments. Users can track the status of their purchases until they leave
the Amazon.com shipping center by selecting the Your Account link at the bottom
of the page and entering their passwords. This will bring them to an Account Main-
tenance page. Orders can be cancelled at any time before the product is shipped,
which usually occurs within 24 to 48 hours of purchase. Amazon.com has regional
warehouses from which it can ship a majority of packages overnight without having to
use express delivery services.

Amazon.com operates on secure servers that protect personal information. Users
who feel uncomfortable using their credit cards on the Web can initiate orders through
Amazon’s Web site by entering the last five digits of their credit-card numbers. To
complete such orders, users call Amazon’s Customer Service Department and provide
the remaining numbers.

Amazon.com (Cont.)

iw3htp2_32.fm Page 1191 Monday, July 23, 2001 4:28 PM

1192 e-Business & e-Commerce Chapter 32

mate the bidding process by allowing bidders to submit the maximum prices they will pay
for auction items. On such sites, an electronic system continues bidding for a bidder until the
bidder wins the auction or until the auction surpasses the bidder’s maximum bid price. (Auc-
tion technology is explained in more depth in the eBay feature.)

The reverse-auction model allows buyers to set prices that sellers compete to match,
or even beat. One example of a reverse-auction site is priceline.com, which is a pop-
ular site for purchasing airline tickets and making travel reservations. Usually, Priceline
can process buyers’ bids within one hour. A faster bidding option is available to sellers who
are willing to set reserve prices. Although a reserve price is the lowest price that a seller
will accept, the seller can set a reserve price that is higher than the minimum bid. If no bids
meet the reserve price, the auction is unsuccessful. Most sellers who set reserve prices at
priceline.com receive a series of bids within one hour of their initial posting. How-
ever, successful bids on items with reserve prices are binding, meaning that the buyer and
seller must commit.

Auction sites usually receive a commission on each sale. When an auction is complete,
the seller and winning bidder are notified, and methods of payment and delivery are
decided on by the relevant parties. Most auction sites do not involve themselves in payment
or delivery.

The auction model also is employed by business-to-business (B2B) Web sites. The
buyers and the sellers in these auctions are companies. Companies use online auctions to sell
excess inventory and to access new, price-sensitive customers. Three examples of B2B auc-
tion sites are DoveBid, Inc., (www.dovebid.com), WorldCall Exchange (www.world-
callexchange.com) and U-Bid-It.com.

eBay™ and the Online Auction Model

Online auctions are a successful method of conducting e-commerce. eBay
(www.ebay.com) is both the leading online auction Web site and one of the world’s
most profitable e-businesses (Fig. 32.1).5 The online auction house’s roots lie in a 50-
year-old novelty item—Pez® candy dispensers. Pam Omidyar, an avid collector of
Pez® dispensers, came up with the idea of trading them over the Internet. In 1995, she
and her husband created a company called AuctionWeb. The company, which was re-
named eBay, now has as many as 4 million unique auctions in progress at any given
time, adding approximately 450,000 new items each day.6

People can buy and sell just about anything on eBay. The company collects both a
submission fee and a percentage of each sale amount. Submission fees are based on the
amount of exposure sellers want their items to receive. For example, an additional fee
wins an item a place among the “featured auctions” in a specific product category,
whereas an even higher fee is required to be listed on the eBay home page under Fea-
tured Items. Listings are shown on the home page periodically. Alternatively, sellers
can publish their product listings in a boldface font (for an additional charge).

eBay uses a database to manage its auctions. This database evolves dynamically as
sellers and buyers enter personal identification and product information. The seller
entering a product to be auctioned provides a description of the product, keywords, an
initial price, a closing date for the auction and personal information. eBay then uses this
data to produce the product profile seen by potential buyers (Fig. 32.2).

iw3htp2_32.fm Page 1192 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1193

Fig. 32.1Fig. 32.1Fig. 32.1Fig. 32.1 eBay home page. (These materials have been reproduced by
Prentice Hall with the permission of eBay, Inc. COPYRIGHT © EBAY,
INC. ALL RIGHTS RESERVED.)

The auction process begins when the seller posts a description of the item for sale
and fills in the appropriate registration information. The seller must specify a minimum
opening bid. If potential buyers think this price is too high, the item might not receive
any bids. In many cases, a reserve price is also set. Sellers often set an opening bid that
is lower than the reserve price to generate bidding activity.

If a successful bid is made, the seller and the buyer negotiate the shipping details,
warranty and other particulars. eBay serves as a liaison between the parties, providing
an interface through which sellers and buyers can conduct business. However, eBay
does not maintain a costly physical inventory or deal with shipping, handling or other
services that other e-retailers must provide.

eBay’s success has had a profound effect on the e-business industry. The com-
pany’s founders took a limited-access offline business model and, by using the Internet,
were able to bring it to the desktops of consumers worldwide. By implementing tradi-
tional marketing strategies and keeping the process simple, eBay has created a viable
alternative to storefront-style e-commerce.

Other online auction sites include Yahoo! Auctions (auctions.yahoo.com),
Amazon Auctions (www.amazon.com), FairMarket, Inc. (www.fairmarket.com)
and Sotheby’s (www.sothebys.com).

eBay™ and the Online Auction Model (Cont.)

iw3htp2_32.fm Page 1193 Monday, July 23, 2001 4:28 PM

1194 e-Business & e-Commerce Chapter 32

32.2.4 Portal Model

Portal sites offer visitors the chance to find almost anything they are looking for in one
place. They often provide news, sports and weather information, as well as the ability to
search the Web. When most people hear the word “portal,” they think of search engines.
Search engines are horizontal portals, or portals that aggregate information on a broad
range of topics. Other portals are more specific, offering a great deal of information per-
taining to a single area of interest; such portals are called vertical portals.

Online shopping is a popular feature of many major portals. Sites such as
Hotbot.com, About.com®, altavista.com and Yahoo.com® provide shopping
pages that link users to thousands of sites carrying a variety of products.

Portals that link consumers to online merchants, online shopping malls and auction
sites provide several advantages. These portals help users collect information on products
and services, thus facilitating comparison shopping. Portals also allow users to browse
independently owned storefronts—a capability that some online shopping malls fail to pro-
vide. For example, Yahoo! permits users to browse a variety of sites while maintaining the
convenience of paying through their Yahoo! account.

Fig. 32.2Fig. 32.2Fig. 32.2Fig. 32.2 Placing a bid on eBay. (These materials have been reproduced by
Prentice Hall with the permission of eBay, Inc. COPYRIGHT © EBAY,
INC. ALL RIGHTS RESERVED.)

eBay™ and the Online Auction Model (Cont.)

iw3htp2_32.fm Page 1194 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1195

32.2.5 Name-Your-Price Model
The name-your-price business model empowers customers by allowing them to state the
price they are willing to pay for products and services. Many e-businesses that offer this
service have formed partnerships with leaders of various industries, such as travel, lending
and retail. The online business passes each customer’s price request to an appropriate in-
dustry partner, who decides whether to sell the product or service to the customer at the stat-
ed price. A customer whose price is rejected can offer another price. However, if a price is
accepted, the customer is obligated to make the purchase.

Many e-businesses use intelligent agents (such as shopping bots) to enhance their Web
sites. Intelligent agents are programs that search, arrange and analyze large amounts of
data. Shopping bots can both scour data contained within a single database or search the
entire Web to find products and prices.

32.2.6 Comparison-Pricing Model

The comparison-pricing model allows customers to poll various merchants in search of the
lowest price for a desired product or service. Comparison-pricing sites often generate rev-
enue from partnerships with particular merchants. Although such sites can be convenient,
users should be careful when employing these services, because they might not be getting
the best prices available on the Web. Some services promote the products of merchants
with which they have partnerships.

32.2.7 Demand-Sensitive Pricing Model
The Web empowers customers to demand better, faster service at cheaper prices by en-
abling them to shop in large groups and obtain group discounts. The concept behind the de-
mand-sensitive pricing business model is to sell products to groups of people in a single
transaction, thus reducing the cost per person. The sale of individual products can be ex-
pensive, because the vendor must include retail and overhead costs in the price while still
generating a profit. By selling larger quantities to fewer buyers, a business can reduce sell-
ing costs, enabling it to offer lower prices while retaining or increasing its profit margins.
MobShopSM (www.mobshop.com) sells products for the home, electronics and comput-
ers using the demand-sensitive pricing model. Pricing and products vary between Mob-
Shop and similar sites. Therefore, customers should visit several such sites before making
a purchase.

32.2.8 Bartering Model
Another popular e-business model is bartering, or the offering of one item in exchange for
another. Itex.com (formerly Ubarter.com™) allows individuals and companies to
trade products through its site. At the site, traders make initial offers with the intention of
bartering until they reach final agreements with buyers.

The business-to-business Web site iSolveSM (www.isolve.com), through which
businesses can sell overstocked products and unneeded assets, also allows the sale of items
on a barter basis. To conduct transactions at this site, potential customers send their pricing
preferences to the merchant, who evaluates the offers. Final agreements often involve a
combination of bartering and monetary payment.

iw3htp2_32.fm Page 1195 Monday, July 23, 2001 4:28 PM

1196 e-Business & e-Commerce Chapter 32

32.3 Building an e-Business
There are numerous ways to design, develop and maintain an e-business. Some businesses
establish online presences using turnkey solutions. (See the Yahoo! Store feature.) A turn-
key solution is a prepackaged e-business. Another option for e-business development is e-
business templates, which outline the business’ basic structure, but allow the design to be
determined by the owner. Alternatively, larger corporations and businesses with substantial
funding can outsource the project to an organization that offers e-business solution pack-
ages. Large corporations also can build e-business solutions in-house.

Yahoo! Store

Online store-builder solutions allow merchants to set up online storefronts, complete
with catalogs, shopping carts and order-processing capabilities. Although these usually
fixed-price options are available to businesses of all sizes, they are ideal for small busi-
nesses that cannot afford custom solutions or do not possess secure merchant servers.
Yahoo! Store is one of the most popular e-commerce store-builder solutions.7 Yahoo!
Store is available at store.Yahoo.com.

Yahoo! Store charges monthly fees on the basis of the number of items that users
want to sell. Designed to simplify the process of creating an online store, this turnkey
solution contains all the features necessary to build a complete e-commerce site.

To set up a demo store, go to store.yahoo.com and click the Create a Store
link. Under I’m a New User, click on Sign me up! Users must enter the addresses
and names of their sites. After clicking Create, users are presented with the Yahoo!
Store Merchant Service Agreement, which must be accepted before a demo store can
be built. After the user accepts the agreement, Yahoo! Store provides detailed direc-
tions to help merchants set up active online storefronts. The construction of a demo
store is free, but orders cannot be processed.

Merchants can change the style of their Web sites by clicking on the Look button.
Several style templates are available. In addition, the Random option can be used to
change the colors and fonts. Yahoo! Store automatically sets up the shopping cart and
secure order forms so customers can purchase products through new Web stores.

To set up a working storefront where orders can be accepted, users must sign on
with Yahoo! Store and set up merchant accounts with banks, enabling the acceptance
of credit-card payments. Generally, merchant banks and credit-card companies retain
a small percentage of each transaction as their fee. (Online payments are discussed in
Section 32.5.)

Yahoo! Store e-commerce sites are hosted on Yahoo! secure servers, which are
maintained on a 24-by-7 basis. The site also backs up all the information needed to run
a store and provides SSL technology to encrypt credit-card transactions. (We discuss
SSL security in Section 32.6.2.)

Yahoo! Store merchants can track sales, analyze customers’ paths through the
Web to their sites and use the Yahoo! wallet. (E-wallets are discussed in Section
32.5.2.) In addition, Yahoo! lists each store in Yahoo! Shopping, allowing customers
to access the store through a link at the Yahoo! Web site.8

iw3htp2_32.fm Page 1196 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1197

32.4 e-Marketing
Competition is intense in the e-business and e-commerce worlds, and a solid e-marketing
strategy can give a company an advantage. In this section, we explore various components
of a marketing campaign, such as marketing research, advertising, promotions, branding
and public relations (PR). We also discuss the importance of search engines and how they
can be used to increase Web-site traffic.

32.4.1 Branding
A brand is typically defined as a name, logo or symbol that identifies a company’s products
or services. Brands should be unique, recognizable and easy to remember. Brand equity
includes the value of tangible and intangible items, such as a brand’s monetary value over
time, customer perceptions and customer loyalty to a company, its products or services.9

Businesses that already have a solid brand may find it easier to transfer their brand to the
Internet, whereas Internet-only businesses must strive to develop a brand that customers
trust and value.

32.4.2 Marketing Research

Marketing research can help a company develop its marketing mix, which includes product
or service details and development, effective pricing, promotion and distribution. Tradi-
tionally, marketing research has consisted of focus groups, interviews, paper and telephone
surveys, questionnaires and secondary research (findings based on previously collected da-
ta). Research can now be performed over the Internet, giving marketers a new, faster chan-
nel through which to find and analyze industry, customer and competitor information. The
Internet also provides a relaxed and anonymous setting to hold focus-group discussions and
distribute questionnaires.

To target marketing campaigns effectively, it is useful to learn about the demographics
of Internet, World Wide Web and wireless device users. Demographics are statistics on the
human population, including age, sex, marital status and income. Knowledge of customers’
personal information can help to reveal their purchase preferences and buying power.
Through additional research and analysis, marketers gain information about customers’
psychographics, which can include family lifestyles, cultural backgrounds and values.10

Through online focus groups, current or potential consumers can present their opinions
about products, services or ideas. This feedback can be useful when making critical deci-
sions concerning the launch of new products, services or campaigns.

32.4.3 e-Mail Marketing
E-mail marketing campaigns provide an inexpensive and effective method of targeting poten-
tial customers. The marketer should define the reach of a campaign, or the span of people the
marketer would like to target, including geographic locations and demographic profiles. The
marketer should also determine the level of personalization of the campaign. Personalized di-
rect e-mail targets consumers by using their names, offering them the right products at the
right time and sending special promotions on the basis of their interests. Internet mailing lists
can help marketers target customers through personalized e-mail. Opt-in e-mail is sent to peo-

iw3htp2_32.fm Page 1197 Monday, July 23, 2001 4:28 PM

1198 e-Business & e-Commerce Chapter 32

ple who explicitly choose to receive offers, information and promotions.11 However, it is im-
portant to avoid flooding opt-in customers with promotional e-mail. Excessive
correspondence can decrease the effectiveness of an e-mail campaign. Marketers should
avoid sending e-mail to people who have not shown interest in specific products or services.
Spamming—the distribution of mass e-mails to people who have not expressed interest in re-
ceiving information from a company—can give a company a poor reputation.

32.4.4 Promotions

Promotions can both attract visitors to a site and influence purchasing. Promotions can also
be used to increase brand loyalty through reward programs. Frequent-flyer miles, point-
based rewards, discounts, sweepstakes, free trials, free shipping and e-coupons are all ex-
amples of promotions. Although promotions are an effective way to establish contact with
potential customers, it is vital to make sure that customers are becoming loyal to the com-
pany, rather than to its promotions or rewards program. In addition, the costs of the program
must be monitored carefully.

32.4.5 Consumer Tracking
While generating Web-site traffic is important to an e-business, it is not sufficient to ensure
success. Keeping user profiles, recording visits and analyzing promotional and advertising
results are helpful when measuring a marketing campaign’s effectiveness. By discovering
the target market—the group of people toward whom it is most profitable to aim a market-
ing campaign—a company can focus its campaign, increasing the number of visits, re-
sponses and purchases. Marketers use log files (files that contain data generated by site
visits, including each visitor’s location, IP address, time of visit and frequency of visits) and
log-file analysis (the organization and summarization of information contained in log files)
to monitor consumer information.

 ID cards (tracking devices that provide Web sites with the numerical addresses of and
information regarding consumers’ operating systems) record and convey information
requested by users. Cookies, another type of tracking device, are text files stored by Web
sites on individuals’ personal computers. Cookies allow a site to track the actions of a vis-
itor. The first time a user visits a Web site, the user’s computer might receive a cookie. This
cookie then is reactivated each time the computer revisits that site. The information col-
lected is intended to be an anonymous account of log-on times, visit durations, purchases
made on the site, the site previously visited and the site visited next. Although the cookie
resides on an individual’s hard drive, it does not interact with other information stored on
the system; furthermore, cookies can be read only by the hosts that place them.

32.4.6 Electronic Advertising

E-business advertising is conducted through such media as television, movies, newspapers
and magazines, as well as online and wireless channels. Advertising gives e-businesses the
opportunity to establish and strengthen branding. The publication of URLs on all direct
mailings, business cards, billboards, print, wireless advertisements and other media also
can increase brand awareness, bringing more visitors to a site.

iw3htp2_32.fm Page 1198 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1199

e-Fact 32.1
The amount of money spent on e-business commercials during Super Bowl XXXIV totaled ap-
proximately $135 million.12

32.1

While newspapers, magazines, television and films all provide effective advertising
channels, the Internet is quickly becoming an important medium through which to market
companies, products and services. Online advertising can include the placement of links
and banners on other companies’ Web sites and the registration of a site with search engines
and directories. In addition, businesses can charge other companies for placing their adver-
tisements on its site, providing businesses with additional income.

e-Fact 32.2
By 2003, revenues for online advertising are expected to reach $13.3 billion, according to
Jupiter Research.13

32.2

Banner advertisements are similar to billboards seen along the highway, but banners
offer the additional feature of interactivity. Valueclick.com and Double-
click.com are examples of companies that offer banner-hosting services. Some compa-
nies base advertisement charges on the number of times a banner ad is viewed on a page,
whereas others charge according to the number of click-throughs generated by the banner
ad. However, in both systems, advertisers pay only when a viewer clicks on the banner ad
and goes to that Web site.

32.4.7 Search Engines

A search engine is a program that scans Web sites for desired content, listing relevant sites
on the basis of keywords or other search-engine ranking criteria. Search-engine ranking is
important to bringing new visitors to a site. The method used by a search engine to rank a
Web site will determine how “high” a site appears on lists of search results. Businesses can
customize and register their sites to improve the sites’ positions in search-engine results.

A meta tag is an XHTML tag that contains information about a Web page. Although
the tag does not change how a Web page is displayed, it can contain a description of the
page, keywords and the page’s title. Search engines often use meta-tag information when
ranking a site.

Some search engines rank sites by sending out a program, called a spider, to inspect
each site. The spider reads the meta tags, determines the relevance of the Web page’s infor-
mation and keywords and then ranks the site according to that visit’s findings. Marketers
should examine competitors’ sites, analyzing the sites’ meta tags and content. It is impor-
tant to have a site appear in the top results, because often people will not look further. For
valuable information about keyword selection, visit www.keywordcount.com and
www.websearch.about.com/internet/websearch/insub2-m02.htm.

32.4.8 Affiliate Programs

Affiliate programs have become a dominant and unique form of Internet marketing. An af-
filiate program is a form of partnership in which a company pays affiliates (other compa-
nies or individuals) on the basis of prespecified actions by visitors who click-through from
an affiliate site to a merchant site.

iw3htp2_32.fm Page 1199 Monday, July 23, 2001 4:28 PM

1200 e-Business & e-Commerce Chapter 32

Affiliate programs also can increase Web-site traffic. Affiliates post links on each
other’s sites in exchange for referral fees, which usually consist of a percentage of each sale
or a fixed fee for click-throughs that result in sales. For example, Befree.com is a fee-
based service that helps users set up affiliate programs. For more information, visit
www.befree.com.

32.4.9 Public Relations

Public relations (PR) provides customers and employees with the latest information about
products, services and such issues as company promotions and consumer reactions. A vital
aspect of public relations is communication with customers and employees through press
releases, speeches, special events, presentations and e-mail.

Press releases, which announce current events and other significant news to the press,
can be delivered over the Web. For example, PR Web (www.prweb.com) allows mar-
keters to submit press releases to its site for free. Online press releases sometimes include
video clips of news appearances, speeches, commercials and advertisements, all of which
can be effective publicity. Visit www.prnewswire.com and www.business-
wire.com to view lists of recent press releases, including audio and video news.

Crisis management, an aspect of PR, is conducted in response to problems a company
is experiencing. When a company is doing poorly, its public-relations department will often
issue information regarding the causes, as well as announcing what steps will be imple-
mented to remedy the problem.

32.4.10 Customer Relationship Management (CRM)

 Customer relationship management (CRM) focuses on the provision and maintenance of
quality service for customers. Effective CRM involves communicating with customers
and delivering products, services, information and solutions in response to customers’
problems, wants and needs. Customer satisfaction is key to business success, because it is
far less expensive to keep current customers than it is to acquire new ones. Online business-
es should give particular attention to CRM, because transactions are often conducted
through a series of additional parties, and the establishment of personal relationships with
customers requires innovative strategies.

Aspects of CRM are call handling (the maintenance of outbound and inbound calls
from customers and service representatives), sales tracking (the tracking and recording of
all sales made) and transaction support (support for technology and personnel involved in
business transactions). Unique functions of eCRM, the application of CRM to an e-busi-
ness strategy, include the personalization and customization of customers’ experiences and
interactions with a Web site, call center or any other forum for customer contact with the
e-business. The term iCRM (Internet customer relationship management) can be used inter-
changeably with eCRM in reference to e-business customer relationship management.
Business analysts should review all CRM plan details and data, such as reductions in costs
or an influx of customer complaints, to refine the CRM system.

e-Fact 32.3
According to the Boston Consulting Group, the cost of acquiring a new online customer is
approximately thirty-four dollars, whereas marketing to a current customer through the In-
ternet costs around seven dollars.14

32.3

iw3htp2_32.fm Page 1200 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1201

32.5 Online Payments
Secure electronic funds transfer (EFT) is crucial to e-commerce. Credit-card payments,
digital cash and e-wallets, smart cards, micropayments and electronic bill presentment and
payment are methods for conducting online transactions. Many companies offer products,
software and services that enable monetary transactions on the Web.

32.5.1 Credit-Card Payment

Although credit cards are a popular form of online payment, many people resist online
credit-card transactions because of security concerns. Customers fear credit-card fraud by
merchants and third parties. However, most credit cards, such as the Prodigy Internet®

Mastercard® and American Express, have features that enable secure online and offline
payments.

To accept credit-card payments, a merchant must have a merchant account with a
bank. Traditional merchant accounts accept only point-of-sale (POS) transactions, or those
that occur when customers present credit cards at stores. However, the growth of e-com-
merce has resulted in the establishment of specialized Internet merchant accounts that
handle online credit-card transactions. These consist of card-not-present (CNP) transac-
tions. For example, when users make credit-card purchases through the Internet, they can
provide the card numbers and expiration dates, but the merchant does not see the actual
cards involved in the transactions. A merchant account can be established through either a
bank or a third-party service.15

32.5.2 Digital Cash and e-Wallets

Digital cash is one example of digital currency. It is stored electronically and can be used
to make online electronic payments. Digital-cash accounts are similar to traditional bank
accounts; consumers deposit money into digital-cash accounts for use in digital transac-
tions. Often, digital cash is used in conjunction with other payment technologies, such as
digital wallets. In addition to providing a payment alternative for customers with security
concerns regarding online credit-card transactions, digital cash allows people who do not
have credit cards to shop online.

To facilitate the credit-card order process, many companies are introducing electronic
wallet services. E-wallets keep track of billing and shipping information so that it can be
entered with one click at participating merchants’ sites. E-wallets also store e-checks, e-
cash and credit-card information for multiple cards.

32.5.3 Micropayments

Merchants are required to pay a fee for each credit-card transaction that they process, which
becomes costly when customers purchase inexpensive items. Sometimes, the cost of an
item is actually lower than the standard transaction fee, causing the merchant to incur loss-
es. Micropayment (payments that generally do not exceed $10) enables ways for nominally
priced products and services (such as music, pictures, texts or videos) to be sold profitably
over the Web. For instance, a phone bill is essentially an aggregation of micropayments that
are charged periodically at set intervals to justify the transaction fee. To offer micropay-

iw3htp2_32.fm Page 1201 Monday, July 23, 2001 4:28 PM

1202 e-Business & e-Commerce Chapter 32

ment processing, some companies have formed strategic partnerships with telephone carri-
ers and utility companies.

e-Fact 32.4
According to an ongoing study conducted by Gartner Group, only a small percentage of on-
line retailers offer a payment option for items priced under $10.16

32.4

32.5.4 Smart Cards

Because they contain embedded computer chips, smart cards are able to hold more infor-
mation than can ordinary credit cards with magnetic strips. Smart cards enable the conve-
nient storage of information regarding such topics as health-care, personal identification,
retail and banking.

Smart cards are either contact or contactless. To read and update the information on a
contact smart card’s computer chip, the card must be placed in a smart card reader. By con-
trast, a contactless smart card contains both a coiled antenna and a computer chip, enabling
the card to transmit information. The contactless smart card enables faster information
exchange than is possible with a contact card. For example, contactless cards are conve-
nient for transportation services, such as automatic toll payments. A contactless smart card,
when placed in a device in a car, will charge a user’s account as he or she drives through
toll booths.17

Smart cards can require users to enter passwords, thus offering a higher level of secu-
rity than credit cards. Information maintained on smart cards can be designated as “read
only” or as “no access.” The cards can also be enhanced with additional security features,
such as encryption and photo identification.

32.6 Security
Modern computer security involves the protection of electronic communications and the
maintenance of network security. A successful, secure transaction must meet four funda-
mental requirements: Privacy, integrity, authentication and nonrepudiation. The privacy
issue is: How do you ensure that the information you transmit over the Internet has not been
captured or passed on to a third party without your knowledge? The integrity issue is: How
do you ensure that the information you send or receive has not been compromised or al-
tered? The authentication issue is: How do the sender and recipient of a message verify
their identities? The nonrepudiation issue is: How do you legally prove that a message was
sent or received? In addition to these requirements, network security addresses the issue of
availability: How do we ensure that the network and the computer systems to which it con-
nects will remain in operation continuously?

The initial explosion of the e-business industry forced businesses and consumers to focus
on Internet, network and wireless security. Although this growth has slowed today, security
issues still must be addressed. In addition, as new means of conducting business over the
Internet (such as wireless transactions) are developed, further challenges to Internet security
are created. In the next several sections, we will explore Internet security and the technologies
and protocols used to secure e-commerce transactions and communications.

iw3htp2_32.fm Page 1202 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1203

32.6.1 Public-Key Cryptography
The channels through which data passes are not secure; therefore, any private information
transmitted through these channels must be protected. To secure information, data can be
encrypted. Cryptography transforms data by using a cipher, or cryptosystem (a mathemat-
ical algorithm for the encryption of messages). An algorithm is a computer science term
for “procedure.” A key (a string of digits that acts as a password in the cipher) makes the
data incomprehensible to all but the sender and intended recipients. Unencrypted data is
known as plain text, whereas encrypted data is called ciphertext. Only the intended recip-
ients should possess the corresponding key to decrypt the ciphertext into plaintext.

Previously, organizations that wished to maintain a secure computing environment
used symmetric cryptography, also known as secret-key cryptography. Secret-key cryp-
tography uses the same secret key to encrypt and decrypt a message. When employing
such cryptography, the sender encrypts a message using the secret key, then sends the
encrypted message and the symmetric secret key to the intended recipient. However, prob-
lems with this method arise because, before two people can communicate securely, they
must find a secure way to exchange the secret key. The privacy and integrity of the mes-
sage could be compromised if the key is intercepted as it is transmitted from sender to
recipient over unsecure channels. In addition, since both parties in the transaction use the
same key to encipher and decipher a message, it is impossible to authenticate which party
created the message.

Public-key cryptography is used primarily for authentication, data integrity and
secret-key exchange. Public-key cryptography is asymmetric. It uses two inversely related
keys: A public key and a private key. The private key is kept secret by its owner, whereas
the public key is openly distributed. If the public key is used to encrypt a message, only
the corresponding private key can decrypt it, and vice versa (Fig. 32.3). Each party in a
transaction has both a public key and a private key. To transmit a message securely, the
sender uses the recipient’s public key to encrypt the message. The recipient then decrypts
the message using his or her unique private key. Assuming that the private key has been
kept secret, the message cannot be read by anyone other than the intended recipient;
through this method, the system ensures the privacy of the message. The defining property
of a secure public-key algorithm is that it is computationally infeasible to deduce the pri-
vate key from the public key; although the two keys are mathematically related, the deri-
vation of one from the other would take enormous amounts of computing power and time.
An outside party cannot participate in communication without the correct keys. However,
if a third party does obtain the decryption key, the security of the system is compromised.
In such a case, the user can simply change the key, instead of changing the entire encryp-
tion or decryption algorithm.

Digital signatures, the electronic equivalent of written signatures, are used in public-
key cryptography to solve authentication and integrity problems. A digital signature
authenticates the sender’s identity, and, like a written signature, it is difficult to forge. To
create a digital signature, a sender first runs a plaintext message through a hash function,
which is a mathematical calculation that gives the message a hash value. For example, you
could take the plaintext message “Buy 100 shares of company X,” run it through a hash
function and get a hash value of 42. The hash function could be as simple as adding up all
the 1s in a message, although it is usually more complex. The hash value is also known as
a message digest. The chance that two different messages will have the same message

iw3htp2_32.fm Page 1203 Monday, July 23, 2001 4:28 PM

1204 e-Business & e-Commerce Chapter 32

digest is statistically insignificant. Collision occurs when multiple messages have the
same hash value. However, it is computationally infeasible to compute a message from its
hash value or to find two messages with the same hash value.

Next, the sender uses a private key to encrypt the message digest. This step creates a
digital signature and authenticates the sender, because only the owner of that private key
could encrypt the message. The original message, which has been encrypted with the recip-
ient’s public key, the digital signature and the hash function, are sent to the recipient. The
recipient uses the sender’s public key to decipher the original digital signature and reveal
the message digest. The recipient then uses his or her own private key to decipher the orig-
inal message. Finally, the recipient applies the hash function to the original message. If the
hash value of the original message matches the message digest included in the signature,
message integrity is ensured—the message has not been altered in transmission.

One problem with public-key cryptography is that anyone with a set of keys could
potentially assume another party’s identity. For example, imagine that a customer wants to
place an order with an online merchant. How does the customer know that the Web site
indeed belongs to that merchant and not to a third party who is masquerading as the mer-
chant to steal credit-card information? Public Key Infrastructure (PKI) integrates public-
key cryptography with digital certificates and certificate authorities to authenticate parties
in a transaction. Wireless PKI (WPKI) is a security protocol specifically for wireless trans-
missions. Like regular PKI, WPKI authenticates users via digital certificates and encrypts
messages using public-key cryptography. The system also ensures nonrepudiation.

Digital certificates are digital documents issued by a certification authority (CA). A
digital certificate includes the name of the subject (the company or individual being certi-
fied), the subject’s public key, a serial number, an expiration date, the signature of the
trusted certification authority and any other relevant information. A CA is a financial insti-
tution or other trusted third party, such as VeriSign. Because the CA assumes responsibility
for authentication, it must check information carefully before issuing a digital certificate.
Once issued, digital certificates are publicly available and are held by the certification
authority in certificate repositories. VeriSign, Inc., is a leading certificate authority. (To
learn more about VeriSign, visit www.verisign.com.)

Many people still consider e-commerce to be unsecure. However, transactions using
PKI and digital certificates are more secure than point-of-sale credit-card purchases or the
exchange of private information over phone lines or through the mail. The key algorithms
used in most secure online transactions are nearly impossible to compromise. By some esti-
mates, the key algorithms used in public-key cryptography are so secure that a century
would pass before millions of today’s computers working in parallel could break the codes.

The most commonly used public-key algorithm is RSA, an encryption system devel-
oped in 1977 by MIT professors Ron Rivest, Adi Shamir and Leonard Adleman. With the
emergence of the Internet and the World Wide Web, these researchers’ security work has
become even more significant, playing a crucial role in e-commerce transactions. Today,
RSA encryption and authentication technologies are used by most Fortune 1000 companies
and leading e-businesses. The products are built into hundreds of millions of copies of the
most popular Internet applications, including Web browsers, commerce servers and e-mail
systems. For more information about RSA, cryptography and security, visit www.rsase-
curity.com. Other organizations, such as Microsoft, also offer products to ensure secu-
rity. (See the Microsoft Authenticode feature.)

iw3htp2_32.fm Page 1204 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1205

32.6.2 Secure Sockets Layer (SSL)

The Secure Sockets Layer (SSL) protocol, developed by Netscape Communications, is a
non-proprietary protocol commonly used to secure communications between two comput-
ers on the Internet and the Web.18,19 SSL is built into many Web browsers, including
Netscape Communicator and Microsoft Internet Explorer, as well as numerous other soft-
ware products. Although SSL is not designed specifically to secure online transactions,
most e-businesses use the technology for this purpose.

Fig. 32.3Fig. 32.3Fig. 32.3Fig. 32.3 Encrypting and decrypting a message using public-key cryptography.

Microsoft Authenticode: Authenticating Software

How can consumers ensure that software ordered online is safe and has not been al-
tered? Are there ways to avoid downloading a computer virus that could wipe out an
entire system? Is the source of the software trustworthy? With the emergence of e-com-
merce, software companies began offering their products online, enabling customers to
download software directly to their computers. Security technology is used to ensure
that the downloaded software is authentic and has not been altered. Microsoft Authen-
ticode is a security feature built into Microsoft Internet Explorer. When combined with
VeriSign digital certificates (or digital IDs), Authenticode authenticates the publisher
of the software and detects whether the software has been modified.

To use Microsoft Authenticode technology, software publishers must obtain dig-
ital certificates that are specifically designed for software publishing; such certificates
can be obtained through certificate authorities, such as VeriSign. To obtain a certifi-
cate, a software publisher provides its public key and identification information. In
addition, publishers must sign agreements that they will not distribute harmful soft-
ware, which gives customers legal recourse if any downloaded software from certified
publishers causes harm.

Buy 100 shares
of company X

Plaintext

XY%#?
42%Y

Ciphertext Receiver's
public key

Sender

Receiver

 Receiver's
private key

communications
medium (such as

Internet)encrypt

decryptBuy 100 shares
of company X

Plaintext

iw3htp2_32.fm Page 1205 Monday, July 23, 2001 4:28 PM

1206 e-Business & e-Commerce Chapter 32

In a standard online correspondence, a sender’s message is passed to a socket, which
receives and transmits information from a network. The socket then interprets the message
through Transmission Control Protocol/Internet Protocol (TCP/IP). TCP/IP is the standard
set of protocols used for communication between computers on the Internet. Most Internet
transmissions are sent as sets of individual message pieces, called packets. At the sending
side, the packets of a message are numbered sequentially, and error-control information is
attached to each packet. Each packet might travel a different path because IP routes packets
in a manner so as to avoid traffic jams. The destination of a packet is determined by the IP
address (an assigned address similar to that of a house in a neighborhood and used to iden-
tify a computer on a network). At the receiving end, the TCP makes sure that all of the
packets have arrived, puts them in sequential order and determines whether the packets
have arrived without alteration. If the packets have been modified or any data has been lost,
TCP requests retransmission. When all of the data is successfully transmitted, the message
is passed to the socket at the recipient’s end. The socket translates the message back into a
form that can be read by the recipient’s application.20 In a transaction using SSL, the
sockets are secured using public-key cryptography.

SSL implements public-key technology, using the RSA algorithm and digital certifi-
cates, to authenticate the server in a transaction and to protect private information as it
passes from one party to another over the Internet. SSL transactions do not require client
authentication; many servers consider valid credit-card numbers to be sufficient for authen-
tication in secure purchases. The security process begins when a client sends a message to
a server. The server responds, sending its digital certificate to the client for authentication.
Using public-key cryptography to communicate securely, the client and server negotiate
session keys to continue the transaction. Session keys are symmetric secret keys (explained
in Section 32.6.1) that are used for the duration of that transaction. Once the keys are estab-
lished, the communication proceeds between the client and the server by using the session
keys and digital certificates. Encrypted data is passed through TCP/IP, just as regular
packets travel over the Internet. However, before sending a message with TCP/IP, the SSL
protocol breaks the information into blocks, compresses it and encrypts it. Conversely, after
the data reaches the recipient through TCP/IP, the SSL protocol decrypts the packets, then
decompresses and assembles the data. These extra processes provide an extra layer of secu-

Microsoft Authenticode uses digital-signature technology to sign software (Sec-
tion 32.6). The signed software and the publisher’s digital certificate provide proof that
the software is safe and has not been altered.

When a customer attempts to download a file, a dialog appears on the screen dis-
playing the digital certificate and the name of the certificate authority. Links to the pub-
lisher and the certificate authority are provided so that customers can learn more about
each party before they agree to download the software. If Microsoft Authenticode
determines that the software has been compromised, the transaction is terminated. To
learn more about Microsoft Authenticode, visit the following sites: msdn.micro-
soft.com/workshop/security/authcode/signfaq.asp and
msdn.microsoft.com/workshop/security/authcode/authwp.asp.

Microsoft Authenticode: Authenticating Software (Cont.)

iw3htp2_32.fm Page 1206 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1207

rity between TCP/IP and applications. SSL is used primarily to secure point-to-point con-
nections—transmissions of data from one computer to another. The Transport Layer
Security (TLS) protocol, designed by the Internet Engineering Task Force, is both similar
to and compatible with SSL. Additional information regarding TLS can be found at
www.ietf.org/rfc/rfc2246.txt.

Although SSL protects information as it is passed over the Internet, it does not protect
private information, such as credit-card numbers, once the information is stored on the mer-
chant’s server. When a merchant receives credit-card information with an order, the infor-
mation is often decrypted and stored on the merchant’s server until the order is placed. If
the server is not secure and the data is not encrypted, an unauthorized party can access the
information. Hardware devices, such as peripheral component interconnect (PCI) cards
designed for use in SSL transactions, can be installed on Web servers to process SSL trans-
actions. This reduces the time and power that a server must devote to SSL transaction pro-
cessing, thus reducing processing time and power, leaving the server free to perform other
tasks.19 For more information about the SSL protocol, explore the Netscape SSL tutorial at
developer.netscape.com/tech/security/ssl/protocol.html and the
Netscape Security Center site at www.netscape.com/security/index.html.

32.6.3 WTLS

Wireless Transport Layer Security (WTLS) is the security protocol for the Wireless Appli-
cation Protocol (WAP). WAP is a standard used for wireless communications on mobile
phones and other wireless devices. WTLS secures connections between wireless devices
and application servers. It provides wireless technology with data integrity, privacy, au-
thentication and denial-of-service security. WTLS encrypts data sent between a WAP-en-
abled wireless device and a WAP gateway, where messages are transferred from the
wireless network to a wired network. At the gateway, data is decrypted from WTLS and
subsequently, encrypted into SSL. For a few milliseconds, the data is not encrypted and,
therefore, unsecure. The brief lapse in security is called the WAP gap. Although this flaw
causes the system to be unsecure, it is extremely difficult to exploit the WAP gap in prac-
tice. No one has ever reported an attack on the WAP gap that has successfully caused the
compromise of any secure data.

32.6.4 IPSec and Virtual Private Networks (VPN)

Organizations are taking advantage of the existing Internet infrastructure to create Virtual
Private Networks (VPNs), which link multiple networks, wireless users, customers and oth-
er remote users. A VPN is created by establishing a “secure tunnel” between multiple net-
works. Internet Protocol Security (IPSec) is one of the technologies used to secure the
“tunnel” through which the data passes.

IPSec uses public-key and symmetric-key cryptography to ensure user authentication,
data integrity and confidentiality. An IP packet is encrypted, and sent inside a regular IP
packet. The recipient discards the outer IP packet, then decrypts the inner IP packet. For
more information about IPSec, visit the IPSec Developers Forum at www.ip-sec.com
and the IPSec Working Group of the IETF at www.ietf.org/html.charters/
ipsec-charter.html.

iw3htp2_32.fm Page 1207 Monday, July 23, 2001 4:28 PM

1208 e-Business & e-Commerce Chapter 32

32.6.5 Security Attacks
Recent cyberattacks on e-businesses have made the front-pages of newspapers worldwide.
Denial-of-service attacks (DoS), viruses and worms have cost companies billions of dol-
lars. Typically, a denial-of-service attack occurs when a network or server is flooded with
data packets. The influx of data greatly increases the traffic on the network, overwhelming
the servers and making it impossible for legitimate users to download information. A dis-
tributed denial-of-service attack occurs when an unauthorized user gains illegitimate con-
trol of a network of computers (usually by installing viruses on the computers) and then
uses all the computers simultaneously to attack. These attacks cause networked computers
to crash or disconnect from the network, making services unavailable for legitimate users.

Viruses are computer programs—often sent as e-mail attachments or disguised as
audio clips, video clips and games—that attach to, or overwrite other programs in efforts
to replicate themselves. Viruses can corrupt files or even wipe out a hard drive. The spread
of a virus occurs through sharing “infected” files embedded in e-mail attachments, docu-
ments or programs. Although worms are similar to viruses, a worm can spread and infect
files on its own over a network; worms do not need to be attached to another program to
spread. One of the most famous viruses to date is the ILOVEYOU virus which hit in May
2000, costing organizations and individuals billions of dollars. Viruses and worms are not
limited to computers. In June 2000, a worm named Timofonica that was propagated through
e-mail quickly made its way into the cell-phone network in Spain, sending prank calls and
leaving text messages on subscribers’ phones.22

Who is responsible for viruses and denial-of-service attacks? Most often the responsible
parties are referred to as hackers or crackers. Hackers and crackers are usually skilled pro-
grammers. According to some, hackers break into systems just for the thrill of it, without
causing harm to the compromised systems, whereas crackers have malicious intent. However,
regardless of an attack’s consequences, hackers and crackers break the law by accessing or
damaging private information and computers. Many vendors offer antivirus utilities that help
protect computers against viruses and other threats. For more information on such protection
features, visit McAfee at www.mcafee.com and Symantec at www.symantec.com.

32.6.6 Network Security

The goal of network security is to allow authorized users access to information and services
while preventing unauthorized users from gaining access to, and possibly corrupting, the
network. A basic tool used in network security is the firewall, which protects a local area
network (LAN) from intruders outside the network. For example, most companies have in-
ternal networks that allow employees to share files and access company information. Each
LAN can be connected to the Internet through a gateway, which usually includes a firewall.
A firewall acts as a safety barrier for data flowing into and out of the LAN. Firewalls can
prohibit all data flow that is not expressly allowed, or they can allow all data flow that is
not expressly prohibited. Although network security administrators can choose freely be-
tween these options, decisions should weigh the need for security against the need for func-
tionality. Personal firewalls also can be used to protect a single PC.

What happens if a hacker gets inside a firewall? How does a company know whether
an intruder has penetrated the firewall? Also, how can a company detect whether unautho-
rized employees are accessing restricted applications? Intrusion detection systems monitor

iw3htp2_32.fm Page 1208 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1209

networks and application log files (files containing information on files, including who
accessed them and when). If an intruder accesses either the network or an unauthorized
application, the system detects the intrusion, halts the session and sets off an alarm to notify
the system administrator.

32.7 Legal Issues
The Internet has posed significant challenges to the legal structure of the United States. For
example, file-sharing technology enables widespread copyright infringement, while Web-
site personalization mechanisms threaten consumers’ privacy. In this section, we investi-
gate the legal differences between our physical environment, which consists of temporal
and geographic boundaries, and cyberspace, the realm of digital transmission not limited
by geography. We also explore such issues as defamation, copyright and pornography as
they relate to the Internet.

32.7.1 Privacy

Although an individual’s right to privacy is not explicitly guaranteed by the United States
Constitution, protection from government intrusion is implicitly guaranteed by the First,
Fourth, Ninth and Fourteenth Amendments.23 The Fourth Amendment provides U.S. citi-
zens with the greatest assurance of privacy, protecting them from illegal search and seizure
by the government:

The right of the people to be secure in their persons, houses, papers, and effects, against
unreasonable searches and seizures, shall not be violated, and no Warrant shall issue, but
upon probable cause, supported by Oath or affirmation, and particularly describing the
place to be searched, and the person or things to be seized.

Many Internet companies collect personal information from users as they navigate
through a site. While privacy advocates argue that such efforts violate individuals’ privacy
rights, online marketers and advertisers disagree, suggesting that the recording of user
behavior and preferences helps online companies to better serve their customers. For
example, if a user visits an online travel site and purchases a ticket from Boston to Phila-
delphia, the travel site might record this transaction. In the future, when a ticket goes on
sale for the same flight, the Web site can notify the user.

Online privacy also is impacting companies’ relationships with employees. Many
businesses are implementing systems that regulate employee efficiency within workplaces.
One of the newest surveillance technologies, keystroke cops, monitors employee activities
on corporate and communications equipment.24 Keystroke software is loaded onto the hard
drive of an employee’s computer, or it can be sent to an unsuspecting employee as an e-
mail attachment. Once activated, the software registers each keystroke before it appears on
the screen. In debates surrounding monitoring technology, a business’ right to regulate the
use of company time and equipment is pitted against employee’s rights to privacy and
freedom of speech. Situations can involve employees who neglect responsibilities to write
personal e-mails, surf the Web or conduct online tirades against management in chat rooms.

32.7.2 Defamation

Defamation is the act of injuring another’s reputation, honor or good name through false
written or oral communication.25 It is often difficult to win a defamation suit because the

iw3htp2_32.fm Page 1209 Monday, July 23, 2001 4:28 PM

1210 e-Business & e-Commerce Chapter 32

First Amendment strongly protects the freedom of anonymous speech (speech by an un-
known person or a person whose identity has been withheld).

Defamation consists of slander and libel. Slander is spoken defamation, whereas
libelous statements are written or spoken in a context in which they have longevity and per-
vasiveness that exceed slander. For example, broadcast statements can be considered
libelous, even though it is spoken.

To prove defamation, a plaintiff (the person bringing the argument to court) must meet
five requirements: (1) The statement must have been published, spoken or broadcast; (2)
There must be identification of the individual(s) through name or reasonable association; (3)
The statement must, in fact, be defamatory; (4) There must be fault (for public persons, the
statement must have been made in actual malice, or with the intention of causing harm; for
private persons, the statement needs only to have been negligent, or published, spoken or
broadcast when known to be false); and (5) There must be evidence of injury or actual loss.26

32.7.3 Sexually Explicit Speech

Although pornography is protected under the First Amendment, obscenity is not, and par-
ties can be held legally responsible for obscene statements. As determined in Miller v. Cal-
ifornia (1973), the Miller Test identifies the criteria used to distinguish between obscenity
and pornography. In the United States, pornography is protected by the First Amendment.
To be determined obscene by the Miller Test, material must (1) Appeal to the prurient in-
terest, according to contemporary community standards, and (2) When taken as a whole,
lack serious literary, artistic, political or scientific value.27

The Internet, with its lack of geographic boundaries, challenges the Miller Test. As we
have stated, the Test is dependent on contemporary community standards. In cyberspace,
communities exist independently from physical locations. Cyberspace complicates issues
of jurisdiction by making it possible, for example, for a person in Tennessee, where the tol-
erance for pornography is relatively low, to view a site that is hosted in California, where
the tolerance is high.

The Internet possesses characteristics similar to those of broadcast media and print
media, but problems arise in applying laws developed for those media to the Internet.
Broadcasting is considered highly pervasive, and its content is strictly regulated. The
Internet resembles broadcasting in its ability to reach a broad audience with little or no
warning.28 By contrast, the regulation of print media focuses on limiting the audience,
rather than the content, of the material. Defined as non-content-related means (an effort to
control the audience rather than the material), print restrictions, for example, allow an adult
to purchase and view pornographic material, but limit an adolescent’s ability to obtain that
material. The Internet can mimic non-content related means by requiring users to provide
identification before entering specific sites. Regulation of Web content could require the
development of new legislation because of the Internet’s unique features.

32.7.4 Copyright and Patents

Copyright, according to the U.S. Copyright Office, is the protection given to the author of
an original piece, including “literary, dramatic, musical, artistic and certain other intellec-
tual works,” whether the work has been published or not. For example, copyright protection
is provided for literature, music, sculpture and architecture. Copyright protects only the ex-
pression or form of an idea, not the idea itself.

iw3htp2_32.fm Page 1210 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1211

Copyright protection provides incentive to the creators of original material by guaran-
teeing them credit for their work for a given amount of time. Currently, copyright protec-
tion is guaranteed for the life of the author plus 70 years. Concerns have been raised
regarding the ability of traditional law to protect intellectual-property owners from online
copyright infringement because of the ease with which material can be reproduced on the
Internet. To complicate the issue further, digital copies are perfect duplicates of digital
originals, making it difficult to differentiate authorized copies from pirated ones.

Patents, another form of intellectual property, grant the creator sole rights to a new dis-
covery. Given the growth rate of the Internet, some argue that the 20-year duration of pat-
ents discourages continuous software development and improvement.

 In 1998, the federal regulations governing the distribution of patents increased the
scope of patentable discoveries to include “methods of doing business.”29 To be granted a
patent for a method of doing business, one must present an idea that is new and not obvious
to a skilled person.30

32.8 XML and e-Commerce
XHTML (see Chapters 4 and 5) is a markup language used for the publishing of informa-
tion on the Web. Content developers use a fixed set of XHTML tags to describe the ele-
ments of online documents, such as headers, paragraphs, boldface text and italicized text.

Extensible Markup Language (XML) is similar to XHTML, but XML does possess
some distinguishing differences. XML allows users to create customized tags that are
unique to specific applications so that users are not limited to using XHTML’s fixed set of
publishing-industry-specific tags. For example, developers can make industry-specific (or
even organization-specific) tags to categorize data more effectively within their communi-
ties. Some industries have already developed standardized XML tags for online document
publication. For example, Mathematical Markup Language (MathML) is a standardized
XML-based language for the marking up of mathematical formulas in documents, whereas
Chemical Markup Language (CML) is a standardized XML-based language for the
marking up of the molecular structure of chemicals.

The ability to customize tags enables business data to be used worldwide. For example,
businesses can create XML tags specifically for invoices, electronic funds transfers, pur-
chase orders and other business transactions. However, to be used effectively, an industry’s
customized tags must be standardized across that industry.

Once tags are standardized, the browser must be able to recognize them. This is accom-
plished by building the tags into the browser or by downloading the appropriate plug-ins. The
process can be automated, because customized XML tags could actually be used as a com-
mand for a browser to download the plug-in for the corresponding set of standardized tags.

The impact of XML on e-commerce is profound. XML gives online merchants a supe-
rior method of tracking product information. By using standardized tags for data, bots and
search engines are able to find products online more quickly.

Many industries are using XML to improve Electronic Data Interchange (EDI), the
transfer of data between computers. The health care industry, for example, uses XML to share
patient information (even CAT-scans) among health care applications. This helps doctors
access information and make decisions more quickly, which can improve patient care.31

The Health Level Seven (HL7) organization’s Application Protocol for Electronic Data
Exchange in Healthcare Environments uses XML. This standard enables health care applica-

iw3htp2_32.fm Page 1211 Monday, July 23, 2001 4:28 PM

1212 e-Business & e-Commerce Chapter 32

tions to exchange data electronically by specifying the layout and order of information.
Patient names, addresses and insurance providers are tagged so that such data can be shared
electronically among applications. For example, once a patient’s identification information is
entered, that information can be shared over the hospital’s intranet with the labs and the
accounting department, eliminating the need to re-enter the same data. HL7 is a non-profit,
American National Standards Institute (ANSI)—an accredited Standards Developing Orga-
nization—that focuses on clinical and administrative data. To locate additional information
on HL7, visit their Web site at www.HL7.org; the ANSI Web site is www.ansi.org.

The XML Metadata Interchange Format (XMI) is a standard that combines XML with
the Unified Modeling Language (UML). Software developers use UML to design object-
oriented systems. XMI allows developers using object technology to tag design data. XMI
tags allow developers to exchange design data over the Internet and interact with multiple
vendors by using a variety of tools and applications. XMI thus enables people worldwide
to collaborate on the designs of object-oriented software systems. For more information
about XMI, visit www-4.ibm.com/software/ad/features/xmi.html.

Some software companies sell their products over the Web. The Open Software
Description Format (OSD) is an XML specification that facilitates the distribution of soft-
ware over the Internet. Using OSD, developers tag the structure of an application and its
files. The tags describe each component of the software and its relationship to the other
components in the application. The availability of software for download from the Web
saves vendors the time, resources and money previously required to create boxed products
and ship them to customers.

32.9 Internet and World Wide Web Resources
Storefront Model

barnesandnoble.com
One of the first brick-and-mortar companies to make a large-scale commitment to the Web, Barnes &
Noble sells books, e-books, CDs and software on their Web site, using shopping-cart technology.

Moviefone.com
Moviefone enhances its offline efforts by allowing people to buy advance tickets to movies from its
Web site. Visitors can also view movie trailers, read cast interviews and get the latest movie reviews.

Auction Model

eBay.com
This is the best known and most successful auction site on the Web.

auctiontalk.com
This site is an auction portal, providing links to other auctions and specific products being auctioned
at various sites online.

Portal Model

google.com
Google is an advanced search engine that ranks search results by the true popularity of the Web site.
The more people that follow a link to a particular site, the higher the site will appear in a search.

yahoo.com
Yahoo! is a portal allowing people to search the Web using a traditional search engine, Yahoo! also
offers games, e-business solutions and free e-mail.

iw3htp2_32.fm Page 1212 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1213

Name-Your-Price Model

priceline.com
The originator and patent holder of the name-your-price model, Priceline.com gives customers
the ability to name their price for travel arrangements and scores of other products and services.

ticketsnow.com
Finding low-priced tickets to concerts and the theater is often difficult. This site allows people to bid
for a lower price on their tickets.

Comparison-Pricing Model

www.google.com
Google.com uses the comparison pricing model to sell products through its Web site. The site also
hosts newsgroups on a broad range of topics.

www.pricewatch.com
People interested in building a computer or upgrading their current system will find the lowest prices
on computer equipment on this price-comparison Web site.

Demand-Sensitive Pricing Model

www.mobshop.com
Mobshop lowers prices as group buying increases.

www.shop2gether.com
This site gives visitors a chance to buy products at a lower price by buying with a group.

Bartering Model

www.itex.com
This site facilitates B2B transactions by allowing members to trade assets through the itex.com
Web site.

www.allbusiness.com/barter
This site allows businesses to sell virtually any product in return for Trade dollars. These Trade dollars
can be used to purchase other products on the Web site.

Free Turnkey Solutions

www.websiteforfree.com
The free portion of the site’s services include home-page design, the ability to make site corrections
and use of the site’s educational resources.

www.freemerchant.com
This site provides a free turnkey solution for building an online store and offers hosting, store-build-
ing capabilities and a shopping-cart model at no cost to the user.

Credit–Card Payment

www.cybercash.com
CyberCash (now owned by Verisign) enables e-merchants to accept credit-card payments online. The
company also offers an e-wallet technology and an online bill-paying service.

www.trintech.com
Trintech offers a secure credit-card payment system that enables simultaneous purchases from multi-
ple stores. This is used in virtual shopping malls.

iw3htp2_32.fm Page 1213 Monday, July 23, 2001 4:28 PM

1214 e-Business & e-Commerce Chapter 32

E-Wallets

www.visa.com/pd/ewallet/main.html
Visa offers various e-wallets for use with Visa credit cards. These wallets are backed by the specific
financial institution that issues the Visa card.

www.infogate.com
Infogate’s product is a personalized desktop toolbar that offers easy access to news, sports, finance,
travel and shopping. It includes an e-wallet feature for use at affiliate Internet stores.

Checking Account Payment

www.debit-it.com
This site allows merchants to draw against the balances in their checking accounts as valid forms of
payment over the Internet.

Digital Cash

www.ecash.net
eCash offers digital cash services for both online purchases and peer-to-peer payments.

www.flooz.com
Flooz is a form of digital cash used as a gift currency. Customers buy Flooz currency with their credit
cards and then establish gift accounts. The recipient can then spend the Flooz account at participating
stores.

Smart Cards

www.visa.com/nt/chip/info.html
This page contains information on a smart card being offered by Visa, which will contain a digital-
cash application and e-wallet services.

www.americanexpress.com
American Express offers the Blue smart card (personal and corporate) and related services through
its Web site.

Micropayments

www.hut.fi/~jkytojok/micropayments
This is a paper on electronic-payment systems with a focus on micropayments.

www.echarge.com
eCharge partners with AT&T to provide micropayment services billed to the user’s phone bill.

Online Privacy

www.cdt.org
The Center for Democracy and Technology has expertise in the legal and technological development
of the Web. Its mission is protecting privacy and free speech.

www.eff.org
The Electronic Frontier Foundation is a nonprofit organization concerned with privacy and the free-
dom of expression in the digital age.

Search-Engine Information

www.webdeveloper.com/html/html_metatags.html
The Webdeveloper provides a tutorial on meta tags.

iw3htp2_32.fm Page 1214 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1215

www.tiac.net/users/seeker/searchenginesub.html
This site offers direct links to the registration portions of many search engines.

General Internet Marketing Information

www.eMarketer.com
eMarketer aggregates content on Internet marketing, including news, statistics, profiles and reviews.

www.channelseven.com
Channelseven is a news and information site that helps marketing and advertising professionals keep
up-to-date with the Web.

Complete CRM Solutions

www.peoplesoft.com
PeopleSoft® created the Vantive Enterprise and the Web-based Vantive eBusiness application suites
to fulfill companies’ customer relationship management needs. The modules of the solution can be
used separately or together and include Vantive Quality, Vantive Support, Vantive Sales, Vantive Field
Service and Vantive HelpDesk.

www.pegasystems.com
Pegasystem offers a full range of CRM solutions for service, marketing and sales, using various chan-
nels of contact with consumers.

Security Resource Sites

www.securitysearch.net
This is a comprehensive resource for computer security. The site has thousands of links to products,
security companies, tools and more. The site also offers a free weekly newsletter with information
about vulnerabilities.

theory.lcs.mit.edu/~rivest/crypto-security.html
The Ronald L. Rivest: Cryptography and Security site has an extensive list of links to security resourc-
es, including newsgroups, government agencies, FAQs, tutorials and more.

Government Sites for Computer Security

www.usdoj.gov/criminal/cybercrime/compcrime.html
Visit this site for information about the U. S. government’s efforts against cybercrime or to read about
recently prosecuted cases.

cs-www.ncsl.nist.gov
The Computer Security Resource Clearing House is a resource for network administrators and others
concerned with security. This site has links to incident-reporting centers, information about security
standards, events, publications and other resources.

Internet Security Vendors

www.rsasecurity.com
RSA is one of the leaders in electronic security. Visit this site for more information about its current
products and tools, which are used by companies worldwide.

www.ca.com/protection
Computer Associates is a vendor of Internet security software. It has various software packages to
help companies set up a firewall, scan files for viruses and protect against viruses.

iw3htp2_32.fm Page 1215 Monday, July 23, 2001 4:28 PM

1216 e-Business & e-Commerce Chapter 32

Public-key Cryptography

www.entrust.com
Entrust produces effective security software products using Public Key Infrastructure (PKI).

www.cse.dnd.ca
The Communication Security Establishment has a short tutorial on Public Key Infrastructure (PKI)
that defines PKI, public-key cryptography and digital signatures.

Digital Signatures

www.ietf.org/html.charters/xmldsig-charter.html
The XML Digital Signatures site was created by a group working to develop digital signatures using
XML. You can view the group’s goals and drafts of their work.

www.elock.com
E-Lock Technologies is a vendor of digital-signature products used in Public Key Infrastructure. This
site has a FAQs list covering cryptography, keys, certificates and signatures.

Digital Certificates

www.verisign.com
VeriSign creates digital IDs for individuals, small businesses and large corporations. Check out its
Web site for product information, news and downloads.

www.silanis.com/
Silanis Technology is a vendor of digital-certificate software.

SSL

www.netscape.com/security/index.html
The Netscape Security Center is an extensive resource for Internet and Web security. You will find
news, tutorials, products and services on this site.

www.openssl.org
The Open SSL Project provides a free, open source toolkit for SSL.

Firewalls

www.interhack.net/pubs/fwfaq
This site provides a list of FAQs on firewalls.

www.thegild.com/firewall
The Firewall Product Overview site has an extensive list of firewall products, with links to each ven-
dor’s site.

IPSec and VPNs

www.ietf.org/html.charters/ipsec-charter.html
The IPSec Working Group of the Internet Engineering Task Force (IETF) is a resource for technical
information related to the IPSec protocol.

www.ip-sec.com
The IPSec Developers Forum allows vendors and users to test the interoperability of different IPSec
products. The site includes technical documents related to the IPSec protocol.

iw3htp2_32.fm Page 1216 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1217

Wireless Security

www.radicchio.cc
Radicchio is a nonprofit organization dedicated to the development and promotion of standards and
technologies for secure mobile business.

www.mwif.org
The Mobile Wireless Internet Forum (MWIF) aims at developing a standard for wireless technology
and the mobile Internet. The site provides press releases detailing MWIF advancements.

SUMMARY
• E-commerce involves exchanges among customers, business partners and vendors. E-business is

composed of these same elements, but also includes operations that are handled within the busi-
ness itself.

• The transition from brick-and-mortar businesses to click-and-mortar businesses is happening in all
sectors of the economy.

• The banking industry uses Electronic Funds Transfer (EFT) to transfer money between accounts.

• Electronic Data Interchange (EDI) standardizes business forms, such as purchase orders and in-
voices, so that companies can share information electronically with customers, vendors and busi-
ness partners.

• The storefront model combines transaction processing, security, online payment and information
storage to enable merchants to sell their products online.

• Shopping-cart technology allows customers to accumulate items they wish to buy. A widely rec-
ognized example of an e-business that uses shopping-cart technology is Amazon.com.

• Auction sites allow users to pinpoint the lowest prices on available items.

• The reverse-auction model allows the buyer to set a price that sellers compete to match or even
beat. A reserve price is the lowest price that the seller will accept.

• Portal sites give visitors the chance to find what they are looking for in one place. Search engines
are horizontal portals, or portals that aggregate information on a broad range of topics. Vertical
portals are more specific, offering information pertaining to a single area of interest.

• The name-your-price business model allows customers to state the price they are willing to pay for
products and services.

• Intelligent agents are programs that search and arrange large amounts of data and report answers
based on that data.

• The comparison-pricing model allows customers to poll a variety of merchants and find a desired
product or service at the lowest price.

• The demand-sensitive-pricing business model follows the idea that the more people who buy a
product in a single purchase, the lower the cost per person becomes.

• A popular method of conducting e-business is bartering, or offering one item in exchange for another.

• Some businesses establish an online presence by using a turnkey solution (a pre-packaged e-busi-
ness). Other options include e-business templates that outline the basic structure, but allow the de-
sign to be determined by the owner.

• Components of a marketing campaign include branding, e-mail, marketing research, advertising,
promotions and public relations.

• A brand is a name, logo or symbol that helps identify a company’s products or services.

• Spamming is mass e-mailing to people who have not expressed interest in receiving such e-mails.
Spamming can give a company a poor reputation.

iw3htp2_32.fm Page 1217 Monday, July 23, 2001 4:28 PM

1218 e-Business & e-Commerce Chapter 32

• While generating Web-site traffic is important to the success of an e-business, keeping user pro-
files, recording visits and analyzing promotional and advertising results are also helpful in mea-
suring a marketing campaign’s effectiveness.

• The target market is the group of people toward whom it is most profitable to aim a marketing cam-
paign. Tracking devices, such as ID cards and cookies, are used to monitor consumer behavior.

• A search engine is a program that scans Web sites and lists relevant sites on the basis of keywords
or other search-engine ranking criteria. Some search engines rank sites by sending out a program,
called a spider, to inspect the site.

• An affiliate program is a form of partnership in which a merchant pays affiliates (other companies
or individuals) for specified actions taken by visitors who click-through from an affiliate site to a
merchant site.

• Promotions can attract visitors to a site and can influence purchasing.

• Public relations (PR) keeps customers and employees current on the latest information about prod-
ucts, services and internal and external issues, such as company promotions and consumer reactions.

• Customer relationship management (CRM) focuses on providing and maintaining quality service
for customers.

• Digital cash is one example of digital currency. It is stored electronically and can be used to make
online electronic payments.

• E-wallets keep track of billing and shipping information so that it can be entered with one click at
participating merchants’ sites.

• Smart cards are able to store more information than ordinary credit cards. Smart cards can require
the user to have a password, giving the smart card a security advantage over credit cards.

• There are four fundamental requirements of a successful and secure transaction: privacy, integrity,
authentication and nonrepudiation.

• Public-key cryptography uses two inversely related keys: a public key and a private key. The most
commonly used public-key algorithm is RSA.

• The Secure Sockets Layer (SSL) protocol is commonly used to secure communication on the In-
ternet and the Web. SSL uses public-key technology and digital certificates to authenticate the
server in a transaction and to protect private information as it passes from one party to another over
the Internet.

• Defamation is the act of injuring another’s reputation, honor or good name through false written
or oral communication. Defamation consists of two parts, slander and libel. Slander is spoken def-
amation, whereas libelous statements are written or spoken in a context in which they have lon-
gevity and pervasiveness that exceed slander.

• The Miller Test identifies the criteria used to distinguish between obscenity and pornography.

• Copyright is the protection given to the author of an original piece.

• Extensible Markup Language (XML) allows users to create customized tags unique to specific ap-
plications. The ability to customize tags will allow business data to be used worldwide.

• The Open Software Description Format (OSD) is an XML specification that enables the distribu-
tion of software over the Internet.

TERMINOLOGY
24-by-7 affiliate program
actual loss affiliate site
actual malice anonymous speech

iw3htp2_32.fm Page 1218 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1219

asymmetric keys gateway
authentication hacker
barter hash function
bidder hash value
brand horizontal portal
brand equity ID card
brick-and-mortar business integrity
business-to-business (B2B) intelligent agent
call handling Internet mailing list
card-not-present (CNP) intrusion detection system
certificate authority IP address
certificate repositories IPSec (Internet Protocol Security)
cipher key
click-and-mortar business key algorithm
click-through keystroke cops
client/server application libel
collision local area network (LAN)
comparison-pricing model log file
contact smart card log-file analysis
contactless smart card marketing mix
contemporary community standards m-business
cookie m-commerce
copyright merchant account
cracker merchant server
crisis management merchant site
cryptography message digest
cryptosystem message integrity
customer relationship management (CRM) meta tag
cyberspace Metadata Interchange Format (XMI)
database method of doing business
decryption key micropayment
defamation Miller Test
demand-sensitive pricing name-your-price model
demographic negligent
digital cash noncontent-related means
digital certificate nonrepudiation
digital copy online focus group
digital signature Open Software Description Format (OSD)
digital wallet opt-in
direct e-mail packet
distributed denial-of-service patent
dynamic pricing peripheral component interconnection (PCI)
e-business personalization
e-commerce plaintext
Electronic Data Interchange (EDI) point-of-sale (POS) transaction
Electronic Funds Transfer (EFT) point-to-point connection
electronic wallet portal
encipher press release
encryption privacy
firewall private key

iw3htp2_32.fm Page 1219 Monday, July 23, 2001 4:28 PM

1220 e-Business & e-Commerce Chapter 32

SELF-REVIEW EXERCISES
32.1 State whether each of the following is true or false. If false, explain why.

a) To conduct electronic commerce, a company must implement storefront technology.
b) Electronic Data Interchange (EDI) is the system that uses standardized electronic forms to

facilitate transactions between businesses and their customers, suppliers and distributors.
c) In public-key technology, the same key is used to both encrypt and decrypt a message.
d) Secure Sockets Layer protects data stored on the merchant server.
e) Secure Electronic Transaction is another name for Secure Sockets Layer.
f) A shopping bot is a shopping cart that allows you to buy items from different stores, all

at the same time.
g) XML allows developers to create unique tags to define specialized data.

32.2 Fill in the blanks in each of the following statements:
a) Customers are able to store products they wish to purchase in a while they

continue to browse the online catalog.
b) Public-Key Encryption uses two types of keys, the and the .
c) learn more about a customer over time.
d) The type of cryptography in which the message sender and recipient both hold an identi-

cal key is called .
e) A customer can store purchase information and multiple credit cards in an electronic pur-

chasing and storage device called a .

ANSWERS TO SELF-REVIEW EXERCISES
32.1 a) False. Companies have many options when it comes to the design of their e-business. A
storefront is a popular method, but it is not the only method. b) True. c) False. Separate, inversely

psychographics socket
public key spamming
Public Key Infrastructure (PKI) spider
public relations storefront
public-key algorithm storefront model
public-key cryptography supply chain management
reach symmetric cryptography
reliability symmetric secret key
reserve price target market
reverse auction TCP/IP
RSA transaction support
sales tracking turnkey solution
search engine Unified Modeling Language (UML)
secondary research user profile
secret key vertical portal
secret-key cryptography Virtual Private Network (VPN)
secure sockets layer (SSL) virus
seller WAP gap
shopping bot Web bug
shopping cart wireless application protocol (WAP)
slander wireless PKI (WPKI)
smart card wireless transport layer security (WTLS)
smart-card reader worm

iw3htp2_32.fm Page 1220 Monday, July 23, 2001 4:28 PM

Chapter 32 e-Business & e-Commerce 1221

related public and private keys are used. d) False. Secure Sockets Layer is an Internet security proto-
col, which secures the transfer of information in electronic communication. It does not protect data
stored on a merchant server. e) False. Secure Electronic Transaction is a security protocol designed
by Visa and MasterCard as a more secure alternative to Secure Sockets Layer. f) False. A shopping
bot can be used to search multiple Web sites for the best available prices and availability. g) True.

32.2 a) Shopping cart. b) Public key, private key. c) Intelligent agents. d) Secret-key encryption.
e) Electronic wallet.

EXERCISES
32.3 State whether each of the following is true or false. If false, explain why.

a) A search engine pays companies for pre-specified actions taken by visitors who click
through from an affiliate site.

b) CRM attracts visitors to a site and uses private-key encryption.
c) Smart cards can store more information than credit cards.
d) RSA is a method of preventing slander and libel on the Web.
e) The Open Software Description Format (OSD) allows software to be distributed over the

Internet.

32.4 Fill in the blanks in each of the following statements:
a) is stored electronically and can be used to make online electronic payments.
b) The model allows customers to poll a variety of merchants and find a de-

sired product or service at the lowest price.
c) The model combines transaction processing, security, online payment and

information storage to enable merchants to sell their products online.
d) There are four fundamental requirements of a successful, secure transaction:

, , and .
e) The identifies the criteria used to distinguish between obscenity and pornog-

raphy.

32.5 Define each of the following terms:
a) Cryptography.
b) Public key.
c) SSL
d) Auction.
e) Personalization.
f) E-wallet.
g) Shopping bot.
h) Intelligent agent.
i) Private key.
j) XML
k) Cookies.

32.6 Make a spreadsheet containing a column for each of the following business models: store-
front model, auction model, name-your-price-model and B2B-exchange model. In each column, list
three e-businesses that operate in the corresponding model. Visit the Web site of each of the compa-
nies you have selected. Answer the following questions:

a) Do the companies operate with more than one of the defined business models (e.g., store-
front and auction)? If, so which models do they implement?

b) Are the companies Internet-only companies, or click-and-mortar businesses?
c) How do the companies generate revenue?

iw3htp2_32.fm Page 1221 Monday, July 23, 2001 4:28 PM

1222 e-Business & e-Commerce Chapter 32

WORKS CITED
The notation <www.domain-name.com> indicates that the citation is for information found at
that Web site.
1. A. Bartels, “The Difference Between E-Business and e-commerce, “Computerworld 30 Octo-
ber 2000: 41.

2. F. Hayes, “Masoned,” Computerworld 17 May 1999: 116.

3. L. Himelstein and R. Hof, “eBay vs. Amazon.com,” Business Week May 1999: 128.

4. D.K. Berman H. Green, “Cliff-Hanger Christmas,” Business Week e.biz 23 October 2000: 33.

5. “Where the Auction Is -- The B2B Market Hits $52 Billion in 2002,” <www.icono-
cast.com> 23 March 2000.

6. L. Himelstein and R. Hof, “eBay vs. Amazon.com,” Business Week May 1999: 128.

7. M Nemzow, Building Cyberstores (New York: McGraw-Hill, 1997).

8. <www.yahoo.com>.

9. P. Seybold, “Broad Brand,” The Industry Standard 6 November 2000: 214.

10. <www.dictionary.com/cgi-bin/dict.pl?term=psychographics>.

11. D. Greening, “When Push Comes To Shove,” Webtechniques April 2000: 20, 22, 23.

12. S. Eliot, “Not X’es, Not O’s, It’s the Dot-Coms that Matter. Marketers Suit Up For a Costly
Race for Recognition,” The New York Times 28 January 2000: C1.

13. S. Mulcahy, “On-line Advertising Poised To Explode; Learn Ropes Now,” Mass High Tech 28
February–5 March 2000: 4.

14. B. Thompson, “Keeping Customers is Smart and Profitable,” Business Week Special Advertis-
ing Section 3 July 2000.

15. <www.online-commerce.com/tutorial2.html>.

16. M. Solomon, “Micropayments,” Computerworld 1 May 2000: 62.

17. <www.gemplus.com>.

18. S. Abbot, “The Debate for Secure E-Commerce,” Performance Computing February 1999 37–42.

19. T. Wilson, “E-Biz Bucks Lost Under the SSL Train,” Internet Week 24 May 1999: 1,3.

20. H. Gilbert, “Introduction to TCP/IP,” 2 February 1995 <www.yale.edu/pclt/COMM/
TCPIP.HTM>.

21. M. Bull, “Ensuring End-to-End Security with SSL,” Network World 15 May 2000: 63.

22. A. Eisenberg, "Viruses Could Have Your Numbers," The New York Times 8 June 2000: 5.

23. D. Herbeck, Chair and Associate Professor of Communications, Boston College, 29 February
2000, lecture notes.

24. M.J. McCarthy, “Thinking Out Loud: You Assumed Erase Wiped Out That Rant Against the
Boss.? Nope,” The Wall Street Journal 7 March 2000.

25. Webster’s New World College Dictionary (USA: McMillan, 1999).

26. <www.abbottlaw.com>.

27. Miller v. California 413 U.S. 15 at 24–25 (1973).

28. FCC v. Pacifica Foundation 438 U.S. 726 (1978).

29. L. Lessig, “Patent Problems,” The Industry Standard 31 January 2000: 47.

30. R. Libshon, “Madness In the Method: Will Method of Doing Business’ Patents Undermine the
Web? Net Commerce Magazine March 2000: 8.

31. R. Kwon, “Delivering Medical Records, Securely,” Internet World 10 August 1998: 23.

iw3htp2_32.fm Page 1222 Monday, July 23, 2001 4:28 PM

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

33
Multimedia: Audio,

Video, Speech Synthesis
and Recognition

Objectives
• To enhance Web pages with sound and video.
• To use <bgsound> to add background sounds.
• To use the tag’s dynsrc property to

incorporate video into Web pages.
• To use <embed> to add sound or video to Web pages.
• To use the Windows Media Player ActiveX control to

play a variety of media formats in Web pages.
• To use the Microsoft Agent ActiveX control to create

animated characters that speak to users and respond to
spoken commands from users.

• To embed a RealPlayer™ ActiveX control to allow
streaming audio and video to appear in a Web page.

The wheel that squeaks the loudest … gets the grease.
John Billings (Henry Wheeler Shaw)

We’ll use a signal I have tried and found far-reaching and
easy to yell. Waa-hoo!
Zane Grey

TV gives everyone an image, but radio gives birth to a
million images in a million brains.
Peggy Noonan

Noise proves nothing. Often a hen who has merely laid an
egg cackles as if she had laid an asteroid.
Mark Twain, Following the Equator

iw3htp2_33.fm Page 1223 Monday, July 23, 2001 4:28 PM

1224 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

33.1 Introduction
Just a few years back, the typical desktop computer’s power, although considered substan-
tial at the time, made it impossible to think of integrating high-quality audio and video into
applications. Today’s computers typically include CD-ROMs, sound cards and other hard-
ware and special software which have make computer multimedia a reality. Economical
desktop machines are so powerful that they can store and play DVD-quality sound and vid-
eo and we expect to see a huge advance in the kinds of programmable multimedia capabil-
ities available through programming languages.

The multimedia revolution occurred first on the desktop computer, with the widespread
availability of CD-ROMs. This platform is rapidly evolving towards DVD technology, but
our focus in this chapter is on the explosion of sound and video technology that appears on
the World Wide Web. In general, we expect the desktop to lead with the technology, because
the Web is so dependent on bandwidth, and, for the foreseeable future, Internet bandwidths
for the masses are likely to lag considerably behind those available on the desktop. One thing
that Deitel has learned—having been in this industry for nearly four decades now—is to plan
for the impossible. In the computer and communications fields, the impossible has repeatedly
become reality so many times that it is almost routine at this point.

In this chapter, we discuss how to add sound, video and animated characters to Web-
based applications. Your first reaction may be a sense of caution because you realize that
these are complex technologies and most readers have had little if any education in these
areas. This is one of the beauties of today’s programming languages. They give the pro-
grammer easy access to complex technologies and hide most of the complexity.

Multimedia files can be quite large. Some multimedia technologies require that the com-
plete multimedia file be downloaded to the client before the audio or video begins playing.
With streaming technologies, audio and video can begin playing while the files are down-
loading, to reduce delays. Streaming technologies are becoming increasingly popular.

Outline

33.1 Introduction
33.2 Audio and Video
33.3 Adding Background Sounds with the bgsound Element
33.4 Adding Video with the img Element’s dynsrc Property
33.5 Adding Audio or Video with the embed Element
33.6 Using the Windows Media Player ActiveX Control

33.7 Microsoft® Agent Control
33.8 RealPlayer™ Plug-in
33.9 Synchronized Multimedia Integration Language (SMIL)
33.10 Scalable Vector Graphics (SVG)
33.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_33.fm Page 1224 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1225

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Performance Tip 33.1
Multimedia is performance intensive. Although processor speed has become less of a con-
cern over the last few years, Internet bandwidth is still a precious resource. Multimedia-
based Web applications must be carefully designed to use resources wisely, or they may per-
form poorly. 33.1

Creating audio and video to incorporate into Web pages often requires complex and
powerful software such as Adobe™ After Effects® or Macromedia™ Director®. Rather
than discuss how to create media clips, this chapter focuses on using existing audio and
video clips to enhance Web pages. The chapter also includes an extensive set of Internet
and World Wide Web resources. Some of these Web sites display examples of interesting
multimedia enhancements, others provide instructional information for developers plan-
ning to enhance their own sites with multimedia.

33.2 Audio and Video
Audio and video can be used in Web pages in a variety of ways. Audio and video files can
be embedded in a Web page or placed on a Web server such that they can be downloaded
“on-demand.” A variety of audio and video file formats are available for different uses.

Common video file formats include MPEG (Moving Pictures Experts Group), Quick-
Time, RealPlayer, AVI (Video for Windows) and MJPEG (Motion JPEG). Audio formats
include MP3 (MPEG Layer 3), MIDI (Musical Instrument Digital Interface), WAV (Win-
dows Waveform) and AIFF (Audio Interchange File Format—Macintosh only).

Encoding and compression determine a file’s format. An encoding algorithm or
CODEC compresses media files by taking the raw audio or video and transforming it into
a format that Web pages can read. Different encoding levels and formats produce file sizes
that are ideal for different applications.

Some CODECs are available to the public in the form of encoding applications. Most
encoding applications compress audio and video files. Some serve as format converters,
converting one file format into another.

33.3 Adding Background Sounds with the bgsound Element
Some Web sites provide background audio to create a particular “atmosphere” on the site.
Various ways exist to add sound to a Web page, the simplest is the bgsound element.

Portability Tip 33.1
The bgsound element is a Microsoft specific extension to XHTML. 33.1

The bgsound element has four key properties—src, loop, balance and
volume. To change the property values via a script, assign a scripting name to the
bgsound element’s id property.

Software Engineering Observation 33.1
The bgsound element should be placed in the head section of the XHTML document. 33.1

iw3htp2_33.fm Page 1225 Monday, July 23, 2001 4:28 PM

1226 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

The src property specifies the URL of the audio clip to play. Internet Explorer sup-
ports a wide variety of audio formats.

Software Engineering Observation 33.2
The audio clip specified with bgsound’s src property can be any type supported by Inter-
net Explorer. 33.2

The loop property specifies the number of times the audio clip will play. The value
-1 (the default) specifies that the audio clip should loop until users browse a different Web
page or click the browser’s Stop button. A positive integer indicates the exact number of
times the audio clip should loop. Negative values (except -1) and zero values for this prop-
erty cause the audio clip to play once.

The balance property specifies the balance between the left and right speakers. The
value for this property is between -10000 (sound only from the left speaker) and 10000
(sound only from the right speaker). The default value, 0, indicates that the sound should
be balanced between the two speakers.

Software Engineering Observation 33.3
Scripting cannot set bgsound property balance. 33.3

The volume property determines the volume of the audio clip. The value for this
property is between -10000 (minimum volume) and 0 (maximum volume). The default
value is 0.

Software Engineering Observation 33.4
The volume specified with bgsound property volume is relative to the current volume set-
ting on the client computer. If the client computer has sound turned off, the volume property
has no effect. 33.4

Portability Tip 33.2
On most computers, the minimum audible volume for bgsound property volume is a value
much greater than -10000. This value depends on the machine. 33.2

The XHTML document of Fig. 33.1 demonstrates the bgsound element and scripting
the element’s properties. This example’s audio clip came from the Microsoft Developer
Network’s downloads site,

msdn.microsoft.com/downloads/default.asp

This site contains many free images and sounds. [Note: Many of the examples in this chap-
ter require an Internet connection to access certain audio or video files.]

The code in lines 10–12 specify the media source. The loop property specifies that
the audio clip plays only once. The balance and volume attributes are omitted so they
default to 0.

Function changeProperties lines 16–23 is called in line 49 when the Set Prop-
erties button is clicked. Lines 18–19 read the new value for property loop from the
form’s loopit text field, convert the value to an integer and set the new property value
by assigning a value to audio.loop (where audio is the id of the bgsound element
and loop is the scripting name of the property).

iw3htp2_33.fm Page 1226 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1227

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

 Lines 21–22 read the new value for the volume property from the form’s vol text
field, convert the value to an integer and set the new property value by assigning a value to
audio.volume (where volume is the scripting name of the property).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 33.1: BackgroundAudio.html -->
6 <!-- Demonstrating the bgsound element -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head><title>The bgsound Element</title>

10 <bgsound id = "audio" src =
11 "http://msdn.microsoft.com/downloads/sounds/jazzgos.mid"
12 loop = "1"></bgsound>
13
14 <script type = "text/javascript">
15 <!--
16 function changeProperties()
17 {
18 var loop = parseInt(audioForm.loopit.value);
19 audio.loop = (isNaN(loop) ? 1 : loop);
20
21 var vol = parseInt(audioForm.vol.value);
22 audio.volume = (isNaN(vol) ? 0 : vol);
23 }
24 // -->
25 </script>
26 </head>
27
28 <body>
29 <h1>Background Music via the bgsound Element</h1>
30 <h2>Jazz Gospel</h2>
31
32 This sound is from the free sound downloads at the
33 <a href =
34 "http://msdn.microsoft.com/downloads/default.asp">
35 Microsoft Developer Network downloads site.
36 <hr />
37 Use the fields below to change the number of iterations
38 and the volume for the audio clip

39 Press Stop to stop playing the sound.
40
Press Refresh to begin playing
41 the sound again.
42
43 <form name = "audioForm" action = "">
44 <p>Loop [-1 = loop forever]</p>
45 <input name = "loopit" type = "text" value = "1" />
46
Volume [-10000 (low) to 0 (high)]
47 <input name = "vol" type = "text" value = "0" />

48 <input type = "button" value = "Set Properties"
49 onclick = "changeProperties()" />

Fig. 33.1Fig. 33.1Fig. 33.1Fig. 33.1 Demonstrating background audio with bgsound (part 1 of 2).

iw3htp2_33.fm Page 1227 Monday, July 23, 2001 4:28 PM

1228 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

33.4 Adding Video with the img Element’s dynsrc Property
Users can tremendously enhance the multimedia presentations by incorporating a variety
of video formats into their Web pages. The img element (introduced in Chapter 4) incor-
porates both images and videos in a Web page. The src property, shown previously, indi-
cates that the source is an image. The dynsrc (i.e., dynamic source) property indicates
that the source is a video clip. The dynsrc property may have other properties such as
loop, which is similar to the bgsound loop property. The XHTML document of Fig.
33.2 demonstrates the img element and its dynsrc property.

Portability Tip 33.3
The dynsrc property of the img element is specific to Internet Explorer. 33.3

50 </form>
51 </body>
52 </html>

Fig. 33.1Fig. 33.1Fig. 33.1Fig. 33.1 Demonstrating background audio with bgsound (part 2 of 2).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4

Fig. 33.2Fig. 33.2Fig. 33.2Fig. 33.2 Playing a video with the img element’s dynsrc property (part 1 of 2).

iw3htp2_33.fm Page 1228 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1229

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

5 <!-- Fig. 33.2: Dynamicimg.html -->
6 <!-- Demonstrating the img element’s dynsrc property -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>An Embedded Video Using the dynsrc Property</title>
11 <bgsound src =
12 "http://msdn.microsoft.com/downloads/sounds/carib.MID"
13 loop = "-1"></bgsound>
14 </head>
15
16 <body>
17 <h1>An Embedded Video Using the img element's
18 dynsrc Property</h1>
19 <h2>Car and Carribean Music</h2>
20 <table>
21 <tr><td><img dynsrc = "car_hi.wmv"
22 start = "mouseover" width = "180"
23 height = "135" loop = "-1"
24 alt = "Car driving in circles" /></td>
25 <td>This page will play the audio clip and video
26 in a loop.
The video will not begin
27 playing until you move the mouse over the
28 video.
Press Stop to
29 stop playing the sound and the video.</td>
30 </tr>
31 </table>
32 </body>
33 </html>

Fig. 33.2Fig. 33.2Fig. 33.2Fig. 33.2 Playing a video with the img element’s dynsrc property (part 2 of 2).

iw3htp2_33.fm Page 1229 Monday, July 23, 2001 4:28 PM

1230 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

The img element in lines 21–24 uses the dynsrc property to load and display the
video car_hi.wmv. Property start specifies when the video should start playing.
There are two possible start events—fileopen indicates that the video should play as
soon as it loads into the browser, and mouseover indicates that the video should play
when users first position the mouse over the video.

33.5 Adding Audio or Video with the embed Element
Previously, we used elements bgsound and img to embed audio and video in a Web page.
In both cases, users of the page have little control over the media clip. In this section, we
introduce the embed element, which embeds a media clip (audio or video) into a Web
page. The embed element displays a graphical user interface that gives users direct control
over the media clip. When the browser encounters a media clip in an embed element, the
browser plays the clip with the player registered to handle that media type on the client
computer. For example, if the media clip is a wave file (i.e., a Windows Wave file), In-
ternet Explorer typically uses the Windows Media Player ActiveX control to play the clip.
The Windows Media Player has a GUI that enables users to play, pause and stop the media
clip. Users can also control the volume of audio and move forward and backward through
the clip using the GUI. [Note: Section 33.5 discusses embedding the Windows Media Play-
er ActiveX control in a Web page.]

The embed element is supported by both Microsoft Internet Explorer and Netscape
Communicator, however it is not part of the XHTML 1.0 recommendation. Documents
written in XHTML using the embed element should render properly in either browser,
however, errors may occur when trying to validate the document using the World Wide
Web Consortium’s XHTML 1.0 validator.

The XHTML document of Fig. 33.3 modifies the wave filter example from Chapter
15 by using an embed element to add audio to the Web page.

Line 58 uses the embed element to specify that the audio file humming.wav should
be embedded in the Web page. The loop property indicates that the media clip should loop
indefinitely. The width and height properties define the size of the controls for the
sound clip. By default, the GUI for the media player is displayed. To prevent the GUI from
appearing in the Web page, add the hidden property to the <embed> element. To script
the element, specify a scripting name by adding the id property to the <embed> element.

The embed element can specify video clips as well as audio clips. Figure 33.4 dem-
onstrates an embedded video. The embed element that loads and plays the video is located
in line 18.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 33.3: EmbeddedAudio.html -->
6 <!-- Background Audio via the embed Element -->
7

Fig. 33.3Fig. 33.3Fig. 33.3Fig. 33.3 Embedding audio with the embed element (part 1 of 3).

iw3htp2_33.fm Page 1230 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1231

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Background Audio via the embed Element</title>
11 <style type = "text/css">
12 span { width: 600 }
13 .big { color: blue;
14 font-family: sans-serif;
15 font-size: 50pt;
16 font-weight: bold }
17 </style>
18
19 <script type = "text/javascript">
20 <!--
21 var TimerID;
22 var updown = true;
23 var str = 1;
24
25 function start()
26 {
27 TimerID = window.setInterval("wave()", 100);
28 }
29
30 function wave()
31 {
32 if (str > 20 || str < 1)
33 updown = !updown;
34
35 if (updown)
36 str++;
37 else
38 str--;
39
40 wft.filters("wave").phase = str * 30;
41 wft.filters("wave").strength = str;
42 }
43 // -->
44 </script>
45 </head>
46
47 <body onload = "start()">
48 <h1>Background Audio via the embed Element</h1>
49 <p>Click the text to stop the script.</p>
50
51 <p class = "big" align = "center">
52 <span onclick = "window.clearInterval(TimerID)"
53 id = "wft" style = "filter:wave(
54 add = 0, freq = 3, light = 0, phase = 0, strength = 5)">
55 WAVE FILTER EFFECT</p>
56
57 <p>These controls can be used to control the audio.</p>
58 <embed src = "humming.wav" loop = "true"></embed>
59 </body>
60 </html>

Fig. 33.3Fig. 33.3Fig. 33.3Fig. 33.3 Embedding audio with the embed element (part 2 of 3).

iw3htp2_33.fm Page 1231 Monday, July 23, 2001 4:28 PM

1232 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

33.6 Using the Windows Media Player ActiveX Control
ActiveX controls enhance the functionality of Web pages with interactivity. In this section,
we embed the Windows Media Player ActiveX control in Web pages, so that we can access a
wide range of media formats supported by the Windows Media Player. The Windows Media
Player and other ActiveX controls are embedded into Web pages with the object element.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 33.4: EmbeddedVideo.html -->
6 <!-- Video via the embed Element -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Video via the embed Element</title>
11 </head>
12

Fig. 33.4Fig. 33.4Fig. 33.4Fig. 33.4 Embedding video with the embed element (part 1 of 2).

Fig. 33.3Fig. 33.3Fig. 33.3Fig. 33.3 Embedding audio with the embed element (part 3 of 3).

VolumeSound EqualizerPlay Pause Stop

iw3htp2_33.fm Page 1232 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1233

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

The XHTML document of Fig. 33.5 demonstrates how to use the object element to
embed two Windows Media Player ActiveX controls in the Web page. One of the controls
plays a video. The other control plays an audio clip.

13 <body>
14 <h1>Displaying a Video using the embed Element</h1>
15 <h2>Car Driving in Circles</h2>
16
17 <table>
18 <tr><td><embed src = "car_hi.wmv" loop = "false"
19 width = "240" height = "176">
20 </embed></td>
21 </tr></table>
22 <hr />
23 This page plays the video once.

24 Use the controls on the embedded video player to play the
25 video again.
26 </body>
27 </html>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 33.5: MediaPlayer.html -->
6 <!-- Embedded Media Player Objects -->

Fig. 33.5Fig. 33.5Fig. 33.5Fig. 33.5 Using the object element to embed the Windows Media Player ActiveX
control in a Web page (part 1 of 3).

Fig. 33.4Fig. 33.4Fig. 33.4Fig. 33.4 Embedding video with the embed element (part 2 of 2).

iw3htp2_33.fm Page 1233 Monday, July 23, 2001 4:28 PM

1234 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head><title>Embedded Media Player Objects</title>

10 <script type = "text/javascript">
11 <!--
12 var videoPlaying = true;
13
14 function toggleVideo(b)
15 {
16 videoPlaying = !videoPlaying;
17 b.value = videoPlaying ?
18 "Pause Video" : "Play Video";
19 videoPlaying ?
20 VideoPlayer.Play() : VideoPlayer.Pause();
21 }
22 // -->
23 </script>
24 </head>
25
26 <body>
27 <h1>
28 Audio and video through embedded Media Player objects
29 </h1>
30 <hr />
31 <table>
32 <tr><td valign = "top" align = "center">
33 <object id = "VideoPlayer" width = "200" height = "225"
34 classid =
35 "CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95">
36 <param name = "FileName" value =
37 "car_hi.wmv" />
38 <param name = "AutoStart" value = "true" />
39 <param name = "ShowControls" value = "false" />
40 <param name = "Loop" value = "true" />
41 </object></td>
42 <td valign = "bottom" align = "center">
43 <p>Use the controls below to control the audio clip.</p>
44 <object id = "AudioPlayer"
45 classid =
46 "CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95">
47 <param name = "FileName" value =
48 "http://msdn.microsoft.com/downloads/sounds/carib.mid" />
49 <param name = "AutoStart" value = "true" />
50 <param name = "Loop" value = "true" />
51 </object></td></tr>
52
53 <tr><td valign = "top" align = "center">
54 <input name = "video" type = "button" value =
55 "Pause Video" onclick = "toggleVideo(this)" />
56 </td></tr>
57 </table>
58 </body>
59 </html>

Fig. 33.5Fig. 33.5Fig. 33.5Fig. 33.5 Using the object element to embed the Windows Media Player ActiveX
control in a Web page (part 2 of 3).

iw3htp2_33.fm Page 1234 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1235

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

When the body of this document loads, two instances of the Windows Media Player
ActiveX control are created. The object element in lines 33–41 creates a Media Player
object for the file car_hi.wmv (specified on line 37). Line 33 indicates the start of the
embedded object definition. The id property specifies the scripting name of the element
(i.e., VideoPlayer). The width and height properties specify the width and height
in pixels that controls occupy in a Web page. On lines 34–35, property classid specifies
the ActiveX control ID for the Windows Media Player. ActiveX controls have unique
classids which identify them. A complete list of ActiveX controls available free for
download is found at browserwatch.internet.com/activex/activex-
big.html. Another site that provides information about ActiveX is www.active-
x.com.

Software Engineering Observation 33.5
Most authoring tools that can embed ActiveX controls allow the user to choose an ActiveX
control by selecting it from a list of available controls. 33.5

Lines 36–40 specify parameters that are passed to the control when it is created in the
Web page. Each parameter is specified with a param element that has name and value
properties. The FileName parameter specifies the file containing the media clip. The
AutoStart parameter is a boolean value indicating whether or not the media clip plays
when it is loaded. The ShowControls parameter is a boolean value indicating whether

Fig. 33.5Fig. 33.5Fig. 33.5Fig. 33.5 Using the object element to embed the Windows Media Player ActiveX
control in a Web page (part 3 of 3).

iw3htp2_33.fm Page 1235 Monday, July 23, 2001 4:28 PM

1236 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

the Media Player controls should be displayed. The Loop parameter is a boolean value
indicating whether the Media Player should play the media clip indefinitely.

The object element in lines 44–51 embeds another Media Player object in the Web
page. This Media Player plays the MIDI file carib.mid (specified with the FileName
parameter). A MIDI (Musical Instrument Digital Interface) file is a sound file that con-
forms to the MIDI standard for digital music playback. The Media Player starts playing the
clip when it is loaded (specified by the AutoStart parameter) and infinitely loops the
audio clip (specified with the Loop parameter).

The script at lines 10–23 shows that the Media Player can be controlled from a script.
Clicking Pause Video calls function toggleVideo (line 14). The button is defined in
the XHTML form in lines 54–55. The onclick event sets the toggleVideo function
as the event handler passes this as an argument for the function. This event changes the
button text in lines 17–18. Lines 19–20 use the boolean variable videoPlaying to deter-
mine whether to call VideoPlayer’s Play or Pause methods which play or pause the
video clip, respectively.

33.7 Microsoft® Agent Control
Microsoft Agent is an exciting technology for interactive animated characters in a Win-
dows application or World Wide Web page. The Microsoft Agent control provides access
to Agent characters such as Peedy (a parrot), Genie, Merlin (a wizard) and Robby (a ro-
bot)—as well as those created by third-party developers. These Agent characters allow us-
ers to interact with the application using more natural human communication techniques.
The control accepts both mouse and keyboard interactions, speaks (if a compatible text-to-
speech engine is installed) and also supports speech recognition (if a compatible speech
recognition engine is installed). With these capabilities, Web pages can speak to users and
actually respond to their voice commands. Users can create new characters with the help of
the Microsoft Agent Character Editor and the Microsoft Linguistic Sound Editing Tool
(both downloadable from the Microsoft Agent Web site). In this section, we introduce the
Microsoft Agent control.

The software for Microsoft Agent is on the CD-ROM that accompanies this book and
may be downloaded from Microsoft’s Web site msdn.microsoft.com/library/
en-us/dnagent/html/agentdevdl.asp. This page also provides links to down-
load the Lernout and Hauspie TruVoice text-to-speech (TTS) engine and the Microsoft
Speech Recognition engine, ActiveX controls that power voice integration with Microsoft
Agent. [Note: The Lernout and Hauspie TruVoice text-to-speech (TTS) engine is a 6 MB
download. The download process may take some time from the Microsoft Web site. It is
advisable to install this component directly from the CD-ROM included with this book.]

Figure 33.6 demonstrates the Microsoft Agent ActiveX control and the Lernout and
Hauspie TruVoice text-to-speech engine (also an ActiveX control). This XHTML docu-
ment embeds each of these ActiveX controls into a Web page that acts as a tutorial for the
various types of programming tips presented in this text. Peedy the Parrot displays and
speaks text that describes each of the programming tips. When the user clicks the icon for
a programming tip, Peedy jumps to that tip and recites the appropriate text.

To run this example, install the Microsoft Agent character Peedy from the accompa-
nying CD. Locate the Peedy.acs file on your computer, and change

iw3htp2_33.fm Page 1236 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1237

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

"C:\\WINNT\\msagent\\chars\\Peedy.acs"

to reflect the physical path to the file on your computer. [Note: make sure all backslashes
are preceded by a second backslash.] If you would like to run this example from the Inter-
net, change

"C:\\WINNT\\msagent\\chars\\Peedy.acs"

to

"http://agent.microsoft.com/agent2/chars/peedy/peedy.acf"

Performance Tip 33.2
The Microsoft Agent control and the Lernout and Hauspie TruVoice TTS engine will be
downloaded automatically from the Microsoft Agent Web site if they are not already installed
on your computer. Downloading these controls in advance allows the Web page to use Mi-
crosoft Agent and the TTS engine as soon as the Web page is loaded. 33.2

Testing and Debugging Tip 33.1
The Microsoft Agent characters and animations are downloadable from the Microsoft Agent
Web site. You can download the character information onto your local computer and modify
the Microsoft Agent examples to load character data from the local computer for demonstra-
tion purposes. 33.1

The first screen capture illustrates Peedy finishing his introduction. The second screen
capture shows Peedy jumping toward the Common Programming Error icon. The last
screen capture shows Peedy finishing his discussion of Common Programming Errors.

Before using Microsoft Agent or the Lernout and Hauspie TruVoice TTS engine in the
Web page, both must load into the Web page via object elements. Lines 13–16 embed
an instance of the Microsoft Agent ActiveX control into the Web page and give it the
scripting name agent via the id property. Similarly, lines 19–22 embed an instance of the
Lernout and Hauspie TruVoice TTS engine into the Web page. This object is not scripted
directly by the Web page. The Microsoft Agent uses the TTS engine control to speak the
text that Microsoft Agent displays. If either of these controls is not already installed on the
computer browsing the Web page, the browser attempts to download that control from the
Microsoft Web site. The codebase attribute (lines 15 and 21) specifies the URL from
which to download this version of the software (Version 2 for the Microsoft Agent control
and Version 6 for the Lernout and Hauspie TruVoice TTS engine). The Microsoft Agent
documentation discusses how to place these controls on a server for clients to download.
[Note: Placing these controls on your own server requires a license from Microsoft.]

The body of the document (lines 198–250) defines a table containing the seven pro-
gramming tip icons. Each tip icon is given a scripting name via its img element’s name
property. The scripting name changes the background color of the img element when users
click it to receive an explanation of that tip type. Each img element’s onclick event is
registered as function imageSelectTip, defined at line 138. Each img element passes
itself (i.e., this) to function imageSelectTip so the function can determine the par-
ticular user-selected image.

The XHTML document contains four separate script elements. The script ele-
ment at lines 30–168 defines global variables used in all the script elements and defines

iw3htp2_33.fm Page 1237 Monday, July 23, 2001 4:28 PM

1238 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

functions loadAgent (called in response to the body element’s onload event), imag-
eSelectTip (called when users click an img element) and tellMeAboutIt (called
by imageSelectTip to speak a few sentences about a tip).

Function loadAgent is particularly important because it loads the Microsoft Agent
character that is used in this example. Lines 97–98 use the Microsoft Agent control’s
Characters collection to load the character information for Peedy. Method Load of the
Characters collection takes two arguments. The first argument specifies a name for the
character that can be used later to interact with that character, and the second argument
specifies the location of the character’s data file (Peedy.acs in this example).

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 33.6: tutorial.html -->
6 <!-- Microsoft Agent Control -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Speech Recognition</title>
11
12 <!-- Microsoft Agent ActiveX Control -->
13 <object id = "agent" width = "0" height = "0"
14 classid = "CLSID:D45FD31B-5C6E-11D1-9EC1-00C04FD7081F"
15 codebase = "#VERSION = 2, 0, 0, 0">
16 </object>
17
18 <!-- Lernout & Hauspie TruVoice text to speech engine -->
19 <object width = "0" height = "0"
20 classid = "CLSID:B8F2846E-CE36-11D0-AC83-00C04FD97575"
21 codebase = "#VERSION = 6, 0, 0, 0">
22 </object>
23
24 <!-- Microsoft Speech Recognition Engine -->
25 <object width = "0" height = "0"
26 classid = "CLSID:161FA781-A52C-11d0-8D7C-00A0C9034A7E"
27 codebase = "#VERSION = 4, 0, 0, 0">
28 </object>
29
30 <script type = "text/javascript">
31 <!--
32
33 var currentImage = null;
34 var tips =
35 ["gpp", "seo", "perf", "port",
36 "gui", "dbt", "cpe"];
37 var tipNames = [
38 "Good Programming Practice",
39 "Software Engineering Observation",
40 "Performance Tip", "Portability Tip",

Fig. 33.6Fig. 33.6Fig. 33.6Fig. 33.6 Demonstrating Microsoft Agent and the Lernout and Hauspie TruVoice text-
to-speech (TTS) engine (part 1 of 7).

iw3htp2_33.fm Page 1238 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1239

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

41 "Look-and-Feel Observation",
42 "Testing and Debugging Tip",
43 "Common Programming Error"];
44 var voiceTips = [
45 "Good [Programming Practice]",
46 "Software [Engineering Observation]",
47 "Performance [Tip]",
48 "Portability [Tip]",
49 "Look-and-Feel [Observation]",
50 "Testing [and Debugging Tip]",
51 "Common [Programming Error]"];
52 var explanations = [
53 // Good Programming Practice text
54 "Good Programming Practices highlight " +
55 "techniques for writing programs that are " +
56 "clearer, more understandable, more " +
57 "debuggable, and more maintainable.",
58
59 // Software Engineering Observation text
60 "Software Engineering Observations highlight " +
61 "architectural and design issues that affect " +
62 "the construction of complex software systems.",
63
64 // Performance Tip text
65 "Performance Tips highlight opportunities for " +
66 "improving program performance.",
67
68 // Portability Tip text
69 "Portability Tips help students write portable " +
70 "code that can execute in different Web browsers.",
71
72 // Look-and-Feel Observation text
73 "Look-and-Feel Observations highlight graphical " +
74 "user interface conventions. These observations " +
75 "help students design their own graphical user " +
76 "interfaces in conformance with industry " +
77 "standards.",
78
79 // Testing and Debugging Tip text
80 "Testing and Debugging Tips tell people how to " +
81 "test and debug their programs. Many of the " +
82 "tips also describe aspects of creating Web " +
83 "pages and scripts that reduce the likelihood " +
84 "of 'bugs' and thus simplify the testing and " +
85 "debugging process.",
86
87 // Common Programming Error text
88 "Common Programming Errors focus the students' " +
89 "attention on errors commonly made by beginning " +
90 "programmers. This helps students avoid making " +
91 "the same errors. It also helps reduce the long " +
92 "lines outside instructors' offices during " +

Fig. 33.6Fig. 33.6Fig. 33.6Fig. 33.6 Demonstrating Microsoft Agent and the Lernout and Hauspie TruVoice text-
to-speech (TTS) engine (part 2 of 7).

iw3htp2_33.fm Page 1239 Monday, July 23, 2001 4:28 PM

1240 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

93 "office hours!"];
94
95 function loadAgent()
96 {
97 agent.Characters.Load("Peedy",
98 "C:\\WINNT\\msagent\\chars\\Peedy.acs");
99 actor = agent.Characters.Character("Peedy");
100 actor.LanguageID = 0x0409; // sometimes needed
101
102 // get states from server
103 actor.Get("state", "Showing");
104 actor.Get("state", "Speaking");
105 actor.Get("state", "Hiding");
106
107 // get Greet animation and do Peedy introduction
108 actor.Get("animation", "Greet");
109 actor.MoveTo(screenLeft, screenTop - 100);
110 actor.Show();
111 actor.Play("Greet");
112 actor.Speak("Hello. " +
113 "If you would like me to tell you about a " +
114 "programming tip, click its icon, or, press " +
115 "the 'Scroll Lock' key, and speak the name " +
116 "of the tip, into your microphone.");
117
118 // get other animations
119 actor.Get("animation", "Idling");
120 actor.Get("animation", "MoveDown");
121 actor.Get("animation", "MoveUp");
122 actor.Get("animation", "MoveLeft");
123 actor.Get("animation", "MoveRight");
124 actor.Get("animation", "GetAttention");
125 actor.Get("animation", "GetAttentionReturn");
126
127 // set up voice commands
128 for (var i = 0; i < tips.length; ++i)
129 actor.Commands.Add(tips[i],
130 tipNames[i], voiceTips[i], true, true);
131
132 actor.Commands.Caption = "Programming Tips";
133 actor.Commands.Voice = "Programming Tips";
134 actor.Commands.Visible = true;
135 }
136
137 function imageSelectTip(tip)
138 {
139 for (var i = 0; i < document.images.length; ++i)
140 if (document.images(i) == tip)
141 tellMeAboutIt(i);
142 }
143

Fig. 33.6Fig. 33.6Fig. 33.6Fig. 33.6 Demonstrating Microsoft Agent and the Lernout and Hauspie TruVoice text-
to-speech (TTS) engine (part 3 of 7).

iw3htp2_33.fm Page 1240 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1241

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

144 function voiceSelectTip(cmd)
145 {
146 var found = false;
147
148 for (var i = 0; i < tips.length; ++i)
149 if (cmd.Name == tips[i]) {
150 found = true;
151 break;
152 }
153
154 if (found)
155 tellMeAboutIt(i);
156 }
157
158 function tellMeAboutIt(element)
159 {
160 currentImage = document.images(element);
161 currentImage.style.background = "red";
162 actor.MoveTo(
163 currentImage.offsetParent.offsetLeft,
164 currentImage.offsetParent.offsetTop + 30);
165 actor.Speak(explanations[element]);
166 }
167 // -->
168 </script>
169
170 <script type = "text/javascript" for = "agent"
171 event = "Command(cmd)">
172 <!--
173 voiceSelectTip(cmd);
174 // -->
175 </script>
176
177 <script type = "text/javascript" for = "agent"
178 event = "BalloonHide">
179 <!--
180 if (currentImage != null) {
181 currentImage.style.background = "lemonchiffon";
182 currentImage = null;
183 }
184 // -->
185 </script>
186
187 <script type = "text/javascript" for = "agent"
188 event = "Click">
189 <!--
190 actor.Play("GetAttention");
191 actor.Speak("Stop poking me with that pointer!");
192 actor.Play("GetAttentionReturn");
193 // -->
194 </script>
195 </head>

Fig. 33.6Fig. 33.6Fig. 33.6Fig. 33.6 Demonstrating Microsoft Agent and the Lernout and Hauspie TruVoice text-
to-speech (TTS) engine (part 4 of 7).

iw3htp2_33.fm Page 1241 Monday, July 23, 2001 4:28 PM

1242 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

196
197 <body style = "background-color: lemonchiffon"
198 onload = "loadAgent()">
199 <table border = "0">
200 <tr>
201 <th colspan = "4">
202 <h1 style = "color: blue">
203 Deitel Programming Tips
204 </h1>
205 </th>
206 </tr>
207 <tr>
208 <td align = "center" valign = "top" width = "120">
209 <img id = "gpp" src = "GPP_100h.gif"
210 alt = "Good Programming Practice" border =
211 "0" onclick = "imageSelectTip(this)" />
212
Good Programming Practices</td>
213 <td align = "center" valign = "top" width = "120">
214 <img id = "seo" src = "SEO_100h.gif"
215 alt = "Software Engineering Observation"
216 border = "0"
217 onclick = "imageSelectTip(this)" />
218
Software Engineering Observations</td>
219 <td align = "center" valign = "top" width = "120">
220 <img id = "perf" src = "PERF_100h.gif"
221 alt = "Performance Tip" border = "0"
222 onclick = "imageSelectTip(this)" />
223
Performance Tips</td>
224 <td align = "center" valign = "top" width = "120">
225 <img id = "port" src = "PORT_100h.gif"
226 alt = "Portability Tip" border = "0"
227 onclick = "imageSelectTip(this)" />
228
Portability Tips</td>
229 </tr>
230 <tr>
231 <td align = "center" valign = "top" width = "120">
232 <img id = "gui" src = "GUI_100h.gif"
233 alt = "Look-and-Feel Observation" border =
234 "0" onclick = "imageSelectTip(this)" />
235
Look-and-Feel Observations</td>
236 <td align = "center" valign = "top" width = "120">
237 <img id = "dbt" src = "DBT_100h.gif"
238 alt = "Testing and Debugging Tip" border =
239 "0" onclick = "imageSelectTip(this)" />
240
Testing and Debugging Tips</td>
241 <td align = "center" valign = "top" width = "120">
242 <img id = "cpe" src = "CPE_100h.gif"
243 alt = "Common Programming Error" border =
244 "0" onclick = "imageSelectTip(this)" />
245
Common Programming Errors</td>
246 </tr>
247 </table>

Fig. 33.6Fig. 33.6Fig. 33.6Fig. 33.6 Demonstrating Microsoft Agent and the Lernout and Hauspie TruVoice text-
to-speech (TTS) engine (part 5 of 7).

iw3htp2_33.fm Page 1242 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1243

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

248 <img src = "agent_button.gif" style = "position: absolute;
249 bottom: 10px; right: 10px" />
250 </body>
251 </html>
C

Fig. 33.6Fig. 33.6Fig. 33.6Fig. 33.6 Demonstrating Microsoft Agent and the Lernout and Hauspie TruVoice text-
to-speech (TTS) engine (part 6 of 7).

iw3htp2_33.fm Page 1243 Monday, July 23, 2001 4:28 PM

1244 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Line 99 assigns to global variable actor a reference to the Peedy Character
object. Object Character of the Characters collection receives as its argument the
name that was used to download the character data in lines 97–98. Line 100 sets the Char-
acter’s LanguageID property to 0x0409 (English). Microsoft Agent can actually be
used with several different languages (see the documentation for more information).

Lines 103–105 use the Character object’s Get method to download the Showing,
Speaking and Hiding states for the character. The method takes two arguments—the type
of information to download (in this case, state information) and the name of the corre-
sponding element (e.g., Showing). Each state has animations associated with it. When the
character is displayed (i.e., the Showing state), its associated animation plays (Peedy flies
onto the screen). Downloading the Speaking state provides a default animation that makes
the character appear to be speaking. When the character hides (i.e., goes into the Hiding
state), the animations that make the character disappear are played (Peedy flies away).

Line 108 calls Character method Get to load an animation (Greet, in this
example). Lines 109–116 use a variety of Character methods to interact with Peedy.
Line 109 invokes the MoveTo method to specify Peedy’s position on the screen. Line 110
calls method Show to display the character. When this occurs, the character plays the ani-
mation assigned to the Showing state (Peedy flies onto the screen). Line 111 calls method
Play to play the Greet animation (see the first screen capture). Lines 112–116 invoke
method Speak to make the character speak its string argument. If there is a compatible
TTS engine installed, the character displays a bubble containing the text and speaks the text
as well. The Microsoft Agent Web site contains complete lists of animations available for
each character (some are standard to all characters, others are specific to each character).

Fig. 33.6Fig. 33.6Fig. 33.6Fig. 33.6 Demonstrating Microsoft Agent and the Lernout and Hauspie TruVoice text-
to-speech (TTS) engine (part 7 of 7).

iw3htp2_33.fm Page 1244 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1245

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Lines 119–125 load several other animations. Line 119 loads the set of Idling ani-
mations that Microsoft Agent uses when users are not interacting with the character. When
running this example, be sure to leave Peedy alone for a while to see some of these anima-
tions. Lines 120–123 load the animations for moving the character up, down, left and right
(MoveUp, MoveDown, MoveLeft and MoveRight, respectively).

Clicking an image calls function imageSelectTip (lines 137–142). The method
first uses Character method Stop to terminate the current animation. Next, the for
structure at lines 139–141 determines which image the user clicked. The condition in line
140 calls the document object’s images collection which determines the index of the
clicked img element. If the tip number is equal to the image number (docu-
ment.images(i)), then function tellMeAboutIt (lines 158–166) is called, where i
is passed as the argument.

Line 160 of function tellMeAboutIt assigns global variable currentImage a
reference to the clicked img element. This function changes the background color of the
img element that the user clicked by highlighting that image on the screen. Line 161
changes the background color of the image to red. Line 162 invokes Character method
MoveTo to position Peedy above the clicked image. When this statement executes, Peedy
flies to the image. The currentImage’s offsetParent property determines the
parent element that contains the image (in this example, the table cell in which the image
appears). The offsetLeft and offsetTop properties of the table cell determine the
location of the cell with respect to the upper left corner of the browser window. The Char-
acter object’s Speak method (Line 165) speaks the text that is stored as strings in the
array explanations for the selected tip.

Lines 177–188 invoke the script for the agent control in response to the hiding of the
text balloon. If the currentImage is not null, the background color of the image is
changed to lemonchiffon (the document’s background color) and variable curren-
tImage is reset to null.

The script for the agent control at lines 187–194 is invoked in response to the user’s
clicking the character. When this occurs, line 190 plays the GetAttention animation,
line 191 causes Peedy to speak the text “Stop poking me with that pointer!” and
line 192 plays the last frame of the GetAttention animation by specifying GetAt-
tentionReturn.

Microsoft provides complete lists of animations as well as recommended standard ani-
mation sets for their Agent characters at msdn.microsoft.com/library/en-us/
dnagent/html/characterdata.asp.

Voice recognition is also included in this example to enable the Agent character to
receive voice commands. The first screen capture illustrates Peedy finishing his introduc-
tion (Fig. 33.7). The second screen capture shows Peedy after the user presses the Scroll
Lock key to start issuing voice commands, which initializes the voice-recognition engine
(Fig. 33.8). The third screen capture (Fig. 33.9) shows Peedy after receiving a voice com-
mand (i.e., “Good Programming Practice”, which causes a Command event for the agent
control). The last screen capture shows Peedy discussing Good Programming Practices
(Fig. 33.10).

To enable Microsoft Agent to recognize voice commands, a compatible voice-recog-
nition engine must be installed. Lines 25–28 use an object element to embed an instance
of the Microsoft Speech Recognition engine control in the Web page.

iw3htp2_33.fm Page 1245 Monday, July 23, 2001 4:28 PM

1246 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Next, the voice commands used to interact with the Peedy must be registered in the
Character object’s Commands collection. The for structure at lines 128–130 uses the
Commands collection’s Add method to register each voice command. The method
receives five arguments. The first argument is a string representing the command name
(typically used in scripts that respond to voice commands). The second argument is a string
that appears in a pop-up menu in response to a right-click on the character. The third argu-
ment is a string representing the words or phrase users can speak for this command (stored
in array voiceTips at lines 44–51). Optional words or phrases are enclosed in square
brackets ([]). The last two arguments are boolean values indicating whether the command
is currently enabled (i.e., whether users can speak the command) and whether the command
is currently visible in the pop-up menu and Voice Commands window for the character.

Lines 132–134 set the Caption, Voice and Visible properties of the Commands
object. The Caption property specifies text that describes the voice command set. This
text appears in the small rectangular area that appears below the character when users press
the Scroll Lock key. The Voice property is similar to the Caption property except that
the specified text appears in the Voice Commands window with the set of voice com-
mands the user can speak below it. The Visible property is a boolean value that specifies
whether the commands of this Commands object should appear in the pop-up menu.

After receiving a voice command, the agent control’s Command event handler (lines
170–175) executes. This script calls function voiceSelectTip and passes it the name
of the received command. Function voiceSelectTip (lines 144–156) uses the name of
the command in the for structure (lines 148–152) to determine the index of the command
in the Commands object. This value is then passed to function tellMeAboutIt (line
158), which causes Peedy to move to the specified tip and discuss that tip.

Fig. 33.7Fig. 33.7Fig. 33.7Fig. 33.7 Peedy finishing introduction.

iw3htp2_33.fm Page 1246 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1247

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Fig. 33.8Fig. 33.8Fig. 33.8Fig. 33.8 Peedy ready to receive voice commands.

Fig. 33.9Fig. 33.9Fig. 33.9Fig. 33.9 Peedy receiving voice command.

iw3htp2_33.fm Page 1247 Monday, July 23, 2001 4:28 PM

1248 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

This example has covered only the basic features and functionality of Microsoft Agent.
Many more features are available. Figure 33.11 lists several other Microsoft Agent events.

Figure 33.12 shows some other properties and methods of the Character object.
Remember that the Character object represents the character that is displayed on the
screen and enables interaction with that character. For a complete listing of properties and
methods, see the Microsoft Agent Web site

Figure 33.13 shows some speech output tags that can customize speech output proper-
ties. The animated character will speak these tags inserted into the text string. Speech
output tags generally remain in effect from the time at which they are encountered until the
end of the current Speak method call.

Fig. 33.10Fig. 33.10Fig. 33.10Fig. 33.10 Peedy discussing Good Programming Practice.

Event Description

BalloonHide Called when the text balloon for a character is hidden.

BalloonShow Called when the text balloon for a character is shown.

Hide Called when a character is hidden.

Move Called when a character is moved on the screen.

Show Called when a character is displayed on the screen.

Size Called when a character’s size is changed.

Fig. 33.11Fig. 33.11Fig. 33.11Fig. 33.11 Other events for the Microsoft Agent control.

iw3htp2_33.fm Page 1248 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1249

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

.

33.8 RealPlayer™ Plug-in
A RealPlayer object may be embedded into a Web page to enhance the page with streaming
audio and video. RealPlayer can also be delivered as a browser plug-in on multiple plat-

Property or method Description

Properties

Height The height of the character in pixels.

Left The left edge of the character in pixels from the left of the screen.

Name The default name for the character.

Speed The speed of the character’s speech.

Top The top edge of the character in pixels from the top of the screen.

Width The width of the character in pixels.

Methods

Activate Sets the currently active character when multiple characters
appear on the screen.

GestureAt Specifies that the character should gesture toward a location on
the screen that is specified in pixel coordinates from the upper left
corner of the screen.

Interrupt Interrupts the current animation. The next animation in the queue
of animations for this character is then displayed.

StopAll Stops all animations of a specified type for the character.

Fig. 33.12Fig. 33.12Fig. 33.12Fig. 33.12 Other properties and methods for the Character object.

Tag Description

\Chr=string\ Specifies the tone of the voice. Possible values for string are Normal
(the default) for a normal tone of voice, Monotone for a monotone
voice or Whisper for a whispered voice.

\Emp\ Emphasizes the next spoken word.

\Lst\ Repeats the last statement spoken by the character. This tag must be the
only content of the string in the Speak method call.

\Pau=number\ Pauses speech for number milliseconds.

\Pit=number\ Changes the pitch of the character’s voice. This value must be within
the range 50 to 400 hertz for the Microsoft Agent speech engine.

\Spd=number\ Changes the speech speed to a value in the range 50 to 250.

\Vol=number\ Changes the volume to a value in the range 0 (silent) to 65,535 (maxi-
mum volume).

Fig. 33.13Fig. 33.13Fig. 33.13Fig. 33.13 Speech output tags.

iw3htp2_33.fm Page 1249 Monday, July 23, 2001 4:28 PM

1250 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

forms. Figure 33.14 demonstrates streaming audio in a Web page by embedding a Real-
Player object in the page using embed element. Users can select from several different
audio sources; this selection then calls a JavaScript which invokes RealPlayer methods to
play the selected audio stream.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 33.14: real.html -->
6 <!-- Embedding RealPlayer into an XHTML page -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Live Audio!</title>
11
12 <script type = "text/javascript">
13 <!--
14 var locations =
15 ["http://www.cnn.com/video/audio/cnn.ram",
16 "http://www.real.com/showcase/kingredir.ram",
17 "http://radio.onlinemusic.com/play/" +
18 "jazzsummit.com/rm"]
19
20 function change(loc)
21 {
22 raControl.SetSource(locations[loc]);
23 raControl.DoPlayPause();
24 }
25 // -->
26 </script>
27 </head>
28
29 <body>
30
31 <p>Pick from my favorite audio streams:
32
33 <select id = "streamSelect" onchange =
34 "change(this.value)">
35 <option value = "">Select a station</option>
36 <option value = "0">CNN</option>
37 <option value = "1">KING-FM</option>
38 <option value = "2">Jazz Summit</option>
39 </select></p>
40
41

42 <embed id = "raControl" src = ""
43 type = "audio/x-pn-realaudio-plugin" width = "275"
44 height = "125" controls = "Default"
45 autostart = "false" />
46
47 </body>
48 </html>

Fig. 33.14Fig. 33.14Fig. 33.14Fig. 33.14 Embedding RealPlayer in a Web page (part 1 of 2).

iw3htp2_33.fm Page 1250 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1251

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

The embed element in lines 42–45 embeds the RealPlayer plug-in into the page. The
type attribute specifies the MIME type of the embedded file, which in this case is the
MIME type for streaming audio. (Remember that MIME is a standard for specifying the
format of content so the browser can determine how to handle the content.) The width and
height attributes specify the dimensions of the space the control occupies on the page.
The autostart attribute determines whether the audio starts playing when the page
loads (for this example, we set it to false). The controls attribute specifies which
controls users can access (e.g., Play button, Pause button and Volume Control). Setting
controls to Default places the standard control buttons on screen. A list of the avail-
able controls can be found at the site

www.real.com/devzone/library/stream/plugtest/plugin.html

We do not set the src attribute of the embed element. Normally, this is the location of the
streaming audio, but in this example, we use JavaScript to change the source dynamically
based on user selections.

Now that the player is embedded in the Web page, we use scripting to activate the
streaming audio. The select menu (line 33) lists three radio stations, corresponding to
the three entries in the array locations (defined at line 14), which contain the actual
URLs for the live audio of those stations. When the selection changes, function change
(line 20) is called by the onchange event. This function calls methods SetSource and
DoPlayPause of the RealPlayer object. Method SetSource sets the source URL of the
audio stream to be played. Then, method DoPlayPause toggles between pausing and
playing the stream. [Note: In this case, the stream is paused because it has not started
playing yet, so it begins playing in response to the call to DoPlayPause.]

In this example, we only explore streaming audio. The latest versions of RealPlayer
support streaming video as well. To view streaming video with RealPlayer, visit the fol-
lowing sites:

www.cnn.com
www.msnbc.com

Fig. 33.14Fig. 33.14Fig. 33.14Fig. 33.14 Embedding RealPlayer in a Web page (part 2 of 2).

Image of RealPlayer playing
the selected audio stream.
Run the example to see this
live.

iw3htp2_33.fm Page 1251 Monday, July 23, 2001 4:28 PM

1252 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

www.broadcast.com/television

To learn more about programming with RealPlayer, visit the RealPlayer DevZone at

www.realnetworks.com/devzone/index.html

A few years, ago broadcasting personal streaming audio and video required a dedicated
server and expensive software. Today, open source software, such as Darwin Streaming
Server and RealNetwork’s Basic Server G2, provide “home-made” servers, such as Linux
or Apache running on a PC, with streaming capability. These applications are available free
for download from www.shareware.com. With limited server processor power and
Internet bandwidth, this type of set-up cannot support the same number of streams and bit-
rates as a dedicated streaming server.

33.9 Synchronized Multimedia Integration Language (SMIL)
The Synchronized Multimedia Integration Language (SMIL, pronounced “smile”) enables
Web document authors to coordinate the presentation of a wide range of multimedia ele-
ments. SMIL is an XML-based description language that allows static and dynamic text,
audio and video to occur simultaneously and sequentially. Like Flash, SMIL provides a
time reference for all instances of text and media. A SMIL document specifies the source
(i.e., the URL) and presentation of multimedia elements. In XHTML, multimedia elements
are autonomous entities that cannot interact without complicated scripts. In SMIL, multi-
media elements can work together, enabling document authors to specify when and how
multimedia elements appear in a document. For example, SMIL can produce TV-style con-
tent, in which static and dynamic text, audio and video occur simultaneously and sequen-
tially. One way to render SMIL documents is with RealPlayer. Apple’s Quicktime plug-in
also plays SMIL in both Windows and Mac OS environments.

The example in Fig. 33.15 is a SMIL document that displays .jpg images for a variety
of Java How to Program book covers. The images are displayed sequentially, and sound
accompanies each image.

1 <smil>
2 <!-- Fig. 33.15: example1.smil -->
3 <!-- Example SMIL Document -->
4
5 <head>
6 <layout>
7 <root-layout height = "300" width = "280"
8 background-color = "#bbbbee" title = "Example" />
9

10 <region id = "image1" width = "177" height = "230"
11 top = "35" left = "50" background-color =
12 "#ffffff" />
13 </layout>
14 </head>
15 <body>
16 <seq>

Fig. 33.15Fig. 33.15Fig. 33.15Fig. 33.15 SMIL document with images and sound (part 1 of 2).

iw3htp2_33.fm Page 1252 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1253

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Element head (lines 5–14) contains all the information for setting up the document.
Lines 6–13 show element layout, which sets the layout attributes for the document.

Lines 7–8 set the document size, color and title using element root-layout. Lines
10–12 set a region for displaying objects (e.g., images) using element region. Attribute
id is a unique identifier for each region. Attributes width and height specify the size
of the region, and attributes top and left provide its relative position. Attribute back-
ground-color sets the color of the region’s background.

Line 15 begins the element body, which encloses the contents of the document. Line
16 starts element seq, which sets its child elements to execute sequentially (i.e., in chro-
nological order). A par element (starting on Line 18) sets its child elements to execute
simultaneously.

17
18 <par>
19 <img src = "book1.jpg" region = "image1"
20 alt = "book 1" dur = "1s" fit = "fill" />
21 <audio src = "bounce.au" dur = ".5s" />
22 </par>
23
24 <par>
25 <img src = "book2.jpg" region = "image1"
26 alt = "book 2" dur = "1s" fit = "fill" />
27 <audio src = "bounce.au" dur = ".5s" />
28 </par>
29
30 <par>
31 <img src = "book3.jpg" region = "image1"
32 alt = "book 3" dur = "1s" fit = "fill" />
33 <audio src = "bounce.au" dur = ".5s" />
34 </par>
35
36 <par>
37 <img src = "book4.jpg" region = "image1"
38 alt = "book4" dur = "1s" fit = "fill" />
39 <audio src = "bounce.au" dur = ".5s" />
40 </par>
41
42 <par>
43 <img src = "book5.jpg" region = "image1"
44 alt = "book5" dur = "1s" fit = "fill" />
45 <audio src = "bounce.au" dur = ".5s" />
46 </par>
47
48 <par>
49 <img src = "book6.jpg" region = "image1"
50 alt = "book6" dur = "1s" fit = "fill" />
51 <audio src = "bounce.au" dur = ".5s" />
52 </par>
53 </seq>
54 </body>
55 </smil>

Fig. 33.15Fig. 33.15Fig. 33.15Fig. 33.15 SMIL document with images and sound (part 2 of 2).

iw3htp2_33.fm Page 1253 Monday, July 23, 2001 4:28 PM

1254 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Lines 19–20 show element img, which references an image. Attribute src contains
the location of the image, and attribute alt provides a description of the image. Attribute
region specifies the region in which the image is to be displayed; a fit value of fill
sets the image to fill the entire region. Attribute dur describes how long the image appears
on the screen (e.g., one second). Line 21 shows element audio, which references audio
file bounce.au. The remaining elements in the document (lines 24–52) display different
images and play the same audio file.

We can also embed a SMIL document in a Web page. We use the method described in
Section 33.7 to embed the RealPlayer. Visitors to a Web site need the RealPlayer plug-in
to view SMIL content. The plug-in is installed with RealPlayer basic and is available for
download from RealNetworks at

www.real.com/player

Figure 33.16 uses an embedded RealPlayer to view our example SMIL document. On
lines 14–17 we use the <embed> tag to add the RealPlayer to the Web page. The many
attributes of this tag determine how our SMIL is displayed. First, set the src attribute on
line 14 by giving it the location of the SMIL file. The file is located in the same folder so
the path is simply the name of the file: example1.smil. The controls attribute on
line 15 is set to ImageWindow; hiding the controls from users. The type attribute on line
16 allows the specification of the MIME type for the embedded object. In this case, we set
type to audio/x-pn-realaudio-plugin to inform the browser that the Real-
Player plug-in will display the SMIL file. Users do not have GUI controls, so the
autostart attribute set to true on line 17 starts the movie automatically.

33.10 Scalable Vector Graphics (SVG)
The Scalable Vector Graphics (SVG) markup language describes vector graphic data for
JPEG, GIF and PNG formats) such that they may be distributed over the Web efficiently.
The GIF, JPEG and PNG file formats store images as bitmaps. Bitmaps describe the color
of every pixel in an image and can take quite a bit of time to download. Due to the method
in which bitmap information is stored, images of these file types cannot be enlarged or re-
duced without a loss of image quality.

Vector graphics are produced by mathematical equations which describe graphical infor-
mation in terms of lines, curves, etc. Not only do images rendered by vectors require less
bandwidth, but these images also can be easily scaled and printed without loss of image
clarity. Different graphic formats are discussed in detail in Chapter 3, Photoshop® Elements.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 33.16: example1.html -->
6 <!-- embedding SMIL with RealPlayer -->
7

Fig. 33.16Fig. 33.16Fig. 33.16Fig. 33.16 Using the RealPlayer 8 plug-in to display a SMIL document (part 1 of 2).

iw3htp2_33.fm Page 1254 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1255

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Another advantage to using SVG to produce Web graphics is that SVG is an applica-
tion of XML. This relationship makes it possible for SVG documents to be scripted,
searched and dynamically created.

Both Internet Explorer and Netscape Communicator intend to provide native support
for SVG in the near future. Currently, Adobe provides a plug-in for Internet Explorer (Ver-
sion 4.0 or higher for Windows and Version 5.0 for Mac) and for Netscape Communicator
(Version 4.0 or higher for both Windows and Mac) that enables SVG documents to be
directly rendered in those browsers. This plug-in is available free of charge from Adobe at
www.adobe.com/svg.

Figure 33.17 is an SVG document that displays some simple shapes in a browser. We
use the Adobe plug-in to view the document in Internet Explorer.

8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Embedding SMIL with Real Player</title>
11 </head>
12 <body>
13 <div style = "text-align: center">
14 <embed src = "example1.smil"
15 controls = "ImageWindow"
16 type = "audio/x-pn-realaudio-plugin"
17 width = "280" height = "300" autostart = "true">
18 </embed></div>
19 </body>
20 </html>

1 <?xml version="1.0"?>
2

Fig. 33.17Fig. 33.17Fig. 33.17Fig. 33.17 SVG document example (part 1 of 2).

Fig. 33.16Fig. 33.16Fig. 33.16Fig. 33.16 Using the RealPlayer 8 plug-in to display a SMIL document (part 2 of 2).

iw3htp2_33.fm Page 1255 Monday, July 23, 2001 4:28 PM

1256 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Line 6 contains the root element for the SVG document. Attribute viewBox sets the
viewing area for the document. The first two numbers in the value are the x- and y-coordi-
nates of the upper left corner of the viewing area, and the last two numbers are the width
and height of the viewing area. Attribute width specifies the width of the image, and
attribute height specifies the height of the image.

3 <!-- Fig. 33.17: shapes.svg -->
4 <!-- Simple example of SVG -->
5
6 <svg viewBox = "0 0 300 300" width = "300" height = "300">
7
8 <!-- generate a background -->
9 <g>

10 <path style = "fill: #eebb99"
11 d = "M0,0 h300 v300 h-300 z" />
12 </g>
13
14 <!-- some shapes and colors -->
15 <g>
16
17 <circle style = "fill: green; fill-opacity: 0.5"
18 cx = "150" cy = "150" r = "50" />
19
20 <rect style = "fill: blue; stroke: white"
21 x = "50" y = "50" width = "100" height = "100" />
22
23 <text style = "fill: red; font-size: 24pt"
24 x = "25" y = "250">Welcome to SVG!</text>
25
26 </g>
27 </svg>

Fig. 33.17Fig. 33.17Fig. 33.17Fig. 33.17 SVG document example (part 2 of 2).

iw3htp2_33.fm Page 1256 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1257

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Element g groups elements of an SVG document. Lines 10–11 use element path to
create a box. Attribute style uses CSS property fill to fill the inside of the box with
the color #eebb99. Attribute d defines the points of the box. Property M specifies the
starting coordinates (0, 0) of the path. Property h specifies that the next point is horizontal
to the current point and spaced 300 pixels to the right of the current point (300, 0). Property
v specifies that the next point is vertical to the current point and spaced 300 pixels below
it (300, 300). Property h then places the point to the left by 300 pixels (0, 300). Property z
sets the path to connect the first and last points, thus closing the box.

Lines 17–24 group three elements: a circle, a rectangle and a text element.
Lines 17–18 create a circle with element circle. The circle has an x-axis center coordi-
nate (attribute cx) of 150 pixels, a y-axis center coordinate (attribute cy) of 150 pixels and
a radius (attribute r) of 50 pixels. The circle is filled blue, with 50% opacity.

Lines 20 –21 use element rectangle to create a rectangle. The rectangle’s upper left
corner is determined using attributes x and y. Attribute width sets the width of the rect-
angle, and attribute height sets the height of the rectangle.

Lines 23–24 create some text with element text. Place the text attributes x and y. The
format of the text is defined using attribute style. In this case, the text is red with a font
size of 24 points.

Figure 33.18 contains a more complex SVG image that simulates the Earth and Moon
rotating around the Sun. This example uses SVG’s animation feature.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 33.18: planet.svg -->
4 <!-- Planetary motion with SVG -->
5
6 <svg viewBox = "-500 -500 1000 1000">
7 <g id = "background">
8 <path style = "fill: black"
9 d = "M -2000,-2000 H 2000 V 2000 H -2000 Z" />

10 </g>
11
12 <circle id = "sun" style = "fill: yellow"
13 cx = "0" cy = "0" r = "100" />
14
15 <g>
16 <animateTransform attributeName = "transform"
17 type = "rotate" dur = "80s" from = "0" to = "360"
18 repeatCount = "indefinite" />
19
20 <circle id = "earth" style = "fill: blue"
21 cx = "400" cy = "0" r = "40" />
22
23 <g transform = "translate(400 0)">
24 <circle id = "moon" style = "fill: white"
25 cx = "70" cy = "0" r = "10">
26 <animateTransform attributeName = "transform"
27 type = "rotate" dur = "20s" from = "360"
28 to = "0" repeatCount = "indefinite" />

Fig. 33.18Fig. 33.18Fig. 33.18Fig. 33.18 SVG document with animated elements (part 1 of 2).

iw3htp2_33.fm Page 1257 Monday, July 23, 2001 4:28 PM

1258 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Lines 8–9 create a box for the background that is much larger than the viewable size.
Attribute d has properties H and V that specify absolute coordinates for the path. Thus, the
coordinates of the box are (-2000, -2000), (2000, -2000), (2000, 2000) and (-2000, 2000).

29 </circle>
30 </g>
31 </g>
32 </svg>

Fig. 33.18Fig. 33.18Fig. 33.18Fig. 33.18 SVG document with animated elements (part 2 of 2).

iw3htp2_33.fm Page 1258 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1259

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

Lines 12–13 create a yellow circle with a radius of 100 pixels at coordinate (0, 0) to
represent the Sun. Line 15 defines element g, which groups together the circles repre-
senting the Earth and Moon. Lines 16–18 use element animateTransform, which
changes the attribute of the parent element specified in attribute attributeName.
Attribute type defines the property of the attribute that changes. The initial and final
values of the transformation are set by attributes from and to. Attribute dur sets the time
(i.e., 80 seconds) it takes to change from the initial to the final values, and attribute
repeatCount sets the amount of times to perform this transformation. In our example,
we rotate the group element from 0 degrees to 360 degrees in 80 seconds, repeating the rota-
tion indefinitely (i.e., continuously).

Lines 20–21 create a blue circle with a radius of 40 pixels at coordinates (400, 0).
When the group rotates, this circle’s center stays at a distance of 400 pixels from the origin
(0, 0).

Line 23 uses element g to group the circle element that represents the Moon. This
element has attribute transform, which translates (shifts) the group element 400
pixels to the right, thus centering the group on the blue circle. For other transformations,
see the SVG specification. The white circle (the Moon) on lines 24–25 has a child ani-
mateTransform element on lines 26–28 that rotates the Moon 360 degrees counter-
clockwise around the Earth every 20 seconds.

33.11 Internet and World Wide Web Resources
There are many multimedia-related resources on the Internet and World Wide Web. This
section lists a variety of resources that can help you learn about multimedia programming
and provides a brief description of each.

www.microsoft.com/windows/windowsmedia
The Windows Media Web site contains information to help get you started with Microsoft’s streaming
media technologies. The site also links you to various software.

www.microsoft.com/ntserver/mediaserv
The Windows NT Server site for Windows Media Technology provides information about serving
streaming media over the Internet.

msdn.microsoft.com/library/en-us/dnagent/html/agentdevdl.asp
The Microsoft Agent downloads area contains all the software downloads you need to build applica-
tions and Web pages that use Microsoft Agent.

msdn.microsoft.com/downloads/default.asp
The Microsoft Developer Network Downloads home page contains images, audio clips and other free
downloads.

www.station.sony.com
The Station is one of the most popular sites on the Internet today. It is loaded with games that use a
variety of multimedia techniques.

www.broadcast.com
This is one of the leading Web sites for streaming media on the World Wide Web. From this site, you
can access a variety of live and prerecorded audio and video.

www.real.com
The RealNetworks site is the home of RealPlayer—one of the most popular software products for re-
ceiving streaming media over the Web. Also, with their RealJukebox, you can download MP3 files
and other digital music.

iw3htp2_33.fm Page 1259 Monday, July 23, 2001 4:28 PM

1260 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

www.adobe.com/svg
This site provides the latest SVG information for both programmers and designers. It also provides
links to SVG enabled sites and SVG relevant downloads.

service.real.com/help/library/guides/extend/embed.htm
This site provides the details of embedding RealPlayer in a Web page and a detailed listing of Real-
Player’s methods and events.

www.nasa.gov/gallery/index.html
Visit NASA’s Multimedia Gallery site to view audio, video and images from NASA’s exploration of
space and Earth.

www.speech.cs.cmu.edu/comp.speech/SpeechLinks.html
The Speech Technology Hyperlinks Page has over 500 links to sites related to computer-based speech
and speech recognition.

www.dismusic.com
The Disney Music Page offers free Disney music in MIDI (.mid) format. MIDI format is particularly
useful for embedding sound into a Web page and having it play when someone enters onto the site.

www.Tx-Marketeers.com/musicroom
The Music Room site has a great variety of MIDI format music.

www.spinner.com
The Spinner site provides online streaming radio stations, with many genres from which to choose.
Either download the player for your computer, or listen to the music through your browser with the
RealPlayer plug-in.

www.netradio.com
NetRadio is another online radio station that you can listen to with your browser and the RealPlayer
plug-in.

www.discjockey.com
The DiscJockey.com site is an on-line radio station with music from the 1940s through the 1990s. The
music on this site can be played through RealPlayer or the Windows Media Player.

www.mp3.com
This site is an excellent resource for the MP3 audio format. The site offers files, info on the format,
hardware info and software info.

home.cnet.com/category/0-4004.html
CNET is an Internet news group containing a variety of information about today’s hottest computer
and Internet topics. This page from the CNET Web site discusses the MP3 format, MP3 encoders and
streaming MP3 format audio over the Internet.

www.mpeg.org
This site is the primary reference site for information on the MPEG video format.

www.winamp.com
Winamp is a popular MP3 player. Winamp can stream MP3 over the Internet.

www.shoutcast.com
SHOUTcast is a streaming audio system. Anyone who has Winamp and a fast Internet connection can
broadcast their own net radio.

windowsmedia.com
Visit this site to learn all about Windows Media capabilities such as streaming audio and video over
the net.

www.bell-labs.com/project/tts/sable.html
The Sable Markup Language is designed to mark-up text for input into speech synthesizers.

iw3htp2_33.fm Page 1260 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1261

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

www.w3.org/AudioVideo
This is the W3C Synchronized Multimedia Integration Language (SMIL) home page.

www.w3.org/TR/REC-smil
This site has the most up-to-date W3C SMIL specification.

smw.internet.com/smil/smilhome.html
This site is dedicated to SMIL and includes links, resources and definitions.

SUMMARY
• bgsound is an Internet Explorer-specific element that adds background audio to a Web site. The
src property specifies the URL of the audio clip to play. The loop property specifies the number
of times the audio clip should play. The balance property specifies the balance between the left
and right speakers. The volume property determines the volume of the audio clip. To change the
property values via a script, assign a scripting name to the id property.

• The img element enables both images and videos to be included in a Web page. The src property
indicates that the source is an image. The dynsrc (i.e., dynamic source) property indicates that
the source is a video clip. Property start indicates when the video should start playing (specify
fileopen to play when the clip is loaded or mouseover to play when the user first positions
the mouse over the video).

• The embed element embeds a media clip in a Web page. A graphical user interface can be dis-
played to give the user control over the media clip. The GUI typically enables the user to play,
pause and stop the media clip, to specify the volume and to move forward and backward quickly
through the clip. The loop property indicates that the media clip should loop forever. To prevent
the GUI from appearing in the Web page, add the hidden property to the <embed> tag. To script
the element, specify a scripting name by adding the id property to the <embed> tag.

• A benefit of Microsoft’s ActiveX controls is that they enhance the functionality of Web pages
when the controls are incorporated into Web pages that will be displayed in Internet Explorer.

• The object element is used to embed ActiveX controls in Web pages. The width and height
properties specify the width and height in pixels that the control occupies in the Web page. Prop-
erty classid specifies the unique ActiveX control ID for the ActiveX control.

• Parameters can be passed to an ActiveX control by placing param elements between the object
element’s <object> and </object> tags. Each parameter is specified with a param element
that contains a name property and a value property.

• The Windows Media Player ActiveX control’s FileName parameter specifies the file containing
the media clip. Parameter AutoStart is a boolean value indicating whether the media clip plays
automatically when it is loaded (true if so; false if not). The ShowControls parameter is a
boolean value indicating whether the Media Player controls should be displayed (true if so;
false if not). The Loop parameter is a boolean value indicating whether the Media Player
should play the media clip in an infinite loop (true if so; false if not).

• The Windows Media Player ActiveX control’s Play and Pause methods can be called to play
or pause a media clip, respectively.

• Microsoft Agent is a technology for interactive animated characters in a Windows application or
World Wide Web page. These characters allow users of your application to interact with the ap-
plication by using more natural human communication techniques. The control accepts both
mouse and keyboard interactions, speaks (if a compatible text-to-speech engine is installed) and
also supports speech recognition (if a compatible speech-recognition engine is installed). With
these capabilities, your Web pages can speak to users and can respond to their voice commands.

iw3htp2_33.fm Page 1261 Monday, July 23, 2001 4:28 PM

1262 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

• The Microsoft Agent control provides four predefined characters—Peedy the Parrot, Genie, Mer-
lin and Robby the Robot.

• The Lernout and Hauspie TruVoice Text to Speech (TTS) engine is used by the Microsoft Agent
ActiveX control to speak the text that Microsoft Agent displays.

• The Microsoft Agent control’s Characters collection stores information about the characters
that are currently available for use in a program. Method Load of the Characters collection
loads character data. The method takes two arguments—a name for the character that can be used
later to interact with that character and the URL of the character’s data file.

• A Character object is used to interact with the character. Method Character of the Char-
acters collection receives as its argument the name that was used to download the character data
and returns the corresponding Character object.

• The Character object’s Get method downloads character animations and states.

• Each state has animation effects associated with it. When the character enters a state (such as the
Showing state), the state’s associated animation plays.

• Character method MoveTo moves the character to a new position on the screen. Method Show
displays the character. Method Play plays the specified animation. Method Speak speaks its
string argument. If there is a compatible TTS engine installed, the character displays a bubble con-
taining the text and audibly speaks the text as well.

• Many animations have a “Return” animation for smooth transitioning between animations.

• The Idling animations are displayed by Microsoft Agent when the user is not interacting with
the character.

• Character method Stop terminates the current animation.

• To enable Microsoft Agent to recognize voice commands, a compatible voice-recognition engine,
such as the Microsoft Speech-Recognition engine, must be installed.

• The voice commands that the user can speak to interact with a character must be registered in the
Character object’s Commands collection.

• The Commands collection’s Add method registers each voice command. The method receives
five arguments.

• The Commands object’s Caption property specifies text that describes the voice-command set.
This text appears in the small rectangular area that appears below the character when the user
presses the Scroll Lock key. The Voice property is similar to the Caption property, except that
the specified text appears in the commands window with the set of voice commands the user can
speak shown below it. The Visible property is a boolean value that specifies whether the com-
mands of this Commands object should appear in the pop-up menu.

• When a voice command is received, the agent control’s Command event handler executes.

• A RealPlayer object can be embedded (with the embed element) in a Web page to add streaming
media to a Web page. The type attribute specifies the MIME type of the embedded file. The
width and height attributes specify the dimensions the control will occupy on the page. The
autostart attribute determines whether the audio should start playing when the page loads. The
controls attribute specifies which controls are available to the user. Setting controls to De-
fault places all control buttons on screen. The src attribute specifies the location of the stream-
ing audio.

• RealPlayer method SetSource sets the source URL of the audio stream to be played. Method
DoPlayPause toggles between pausing and playing the stream.

iw3htp2_33.fm Page 1262 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1263

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

TERMINOLOGY

SELF-REVIEW EXERCISES
33.1 Fill in the blanks in each of the following statements:

a) is a technology for interactive animated characters.

ActiveX control dynsrc property of img
Add method of Commands embed a media clip
animated character embed element
audio FileName parameter of Media Player
audio format Genie
AutoStart parameter of Media Player Get method of Character
background sound height property of object
balance property of the bgsound element hidden property of embed
bgsound element Hiding state of a character
Caption property of Commands id property of bgsound
CD-ROM id property of embed
character data file id property of object
Character method Characters Idling animations
Character object (Microsoft Agent) interactive animated character
Characters collection (Microsoft Agent) Internet bandwidth
classid property of object Lernout and Hauspie TruVoice TTS engine
codebase property of object load an animation
Command event (Microsoft Agent) Load method of Characters
Commands collection of Character Loop parameter of Media Player
Commands Window loop property of bgsound
DoPlayPause method of RealPlayer loop property of embed
DVD media clip
Merlin speech recognition
Microsoft Agent src property of bgsound
Microsoft Agent control start property of img
Microsoft Speech Recognition engine start property value fileopen
MoveTo method Character start property value mouseover
multimedia streaming audio
multimedia-based Web application streaming technology
name property of param streaming video
natural human communication technique text-to-speech (TTS) engine
object element three-dimensional (3D) object
param element value property of param
Pause method of Media Player video
Play method of Character video clip
Play method of Media Player video format
“Return” animation Visible property of Commands
SetSource method of RealPlayer voice command
Show method Character Voice property of Commands
ShowControls parameter volume property of bgsound
Showing state of a character width property of object
sound card Windows Media Player
Speak method Character Windows Media Player ActiveX control
Speaking state of a character

iw3htp2_33.fm Page 1263 Monday, July 23, 2001 4:28 PM

1264 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

b) The element plays a background audio in Internet Explorer.
c) The property of the img element specifies a video clip that should appear in

the img element’s location in the Web page.
d) The element embeds an ActiveX control on a Web page.
e) The element places an audio or video clip on a Web page.
f) The img element’s property has values mouseover and fileopen.
g) The property of the embed element prevents a GUI containing media clip

controls from being displayed with the media clip.
h) Microsoft Agent’s animations enable smooth transitions between animations.
i) When set to true, the parameter to the Windows Media Player specifies

that a GUI should be displayed so the user can control a media clip.
j) When a compatible engine is available to Microsoft Agent, characters can

speak text.
k) The Microsoft Agent control’s collection keeps track of the information

about each loaded character.

33.2 State whether each of the following is true or false. If false, explain why.
a) The bgsound element can be used with any browser.
b) The img element enables both images and videos to be included in a Web page.
c) bgsound property balance cannot be set via scripting.
d) The name property of the object element specifies a scripting name for the element.
e) The Microsoft Agent Character object’s StopAnimation method terminates the

current animation for the character.

ANSWERS TO SELF-REVIEW EXERCISES
33.1 a) Microsoft Agent. b) bgsound. c) dynsrc. d) object. e) embed. f) start.
g) hidden. h) “Return.” i) ShowControls. j) text-to-speech. k) Characters.

33.2 a) False. The bgsound element is specific to Internet Explorer. b) True. c) True. d) False.
The id property of the object element specifies a scripting name. e) False. The Stop method ter-
minates the current animation for the character.

EXERCISES
33.3 (Story Teller) Store a large number of nouns, verbs, articles, prepositions, etc. in arrays of
strings. Then use random number generation to forms sentences and have your script speak the sen-
tences with Microsoft Agent and the Lernout and Hauspie text-to-speech engine.

33.4 (Limericks) Modify the limerick-writing script you wrote in Exercise 18.8 to use a Microsoft
Agent character and the Lernout and Hauspie text-to-speech engine to speak the limericks your pro-
gram creates. Use the speech output tags in Fig. 33.10 to control the characteristics of the speech (e.g.,
emphasis on certain syllables, volume of the voice and pitch of the voice,).

33.5 Modify the script of Exercise 33.4 to play character animations during pauses in the limerick.

33.6 (Background Audio) Write an XHTML document and script that allows users to choose from
a list of the audio downloads available from the Microsoft Developer Network Downloads site

msdn.microsoft.com/downloads/default.asp

and listen to the chosen audio clip as background music with the bgsound element.

33.7 Modify Exercise 33.6 to use the embed element to play the audio clips.

33.8 Modify Exercise 33.6 to use the Windows Media Player ActiveX control to play the audio clips.

iw3htp2_33.fm Page 1264 Monday, July 23, 2001 4:28 PM

Chapter 33 Multimedia: Audio, Video, Speech Synthesis and Recognition 1265

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

33.9 (Video Browser) Write an XHTML document and script that allows users to choose from a
list of the videos available from the NASA Multimedia Gallery site

www.nasa.gov/gallery

and view that video using the embed element.

33.10 Modify Exercise 33.9 to use the Windows Media Player ActiveX control to play the video
clips.

33.11 Modify the program of Fig. 33.4 to view videos from the SeaWiFs site

seawifs.gsfc.nasa.gov:80/OCEAN_PLANET/HTML/
oceanography_flyby.html

Allow users to select which video to play.

33.12 (Image Flasher) Create a script that repeatedly flashes an image on the screen. Do this by
changing the visibility of the image. Allow users to control the “blink speed.”

33.13 (Digital Clock) Using features of the Dynamic HTML chapters, implement an application
that displays a digital clock in a Web page. You might add options to scale the clock, to display day,
month and year, to issue an alarm, to play certain audios at designated times, etc.

33.14 (Analog Clock) Create a script that displays an analog clock with hour, minute and second
hands that move as the time changes. Use the Structured Graphics Control to create the graphics and
play a tick sound every second. Play other sounds to mark every half-hour and hour.

33.15 (Karaoke) Create a Karaoke system that plays the music for a song and displays the words
for users to sing at the appropriate time.

33.16 (Calling Attention to an Image) To emphasize an image, try placing a row of simulated light
bulbs around it. You can let the light bulbs flash in unison, or you can let them fire on and off in se-
quence, one after the other.

33.17 (Online Product Catalog) Companies are rapidly realizing the potential for doing business
on the Web. Develop an online multimedia catalog from which your customers may select products
to be shipped. Use the data binding features of Chapter 16 to load data into tables. Use a Microsoft
Agent to announce descriptions of a selected product.

33.18 Modify Exercise 33.17 to support voice commands that allow users to speak a product name
to receive a description of the product.

33.19 (Reaction Time/Reaction Precision Tester) Create a Web page that moves an image around
the screen. The user moves the mouse to catch and click the shape. The shape’s speed and size can be
varied. Keep statistics on how much time the user typically takes to catch a shape of a given size. The
user will probably have more difficulty catching faster moving, smaller shapes.

33.20 (Animation) Create an animation by displaying a series of images that represent the frames
in the animation. Allow the user to specify the speed at which the images are displayed.

33.21 (Tortoise and the Hare) Develop a multimedia version of the Tortoise and Hare simulation
of Exercise 11.20. Record an announcer’s voice calling the race: “The contenders are at the starting
line.” “And they’re off!” “The Hare pulls out in front.” “The Tortoise is coming on strong.”—and so
forth. As the race proceeds, play the appropriate recorded audios. Play sounds to simulate the animals’
running (and the crowd cheering!). Do an animation of the animals racing up the side of the slippery
mountain.

33.22 (Arithmetic Tutor) Develop a multimedia version of the Computer-Assisted Instruction
(CAI) systems you developed in Exercises 10.27, 10.28 and 10.29.

iw3htp2_33.fm Page 1265 Monday, July 23, 2001 4:28 PM

1266 Multimedia: Audio, Video, Speech Synthesis and Recognition Chapter 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/23/01

33.23 (15 Puzzle) Write a multimedia-based version of the game of 15. There is a 4-by-4 board for
a total of 16 slots. One of the slots is empty. The other slots are occupied by 15 tiles, numbered 1
through 15. Any tile next to the currently empty slot can be moved into the currently empty slot by
clicking the tile. Your program should create the board with the tiles out of order. The goal is to ar-
range the tiles into sequential order row by row. Play sounds with the movement of the tiles.

33.24 (Morse Code) Modify your solution to Exercise 12.26 to output the morse code using audio
clips. Use two different audio clips for the dot and dash characters in Morse code.

33.25 (Calendar/Tickler File) Create a general purpose calendar and “tickler” file. The application
should sing “Happy Birthday” to you when you use it on your birthday. Have the application display
images and play audios associated with important events and remind you in advance of important
events. For example, have the application give you a week’s warning so you can pick up an appropri-
ate greeting card for that special person. Store the calendar information in a file for use with the data-
binding techniques of Chapter 16 to load the calendar information into a table in the Web page.

33.26 Wartnose is a character that was developed by e-Clips (www.e-clips.com.au)—an
Australian company that develops Microsoft Agent characters. Download Wartnose and modify Fig.
33.6 to use Wartnose. Instructions for installing this character are available on our Web site,
www.deitel.com. [Note: Wartnose is a free download. Before using Wartnose, please read the li-
censing agreement provided at the e-Clips Web site.]

Fig. 33.19Fig. 33.19Fig. 33.19Fig. 33.19 Fig. 33.6 modified to use Wartnose. (Courtesy of e-Clips).

iw3htp2_33.fm Page 1266 Monday, July 23, 2001 4:28 PM

34
Accessibility

Objectives
• To introduce the World Wide Web Consortium’s Web

Content Accessibility Guidelines 1.0 (WCAG 1.0).
• To understand how to use the alt attribute of the
 tag to describe images to people with visual
impairments, mobile-Web-device users, search
engines, etc.

• To understand how to make XHTML tables more
accessible to page readers.

• To understand how to verify that XHTML tags are
used properly and to ensure that Web pages are
viewable on any type of display or reader.

• To understand how VoiceXML™ and CallXML™ are
changing the way people with disabilities access
information on the Web.

• To introduce the various accessibility aids offered in
Windows 2000.

’Tis the good reader that makes the good book...
Ralph Waldo Emerson

iw3htp2_34.fm Page 1267 Monday, July 23, 2001 4:29 PM

1268 Accessibility Chapter 34

34.1 Introduction
Enabling a Web site to meet the needs of individuals with disabilities is a concern for all
businesses. People with disabilities are a significant portion of the population, and legal
ramifications exist for Web sites that discriminate by not providing adequate and universal
access to their resources. In this chapter, we explore the Web Accessibility Initiative, its
guidelines, various laws regarding businesses and their availability to people with disabil-
ities and how some companies have developed systems, products and services to meet the
needs of this demographic.

34.2 Web Accessibility
In 1999, the National Federation for the Blind (NFB) filed a lawsuit against AOL for not
supplying access to its services for people with visual disabilities. The Americans with Dis-
abilities Act (ADA) and many other efforts address Web accessibility laws (Fig. 34.1).

Outline

34.1 Introduction
34.2 Web Accessibility
34.3 Web Accessibility Initiative
34.4 Providing Alternatives for Images
34.5 Maximizing Readability by Focusing on Structure
34.6 Accessibility in XHTML Tables
34.7 Accessibility in XHTML Frames
34.8 Accessibility in XML
34.9 Using Voice Synthesis and Recognition with VoiceXML™
34.10 CallXML™
34.11 JAWS® for Windows
34.12 Other Accessibility Tools
34.13 Accessibility in Microsoft® Windows® 2000

34.13.1 Tools for People with Visual Impairments
34.13.2 Tools for People with Hearing Impairments
34.13.3 Tools for Users Who Have Difficulty Using the Keyboard
34.13.4 Microsoft Narrator
34.13.5 Microsoft On-Screen Keyboard
34.13.6 Accessibility Features in Microsoft Internet Explorer 5.5

34.14 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

iw3htp2_34.fm Page 1268 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1269

WeMedia.com™ (Fig. 34.2) is a Web site dedicated to providing news, information,
products and services for the millions of people with disabilities, their families, friends and
caregivers. There are 54 million Americans with disabilities, representing an estimated $1
trillion in purchasing power. We Media also provides online educational opportunities for
people with disabilities.

The Internet enables individuals with disabilities to work in a vast array of new fields.
Technologies such as voice activation, visual enhancers and auditory aids, afford more
employment opportunities. People with visual impairments may use computer monitors
with enlarged text, while people with physical impairments may use head pointers with on-
screen keyboards.

Federal regulations, similar to the disability ramp mandate, will be applied to the
Internet to accommodate the needs of people with hearing, vision and speech impairments.
In the following sections, we explore a variety of products and services that provide
Internet access for people with disabilities.

34.3 Web Accessibility Initiative
On April 7, 1997, the World Wide Web Consortium (W3C) launched the Web Accessibility
Initiative (WAI™). Accessibility refers to the usability of an application or Web site by peo-
ple with disabilities. The majority of Web sites are considered either partially or totally in-
accessible to people with visual, learning or mobility impairments. Total accessibility is
difficult to achieve because people have varying types of disabilities, language barriers and

Act Purpose

Americans with Disabilities Act The ADA prohibits discrimination on the basis of disability in
employment, state and local government, public accommoda-
tions, commercial facilities, transportation and telecommuni-
cations.

Telecommunications Act of 1996 The Telecommunications Act of 1996 contains two amend-
ments to Section 255 and Section 251(a)(2) of the Communi-
cations Act of 1934. These amendments require that
communication devices, such as cell phones, telephones and
pagers, be accessible to individuals with disabilities.

Individuals with Disabilities
Education Act of 1997

Education materials in schools must be made accessible to
children with disabilities.

Rehabilitation Act Section 504 of the Rehabilitation Act states that college spon-
sored activities receiving federal funding cannot discriminate
against individuals with disabilities. Section 508 mandates that
all government institutions receiving federal funding design
their Web sites so that they are accessible to individuals with
disabilities. Businesses that sell services to the government
also must abide by this act.

Fig. 34.1Fig. 34.1Fig. 34.1Fig. 34.1 Acts designed to protect access to the Internet for people with
disabilities.

iw3htp2_34.fm Page 1269 Monday, July 23, 2001 4:29 PM

1270 Accessibility Chapter 34

hardware and software inconsistencies. However, a high level of accessibility is attainable.
As more people with disabilities use the Internet, it is imperative that Web site designers
increase the accessibility of their sites. The WAI aims for such accessibility, as discussed
in its mission statement described at www.w3.org/WAI.

This chapter explains some of the techniques for developing accessible Web sites. The
WAI published the Web Content Accessibility Guidelines (WCAG) 1.0 to help businesses
determine if their Web sites are accessible to everyone. The WCAG 1.0 (www.w3.org/
TR/WCAG10) uses checkpoints to indicate specific accessibility requirements. Each
checkpoint has an associated priority indicating its importance. Priority-one checkpoints
are goals that must be met to ensure accessibility; we focus on these points in this chapter.
Priority-two checkpoints, though not essential, are highly recommended. These check-
points must be satisfied, or people with certain disabilities will experience difficulty
accessing Web sites. Priority-three checkpoints slightly improve accessibility.

Fig. 34.2Fig. 34.2Fig. 34.2Fig. 34.2 We Media home page. (Courtesy of WeMedia, Inc.)

iw3htp2_34.fm Page 1270 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1271

At the time of this writing, the WAI is working on a WCAG 2.0 draft. A single check-
point in the WCAG 2.0 Working Draft may encompass several checkpoints from WCAG
1.0. WCAG 2.0 checkpoints will supersede those in WCAG 1.0. The new version can be
applied to a wider range of markup languages (i.e., XML, WML, etc.) and content types
than its predecessor. To obtain more information about the WCAG 2.0 Working Draft, visit
www.w3.org/TR/WCAG20.

The WAI also presents a supplemental checklist of quick tips, which reinforce ten
important points for accessible Web site design. More information on the WAI Quick Tips
can be found at www.w3.org/WAI/References/Quicktips.

34.4 Providing Alternatives for Images
One important WAI requirement is to ensure that every image used on a Web page is ac-
companied by a textual description that clearly defines the purpose of the image. To accom-
plish this task, include a text equivalent of each item by using the alt attribute of the img
and input tags. A text equivalent for images defined using the object element is the text
between the start and end <object> tag.

Web developers who do not use the alt attribute to provide text equivalents increase
the difficulty people with visual impairments experience in navigating the Web. Special-
ized user agents, such as screen readers (programs that allow users to hear all text and text
descriptions displayed on their screen) and braille displays (devices that receive data from
screen-reading software and output the data as braille), allow people with visual impair-
ments to access text-based information that is normally displayed on the screen. A user
agent visually interprets Web-page source code and translates it into formatted text and
images. Web browsers, such as Microsoft Internet Explorer and Netscape Communicator,
and the screen readers mentioned throughout this chapter are examples of user agents.

Web pages that do not provide text equivalents for video and audio clips are difficult
for people with visual and hearing impairments to access. Screen readers cannot read
images, movies and most other non-XHTML objects from these Web pages. Providing
multimedia-based information in a variety of ways (i.e., using the alt attribute or pro-
viding in-line descriptions of images) helps maximize the content’s accessibility.

Web designers should provide useful text equivalents in the alt attribute for use in
nonvisual user agents. For example, if the alt attribute describes a sales growth chart, it
should provide a brief summary of the data; it should not describe the data in the chart.
Instead, a complete description of the chart’s data should be included in the longdesc
attribute, which is intended to augment the alt attribute’s description. The longdesc
attribute contains the URL that links to a Web page describing the image or multimedia
content. Currently, most Web browsers do not support the longdesc attribute. An alter-
native for the longdesc attribute is D-link, which provides descriptive text about graphs
and charts. More information on D-links can be obtained at the CORDA Technologies Web
site (www.corda.com).

Using a screen reader for Web-site navigation can be time consuming and frustrating,
as screen readers cannot interpret pictures and other graphical content. A link at the top of
each Web page that provides direct access to the page’s content could allow users to bypass
a long list of navigation links or other inaccessible elements. This jump can save time and
eliminate frustration for individuals with visual impairments.

iw3htp2_34.fm Page 1271 Monday, July 23, 2001 4:29 PM

1272 Accessibility Chapter 34

 Emacspeak is a screen interface that allows greater Internet access to individuals with
visual disabilities by translating text to voice data. The open source product also imple-
ments auditory icons that play various sounds. Emacspeak can be customized with Linux
operating systems and provides support for the IBM ViaVoice speech engine. The Emacs-
peak Web site is located at www.cs.cornell.edu/home/raman/emacspeak/
emacspeak.html.

In March 2001, We Media introduced the “WeMedia Browser,” which allows people
with poor vision and cognitive disabilities (e.g., dyslexia) to use the Internet more conve-
niently. The WeMedia Browser improves upon the traditional browser by providing over-
sized buttons and keystroke commands for navigation. The user can control the speed and
volume at which the browser “reads” Web page text. The WeMedia Browser free download
is available at www.wemedia.com.

IBM Home Page Reader (HPR) is another browser that “reads” text selected by the
user. The HPR uses the IBM ViaVoice technology to synthesize a voice. A trial version of
HPR is available at www-3.ibm.com/able/hpr.html.

34.5 Maximizing Readability by Focusing on Structure
Many Web sites use tags for aesthetic purposes rather than for the appropriate purpose. For
example, the <h1> heading tag often is used erroneously to make text large and bold rather
than as a major section head for content. The desired visual effect may be achieved, but it
creates a problem for screen readers. When the screen reader software encounters the <h1>
tag, it may verbally inform the user that a new section has been reached when it is not the
case, which may confuse users. Only use the h1 in accordance with its XHTML specifica-
tions (e.g., as headings to introduce important sections of a document). Instead of using h1
to make text large and bold, use CSS (discussed in Chapter 6, Cascading Style Sheets) or
XSL (discussed in Chapter 20, Extensible Markup Language) to format and style the text.
For further examples, refer to the WCAG 1.0 Web site at www.w3.org/TR/WCAG10.
[Note: The tag also may be used to make text bold; however, screen readers
emphasize bold text, which affects the inflection of what is spoken.]

Another accessibility issue is readability. When creating a Web page intended for the
general public, it is important to consider the reading level (i.e., the comprehension and
level of understanding) at which it is written. Web site designers can make their sites easier
to read by using shorter words. Designers should also limit slang terms and other non-tra-
ditional language that may be problematic for users from other countries.

WCAG 1.0 suggests using a paragraph’s first sentence to convey its subject. Stating
the point of the paragraph in its first sentence makes its easier to find crucial information
and allows readers to bypass unwanted material.

The Gunning Fog Index, a formula that produces a readability grade when applied to
a text sample, evaluates a Web site’s readability. More information about the Gunning Fog
Index can be obtained from www.trainingpost.org/3-2-inst.htm.

34.6 Accessibility in XHTML Tables
Complex Web pages often contain tables for formatting content and presenting data. Many
screen readers are incapable of translating tables correctly unless the tables are properly de-

iw3htp2_34.fm Page 1272 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1273

signed. For example, the CAST eReader, a screen reader developed by the Center for Ap-
plied Special Technology (www.cast.org), starts at the top-left-hand cell and reads
columns from top to bottom, left to right. This procedure is known as reading a table in a
linearized manner. The CAST eReader reads the table in Fig. 34.3 as follows:

Price of Fruit Fruit Price Apple $0.25 Orange $0.50 Banana
$1.00 Pineapple $2.00

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 34.3: withoutheaders.html -->
6 <!-- Table without headers -->
7
8 <html>
9 <head>

10 <title>XHTML Table Without Headers</title>
11
12 <style type = "text/css">
13 body { background-color: #ccffaa;
14 text-align: center }
15 </style>
16 </head>
17
18 <body>
19
20 <p>Price of Fruit</p>
21
22 <table border = "1" width = "50%">
23
24 <tr>
25 <td>Fruit</td>
26 <td>Price</td>
27 </tr>
28
29 <tr>
30 <td>Apple</td>
31 <td>$0.25</td>
32 </tr>
33
34 <tr>
35 <td>Orange</td>
36 <td>$0.50</td>
37 </tr>
38
39 <tr>
40 <td>Banana</td>
41 <td>$1.00</td>
42 </tr>
43

Fig. 34.3Fig. 34.3Fig. 34.3Fig. 34.3 XHTML table without accessibility modifications (part 1 of 2).

iw3htp2_34.fm Page 1273 Monday, July 23, 2001 4:29 PM

1274 Accessibility Chapter 34

This reading does not present the content of the table adequately. WCAG 1.0 recom-
mends using CSS instead of tables, unless the tables’ content linearizes in an understand-
able manner.

If the table in Fig. 34.3 were large, the screen reader’s linearized reading would be
even more confusing to users. By modifying the <td> tag with the headers attribute and
modifying header cells (cells specified by the <th> tag) with the id attribute, a table will
be read as intended. Figure 34.4 demonstrates how these modifications change the way a
table is interpreted.

This table does not appear to be different from a standard XHTML table. However, the
table is read in a more intelligent manner, when using a screen reader. A screen reader
vocalizes the data from the table in Fig. 34.4 as follows:

Caption: Price of Fruit
Summary: This table uses th and the id and headers attributes
to make the table readable by screen readers.
Fruit: Apple, Price: $0.25
Fruit: Orange, Price: $0.50
Fruit: Banana, Price: $1.00
Fruit: Pineapple, Price: $2.00

Every cell in the table is preceded by its corresponding header when read by the screen
reader. This format helps the listener understand the table. The headers attribute is

44 <tr>
45 <td>Pineapple</td>
46 <td>$2.00</td>
47 </tr>
48
49 </table>
50
51 </body>
52 </html>

Fig. 34.3Fig. 34.3Fig. 34.3Fig. 34.3 XHTML table without accessibility modifications (part 2 of 2).

iw3htp2_34.fm Page 1274 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1275

intended specifically for tables that hold large amounts of data. Most small tables linearize
well as long as the <th> tag is used properly. The summary attribute and caption ele-
ment are also suggested. For more examples demonstrating how to make tables accessible,
visit www.w3.org/TR/WCAG.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 34.4: withheaders.html -->
6 <!-- Table with headers -->
7
8 <html>
9 <head>

10 <title>XHTML Table With Headers</title>
11
12 <style type = "text/css">
13 body { background-color: #ccffaa;
14 text-align: center }
15 </style>
16 </head>
17
18 <body>
19
20 <!-- this table uses the id and headers attributes to -->
21 <!-- ensure readability by text-based browsers. It also -->
22 <!-- uses a summary attribute, used screen readers to -->
23 <!-- describe the table -->
24
25 <table width = "50%" border = "1"
26 summary = "This table uses th elements and id and
27 headers attributes to make the table readable
28 by screen readers">
29
30 <caption>Price of Fruit</caption>
31
32 <tr>
33 <th id = "fruit">Fruit</th>
34 <th id = "price">Price</th>
35 </tr>
36
37 <tr>
38 <td headers = "fruit">Apple</td>
39 <td headers = "price">$0.25</td>
40 </tr>
41
42 <tr>
43 <td headers = "fruit">Orange</td>
44 <td headers = "price">$0.50</td>
45 </tr>
46

Fig. 34.4Fig. 34.4Fig. 34.4Fig. 34.4 Table optimized for screen reading using attribute headers (part 1 of 2).

iw3htp2_34.fm Page 1275 Monday, July 23, 2001 4:29 PM

1276 Accessibility Chapter 34

34.7 Accessibility in XHTML Frames
Web designers often use frames to display more than one XHTML file in a single browser
window. Frames are a convenient way to ensure that certain content always displays on
the screen. Unfortunately, frames often lack proper descriptions, which prevents users
with text-based browsers, or users listening with speech synthesizers, from navigating
the Web site.

A site with frames must have meaningful descriptions in the <title> tag for each
frame. Examples of good titles include “Navigation Frame” and “Main Content Frame.”
Users with text-based browsers, such as Lynx, must choose which frame they want to open;
descriptive titles make this choice simpler. However, assigning titles to frames does not
solve all the navigation problems associated with frames. The <noframes> tag allows
Web designers to offer alternative content for browsers that do not support frames.

Good Programming Practice 34.1
Always provide titles for frames to ensure that user agents which do not support frames have
alternatives. 34.0

47 <tr>
48 <td headers = "fruit">Banana</td>
49 <td headers = "price">$1.00</td>
50 </tr>
51
52 <tr>
53 <td headers = "fruit">Pineapple</td>
54 <td headers = "price">$2.00</td>
55 </tr>
56
57 </table>
58
59 </body>
60 </html>

Fig. 34.4Fig. 34.4Fig. 34.4Fig. 34.4 Table optimized for screen reading using attribute headers (part 2 of 2).

iw3htp2_34.fm Page 1276 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1277

Good Programming Practice 34.2
Include a title for each frame’s contents with the frame element, and, if possible, provide
links to the individual pages within the frameset so that users still can navigate through the
Web pages. To provide access to browsers that do not support frames, use the <noframes>
tag. It also provides better access to browsers that have limited support. 34.0

WCAG 1.0 suggests using Cascading Style Sheets (CSS) as an alternative to frames,
because CSS can provide similar functionality and are highly customizible. Unfortunately,
the ability to display multiple XHTML documents in a single browser window requires the
complete support of HTML 4, which is not widespread. However, the second generation of
Cascading Style Sheets (CSS2) can display a single document as if it were several docu-
ments. However, CSS2 is not yet fully supported by many user agents.

34.8 Accessibility in XML
XML allows developers to create new markup languages, which may not necessarily incor-
porate accessibility features. To prevent the proliferation of inaccessible languages, the
WAI is developing guidelines—the XML Guidelines (XML GL)—for creating accessible
XML documents. The XML GL recommend including a text description, similar to XHT-
ML’s <alt> tag, for each non-text object on a page. To facilitate accessibility further, el-
ement types should allow grouping and classification and should identify important
content. Without an accessible user interface, other efforts to implement accessibility are
less effective, so it is essential to create XSLT (Chapter 20) or CSS style sheets that can
produce multiple outputs, including document outlines.

Many XML languages, including Synchronized Multimedia Integration Language
(SMIL) and Scalable Vector Graphics (SVG) (discussed in Chapter 33), have implemented
several of the WAI guidelines. The WAI XML Accessibility Guidelines can be found at
www.w3.org/WAI/PF/xmlgl.htm.

34.9 Using Voice Synthesis and Recognition with VoiceXML™
A joint effort by AT&T®, IBM®, Lucent™ and Motorola® has created an XML vocabulary
that marks up information for speech synthesizers, which enable computers to speak to us-
ers. This technology, called VoiceXML, has tremendous implications for people with visual
impairments and for the illiterate. VoiceXML-enabled applications read Web pages to the
user, and understand words spoken into a microphone through speech recognition technol-
ogy. An example of a speech recognition tool is IBM’s ViaVoice (www-4.ibm.com/
software/speech).

A VoiceXML interpreter and VoiceXML browser process VoiceXML, a platform-
independent XML-based technology. Web browsers may incorporate these interpreters in
the future. When a VoiceXML document is loaded, a voice server sends a message to the
VoiceXML browser and begins a conversation between the user and the computer.

IBM WebSphere Voice Server SDK 1.5 is a VoiceXML interpreter that can be used for
testing VoiceXML documents on a desktop computer. To download the VoiceServer SDK,
visit www.alphaworks.ibm.com/tech/voiceserversdk. [Note: To run the
VoiceXML program in Fig. 34.5, download Java 2 Platform Standard Edition (Java SDK)

iw3htp2_34.fm Page 1277 Monday, July 23, 2001 4:29 PM

1278 Accessibility Chapter 34

1.3 from www.java.sun.com/j2se/1.3. To obtain installation instructions for the
VoiceServer SDK and the Java SDK, visit the Deitel & Associates, Inc. Web site at
www.deitel.com.]

Figures 34.5 and 34.6 show examples of VoiceXML that would be appropriate for a
Web site. The document’s text is spoken to the user, and the text embedded in the
VoiceXML tags allows for interactivity between the user and the browser. The output
included in Fig. 34.6 demonstrates a conversation that might take place between a user and
a computer after loading this document.

1 <?xml version = "1.0"?>
2 <vxml version = "1.0">
3
4 <!-- Fig. 34.5: main.vxml -->
5 <!-- Voice page -->
6
7 <link next = "#home">
8 <grammar>home</grammar>
9 </link>

10
11 <link next = "#end">
12 <grammar>exit</grammar>
13 </link>
14
15 <var name = "currentOption" expr = "'home'"/>
16
17 <form>
18 <block>
19 <emp>Welcome</emp> to the voice page of Deitel and
20 Associates. To exit any time say exit.
21 To go to the home page any time say home.
22 </block>
23 <subdialog src = "#home"/>
24 </form>
25
26 <menu id = "home">
27 <prompt count = "1" timeout = "10s">
28 You have just entered the Deitel home page.
29 Please make a selection by speaking one of the
30 following options:
31 <break msecs = "1000" />
32 <enumerate/>
33 </prompt>
34
35 <prompt count = "2">
36 Please say one of the following.
37 <break msecs = "1000" />
38 <enumerate/>
39 </prompt>
40
41 <choice next = "#about">About us</choice>
42 <choice next = "#directions">Driving directions</choice>

Fig. 34.5Fig. 34.5Fig. 34.5Fig. 34.5 Home page written in VoiceXML (part 1 of 3).

iw3htp2_34.fm Page 1278 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1279

43 <choice next = "publications.vxml">Publications</choice>
44 </menu>
45
46 <form id = "about">
47 <block>
48 About Deitel and Associates, Inc.
49 Deitel and Associates, Inc. is an internationally
50 recognized corporate training and publishing organization,
51 specializing in programming languages, Internet and World
52 Wide Web technology and object technology education.
53 Deitel and Associates, Inc. is a member of the World Wide
54 Web Consortium. The company provides courses on Java, C++,
55 Visual Basic, C, Internet and World Wide Web programming
56 and Object Technology.
57 <assign name = "currentOption" expr = "'about'"/>
58 <goto next = "#repeat"/>
59 </block>
60 </form>
61
62 <form id = "directions">
63 <block>
64 Directions to Deitel and Associates, Inc.
65 We are located on Route 20 in Sudbury,
66 Massachusetts, equidistant from route
67 <sayas class = "digits">128</sayas> and route
68 <sayas class = "digits">495</sayas>.
69 <assign name = "currentOption" expr = "'directions'"/>
70 <goto next = "#repeat"/>
71 </block>
72 </form>
73
74 <form id = "repeat">
75 <field name = "confirm" type = "boolean">
76 <prompt>
77 To repeat say yes. To go back to home, say no.
78 </prompt>
79
80 <filled>
81 <if cond = "confirm == true">
82 <goto expr = "'#' + currentOption"/>
83 <else/>
84 <goto next = "#home"/>
85 </if>
86 </filled>
87
88 </field>
89 </form>
90
91 <form id = "end">
92 <block>
93 Thank you for visiting Deitel and Associates voice page.
94 Have a nice day.
95 <exit/>

Fig. 34.5Fig. 34.5Fig. 34.5Fig. 34.5 Home page written in VoiceXML (part 2 of 3).

iw3htp2_34.fm Page 1279 Monday, July 23, 2001 4:29 PM

1280 Accessibility Chapter 34

A VoiceXML document contains a series of dialogs and subdialogs which result in
spoken interaction between the user and the computer. The <form> and <menu> tags
implement the dialogs. A form element presents information and gathers data from the
user. A menu element provides users with options and transfers control to other dialogs,
based on users’ selections.

Lines 7–9 use element link to create an active link to the home page. Attribute next
specifies the URI navigated to when the link is selected. Element grammar marks up the
text that the user must speak to select the link. In the link element, we navigate to the ele-
ment with id home when users speak the word home. Lines 11–13 use element link to
create a link to id end when users speak the word exit.

Lines 17–24 create a form dialog using element form, which collects information
from the user. Lines 18–22 present introductory text. Element block, which can exist only
within a form element, groups elements that perform an action or an event. Element emp
states that a section of text should be spoken with emphasis. If the level of emphasis is not
specified, then the default level—moderate—is used. Our example uses the default level.
[Note: To specify an emphasis level, use the level attribute. This attribute accepts the fol-
lowing values: strong, moderate, none and reduced.]

96 </block>
97 </form>
98
99 </vxml>

100 <?xml version = "1.0"?>
101 <vxml version = "1.0">
102
103 <!-- Fig. 34.6: publications.vxml -->
104 <!-- Voice page for various publications -->
105
106 <link next = "main.vxml#home">
107 <grammar>home</grammar>
108 </link>
109 <link next = "main.vxml#end">
110 <grammar>exit</grammar>
111 </link>
112 <link next = "#publication">
113 <grammar>menu</grammar>
114 </link>
115
116 <var name = "currentOption" expr = "'home'"/>
117
118 <menu id = "publication">
119
120 <prompt count = "1" timeout = "12s">
121 Following are some of our publications. For more
122 information visit our web page at www.deitel.com.
123 To repeat the following menu, say menu at any time.
124 Please select by saying one of the following books:

Fig. 34.6Fig. 34.6Fig. 34.6Fig. 34.6 Publication page of Deitel’s VoiceXML page (part 1 of 4).

Fig. 34.5Fig. 34.5Fig. 34.5Fig. 34.5 Home page written in VoiceXML (part 3 of 3).

iw3htp2_34.fm Page 1280 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1281

125 <break msecs = "1000" />
126 <enumerate/>
127 </prompt>
128
129 <prompt count = "2">
130 Please select from the following books.
131 <break msecs = "1000" />
132 <enumerate/>
133 </prompt>
134
135 <choice next = "#java">Java.</choice>
136 <choice next = "#c">C.</choice>
137 <choice next = "#cplus">C plus plus.</choice>
138 </menu>
139
140 <form id = "java">
141 <block>
142 Java How to program, third edition.
143 The complete, authoritative introduction to Java.
144 Java is revolutionizing software development with
145 multimedia-intensive, platform-independent,
146 object-oriented code for conventional, Internet,
147 Intranet and Extranet-based applets and applications.
148 This Third Edition of the world's most widely used
149 university-level Java textbook carefully explains
150 Java's extraordinary capabilities.
151 <assign name = "currentOption" expr = "'java'"/>
152 <goto next = "#repeat"/>
153 </block>
154 </form>
155
156 <form id = "c">
157 <block>
158 C How to Program, third edition.
159 This is the long-awaited, thorough revision to the
160 world's best-selling introductory C book! The book's
161 powerful "teach by example" approach is based on
162 more than 10,000 lines of live code, thoroughly
163 explained and illustrated with screen captures showing
164 detailed output.World-renowned corporate trainers and
165 best-selling authors Harvey and Paul Deitel offer the
166 most comprehensive, practical introduction to C ever
167 published with hundreds of hands-on exercises, more
168 than 250 complete programs written and documented for
169 easy learning, and exceptional insight into good
170 programming practices, maximizing performance, avoiding
171 errors, debugging, and testing. New features include
172 thorough introductions to C++, Java, and object-oriented
173 programming that build directly on the C skills taught
174 in this book; coverage of graphical user interface
175 development and C library functions; and many new,
176 substantial hands-on projects.For anyone who wants to
177 learn C, improve their existing C skills, and understand
178 how C serves as the foundation for C++, Java, and

Fig. 34.6Fig. 34.6Fig. 34.6Fig. 34.6 Publication page of Deitel’s VoiceXML page (part 2 of 4).

iw3htp2_34.fm Page 1281 Monday, July 23, 2001 4:29 PM

1282 Accessibility Chapter 34

179 object-oriented development.
180 <assign name = "currentOption" expr = "'c'"/>
181 <goto next = "#repeat"/>
182 </block>
183 </form>
184
185 <form id = "cplus">
186 <block>
187 The C++ how to program, second edition.
188 With nearly 250,000 sold, Harvey and Paul Deitel's C++
189 How to Program is the world's best-selling introduction
190 to C++ programming. Now, this classic has been thoroughly
191 updated! The new, full-color Third Edition has been
192 completely revised to reflect the ANSI C++ standard, add
193 powerful new coverage of object analysis and design with
194 UML, and give beginning C++ developers even better live
195 code examples and real-world projects. The Deitels' C++
196 How to Program is the most comprehensive, practical
197 introduction to C++ ever published with hundreds of
198 hands-on exercises, roughly 250 complete programs written
199 and documented for easy learning, and exceptional insight
200 into good programming practices, maximizing performance,
201 avoiding errors, debugging, and testing. This new Third
202 Edition covers every key concept and technique ANSI C++
203 developers need to master: control structures, functions,
204 arrays, pointers and strings, classes and data
205 abstraction, operator overloading, inheritance, virtual
206 functions, polymorphism, I/O, templates, exception
207 handling, file processing, data structures, and more. It
208 also includes a detailed introduction to Standard
209 Template Library containers, container adapters,
210 algorithms, and iterators.
211 <assign name = "currentOption" expr = "'cplus'"/>
212 <goto next = "#repeat"/>
213 </block>
214 </form>
215
216 <form id = "repeat">
217 <field name = "confirm" type = "boolean">
218
219 <prompt>
220 To repeat say yes. Say no, to go back to home.
221 </prompt>
222
223 <filled>
224 <if cond = "confirm == true">
225 <goto expr = "'#' + currentOption"/>
226 <else/>
227 <goto next = "#publication"/>
228 </if>
229 </filled>
230 </field>
231 </form>
232 </vxml>

Fig. 34.6Fig. 34.6Fig. 34.6Fig. 34.6 Publication page of Deitel’s VoiceXML page (part 3 of 4).

iw3htp2_34.fm Page 1282 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1283

The menu element on line 26 enables users to select the page to which they would like
to link. The choice element, which is always part of either a menu or a form, presents
the options. The next attribute indicates the page to be loaded when a user makes a selec-
tion. The user selects a choice element by speaking the text marked up between the tags
into a microphone. In this example, the first and second choice elements on lines 41–42
transfer control to a local dialog (i.e., a location within the same document) when they are
selected. The third choice element transfers the user to the document publica-
tions.vxml. Lines 27–33 use element prompt to instruct the user to make a selection.
Attribute count maintains the number of times a prompt is spoken (i.e., each time a
prompt is read, count increments by one). The count attribute transfers control to
another prompt once a certain limit has been reached. Attribute timeout specifies how
long the program should wait after outputting the prompt for users to respond. In the event
that the user does not respond before the timeout period expires, lines 35–39 provide a
second, shorter prompt to remind the user to make a selection.

 When the user chooses the publications option, the publications.vxml
(Fig. 34.6) loads into the browser. Lines 106–111 define link elements that provide links
to main.vxml. Lines 112–114 provide links to the menu element (lines 118–138), which
asks users to select one of the publications: Java, C or C++. The form elements on lines
140–214 describe each of the books on these topics. Once the browser speaks the descrip-
tion, control transfers to the form element with an id attribute that has a value equal to
repeat (lines 216–231).

Figure 34.7 provides a brief description of each VoiceXML tag used in the previous
example (Fig. 34.6).

Computer:
Welcome to the voice page of Deitel and Associates. To exit any time
say exit. To go to the home page any time say home.

User:
Home

Computer:
You have just entered the Deitel home page. Please make a selection by
speaking one of the following options: About us, Driving directions,
Publications.

User:
Driving directions

Computer:
Directions to Deitel and Associates, Inc.
We are located on Route 20 in Sudbury,
Massachusetts, equidistant from route 128
and route 495.
To repeat say yes. To go back to home, say no.

Fig. 34.6Fig. 34.6Fig. 34.6Fig. 34.6 Publication page of Deitel’s VoiceXML page (part 4 of 4).

iw3htp2_34.fm Page 1283 Monday, July 23, 2001 4:29 PM

1284 Accessibility Chapter 34

34.10 CallXML™
Another advancement in voice technology for people with visual impairments is CallXML,
a technology created and supported by Voxeo (www.voxeo.com). CallXML creates
phone-to-Web applications that control incoming and outgoing telephone calls. Some ex-
amples of CallXML applications include voice mail, interactive voice response systems
and Internet call waiting. While VoiceXML assists individuals with visual impairments by
reading Web pages, CallXML provides individuals with visual impairments access to Web-
based content through telephones.

When users access CallXML applications, a text-to-speech (TTS) engine reads infor-
mation contained within CallXML elements. A TTS engine converts text to an automated
voice. Web applications respond to the caller’s input. [Note: A touch-tone phone is required
to access CallXML applications.]

VoiceXML Tag Description

<assign> Assigns a value to a variable.

<block> Presents information to users without any interaction between the user and
the computer (i.e., the computer does not expect any input from the user).

<break> Instructs the computer to pause its speech output for a specified period of
time.

<choice> Specifies an option in a menu element.

<enumerate> Lists all the available options to the user.

<exit> Exits the program.

<filled> Contains elements to be executed when the computer receives user input for a
form element.

<form> Gathers information from the user for a set of variables.

<goto> Transfers control from one dialog to another.

<grammar> Specifies grammar for the expected input from the user.

<if>,
<else>,
<elseif>

Control statements used for making logic decisions.

<link> A transfer of control similar to the goto statement, but a link can be exe-
cuted at any time during the program’s execution.

<menu> Provides user options and transfers control to other dialogs, based on the
selected option.

<prompt> Specifies text to be read to the user when a selection is needed.

<subdialog> Calls another dialog. After executing the subdialog, the calling dialog
resumes control.

<var> Declares a variable.

<vxml> The top-level tag specifying that the document should be processed by a
VoiceXML interpreter.

Fig. 34.7Fig. 34.7Fig. 34.7Fig. 34.7 Some VoiceXML tags.

iw3htp2_34.fm Page 1284 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1285

Typically, CallXML applications play pre-recorded audio clips or text as output,
requesting a response as input. An audio clip may contain a greeting that introduces callers
to the application or to a menu of options that requires callers to make touch-tone entries.
Certain applications, such as voice mail, may require verbal and touch-tone input. Once the
input is received, the application responds by invoking CallXML elements such as text,
which contain the information a TTS engine reads to users. If the application does not
receive input within a designated time frame, it prompts the user to enter valid input.

When a user accesses a CallXML application, the incoming telephone call is referred
to as a session. A CallXML application can support multiple sessions, enabling the appli-
cation to receive multiple telephone calls at once. Each session is independent of the others
and is assigned a unique sessionID for identification. A session terminates either when the
user hangs up the telephone or when the CallXML application invokes the hangup ele-
ment. Our first CallXML example shows the classic Hello World example (Fig. 34.8).

Line 1 contains the optional XML declaration.Value version indicates the XML
version to which the document conforms. The current XML recommendation is version
1.0. Value encoding indicates the type of Unicode encoding to use. For this example
we use UTF-8, which requires eight bits to transfer and receive data. More information on
Unicode may be found in Appendix G, Unicode®.

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- Fig. 34.8: hello.xml -->
4 <!-- The classic Hello World example -->
5
6 <callxml>
7 <text>Hello World.</text>
8 </callxml>

Fig. 34.8Fig. 34.8Fig. 34.8Fig. 34.8 Hello World CallXML example. (Courtesy of Voxeo, © Voxeo Corporation
2000–2001.)

iw3htp2_34.fm Page 1285 Monday, July 23, 2001 4:29 PM

1286 Accessibility Chapter 34

The <callxml> tag on line 6 declares the contents of a CallXML document. Line 7
contains the Hello World text. All text that is to be spoken by a text-to-speech (TTS)
engine needs to be placed within <text> tags.

To deploy a CallXML application, register with the Voxeo Community (commu-
nity.voxeo.com), a Web resource for creating, debugging and deploying phone appli-
cations. For the most part, Voxeo is a free Web resource. However, the company charges
fees when CallXML applications are deployed commercially. The Voxeo Community
assigns a unique telephone number to each CallXML application so that external users may
access and interact with the application. [Note: Voxeo assigns telephone numbers to appli-
cations that reside on the Internet. If you have access to a Web server (IIS, PWS, Apache,
etc.), use it to post your CallXML application. Otherwise, open an Internet account using
one of the many Internet-service companies (e.g., www.geocities.com,
www.angelfire.com). These companies allow you to post documents on the Internet
by using their Web servers.]

Figure 34.8 demonstrates the logging feature of the Voxeo Account Manager,
which is accessible to registered members. The logging feature records and displays the
“conversation” between the user and the application. The first row of the logging feature
displays the URL of the CallXML application and the global variables associated with each
session. The application (program) creates and assigns values to global variables at the start
of each session, which the entire application can access and modify. The subsequent row(s)
display(s) the “conversation.” This example shows a one-way conversation (because the
application does not accept any input from the user) in which the TTS says Hello World.
The last row shows the end of session message, which states that the phone call has ter-
minated. The logging feature assists developers in debugging their applications. By
observing the “conversation,” a developer can determine at which point the application ter-
minates. If the application terminates abruptly (“crashes”), the logging feature states the
type and location of the error, so that a developer knows the particular section of the appli-
cation on which to focus.

The next example (Fig. 34.9) shows a CallXML application that reads the ISBN values
of three Deitel textbooks—Internet and World Wide Web How to Program: Second Edi-
tion, XML How to Program and Java How to Program: Fourth Edition—based on the
user’s touch-tone input. [Note: The following code has been formatted for presentation pur-
poses.]

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- Fig. 34.9: isbn.xml -->
4 <!-- Reads the ISBN value of three Deitel books -->
5
6 <callxml>
7 <block>
8 <text>
9 Welcome. To obtain the ISBN of the Internet and World

10 Wide Web How to Program: Second Edition, please enter 1.
11 To obtain the ISBN of the XML How to Program,

Fig. 34.9Fig. 34.9Fig. 34.9Fig. 34.9 CallXML example that reads three ISBN values (part 1 of 3). (Courtesy of
Voxeo, © Voxeo Corporation 2000–2001.)

iw3htp2_34.fm Page 1286 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1287

12 please enter 2. To obtain the ISBN of the Java How
13 to Program: Fourth Edition, please enter 3. To exit the
14 application, please enter 4.
15 </text>
16
17 <!-- obtains the numeric value entered by the user and -->
18 <!-- stores it in the variable ISBN. The user has 60 -->
19 <!-- seconds to enter one numeric value -->
20 <getDigits var = "ISBN"
21 maxDigits = "1"
22 termDigits = "1234"
23 maxTime = "60s" />
24
25 <!-- requests that the user enter a valid numeric -->
26 <!-- value after the elapsed time of 60 seconds -->
27 <onMaxSilence>
28 <text>
29 Please enter either 1, 2, 3 or 4.
30 </text>
31
32 <getDigits var = "ISBN"
33 termDigits = "1234"
34 maxDigits = "1"
35 maxTime = "60s" />
36
37 </onMaxSilence>
38
39 <onTermDigit value = "1">
40 <text>
41 The ISBN for the Internet book is 0130308978.
42 Thank you for calling our CallXML application.
43 Good-bye.
44 </text>
45 </onTermDigit>
46
47 <onTermDigit value = "2">
48 <text>
49 The ISBN for the XML book is 0130284173.
50 Thank you for calling our CallXML application.
51 Good-bye.
52 </text>
53 </onTermDigit>
54
55 <onTermDigit value = "3">
56 <text>
57 The ISBN for the Java book is 0130341517.
58 Thank you for calling our CallXML application.
59 Good-bye.
60 </text>
61 </onTermDigit>
62
63 <onTermDigit value = "4">

Fig. 34.9Fig. 34.9Fig. 34.9Fig. 34.9 CallXML example that reads three ISBN values (part 2 of 3). (Courtesy of
Voxeo, © Voxeo Corporation 2000–2001.)

iw3htp2_34.fm Page 1287 Monday, July 23, 2001 4:29 PM

1288 Accessibility Chapter 34

The <block> tag (line 7) encapsulates other CallXML tags. Usually, CallXML tags
that perform a similar task should be enclosed within <block>...</block>. The block
element in this example encapsulates the <text>, <getDigits>, <onMaxSilence>
and <onTermDigit> tags. A block element can also contain nested block elements.

Lines 20–23 show some attributes of the <getDigits> tag. The getDigits ele-
ment obtains the user’s touch-tone response and stores it in the variable declared by the
var attribute (i.e., ISBN). The maxDigits attribute (line 21) indicates the maximum
number of digits that the application can accept. This application accepts only one char-
acter. If no number is stated, then the application uses the default value—nolimit.

64 <text>
65 Thank you for calling our CallXML application.
66 Good-bye.
67 </text>
68 </onTermDigit>
69 </block>
70
71 <!-- event handler that terminates the call -->
72 <onHangup />
73 </callxml>

Fig. 34.9Fig. 34.9Fig. 34.9Fig. 34.9 CallXML example that reads three ISBN values (part 3 of 3). (Courtesy of
Voxeo, © Voxeo Corporation 2000–2001.)

iw3htp2_34.fm Page 1288 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1289

The termDigits attribute (line 22) contains the list of characters that terminate user
input. When a character from this list is received as input, the CallXML application is noti-
fied that the last acceptable input has been received and that any character entered after this
point is invalid. These characters do not terminate the call; they simply notify the applica-
tion to proceed to the next step because the necessary input has been received. In our
example, the values for termDigits are one, two, three or four. The default value for
termDigits is the null value ("").

The maxTime attribute (line 23) indicates the maximum amount of time to wait for a
user response (i.e., 60 seconds). If no input is received within the given time frame, then
the CallXML application may terminate—a drastic measure. The default value for this
attribute is 30 seconds.

The onMaxSilence element (lines 27–37) is an event handler that is invoked when
the maxTime (or maxSilence) expires. An event handler notifies the application of the
appropriate action to perform. In this case, the application asks the user to enter a value
because the maxTime has expired. After receiving input, getDigits (line 32) stores the
value in the ISBN variable.

The onTermDigit element (lines 39–68) is an event handler that notifies the appli-
cation of the appropriate action to perform when users select one of the termDigits
characters. At least one <onTermDigit> tag must be associated with the getDigits
element, even if the default value ("") is used. We provide four actions that the application
can perform depending on the user-entered value. For example, if the user enters 1, the
application reads the ISBN value of the Internet and World Wide Web How to Program:
Second Edition textbook.

Line 72 contains the <onHangup/> event handler, which terminates the telephone
call when the user hangs up the telephone. Our <onHangup> event handler is an empty
tag (i.e., there is no action to perform when this tag is invoked).

The logging feature in Fig. 34.9 displays the “conversation” between the application
and the user. The first row displays the URL of the application and the global variables of
the session. The subsequent rows display the “conversation”—the application asks the
caller which ISBN value to read, the caller enters 1 (Internet and World Wide Web How to
Program: Second Edition) and the application reads the corresponding ISBN. The end of
session message states that the application has terminated.

Brief descriptions of several logic and action CallXML elements are provided in
Fig. 34.10. Logic elements assign values to, and clear values from, the session variables,
and action elements perform specified tasks, such as answering and terminating a telephone
call during the current session. A complete list of CallXML elements is available at:

www.oasis-open.org/cover/callxmlv2.html

34.11 JAWS® for Windows
JAWS (Job Access with Sound) is one of the leading screen readers on the market today.
Henter-Joyce, a division of Freedom Scientific™, created this application to help people
with visual impairments use technology.

To download a demonstration version of JAWS, visit www.hj.com/JAWS/
JAWS37DemoOp.htm and select the JAWS 3.7 FREE Demo link. The demo expires

iw3htp2_34.fm Page 1289 Monday, July 23, 2001 4:29 PM

1290 Accessibility Chapter 34

after 40 minutes. The computer must be rebooted before another 40-minute session can be
started.

Elements Description

assign Assigns a value to a variable, var.

clear Clears the contents of the var attribute.

clearDigits Clears all digits that the user has entered.

goto Navigates to another section of the current CallXML application or
to a different CallXML application. The value attribute specifies
the application URL. The submit attribute lists the variables that
are passed to the invoked application. The method attribute states
whether to use the HTTP get or post request types when sending and
retrieving information. A get request retrieves data from a Web
server without modifying the contents, while the post request sends
modified data.

run Starts a new CallXML session for each call. The value attribute
specifies which CallXML application to retrieve. The submit
attribute lists the variables that are passed to the invoked application.
The method attribute states whether to use the HTTP get or post
request type. The var attribute stores the identification number of
the session.

sendEvent Allows multiple sessions to exchange messages. The value
attribute stores the message, and the session attribute specifies
the identification number of the session that receives the message.

answer Answers an incoming telephone call.

call Calls the URL specified by the value attribute. The callerID
attribute contains the phone number that is displayed on a CallerID
device. The maxTime attribute specifies the length of time to wait
for the call to be answered before disconnecting.

conference Connects multiple sessions so that people can participate in a confer-
ence call. The targetSessions attribute specifies the identifica-
tion numbers of the sessions, and the termDigits attribute
indicates the touch-tone keys that terminate the call.

wait Waits for user input. The value attribute specifies how long to
wait. The termDigits attribute indicates the touch-tone keys that
terminate the wait element.

play Plays an audio file or a value that is stored as a number, date or
amount of money and is indicated by the format attribute. The
value attribute contains the information (location of the audio file,
number, date or amount of money) that corresponds to the format
attribute. The clearDigits attribute specifies whether or not to
delete the previously entered input. The termDigits attribute
indicates the touch-tone keys that terminate the audio file, etc.

Fig. 34.10Fig. 34.10Fig. 34.10Fig. 34.10 List of some CallXML elements (part 1 of 2).

iw3htp2_34.fm Page 1290 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1291

The JAWS demo is fully functional and includes an extensive, highly customized help
system. Users can select which voice to use and the rate at which text is spoken. Users also
can create keyboard shortcuts. Although the demo is in English, the full version of JAWS
3.7 allows the user to choose one of several supported languages.

JAWS also includes special key commands for popular programs such as Microsoft
Internet Explorer and Microsoft Word. For example, when browsing in Internet Explorer,
JAWS’ capabilities extend beyond reading the content on the screen. If JAWS is enabled,
pressing Insert + F7 in Internet Explorer opens a Links List dialog, which displays all the
links available on a Web page. For more information about JAWS and the other products
offered by Henter-Joyce, visit www.hj.com.

34.12 Other Accessibility Tools
Many additional accessibility products are available to assist people with disabilities. This
section describes a variety of accessibility products, including hardware items and ad-
vanced technologies.

A braille keyboard, in addition to having each key labeled with the letter it represents,
has the equivalent braille symbol printed on the key. Braille keyboards are combined most
often with a speech synthesizer or a braille display, so users can interact with the computer
to verify that their typing is correct.

Speech synthesis is another research-intensive area that will benefit people with dis-
abilities. Speech synthesizers have been used for many years to aid those who are unable
to communicate verbally. However, the growing popularity of the Web has prompted a
great deal of work in the field of speech synthesis and speech recognition. These technolo-
gies are allowing individuals with disabilities to use computers more than ever before. The
development of speech synthesizers is also enabling the improvement of other technolo-
gies, such as VoiceXML and AuralCSS (www.w3.org/TR/REC-CSS2/
aural.html). These tools allow people with visual impairment and the illiterate to
access Web sites.

Despite the existence of adaptive software and hardware for people with visual impair-
ments, the accessibility of computers and the Internet is still hampered by the high costs,
rapid obsolescence and unnecessary complexity of current technology. Moreover, almost
all software currently available requires installation by a person who can see. Ocularis is a
project launched in the open-source community to help address these problems. Open
source software for people with visual impairments already exists, and although it is often
superior to its proprietary, closed-source counterparts, it has not yet reached its full poten-

recordAudio Records an audio file and stores it at the URL specified by value.
The format attribute indicates the file extension of the audio clip.
Other attributes include termDigits, clearDigits, maxTime
and maxSilence.

Elements Description

Fig. 34.10Fig. 34.10Fig. 34.10Fig. 34.10 List of some CallXML elements (part 2 of 2).

iw3htp2_34.fm Page 1291 Monday, July 23, 2001 4:29 PM

1292 Accessibility Chapter 34

tial. Ocularis ensures that the blind can use the Linux operating system fully, by providing
an Audio User Interface (AUI). Products that integrate with Ocularis include a word pro-
cessor, calculator, basic finance application, Internet browser and e-mail client. A screen
reader will also be included with programs that have a command-line interface. The official
Ocularis Web site is located at ocularis.sourceforge.net.

People with visual impairments are not the only beneficiaries of the effort being made
to improve markup languages. People with hearing impairments also have a number of
tools to help them interpret auditory information delivered over the Web, such as Synchro-
nized Multimedia Integration Language (SMIL™), discussed in Chapter 33, Multimedia.
This markup language is designed to add extra tracks—layers of content found within a
single audio or video file—to multimedia content. The additional tracks can contain closed
captioning.

Technologies also are being designed to help people with severe disabilities, such as
quadriplegia, a form of paralysis that affects the body from the neck down. One such tech-
nology, EagleEyes, developed by researchers at Boston College (www.bc.edu/
eagleeyes), is a system that translates eye movements into mouse movements. Users
move the mouse cursors by moving their eyes or heads and thereby can control computers.

The company CitXCorp is developing new technology that translates Web information
through the telephone. Information on a specific topic can be accessed by dialing the des-
ignated number. The new software is expected to be made available to users for $10 per
month. For more information on regulations governing the design of Web sites to accom-
modate people with disabilities, visit www.access-board.gov.

In alliance with Microsoft, GW Micro, Henter-Joyce and Adobe Systems, Inc. are also
working on software to aid people with disabilities. JetForm Corp also is accommodating
the needs of people with disabilities by developing server-based XML software. The new
software allows users to download a format that best meets their needs.

There are many services on the Web that assist e-business owners in designing their
Web sites to be accessible to individuals with disabilities. For additional information, the
U.S. Department of Justice (www.usdoj.gov) provides extensive resources detailing
legal issues and current technologies related to people with disabilities.

These examples are just a few of the accessibility projects and technologies that cur-
rently exist. For more information on Web and general computer accessibility, see the
resources provided in Section 34.14, Internet and World Wide Web Resources.

34.13 Accessibility in Microsoft® Windows® 2000
Beginning with Microsoft Windows 95, Microsoft has included accessibility features in its
operating systems and many of its applications, including Office 97, Office 2000 and Net-
meeting. In Microsoft Windows 2000, the accessibility features have been significantly en-
hanced. All the accessibility options provided by Windows 2000 are available through the
Accessibility Wizard, which guides users through all the Windows 2000 accessibility
features and configures their computers according to the chosen specifications. This section
guides users through the configuration of their Windows 2000 accessibility options using
the Accessibility Wizard.

To access the Accessibility Wizard, users must have Microsoft Windows 2000. Click
the Start button and select Programs followed by Accessories, Accessibility and

iw3htp2_34.fm Page 1292 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1293

Accessibility Wizard. When the wizard starts, the Welcome screen is displayed. Click
Next to display a dialog (Fig. 34.11) that asks the user to select a font size. Click Next.

Figure 34.12 shows the next dialog displayed. This dialog allows the user to activate
the font size settings chosen in the previous window, change the screen resolution, enable
the Microsoft Magnifier (a program that displays an enlarged section of the screen in a sep-
arate window) and disable personalized menus (a feature which hides rarely used programs
from the start menu, which can be a hindrance to users with disabilities). Make selections
and click Next.

Fig. 34.11Fig. 34.11Fig. 34.11Fig. 34.11 Font Size dialog.

Fig. 34.12Fig. 34.12Fig. 34.12Fig. 34.12 Display Settings dialog.

iw3htp2_34.fm Page 1293 Monday, July 23, 2001 4:29 PM

1294 Accessibility Chapter 34

The next dialog (Fig. 34.13) displayed asks questions about the user’s disabilities,
which allows the Accessibility Wizard to customize Windows to better suit their needs.
We selected everything for demonstration purposes. Click Next to continue.

34.13.1 Tools for People with Visual Impairments
When we checked all the options in Fig. 34.13, the wizard began configuring Windows for
people with visual impairments. As shown in Fig. 34.14, this dialog box allows the users to
resize the scroll bars and window borders to increase their visibility. Click Next to proceed
to the next dialog.

Fig. 34.13Fig. 34.13Fig. 34.13Fig. 34.13 Accessibility Wizard initialization options.

Fig. 34.14Fig. 34.14Fig. 34.14Fig. 34.14 Scroll Bar and Window Border Size dialog.

iw3htp2_34.fm Page 1294 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1295

The dialog in Fig. 34.15’s dialog allows the user to resize icons. Users with poor
vision, as well as users who have trouble reading, benefit from large icons.

Clicking Next displays the Display Color Settings dialog (Fig. 34.16). These set-
tings allow users to change Windows’ color scheme and resize various screen elements.
Click Next to view the dialog (Fig. 34.17) for customizing the mouse cursor.

Fig. 34.15Fig. 34.15Fig. 34.15Fig. 34.15 Setting up window element sizes.

Fig. 34.16Fig. 34.16Fig. 34.16Fig. 34.16 Display Color Settings options.

iw3htp2_34.fm Page 1295 Monday, July 23, 2001 4:29 PM

1296 Accessibility Chapter 34

Anyone who has ever used a laptop computer knows how difficult it is to see the mouse
cursor. This is also a problem for people with visual impairments. To help solve this
problem, the wizard offers larger cursors, black cursors and cursors that invert the colors of
objects underneath them. Click Next.

34.13.2 Tools for People with Hearing Impairments

This section, which focuses on accessibility for people with hearing impairments, begins
with the SoundSentry window (Fig. 34.18). SoundSentry is a tool that creates visual
signals when system events occur. For example, people with hearing impairments are un-
able to hear the beeps that normally warn users, so SoundSentry flashes the screen when
a beep occurs. To continue to the next dialog, click Next.

The next window is the ShowSounds window (Fig. 34.19). ShowSounds adds
captions to spoken text and other sounds produced by today’s multimedia-rich software.
For ShowSounds to work, software developers must provide the captions and spoken
text specifically within their software. Make selections and click Next.

34.13.3 Tools for Users Who Have Difficulty Using the Keyboard

The next dialog is StickyKeys (Fig. 34.20). StickyKeys is a program that helps users
who have difficulty pressing multiple keys at the same time. Many important computer
commands can be invoked only by pressing specific key combinations. For example, the
reboot command requires pressing Ctrl+Alt+Delete simultaneously. StickyKeys allows
the user to press key combinations in sequence rather than at the same time. Click Next to
continue to the BounceKeys dialog (Fig. 34.21).

Another common problem for certain users with disabilities is accidentally pressing
the same key more than once. This problem typically is caused by holding a key down too
long. BounceKeys forces the computer to ignore repeated keystrokes. Click Next.

Fig. 34.17Fig. 34.17Fig. 34.17Fig. 34.17 Accessibility Wizard mouse cursor adjustment tool.

iw3htp2_34.fm Page 1296 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1297

Fig. 34.19Fig. 34.19Fig. 34.19Fig. 34.19 ShowSounds dialog.

ToggleKeys (Fig. 34.22) alerts users that they have pressed one of the lock keys (i.e.,
Caps Lock, Num Lock and Scroll Lock) by sounding an audible beep. Make selections and
click Next.

Next, the Extra Keyboard Help dialog (Fig. 34.23) is displayed. This section acti-
vates a tool that displays information such as keyboard shortcuts and tool tips when they
are available. Like ShowSounds, this tool requires that software developers provide the
content to be displayed. Clicking Next will load the MouseKeys (Fig. 34.24) customiza-
tion window.

Fig. 34.18Fig. 34.18Fig. 34.18Fig. 34.18 SoundSentry dialog.

iw3htp2_34.fm Page 1297 Monday, July 23, 2001 4:29 PM

1298 Accessibility Chapter 34

Fig. 34.20Fig. 34.20Fig. 34.20Fig. 34.20 StickyKeys window.

Fig. 34.21Fig. 34.21Fig. 34.21Fig. 34.21 BounceKeys dialog.

iw3htp2_34.fm Page 1298 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1299

Fig. 34.22Fig. 34.22Fig. 34.22Fig. 34.22 ToggleKeys window.

Fig. 34.23Fig. 34.23Fig. 34.23Fig. 34.23 Extra Keyboard Help dialog.

iw3htp2_34.fm Page 1299 Monday, July 23, 2001 4:29 PM

1300 Accessibility Chapter 34

MouseKeys is a tool that uses the keyboard to emulate mouse movements. The arrow
keys direct the mouse, while the 5 key sends a single click. To double click, the user must
press the + key; to simulate holding down the mouse button, the user must press the Ins
(Insert) key and to release the mouse button, the user must press the Del (Delete) key. To
continue to the next screen in the Accessibility Wizard, click Next.

Today’s computer tools are made almost exclusively for right-handed users, including
most computer mice. Microsoft recognized this problem and added the Mouse Button
Settings window (Fig. 34.25) to the Accessibility Wizard. This tool allows the user to
create a virtual left-handed mouse by swapping the button functions. Click Next.

Fig. 34.24Fig. 34.24Fig. 34.24Fig. 34.24 MouseKeys window.

Fig. 34.25Fig. 34.25Fig. 34.25Fig. 34.25 Mouse Button Settings window.

iw3htp2_34.fm Page 1300 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1301

Mouse speed is adjusted by using the MouseSpeed (Fig. 34.26) section of the Acces-
sibility Wizard. Dragging the scroll bar changes the speed. Clicking the Next button sets
the speed and displays the wizard’s Set Automatic Timeouts window (Fig. 34.27).

Although accessibility tools are important to users with disabilities, they can be a hin-
drance to users who do not need them. In situations where varying accessibility needs exist,
it is important that the user be able to turn the accessibility tools off and on as necessary.
The Set Automatic Timeouts window specifies a timeout period for the tools. A timeout
either enables or disables a certain action after the computer has idled for a specified
amount of time. A screen saver is a common example of a program with a timeout period.
Here, a timeout is set to toggle the accessibility tools.

Fig. 34.26Fig. 34.26Fig. 34.26Fig. 34.26 Mouse Speed dialog.

Fig. 34.27Fig. 34.27Fig. 34.27Fig. 34.27 Set Automatic Timeouts dialog.

iw3htp2_34.fm Page 1301 Monday, July 23, 2001 4:29 PM

1302 Accessibility Chapter 34

After clicking Next, the Save Settings to File dialog appears (Fig. 34.28). This
dialog determines whether the accessibility settings should be used as the default settings,
which are loaded when the computer is rebooted, or after a timeout. Set the accessibility
settings as the default if the majority of users need them. Users can save the accessibility
settings as well, by creating an.acw file, which, when clicked, activates the saved acces-
sibility settings on any Windows 2000 computer.

34.13.4 Microsoft Narrator
Microsoft Narrator is a text-to-speech program for people with visual impairments. It
reads text, describes the current desktop environment and alerts the user when certain Win-
dows events occur. Narrator is intended to aid in configuring Microsoft Windows. It is a
screen reader that works with Internet Explorer, Wordpad, Notepad and most programs in
the Control Panel. Although it is limited outside these applications, Narrator is excel-
lent at navigating the Windows environment.

To get an idea of what Narrator does, we will explain how to use it with various Win-
dows applications. Click the Start button and select Programs, followed by Accesso-
ries, Accessibility and Narrator. Once Narrator is open, it describes the current
foreground window. It then reads the text inside the window aloud to the user. Clicking OK
displays Fig. 34.29’s dialog.

Checking the first option instructs Narrator to describe menus and new windows
when they are opened. The second option instructs Narrator to speak the characters you
are typing as you type them. The third option moves the mouse cursor to the region being
read by Narrator. Clicking the Voice... button enables the user to change the pitch,
volume and speed of the narrator voice.

Fig. 34.28Fig. 34.28Fig. 34.28Fig. 34.28 Saving new accessibility settings.

iw3htp2_34.fm Page 1302 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1303

With Narrator running, open Notepad and click the File menu. Narrator
announces the opening of the program and begins to describe the items in the File menu.
When scrolling down the list, Narrator reads the current item to which the mouse is
pointing. Type some text and press Ctrl-Shift-Enter to hear Narrator read it (Fig. 34.30).
If the Read typed characters option is checked, Narrator reads each character as it is
typed. The direction arrows on the keyboard can be used to make Narrator read. The up
and down arrows cause Narrator to speak the lines adjacent to the current mouse position,
and the left and right arrows cause Narrator to speak the characters adjacent to the current
mouse position.

34.13.5 Microsoft On-Screen Keyboard

Some computer users lack the ability to use a keyboard but can use a pointing device such
as a mouse. For these users, the On-Screen Keyboard is helpful. To access the On-Screen
Keyboard, click the Start button and select Programs followed by Accessories, Ac-
cessibility and On-Screen Keyboard. Figure 34.31 shows the layout of the Microsoft
On-Screen Keyboard.

Fig. 34.29Fig. 34.29Fig. 34.29Fig. 34.29 Narrator window.

Fig. 34.30Fig. 34.30Fig. 34.30Fig. 34.30 Narrator reading Notepad text.

iw3htp2_34.fm Page 1303 Monday, July 23, 2001 4:29 PM

1304 Accessibility Chapter 34

Users who still have difficulty using the On-Screen Keyboard should purchase more
sophisticated products, such as Clicker 4™ by Inclusive Technology. Clicker 4 is an aid for
people who cannot effectively use a keyboard. Its best feature is its ability to be customized.
Keys can have letters, numbers, entire words or even pictures on them. For more informa-
tion regarding Clicker 4, visit www.inclusive.co.uk/catalog/clicker.htm.

34.13.6 Accessibility Features in Microsoft Internet Explorer 5.5Accessibility Features in Microsoft Internet Explorer 5.5Accessibility Features in Microsoft Internet Explorer 5.5Accessibility Features in Microsoft Internet Explorer 5.5

Internet Explorer 5.5 offers a variety of options to improve usability. To access IE5.5’s ac-
cessibility features, launch the program, click the Tools menu and select Internet Op-
tions.... From the Internet Options menu, press the button labeled Accessibility... to
open the accessibility options (Fig. 34.32).

Fig. 34.31Fig. 34.31Fig. 34.31Fig. 34.31 Microsoft On-Screen Keyboard.

Fig. 34.32Fig. 34.32Fig. 34.32Fig. 34.32 Microsoft Internet Explorer 5.5’s accessibility options.

iw3htp2_34.fm Page 1304 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1305

The accessibility options in IE5.5 augment users’ Web browsing. Users can ignore
Web colors, Web fonts and font size tags. This eliminates problems that arise from poor
Web page design and allows users to customize their Web browsing. Users can even
specify a style sheet, which formats every Web site visited according to users’ personal
preferences.

These are not the only accessibility options offered in IE5.5. In the Internet Options
dialog click the Advanced tab. This opens the dialog shown in Fig. 34.33. The first option
that can be set is labeled Always expand ALT text for images. By default, IE5.5 hides
some of the <alt> text if it exceeds the size of the image it describes. This option forces
all the text to be shown. The second option reads: Move system caret with focus/
selection changes. This option is intended to make screen reading more effective. Some
screen readers use the system caret (the blinking vertical bar associated with editing text)
to decide what is read. If this option is not activated, screen readers may not read Web pages
correctly.

Web designers often forget to take accessibility into account when creating Web sites
and they use fonts that are too small. Many user agents have addressed this problem by
allowing the user to adjust the text size. Click the View menu and select Text Size to
change the font size using IE5.5. By default, the text size is set to Medium.

34.14 Internet and World Wide Web Resources
There are many accessibility resources on the Internet and World Wide Web, and this sec-
tion lists a variety of these resources.

Fig. 34.33Fig. 34.33Fig. 34.33Fig. 34.33 Advanced accessibility settings in Microsoft Internet Explorer 5.5.

iw3htp2_34.fm Page 1305 Monday, July 23, 2001 4:29 PM

1306 Accessibility Chapter 34

www.w3.org/WAI
The World Wide Web Consortium’s Web Accessibility Initiative (WAI) site promotes the design of
universally accessible Web sites. This site contains the current guidelines and forthcoming standards
for Web accessibility.

deafness.about.com/health/deafness/msubmenu6.htm
This is the home page of deafness.about.com. It is a resource to find information pertaining to
deafness.

www.cast.org
CAST (Center for Applied Special Technology) offers software, including a valuable accessibility
checker, that help individuals with disabilities use a computer. The accessibility checker is a Web-
based program that validates the accessibility of Web sites.

www.trainingpost.org/3-2-inst.htm
This site presents a tutorial on the Gunning Fog Index. The Gunning Fog Index is a method of grading
text on its readability.

www.w3.org/TR/REC-CSS2/aural.html
This page discusses Aural Style Sheets, outlining the purpose and uses of this new technology.

laurence.canlearn.ca/English/learn/newaccessguide/indie
INDIE stands for “Integrated Network of Disability Information and Education.” This site is home to
a search engine that helps users find information on disabilities.

java.sun.com/products/java-media/speech/forDevelopers/JSML
This site outlines the specifications for JSML, Sun Microsystem’s Java Speech Markup Language.
This language, like VoiceXML, could drastically improve accessibility for people with visual impair-
ments.

www.slcc.edu/webguide/lynxit.html
Lynxit is a development tool that allows users to view any Web site as a text-only browser would. The
site’s form allows you to enter a URL and returns the Web site in text-only format.

www.trill-home.com/lynx/public_lynx.html
This site allows users to browse the Web with a Lynx browser. Users can view how Web pages appear
to users without the most current technologies.

www.wgbh.org/wgbh/pages/ncam/accesslinks.html
This site provides links to other accessibility pages across the Web.

ocfo.ed.gov/coninfo/clibrary/software.htm
This page is the U.S. Department of Education’s Web site for software accessibility requirements. It
helps developers produce accessible products.

www-3.ibm.com/able/access.html
The homepage of IBM’s accessibility site provides information on IBM products and their accessi-
bility and discusses hardware, software and Web accessibility.

www.w3.org/TR/voice-tts-reqs
This page explains the speech synthesis markup requirements for voice markup languages.

www.voicexmlcentral.com
This site contains information about VoiceXML, such as the specification and the document type def-
inition (DTD).

deafness.about.com/health/deafness/msubvib.htm
This site provides information on vibrotactile devices, which allow individuals with hearing impair-
ments to experience audio in the form of vibrations.

web.ukonline.co.uk/ddmc/software.html
This site provides links to software for people with disabilities.

iw3htp2_34.fm Page 1306 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1307

www.hj.com
Henter-Joyce is a division of Freedom Scientific that provides software for people with visual impair-
ments. It is the home of JAWS.

www.abledata.com/text2/icg_hear.htm
This page contains a consumer guide that discusses technologies for people with hearing impair-
ments.

www.washington.edu/doit
The University of Washington’s DO-IT (Disabilities, Opportunities, Internetworking and Technolo-
gy) site provides information and Web development resources for creating universally accessible Web
sites.

www.webable.com
WebABLE contains links to many disability-related Internet resources and is geared towards those de-
veloping technologies for people with disabilities.

www.webaim.org
The WebAIM site provides a number of tutorials, articles, simulations and other useful resources that
demonstrate how to design accessible Web sites. The site provides a screen reader simulation.

www.speech.cs.cmu.edu/comp.speech/SpeechLinks.html
The Speech Technology Hyperlinks page has over 500 links to sites related to computer-based speech
and speech recognition tools.

www.islandnet.com/~tslemko
The Micro Consulting Limited site contains shareware speech synthesis software.

www.chantinc.com/technology
This page is the Chant Web site, which discusses speech technology and how it works. Chant also
provides speech synthesis and speech recognition software.

whatis.techtarget.com/definition
This site provides definitions and information about several topics, including CallXML. Its thorough
definition of CallXML differentiates CallXML and VoiceXML, another technology developed by
Voxeo. The site contains links to other published articles discussing CallXML.

www.oasis-open.org/cover/callxmlv2.html
This site provides a comprehensive list of the CallXML tags complete with descriptions of each tag.
Short examples on how to apply the tags in various applications are provided.

SUMMARY
• Enabling a Web site to meet the needs of individuals with disabilities is an issue relevant to all

business owners.

• Legal ramifications exist for Web sites that discriminate against people with disabilities (i.e., by
not providing them with adequate access to the site’s resources).

• Technologies such as voice activation, visual enhancers and auditory aids enable individuals with
disabilities to work in more positions.

• On April 7, 1997, the World Wide Web Consortium (W3C) launched the Web Accessibility Ini-
tiative (WAI). The WAI is an attempt to make the Web more accessible; its mission is described
at www.w3.org/WAI.

• Accessibility refers to the level of usability of an application or Web site for people with disabili-
ties. Total accessibility is difficult to achieve because there are many different disabilities, lan-
guage barriers, and hardware and software inconsistencies.

iw3htp2_34.fm Page 1307 Monday, July 23, 2001 4:29 PM

1308 Accessibility Chapter 34

• The majority of Web sites are considered either partially or totally inaccessible to people with vi-
sual, learning or mobility impairments.

• The WAI publishes the Web Content Accessibility Guidelines 1.0, which assign priorities to a
three-tier structure of checkpoints. The WAI currently is working on a draft of the Web Content
Accessibility Guidelines 2.0.

• One important WAI requirement is to ensure that every image, movie and sound on a Web site is
accompanied by a description that clearly defines the object’s purpose; this is called an <alt>
tag.

• Specialized user agents, such as screen readers (programs that allow users to hear what is being
displayed on their screen) and braille displays (devices that receive data from screen-reading soft-
ware and output the data as braille), allow people with visual impairments to access text-based in-
formation that is normally displayed on the screen.

• Using a screen reader to navigate a Web site can be time consuming and frustrating, because
screen readers are unable to interpret pictures and other graphical content that do not have alterna-
tive text.

• Including links at the top of each Web page provides easy access to page’s main content.

• Web pages with large amounts of multimedia content are difficult for user agents to interpret un-
less they are designed properly. Images, movies and most non-XHTML objects cannot be read by
screen readers.

• Web designers should avoid misuse of the alt attribute; it is intended to provide a short descrip-
tion of an XHTML object that may not load properly on all user agents.

• The value of the longdesc attribute is a text-based URL, linked to a Web page, that describes
the image associated with the attribute.

• When creating a Web page intended for the general public, it is important to consider the reading
level at which it is written. Web site designers can make their sites more readable through the use
of shorter words, as some users may have difficulty reading long words. In addition, users from
other countries may have difficulty understanding slang and other nontraditional language.

• Web designers often use frames to display more than one XHTML file at a time and are a conve-
nient way to ensure that certain content is always on screen. Unfortunately, frames often lack prop-
er descriptions, which prevents users with text-based browsers, or users who lack sight, from
navigating the Web site.

• The <noframes> tag allows the designer to offer alternative content to users whose browsers do
not support frames.

• VoiceXML has tremendous implications for people with visual impairments and for the illiterate.
VoiceXML, a speech recognition and synthesis technology, reads Web pages to users and under-
stands words spoken into a microphone.

• A VoiceXML document is made up of a series of dialogs and subdialogs, which result in spoken
interaction between the user and the computer. VoiceXML is a voice-recognition technology.

• CallXML, a language created and supported by Voxeo, creates phone-to-Web applications.

• When a user accesses a CallXML application, the incoming telephone call is referred to as a ses-
sion. A CallXML application can support multiple sessions that enable the application to receive
multiple telephone calls at any given time.

• A session terminates either when the user hangs up the telephone or when the CallXML applica-
tion invokes the hangup element.

• The contents of a CallXML application are inserted within the <callxml> tag.

iw3htp2_34.fm Page 1308 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1309

• CallXML tags that perform similar tasks should be enclosed within the <block> and </block>
tags.

• To deploy a CallXML application, register with the Voxeo Community, which assigns a telephone
number to the application so that other users may access it.

• Voxeo’s logging feature enables developers to debug their telephone application by observing the
“conversation” between the user and the application.

• Braille keyboards are similar to standard keyboards, except that in addition to having each key la-
beled with the letter it represents, braille keyboards have the equivalent braille symbol printed on
the key. Most often, braille keyboards are combined with a speech synthesizer or a braille display,
so users can interact with the computer to verify that their typing is correct.

• People with visual impairments are not the only beneficiaries of the effort to improve markup lan-
guages. Individuals with hearing impairments also have a great number of tools to help them in-
terpret auditory information delivered over the Web.

• Speech synthesis is another research area that will help people with disabilities.

• Open-source software for people with visual impairments already exists and is often superior to
most of its proprietary, closed-source counterparts.

• People with hearing impairments will soon benefit from what is called Synchronized Multimedia
Integration Language (SMIL). This markup language is designed to add extra tracks—layers of
content found within a single audio or video file. The additional tracks can contain data such as
closed captioning.

• EagleEyes, developed by researchers at Boston College (www.bc.edu/eagleeyes), is a sys-
tem that translates eye movements into mouse movements. Users move the mouse cursor by mov-
ing their eyes or heads and are thereby able to control computers.

• All of the accessibility options provided by Windows 2000 are available through the Accessibil-
ity Wizard. The Accessibility Wizard takes a user step by step through all of the Windows ac-
cessibility features and configures his or her computer according to the chosen specifications.

• Microsoft Magnifier enlarges the section of your screen surrounding the mouse cursor.

• To solve problems seeing the mouse cursor, Microsoft offers the ability to use larger cursors, black
cursors and cursors that invert objects underneath them.

• SoundSentry is a tool that creates visual signals when system events occur.

• ShowSounds adds captions to spoken text and other sounds produced by today’s multimedia-
rich software.

• StickyKeys is a program that helps users who have difficulty pressing multiple keys at the same
time.

• BounceKeys forces the computer to ignore repeated keystrokes, solving the problem of acci-
dentally pressing the same key more than once.

• ToggleKeys causes an audible beep to alert users that they have pressed one of the lock keys (i.e.,
Caps Lock, Num Lock, or Scroll Lock).

• MouseKeys is a tool that uses the keyboard to emulate mouse movements.

• The Mouse Button Settings tool allows you to create a virtual left-handed mouse by swapping
the button functions.

• A timeout either enables or disables a certain action after the computer has idled for a specified
amount of time. A common example of a timeout is a screen saver.

• You can create an .acw file, that, when clicked, will automatically activate the saved accessibility
settings on any Windows 2000 computer.

iw3htp2_34.fm Page 1309 Monday, July 23, 2001 4:29 PM

1310 Accessibility Chapter 34

• Microsoft Narrator is a text-to-speech program for people with visual impairments. It reads text,
describes the current desktop environment and alerts the user when certain Windows events occur.

TERMINOLOGY
accessibility IBM ViaVoice
Accessibility Wizard id attribute
Accessibility Wizard: Display

Color Settings
 tag
JAWS (Job Access With Sound)

Accessibility Wizard: Icon Size level attribute in VoiceXML
Accessibility Wizard: Mouse Cursor linearize
Accessibility Wizard: Scroll Bar

and Window Border Size
<link> tag in VoiceXML
local dialog

action element logging feature
alt attribute logic element
Americans with Disabilities Act (ADA) longdesc attribute
<assign> tag in VoiceXML Lynx
AuralCSS markup language
<block> tag in VoiceXML maxDigits attribute in CallXML
BounceKeys maxTime attribute in CallXML
braille display <menu> tag in VoiceXML
braille keyboard Microsoft Magnifier
<break> tag in VoiceXML Microsoft Narrator
 tag (bold) Mouse Button Settings window
CallXML MouseKeys
<callxml> tag in CallXML Narrator
caption <next> tag in VoiceXML
Cascading Style Sheets (CSS) nolimit (default value)
count attribute in VoiceXML <noframes> tag
<choice> tag in VoiceXML Ocularis
CSS2 <onHangup> tag in CallXML
D-link <onMaxSilence> tag in CallXML
default setting On-Screen Keyboard
EagleEyes <onTermDigits> tag in CallXML
encoding post request type
<enumerate> tag in VoiceXML priority 1 checkpoint
event handler priority 2 checkpoint
<exit> tag in VoiceXML priority 3 checkpoint
field variable <prompt> tag in VoiceXML
<filled> tag in VoiceXML quick tip
<form> tag in VoiceXML readability
frames Read typed characters
get request type screen reader
<getDigits> tag in CallXML session
global variable sessionID
<goto> tag in VoiceXML Set Automatic Timeout window
<grammar> tag in VoiceXML ShowSounds
Gunning Fog Index SoundSentry
header cells speech recognition
headers attribute speech synthesizer
<h1> tag StickyKeys

iw3htp2_34.fm Page 1310 Monday, July 23, 2001 4:29 PM

Chapter 34 Accessibility 1311

SELF-REVIEW EXERCISES
34.1 Expand the following acronyms:

a) W3C.
b) WAI.
c) JAWS.
d) SMIL.
e) CSS.

34.2 Fill in the blanks in each of the following statements.
a) The highest priority of the Web Accessibility Initiative is to ensure that each ,

 and is accompanied by a description that clearly defines its pur-
pose.

b) Technologies such as , and enable individuals with
disabilities to work in a large number of positions.

c) Although they can be used as a great layout tool, are difficult for screen read-
ers to interpret and convey clearly to a user.

d) To make your frame accessible to individuals with disabilities, it is important to include
 tags on your page.

e) Blind people using computers are often assisted by and .
f) CallXML is used to create applications that allow businesses to receive and

send telephone calls.
g) A tag must be associated with the <getDigits> tag.

34.3 State whether each of the following is true or false. If false, explain why.
a) Screen readers have no problem reading and translating images.
b) When writing pages for the general public, it is important to consider the reading diffi-

culty level of the text you are writing.
c) The <alt> tag helps screen readers describe images in a Web page.
d) Left-handed people have been helped by the improvements made in speech-recognition

technology more than any other group of people.
e) VoiceXML lets users interact with Web content using speech recognition and speech

synthesis technologies.
f) Elements such as onMaxSilence, onTermDigit and onMaxTime are event han-

dlers because they perform a specified task when invoked.

 tag track
style sheet Unicode
system carat user agent
<subdialog> tag in VoiceXML <var> tag in VoiceXML
summary attribute var attribute in CallXML
Synchronized Multimedia Integration

Language (SMIL)
version
ViaVoice

tables voice server
<td> tag Voice Server SDK
termDigits attribute in CallXML VoiceXML
<text> tag in CallXML Voxeo Community
text-to-speech (TTS) <vxml> tag in VoiceXML
<th> tag Web Accessibility Initiative (WAI)
timeout Web Content Accessibility Guidelines 1.0
<title> tag XML declaration
ToggleKeys XML Guidelines (XML GL)

iw3htp2_34.fm Page 1311 Monday, July 23, 2001 4:29 PM

1312 Accessibility Chapter 34

g) The debugging feature of the Voxeo Account Manager assists developers in de-
bugging their CallXML application.

ANSWERS TO SELF-REVIEW EXERCISES
34.1 a) World Wide Web Consortium. b) Web Accessibility Initiative. c) Job Access with Sound.
d) Synchronized Multimedia Integration Language. e) Cascading Style Sheets.

34.2 a) image, movie, sound. b) voice activation, visual enhancers and auditory aids. c) tables. d)
<noframes>. e) braille displays, braille keyboards. f) phone-to-Web. g) <onTermDigit>.

34.3 a) False. Screen readers have no way of telling a user what is shown in an image. If the pro-
grammer includes an alt attribute inside the tag, the screen reader reads this description to
the user. b) True. c) True. d) False. Although left-handed people can use speech-recognition technol-
ogy as everyone else can, speech-recognition technology has had the largest impact on the blind and
on people who have trouble typing. e) True. f) True. g) False. The logging feature assists developers
in debugging their CallXML application.

EXERCISES
34.4 Insert XHTML markup into each segment to make the segment accessible to someone with
disabilities. The contents of images and frames should be apparent from the context and filenames.

a)
b) <table width = "75%">

 <tr><th>Language</th><th>Version</th></tr>
 <tr><td>XHTML</td><td>1.0</td></tr>
 <tr><td>Perl</td><td>5.6.0</td></tr>
 <tr><td>Java</td><td>1.3</td></tr>
</table>

34.5 Define the following terms:
a) Action element.
b) Gunning Fog Index.
c) Screen reader.
c) Session.
d) Web Accessibility Initiative (WAI).

34.6 Describe the three-tier structure of checkpoints (priority-one, priority-two and priority-three)
set forth by the WAI.

34.7 Why do misused <h1> heading tags create problems for screen readers?

34.8 Use CallXML to create a voice mail system that plays a voice mail greeting and records the
message. Have friends and classmates call your application and leave a message.

iw3htp2_34.fm Page 1312 Monday, July 23, 2001 4:29 PM

A
XHTML Special

Characters

The table of Fig. A.1 shows many commonly used XHTML special characters—called
character entity references by the World Wide Web Consortium. For a complete list of
character entity references, see the site

www.w3.org/TR/REC-html40/sgml/entities.html

Character HTML encoding Character XHTML encoding

non-breaking space ê ê

§ § ì ì

© © í í

® ® î î

¼ ¼ ñ ñ

½ ½ ò ò

¾ ¾ ó ó

à à ô ô

á á õ õ

â â ÷ ÷

ã ã ù ù

å å ú ú

ç ç û û

è è • •

é é ™ ™

Fig. A.1Fig. A.1Fig. A.1Fig. A.1 XHTML special characters.

App_A_HTMLSpecChars.fm Page 1313 Monday, July 23, 2001 4:29 PM

B
Operator Precedence

Chart

This appendix contains the operator precedence chart for JavaScript/JScript/ECMAScript
(Fig. B.1). The operators are shown in decreasing order of precedence from top to bottom.

OperatorOperatorOperatorOperator TypeTypeTypeType AssociativityAssociativityAssociativityAssociativity

.
[]
()

member access
array indexing
function calls

left to right

++
--
-
~
!
delete
new
typeof
void

increment
decrement
unary minus
bitwise complement
logical NOT
delete an array element or object property
create a new object
returns the data type of its argument
prevents an expression from returning a value

right to left

*
/
%

multiplication
division
modulus

left to right

+
-
+

addition
subtraction
string concatenation

left to right

Fig. B.1Fig. B.1Fig. B.1Fig. B.1 JavaScript/JScript/ECMAScript operator precedence and associativity
(part 1 of 2).

App_B_OpPrec.fm Page 1314 Monday, July 23, 2001 4:30 PM

Appendix B Operator Precedence Chart 1315

<<
>>
>>>

left shift
right shift with sign extension
right shift with zero extension

left to right

<
<=
>
>=
instanceof

less than
less than or equal
greater than
greater than or equal
type comparison

left to right

==
!=
===
!==

equality
inequality
identity
nonidentity

left to right

& bitwise AND left to right

^ bitwise XOR left to right

| bitwise OR left to right

&& logical AND left to right

|| logical OR left to right

?: conditional left to right

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=
>>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left shift assignment
bitwise right shift with sign extension assignment
bitwise right shift with zero extension assignment

right to left

OperatorOperatorOperatorOperator TypeTypeTypeType AssociativityAssociativityAssociativityAssociativity

Fig. B.1Fig. B.1Fig. B.1Fig. B.1 JavaScript/JScript/ECMAScript operator precedence and associativity
(part 2 of 2).

App_B_OpPrec.fm Page 1315 Monday, July 23, 2001 4:30 PM

D
Number Systems

Objectives
• To understand basic number systems concepts such as

base, positional value, and symbol value.
• To understand how to work with numbers represented

in the binary, octal, and hexadecimal number systems
• To be able to abbreviate binary numbers as octal

numbers or hexadecimal numbers.
• To be able to convert octal numbers and hexadecimal

numbers to binary numbers.
• To be able to covert back and forth between decimal

numbers and their binary, octal, and hexadecimal
equivalents.

• To understand binary arithmetic, and how negative
binary numbers are represented using two’s
complement notation.

Here are only numbers ratified.
William Shakespeare

Nature has some sort of arithmetic-geometrical coordinate
system, because nature has all kinds of models. What we
experience of nature is in models, and all of nature’s models
are so beautiful.
It struck me that nature’s system must be a real beauty,
because in chemistry we find that the associations are always
in beautiful whole numbers—there are no fractions.
Richard Buckminster Fuller

App_D_NumberSystems.fm Page 1317 Monday, July 23, 2001 4:30 PM

1318 Number Systems Appendix D

D.1 Introduction
In this appendix, we introduce the key number systems that JavaScript programmers use,
especially when they are working on software projects that require close interaction with
“machine-level” hardware. Projects like this include operating systems, computer network-
ing software, compilers, database systems, and applications requiring high performance.

When we write an integer such as 227 or -63 in a JavaScript program, the number is
assumed to be in the decimal (base 10) number system. The digits in the decimal number
system are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The lowest digit is 0 and the highest digit is 9—
one less than the base of 10. Internally, computers use the binary (base 2) number system.
The binary number system has only two digits, namely 0 and 1. Its lowest digit is 0 and its
highest digit is 1—one less than the base of 2.

As we will see, binary numbers tend to be much longer than their decimal equivalents.
Programmers who work in assembly languages and in high-level languages like JavaScript
that enable programmers to reach down to the “machine level,” find it cumbersome to work
with binary numbers. So two other number systems the octal number system (base 8) and
the hexadecimal number system (base 16)—are popular primarily because they make it
convenient to abbreviate binary numbers.

In the octal number system, the digits range from 0 to 7. Because both the binary
number system and the octal number system have fewer digits than the decimal number
system, their digits are the same as the corresponding digits in decimal.

The hexadecimal number system poses a problem because it requires sixteen digits—
a lowest digit of 0 and a highest digit with a value equivalent to decimal 15 (one less than
the base of 16). By convention, we use the letters A through F to represent the hexadecimal
digits corresponding to decimal values 10 through 15. Thus in hexadecimal we can have
numbers like 876 consisting solely of decimal-like digits, numbers like 8A55F consisting
of digits and letters, and numbers like FFE consisting solely of letters. Occasionally, a
hexadecimal number spells a common word such as FACE or FEED—this can appear
strange to programmers accustomed to working with numbers.

Each of these number systems uses positional notation—each position in which a digit
is written has a different positional value. For example, in the decimal number 937 (the 9,
the 3, and the 7 are referred to as symbol values), we say that the 7 is written in the ones
position, the 3 is written in the tens position, and the 9 is written in the hundreds position.

Outline

D.1 Introduction
D.2 Abbreviating Binary Numbers as Octal Numbers and Hexadecimal

Numbers
D.3 Converting Octal Numbers and Hexadecimal Numbers to Binary

Numbers
D.4 Converting from Binary, Octal, or Hexadecimal to Decimal
D.5 Converting from Decimal to Binary, Octal, or Hexadecimal
D.6 Negative Binary Numbers: Two’s Complement Notation

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

App_D_NumberSystems.fm Page 1318 Monday, July 23, 2001 4:30 PM

Appendix D Number Systems 1319

Notice that each of these positions is a power of the base (base 10), and that these powers
begin at 0 and increase by 1 as we move left in the number (Fig. E.3).

Binary digit Octal digit Decimal digit Hexadecimal digit

0 0 0 0

1 1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8

9 9

A (decimal value of 10)

B (decimal value of 11)

C (decimal value of 12)

D (decimal value of 13)

E (decimal value of 14)

F (decimal value of 15)

Fig. D.1Fig. D.1Fig. D.1Fig. D.1 Digits of the binary, octal, decimal and hexadecimal number systems.

Attribute Binary Octal Decimal Hexadecimal

Base 2 8 10 16

Lowest digit 0 0 0 0

Highest digit 1 7 9 F

Fig. D.2Fig. D.2Fig. D.2Fig. D.2 Comparing the binary, octal, decimal and hexadecimal number systems.

Positional values in the decimal number system

Decimal digit 9 3 7

Position name Hundreds Tens Ones

Positional value 100 10 1

Positional value as a
power of the base (10)

102 101 100

Fig. D.3Fig. D.3Fig. D.3Fig. D.3 Positional values in the decimal number system.

App_D_NumberSystems.fm Page 1319 Monday, July 23, 2001 4:30 PM

1320 Number Systems Appendix D

For longer decimal numbers, the next positions to the left would be the thousands posi-
tion (10 to the 3rd power), the ten-thousands position (10 to the 4th power), the hundred-
thousands position (10 to the 5th power), the millions position (10 to the 6th power), the
ten-millions position (10 to the 7th power), and so on.

In the binary number 101, we say that the rightmost 1 is written in the ones position,
the 0 is written in the twos position, and the leftmost 1 is written in the fours position.
Notice that each of these positions is a power of the base (base 2), and that these powers
begin at 0 and increase by 1 as we move left in the number (Fig E.4).

For longer binary numbers, the next positions to the left would be the eights position
(2 to the 3rd power), the sixteens position (2 to the 4th power), the thirty-twos position (2
to the 5th power), the sixty-fours position (2 to the 6th power), and so on.

In the octal number 425, we say that the 5 is written in the ones position, the 2 is written
in the eights position, and the 4 is written in the sixty-fours position. Notice that each of
these positions is a power of the base (base 8), and that these powers begin at 0 and increase
by 1 as we move left in the number (Fig. E.5).

For longer octal numbers, the next positions to the left would be the five-hundred-and-
twelves position (8 to the 3rd power), the four-thousand-and-ninety-sixes position (8 to the
4th power), the thirty-two-thousand-seven-hundred-and-sixty eights position (8 to the 5th
power), and so on.

In the hexadecimal number 3DA, we say that the A is written in the ones position, the
D is written in the sixteens position, and the 3 is written in the two-hundred-and-fifty-sixes
position. Notice that each of these positions is a power of the base (base 16), and that these
powers begin at 0 and increase by 1 as we move left in the number (Fig. E.6).

Positional values in the binary number system

Binary digit 1 0 1

Position name Fours Twos Ones

Positional value 4 2 1

Positional value as a
power of the base (2)

22 21 20

Fig. D.4Fig. D.4Fig. D.4Fig. D.4 Positional values in the binary number system.

Positional values in the octal number system

Decimal digit 4 2 5

Position name Sixty-fours Eights Ones

Positional value 64 8 1

Positional value as a
power of the base (8)

82 81 80

Fig. D.5Fig. D.5Fig. D.5Fig. D.5 Positional values in the octal number system.

App_D_NumberSystems.fm Page 1320 Monday, July 23, 2001 4:30 PM

Appendix D Number Systems 1321

For longer hexadecimal numbers, the next positions to the left would be the four-thou-
sand-and-ninety-sixes position (16 to the 3rd power), the sixty-five-thousand-five-hun-
dred-and-thirty-six position (16 to the 4th power), and so on.

D.2 Abbreviating Binary Numbers as Octal Numbers and
Hexadecimal Numbers
The main use for octal and hexadecimal numbers in computing is for abbreviating lengthy
binary representations. Figure E.7 highlights the fact that lengthy binary numbers can be
expressed concisely in number systems with higher bases than the binary number system.

Positional values in the hexadecimal number system

Decimal digit 3 D A

Position name Two-hundred-and-
fifty-sixes

Sixteens Ones

Positional value 256 16 1

Positional value as a
power of the base (16)

162 161 160

Fig. D.6Fig. D.6Fig. D.6Fig. D.6 Positional values in the hexadecimal number system.

Decimal
number

Binary{
representation

Octal
representation

Hexadecimal
representation

 0 0 0 0

 1 1 1 1

 2 10 2 2

 3 11 3 3

 4 100 4 4

 5 101 5 5

 6 110 6 6

 7 111 7 7

 8 1000 10 8

 9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

Fig. D.7Fig. D.7Fig. D.7Fig. D.7 Decimal, binary, octal, and hexadecimal equivalents.

App_D_NumberSystems.fm Page 1321 Monday, July 23, 2001 4:30 PM

1322 Number Systems Appendix D

A particularly important relationship that both the octal number system and the hexa-
decimal number system have to the binary system is that the bases of octal and hexadecimal
(8 and 16 respectively) are powers of the base of the binary number system (base 2). Con-
sider the following 12-digit binary number and its octal and hexadecimal equivalents. See
if you can determine how this relationship makes it convenient to abbreviate binary num-
bers in octal or hexadecimal. The answer follows the numbers.

Binary Number Octal equivalent Hexadecimal equivalent
100011010001 4321 8D1

To see how the binary number converts easily to octal, simply break the 12-digit binary
number into groups of three consecutive bits each, and write those groups over the corre-
sponding digits of the octal number as follows

100 011 010 001
4 3 2 1

Notice that the octal digit you have written under each group of thee bits corresponds
precisely to the octal equivalent of that 3-digit binary number as shown in Fig. E.7.

The same kind of relationship may be observed in converting numbers from binary to
hexadecimal. In particular, break the 12-digit binary number into groups of four consecu-
tive bits each and write those groups over the corresponding digits of the hexadecimal
number as follows

1000 1101 0001
8 D 1

Notice that the hexadecimal digit you wrote under each group of four bits corresponds
precisely to the hexadecimal equivalent of that 4-digit binary number as shown in Fig. E.7.

D.3 Converting Octal Numbers and Hexadecimal Numbers to
Binary Numbers
In the previous section, we saw how to convert binary numbers to their octal and hexadec-
imal equivalents by forming groups of binary digits and simply rewriting these groups as
their equivalent octal digit values or hexadecimal digit values. This process may be used in
reverse to produce the binary equivalent of a given octal or hexadecimal number.

For example, the octal number 653 is converted to binary simply by writing the 6 as its
3-digit binary equivalent 110, the 5 as its 3-digit binary equivalent 101, and the 3 as its 3-
digit binary equivalent 011 to form the 9-digit binary number 110101011.

The hexadecimal number FAD5 is converted to binary simply by writing the F as its
4-digit binary equivalent 1111, the A as its 4-digit binary equivalent 1010, the D as its 4-
digit binary equivalent 1101, and the 5 as its 4-digit binary equivalent 0101 to form the 16-
digit 1111101011010101.

D.4 Converting from Binary, Octal, or Hexadecimal to Decimal
Because we are accustomed to working in decimal, it is often convenient to convert a bina-
ry, octal, or hexadecimal number to decimal to get a sense of what the number is “really”
worth. Our diagrams in Section E.1 express the positional values in decimal. To convert a
number to decimal from another base, multiply the decimal equivalent of each digit by its

App_D_NumberSystems.fm Page 1322 Monday, July 23, 2001 4:30 PM

Appendix D Number Systems 1323

positional value, and sum these products. For example, the binary number 110101 is con-
verted to decimal 53 as shown in Fig. E.8.

To convert octal 7614 to decimal 3980, we use the same technique, this time using
appropriate octal positional values as shown in Fig. E.9.

To convert hexadecimal AD3B to decimal 44347, we use the same technique, this time
using appropriate hexadecimal positional values as shown in Fig. E.10.

D.5 Converting from Decimal to Binary, Octal, or Hexadecimal
The conversions of the previous section follow naturally from the positional notation con-
ventions. Converting from decimal to binary, octal, or hexadecimal also follows these con-
ventions.

Suppose we wish to convert decimal 57 to binary. We begin by writing the positional
values of the columns right to left until we reach a column whose positional value is greater
than the decimal number. We do not need that column, so we discard it. Thus, we first write:

Converting a binary number to decimal

Positional values: 32 16 8 4 2 1

Symbol values: 1 1 0 1 0 1

Products: 1*32=32 1*16=16 0*8=0 1*4=4 0*2=0 1*1=1

Sum: = 32 + 16 + 0 + 4 + 0 + 1 = 53

Fig. D.8Fig. D.8Fig. D.8Fig. D.8 Converting a binary number to decimal.

Converting an octal number to decimal

Positional values: 512 64 8 1

Symbol values: 7 6 1 4

Products 7*512=3584 6*64=384 1*8=8 4*1=4

Sum: = 3584 + 384 + 8 + 4 = 3980

Fig. D.9Fig. D.9Fig. D.9Fig. D.9 Converting an octal number to decimal.

Converting a hexadecimal number to decimal

Positional values: 4096 256 16 1

Symbol values: A D 3 B

Products A*4096=40960 D*256=3328 3*16=48 B*1=11

Sum: = 40960 + 3328 + 48 + 11 = 44347

Fig. D.10Fig. D.10Fig. D.10Fig. D.10 Converting a hexadecimal number to decimal.

App_D_NumberSystems.fm Page 1323 Monday, July 23, 2001 4:30 PM

1324 Number Systems Appendix D

Positional values: 64 32 16 8 4 2 1

Then we discard the column with positional value 64 leaving:

Positional values: 32 16 8 4 2 1

Next we work from the leftmost column to the right. We divide 32 into 57 and observe
that there is one 32 in 57 with a remainder of 25, so we write 1 in the 32 column. We divide
16 into 25 and observe that there is one 16 in 25 with a remainder of 9 and write 1 in the 16
column. We divide 8 into 9 and observe that there is one 8 in 9 with a remainder of 1. The
next two columns each produce quotients of zero when their positional values are divided
into 1 so we write 0s in the 4 and 2 columns. Finally, 1 into 1 is 1 so we write 1 in the 1
column. This yields:

Positional values: 32 16 8 4 2 1
Symbol values: 1 1 1 0 0 1

and thus decimal 57 is equivalent to binary 111001.
To convert decimal 103 to octal, we begin by writing the positional values of the col-

umns until we reach a column whose positional value is greater than the decimal number.
We do not need that column, so we discard it. Thus, we first write:

Positional values: 512 64 8 1

Then we discard the column with positional value 512, yielding:

Positional values: 64 8 1

Next we work from the leftmost column to the right. We divide 64 into 103 and
observe that there is one 64 in 103 with a remainder of 39, so we write 1 in the 64 column.
We divide 8 into 39 and observe that there are four 8s in 39 with a remainder of 7 and write
4 in the 8 column. Finally, we divide 1 into 7 and observe that there are seven 1s in 7 with
no remainder so we write 7 in the 1 column. This yields:

Positional values: 64 8 1
Symbol values: 1 4 7

and thus decimal 103 is equivalent to octal 147.
To convert decimal 375 to hexadecimal, we begin by writing the positional values of

the columns until we reach a column whose positional value is greater than the decimal
number. We do not need that column, so we discard it. Thus, we first write

Positional values: 4096 256 16 1

Then we discard the column with positional value 4096, yielding:

Positional values: 256 16 1

Next we work from the leftmost column to the right. We divide 256 into 375 and
observe that there is one 256 in 375 with a remainder of 119, so we write 1 in the 256
column. We divide 16 into 119 and observe that there are seven 16s in 119 with a remainder
of 7 and write 7 in the 16 column. Finally, we divide 1 into 7 and observe that there are
seven 1s in 7 with no remainder so we write 7 in the 1 column. This yields:

App_D_NumberSystems.fm Page 1324 Monday, July 23, 2001 4:30 PM

Appendix D Number Systems 1325

Positional values: 256 16 1
Symbol values: 1 7 7

and thus decimal 375 is equivalent to hexadecimal 177.

D.6 Negative Binary Numbers: Two’s Complement Notation
The discussion in this appendix has been focussed on positive numbers. In this section, we
explain how computers represent negative numbers using two’s complement notation. First
we explain how the two’s complement of a binary number is formed, and then we show
why it represents the negative value of the given binary number.

Consider a machine with 32-bit integers. Suppose

var value = 13;

The 32-bit representation of value is

00000000 00000000 00000000 00001101

To form the negative of value we first form its one’s complement by applying JavaS-
cript’s bitwise complement operator (~):

onesComplementOfValue = ~value;

Internally, ~value is now value with each of its bits reversed—ones become zeros and
zeros become ones as follows:

value:
00000000 00000000 00000000 00001101

~value (i.e., value’s ones complement):
11111111 11111111 11111111 11110010

To form the two’s complement of value we simply add one to value’s one’s comple-
ment. Thus

Two’s complement of value:
11111111 11111111 11111111 11110011

Now if this is in fact equal to -13, we should be able to add it to binary 13 and obtain a result
of 0. Let us try this:

 00000000 00000000 00000000 00001101
+11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00000000

The carry bit coming out of the leftmost column is discarded and we indeed get zero as a
result. If we add the one’s complement of a number to the number, the result would be all
1s. The key to getting a result of all zeros is that the twos complement is 1 more than the
one’s complement. The addition of 1 causes each column to add to 0 with a carry of 1. The
carry keeps moving leftward until it is discarded from the leftmost bit, and hence the result-
ing number is all zeros.

Computers actually perform a subtraction such as

x = a - value;

App_D_NumberSystems.fm Page 1325 Monday, July 23, 2001 4:30 PM

1326 Number Systems Appendix D

by adding the two’s complement of value to a as follows:

x = a + (~value + 1);

Suppose a is 27 and value is 13 as before. If the two’s complement of value is actually
the negative of value, then adding the two’s complement of value to a should produce the
result 14. Let us try this:

a (i.e., 27) 00000000 00000000 00000000 00011011
+(~value + 1) +11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00001110

which is indeed equal to 14.

SUMMARY
• When we write an integer such as 19 or 227 or -63 in a JavaScript program, the number is auto-

matically assumed to be in the decimal (base 10) number system. The digits in the decimal number
system are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The lowest digit is 0 and the highest digit is 9—one less
than the base of 10.

• Internally, computers use the binary (base 2) number system. The binary number system has only
two digits, namely 0 and 1. Its lowest digit is 0 and its highest digit is 1—one less than the base of
2.

• The octal number system (base 8) and the hexadecimal number system (base 16) are popular pri-
marily because they make it convenient to abbreviate binary numbers.

• The digits of the octal number system range from 0 to 7.

• The hexadecimal number system poses a problem because it requires sixteen digits—a lowest digit
of 0 and a highest digit with a value equivalent to decimal 15 (one less than the base of 16). By
convention, we use the letters A through F to represent the hexadecimal digits corresponding to
decimal values 10 through 15.

• Each number system uses positional notation—each position in which a digit is written has a dif-
ferent positional value.

• A particularly important relationship that both the octal number system and the hexadecimal num-
ber system have to the binary system is that the bases of octal and hexadecimal (8 and 16 re-
spectively) are powers of the base of the binary number system (base 2).

• To convert an octal number to a binary number, simply replace each octal digit with its three-digit
binary equivalent.

• To convert a hexadecimal number to a binary number, simply replace each hexadecimal digit with
its four-digit binary equivalent.

• Because we are accustomed to working in decimal, it is convenient to convert a binary, octal or
hexadecimal number to decimal to get a sense of the number’s “real” worth.

• To convert a number to decimal from another base, multiply the decimal equivalent of each digit
by its positional value, and sum these products.

• Computers represent negative numbers using two’s complement notation.

• To form the negative of a value in binary, first form its one’s complement by applying JavaScript’s
bitwise complement operator (~). This reverses the bits of the value. To form the two’s comple-
ment of a value, simply add one to the value’s one’s complement.

App_D_NumberSystems.fm Page 1326 Monday, July 23, 2001 4:30 PM

Appendix D Number Systems 1327

TERMINOLOGY

SELF-REVIEW EXERCISES
D.1 The bases of the decimal, binary, octal, and hexadecimal number systems are ,

, and respectively.

D.2 In general, the decimal, octal, and hexadecimal representations of a given binary number
contain (more/fewer) digits than the binary number contains.

D.3 (True/False) A popular reason for using the decimal number system is that it forms a conve-
nient notation for abbreviating binary numbers simply by substituting one decimal digit per group of
four binary bits.

D.4 The (octal / hexadecimal / decimal) representation of a large binary value is the most concise
(of the given alternatives).

D.5 (True/False) The highest digit in any base is one more than the base.

D.6 (True/False) The lowest digit in any base is one less than the base.

D.7 The positional value of the rightmost digit of any number in either binary, octal, decimal, or
hexadecimal is always .

D.8 The positional value of the digit to the left of the rightmost digit of any number in binary,
octal, decimal, or hexadecimal is always equal to .

D.9 Fill in the missing values in this chart of positional values for the rightmost four positions in
each of the indicated number systems:

decimal 1000 100 10 1
hexadecimal ... 256
binary
octal 512 ... 8 ...

D.10 Convert binary 110101011000 to octal and to hexadecimal.

D.11 Convert hexadecimal FACE to binary.

D.12 Convert octal 7316 to binary.

D.13 Convert hexadecimal 4FEC to octal. (Hint: First convert 4FEC to binary then convert that
binary number to octal.)

D.14 Convert binary 1101110 to decimal.

D.15 Convert octal 317 to decimal.

D.16 Convert hexadecimal EFD4 to decimal.

D.17 Convert decimal 177 to binary, to octal, and to hexadecimal.

D.18 Show the binary representation of decimal 417. Then show the one’s complement of 417, and
the two’s complement of 417.

base digit
base 2 number system hexadecimal number system
base 8 number system negative value
base 10 number system octal number system
base 16 number system one’s complement notation
binary number system positional notation
bitwise complement operator (~) positional value
conversions symbol value
decimal number system two’s complement notation

App_D_NumberSystems.fm Page 1327 Monday, July 23, 2001 4:30 PM

1328 Number Systems Appendix D

D.19 What is the result when the one’s complement of a number is added to itself?

SELF-REVIEW ANSWERS
D.1 10, 2, 8, 16.

D.2 Fewer.

D.3 False.

D.4 Hexadecimal.

D.5 False. The highest digit in any base is one less than the base.

D.6 False. The lowest digit in any base is zero.

D.7 1 (the base raised to the zero power).

D.8 The base of the number system.

D.9 Fill in the missing values in this chart of positional values for the rightmost four positions in
each of the indicated number systems:

decimal 1000 100 10 1
hexadecimal 4096 256 16 1
binary 8 4 2 1
octal 512 64 8 1

D.10 Octal 6530; Hexadecimal D58.

D.11 Binary 1111 1010 1100 1110.

D.12 Binary 111 011 001 110.

D.13 Binary 0 100 111 111 101 100; Octal 47754.

D.14 Decimal 2+4+8+32+64=110.

D.15 Decimal 7+1*8+3*64=7+8+192=207.

D.16 Decimal 4+13*16+15*256+14*4096=61396.

D.17 Decimal 177
to binary:

256 128 64 32 16 8 4 2 1
128 64 32 16 8 4 2 1
(1*128)+(0*64)+(1*32)+(1*16)+(0*8)+(0*4)+(0*2)+(1*1)
10110001

to octal:

512 64 8 1
64 8 1
(2*64)+(6*8)+(1*1)
261

to hexadecimal:

256 16 1
16 1
(11*16)+(1*1)
(B*16)+(1*1)
B1

App_D_NumberSystems.fm Page 1328 Monday, July 23, 2001 4:30 PM

Appendix D Number Systems 1329

D.18 Binary:

512 256 128 64 32 16 8 4 2 1
256 128 64 32 16 8 4 2 1
(1*256)+(1*128)+(0*64)+(1*32)+(0*16)+(0*8)+(0*4)+(0*2)+
(1*1)
110100001

One’s complement: 001011110
Two’s complement: 001011111
Check: Original binary number + its two’s complement

110100001
001011111

000000000

D.19 Zero.

EXERCISES
D.20 Some people argue that many of our calculations would be easier in the base 12 number sys-
tem because 12 is divisible by so many more numbers than 10 (for base 10). What is the lowest digit
in base 12? What might the highest symbol for the digit in base 12 be? What are the positional values
of the rightmost four positions of any number in the base 12 number system?

D.21 How is the highest symbol value in the number systems we discussed related to the positional
value of the first digit to the left of the rightmost digit of any number in these number systems?

D.22 Complete the following chart of positional values for the rightmost four positions in each of
the indicated number systems:

decimal 1000 100 10 1
base 6 6 ...
base 13 ... 169
base 3 27

D.23 Convert binary 100101111010 to octal and to hexadecimal.

D.24 Convert hexadecimal 3A7D to binary.

D.25 Convert hexadecimal 765F to octal. (Hint: First convert 765F to binary, then convert that bi-
nary number to octal.)

D.26 Convert binary 1011110 to decimal.

D.27 Convert octal 426 to decimal.

D.28 Convert hexadecimal FFFF to decimal.

D.29 Convert decimal 299 to binary, to octal, and to hexadecimal.

D.30 Show the binary representation of decimal 779. Then show the one’s complement of 779, and
the two’s complement of 779.

D.31 What is the result when the two’s complement of a number is added to itself?

D.32 Show the two’s complement of integer value -1 on a machine with 32-bit integers.

App_D_NumberSystems.fm Page 1329 Monday, July 23, 2001 4:30 PM

E
XHTML Colors

Colors may be specified by using a standard name (such as aqua) or a hexadecimal RGB
value (such as #00FFFF for aqua). Of the six hexadecimal digits in an RGB value, the
first two represent the amount of red in the color, the middle two represent the amount of
green in the color, and the last two represent the amount of blue in the color. For example,
black is the absence of color and is defined by #000000, whereas white is the maxi-
mum amount of red, green and blue and is defined by #FFFFFF. Pure red is #FF0000,
pure green (which the standard calls lime) is #00FF00 and pure blue is #00FFFF.
Note that green in the standard is defined as #008000. Figure E.1 contains the XHTML
standard color set. Figure E.2 contains the XHTML extended color set.

Color name Value Color name Value

aqua #00FFFF navy #000080

black #000000 olive #808000

blue #0000FF purple #800080

fuchsia #FF00FF red #FF0000

gray #808080 silver #C0C0C0

green #008000 teal #008080

lime #00FF00 yellow #FFFF00

maroon #800000 white #FFFFFF

Fig. E.1Fig. E.1Fig. E.1Fig. E.1 XHTML standard colors and hexadecimal RGB values.

App_E_HTMLColors.fm Page 1330 Monday, July 23, 2001 4:30 PM

Appendix E XHTML Colors 1331

Color name Value Color name Value

aliceblue #F0F8FF dodgerblue #1E90FF

antiquewhite #FAEBD7 firebrick #B22222

aquamarine #7FFFD4 floralwhite #FFFAF0

azure #F0FFFF forestgreen #228B22

beige #F5F5DC gainsboro #DCDCDC

bisque #FFE4C4 ghostwhite #F8F8FF

blanchedalmond #FFEBCD gold #FFD700

blueviolet #8A2BE2 goldenrod #DAA520

brown #A52A2A greenyellow #ADFF2F

burlywood #DEB887 honeydew #F0FFF0

cadetblue #5F9EA0 hotpink #FF69B4

chartreuse #7FFF00 indianred #CD5C5C

chocolate #D2691E indigo #4B0082

coral #FF7F50 ivory #FFFFF0

cornflowerblue #6495ED khaki #F0E68C

cornsilk #FFF8DC lavender #E6E6FA

crimson #DC1436 lavenderblush #FFF0F5

cyan #00FFFF lawngreen #7CFC00

darkblue #00008B lemonchiffon #FFFACD

darkcyan #008B8B lightblue #ADD8E6

darkgoldenrod #B8860B lightcoral #F08080

darkgray #A9A9A9 lightcyan #E0FFFF

darkgreen #006400 lightgoldenrodyellow #FAFAD2

darkkhaki #BDB76B lightgreen #90EE90

darkmagenta #8B008B lightgrey #D3D3D3

darkolivegreen #556B2F lightpink #FFB6C1

darkorange #FF8C00 lightsalmon #FFA07A

darkorchid #9932CC lightseagreen #20B2AA

darkred #8B0000 lightskyblue #87CEFA

darksalmon #E9967A lightslategray #778899

darkseagreen #8FBC8F lightsteelblue #B0C4DE

darkslateblue #483D8B lightyellow #FFFFE0

darkslategray #2F4F4F limegreen #32CD32

darkturquoise #00CED1 linen #FAF0E6

darkviolet #9400D3 magenta #FF00FF

deeppink #FF1493 mediumaquamarine #66CDAA

deepskyblue #00BFFF mediumblue #0000CD

dimgray #696969 mediumorchid #BA55D3

Fig. E.2Fig. E.2Fig. E.2Fig. E.2 XHTML extended colors and hexadecimal RGB values (part 1 of 2).

App_E_HTMLColors.fm Page 1331 Monday, July 23, 2001 4:30 PM

1332 XHTML Colors Appendix E

mediumpurple #9370DB plum #DDA0DD

mediumseagreen #3CB371 powderblue #B0E0E6

mediumslateblue #7B68EE rosybrown #BC8F8F

mediumspringgreen #00FA9A royalblue #4169E1

mediumturquoise #48D1CC saddlebrown #8B4513

mediumvioletred #C71585 salmon #FA8072

midnightblue #191970 sandybrown #F4A460

mintcream #F5FFFA seagreen #2E8B57

mistyrose #FFE4E1 seashell #FFF5EE

moccasin #FFE4B5 sienna #A0522D

navajowhite #FFDEAD skyblue #87CEEB

oldlace #FDF5E6 slateblue #6A5ACD

olivedrab #6B8E23 slategray #708090

orange #FFA500 snow #FFFAFA

orangered #FF4500 springgreen #00FF7F

orchid #DA70D6 steelblue #4682B4

palegoldenrod #EEE8AA tan #D2B48C

palegreen #98FB98 thistle #D8BFD8

paleturquoise #AFEEEE tomato #FF6347

palevioletred #DB7093 turquoise #40E0D0

papayawhip #FFEFD5 violet #EE82EE

peachpuff #FFDAB9 wheat #F5DEB3

peru #CD853F whitesmoke #F5F5F5

pink #FFC0CB yellowgreen #9ACD32

Color name Value Color name Value

Fig. E.2Fig. E.2Fig. E.2Fig. E.2 XHTML extended colors and hexadecimal RGB values (part 2 of 2).

App_E_HTMLColors.fm Page 1332 Monday, July 23, 2001 4:30 PM

F
Career Opportunities

Objectives
• To explore the various online career services.
• To examine the advantages and disadvantages of

posting and finding jobs online.
• To review the major online career services Web sites

available to job seekers.
• To explore the various online services available to

employers seeking to build their workforces.
What is the city but the people?
William Shakespeare

A great city is that which has the greatest men and women,
If it be a few ragged huts it is still the greatest city in the
whole world.
Walt Whitman

To understand the true quality of people, you must look into
their minds, and examine their pursuits and aversions.
Marcus Aurelius

The soul is made for action, and cannot rest till it be
employed. Idleness is its rust. Unless it will up and think and
taste and see, all is in vain.
Thomas Traherne

App_F_CareerResources.fm Page 1333 Monday, July 23, 2001 4:30 PM

1334 Career Opportunities Appendix F

F.1 Introduction
There are approximately 40,000 career-advancement services on the Internet today.1 These
services include large, comprehensive job sites, such as Monster.com (see the upcoming
Monster.com feature), as well as interest-specific job sites such as JustJava-
Jobs.com. Companies can reduce the amount of time spent searching for qualified em-
ployees by building a recruiting feature on their sites or establishing an account with a
career site. This results in a larger pool of qualified applicants, as online services can auto-
matically select and reject resumes based on user-designated criteria. Online interviews,
testing services and other resources also expedite the recruiting process.

Applying for a position online is a relatively new method of exploring career opportu-
nities. Online recruiting services streamline the process and allow job seekers to concen-
trate their energies in careers that are of interest to them. Job seekers can explore
opportunities according to geographic location, position, salary or benefits packages.

Job seekers can learn how to write a resume and cover letter, post them online and
search through job listings to find the jobs that best suit their needs. Entry-level positions,
or positions commonly sought by individuals who are entering a specific field or the job
market for the first time; contracting positions; executive-level positions and middle-man-
agement-level positions are all available on the Web.

Outline

F.1 Introduction
F.2 Resources for the Job Seeker
F.3 Online Opportunities for Employers

F.3.1 Posting Jobs Online
F.3.2 Problems with Recruiting on the Web
F.3.3 Diversity in the Workplace

F.4 Recruiting Services
F.4.1 Testing Potential Employees Online

F.5 Career Sites
F.5.1 Comprehensive Career Sites
F.5.2 Technical Positions
F.5.3 Wireless Positions
F.5.4 Contracting Online
F.5.5 Executive Positions
F.5.6 Students and Young Professionals
F.5.7 Other Online Career Services

F.6 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Works Cited

App_F_CareerResources.fm Page 1334 Monday, July 23, 2001 4:30 PM

Appendix F Career Opportunities 1335

 Job seekers will find a number of time-saving features when searching for a job online.
These include storing and distributing resumes digitally, e-mail notification of possible
positions, salary and relocation calculators, job coaches, self-assessment tools and informa-
tion on continuing education.

In this appendix, we explore online career services from the employer and employee’s
perspective. We suggest sites on which applications can be submitted, jobs can be searched
for and applicants can be reviewed. We also review services that build recruiting pages
directly into an e-business.

F.2 Resources for the Job Seeker
Finding a job online can greatly reduce the amount of time spent applying for a position.
Instead of searching through newspapers and mailing resumes, job seekers can request a
specific position in a specific industry through a search engine. Some sites allow job seek-
ers to setup intelligent agents to find jobs that meet their requirements. Intelligent agents
are programs that search and arrange large amounts of data, and report answers based on
that data. When the agent finds a potential match, it sends it to the job seeker’s inbox. Re-
sumes can be stored digitally, customized quickly to meet job requirements and e-mailed
instantaneously. Potential candidates can also learn more about a company by visiting its
Web site. Most employment sites are free to job seekers. These sites typically generate their
revenues by charging employers for posting job opportunities and by selling advertising
space on their Web pages (see the Monster.com feature).

Career services, such as FlipDog.com, search a list of employer job sites to find
positions. By searching links to employer Web sites, FlipDog.com is able to identify
positions from companies of all sizes. This feature enables job seekers to find jobs that
employers may not have posted outside the corporation’s Web site.

Monster.com

Super Bowl ads and effective marketing have made Monster.com one of the most
recognizable online brands (see Fig. B.1). In fact, in the 24 hours following Super Bowl
XXXIV, 5 million job searches occurred on Monster.com.2 The site allows people
looking for jobs to post their resumes, search job listings, read advice and information
about the job-search process and take proactive steps to improve their careers. These
services are free to job seekers. Employers can post job listings, search resume databas-
es and become featured employers.

Posting a resume at Monster.com is simple and free. Monster.com has a
resume builder that allows users to post a resume to its site in 15–30 minutes. Each user
can store up to 5 resumes and cover letters on the Monster.com server. Some com-
panies offer their employment applications directly through the Monster.com site.
Monster.com has job postings in every state and all major categories. Users can
limit access to their personal identification information. As one of the leading
recruiting sites on the Web, Monster.com is a good place to begin a job search or to
find out more about the search process.

App_F_CareerResources.fm Page 1335 Monday, July 23, 2001 4:30 PM

1336 Career Opportunities Appendix F

Job seekers can visit FlipDog.com and choose, by state, the area in which they are
looking for a position. Applicants can also conduct worldwide searches. After a user selects
a region, FlipDog.com requests the user to specify a job category containing several spe-
cific positions. The user’s choice causes a list of local employers to appear. The user can
choose a specific employer or request that FlipDog.com search the employment data-
bases for jobs offered by all employers (see Fig. B.2).

Other services, such as employment networks, also help job seekers in their search.
Sites such as Vault.com (see the Vault.com feature) and WetFeet.com allow job
seekers to post questions about employers and positions in designated chat rooms and on
bulletin boards.

F.3 Online Opportunities for Employers
Recruiting on the Internet provides several benefits over traditional recruiting. For exam-
ple, Web recruiting reaches a much larger audience than posting an advertisement in a local
newspaper. Given the breadth of the services provided by most online career services Web
sites, the cost of posting online can be considerably less expensive than posting positions
through traditional means. Even newspapers, which depend greatly on career opportunity
advertising, are starting online career sites.3

Fig. F.1Fig. F.1Fig. F.1Fig. F.1 The Monster.com home page. (Courtesy of Monster.com.)

Monster.com (Cont.)

App_F_CareerResources.fm Page 1336 Monday, July 23, 2001 4:30 PM

Appendix F Career Opportunities 1337

Fig. F.2Fig. F.2Fig. F.2Fig. F.2 FlipDog.com job search. (Courtesy of Flipdog.com.)

Vault.com: Finding the Right Job on the Web4

Vault.com allows potential employees to seek out additional, third-party informa-
tion for over 3000 companies. By visiting the Insider Research page, Web users have
access to a profile on the company of their choice, as long as it exists in Vault.com’s
database. In addition to Vault.com’s profile, there is a link to additional commentary
by company employees. Most often anonymous, these messages can provide prospec-
tive employees with potentially valuable decision-making information. However, users
must consider the integrity of the source. For example, a disgruntled employee may
leave a posting that is not an accurate representation of the corporate culture of his or
her company.

The Vault.com Electronic Watercooler™ is a message board that allows visi-
tors to post stories, questions and concerns and to advise employees and job seekers. In
addition, the site provides e-newsletters and feature stories designed to help job seekers
in their search. Individuals seeking information on business, law and graduate schools
can also find information on Vault.com.

Job-posting and career-advancement services for the job seeker are featured on
Vault.com. These services include VaultMatch, a career service that e-mails job
postings as requested, and Salary Wizard™, which helps job seekers determine the
salary they are worth. Online guides with advice for fulfilling career ambitions are also
available.

App_F_CareerResources.fm Page 1337 Monday, July 23, 2001 4:30 PM

1338 Career Opportunities Appendix F

e-Fact F.1
According to Forrester Research, 33 percent of today’s average company’s hiring budget
goes toward online career services, while the remaining 66 percent is used toward tradition-
al recruiting mechanisms. Online use is expected to increase to 42 percent by 2004, while
traditional mechanisms may be reduced to 10 percent.5 0.0

Generally, jobs posted online are viewed by a larger number of job seekers than jobs
posted through traditional means. However, it is important not to overlook the benefits of
combining online efforts with human-to-human interaction. There are many job seekers
who are not yet comfortable with the process of finding a job online. Often, online
recruiting is used as a means of freeing up a recruiter’s time for the interviewing process
and final selection.

e-Fact F.2
Cisco Systems cites a 39 percent reduction in cost-per-hire expenses, and a 60 percent re-
duction in the time spent hiring.6 0.0

F.3.1 Posting Jobs Online

When searching for job candidates online, there are many things employers need to consid-
er. The Internet is a valuable tool for recruiting, but one that takes careful planning to ac-
quire the best results. It provides a good supplementary tool, but should not be considered
the complete solution for filling positions. Web sites, such as WebHire (www.web-
hire.com), enhance a company’s online employment search (see the WebHire feature).

There are a variety of sites that allow employers to post jobs online. Some of these sites
require a fee, which generally runs between $100–200. Postings typically remain on the
Web site for 30–60 days. Employers should be careful to post to sites that are most likely
to be visited by eligible candidates. As we discovered in the previous section, there are a
variety of online career services focused on specific industries, and many of the larger,
more comprehensive sites have categorized their databases by job category.

When designing a posting, the recruiter should consider the vast number of postings
already on the Web. Defining what makes the job position unique, including information
such as benefits and salary, might convince a qualified candidate to further investigate the
position (see Fig. B.3).7

HotJobs.com career postings are cross-listed on a variety of other sites, thus
increasing the number of potential employees who see the job listings. Like Mon-
ster.com and jobfind.com, hotjobs.com requires a fee per listing. Employers
also have the option of becoming HotJob.com members. Employers can gain access to
HotJob’s Private Label Job Boards (private corporate employment sites), online recruiting
technology and online career fairs.

Employers can also use the site. HR Vault, a feature of Vault.com, provides
employers with a free job-posting site. It offers career-management advice, employer-
to-employee relationship management and recruiting resources.

Vault.com: Finding the Right Job on the Web4 (Cont.)

App_F_CareerResources.fm Page 1338 Monday, July 23, 2001 4:30 PM

Appendix F Career Opportunities 1339

Boston Herald Job Find (www.jobfind.com) also charges employers to post on its
site. The initial fee entitles the employer to post up to three listings. Employers have no lim-
itations on the length of their postings.

Other Web sites providing employers with employee recruitment services include
CareerPath.com, America’s Job Bank (www.ajb.dni.us/employer),
CareerWeb (www.cweb.com), Jobs.com and Career.com.

WebHire™8

Designed specifically for recruiters and employers, WebHire is a multifaceted service
that provides employers with end-to-end recruiting solutions. The service offers job-
posting services as well as candidate searches. The most comprehensive of the services,
WebHire™ Enterprise, locates and ranks candidates found through resume-scanning
mechanisms. Clients will also receive a report indicating the best resources for their
search. Other services available through the WebHire™ Employment Services Network
include preemployment screening, tools for assessing employees’ skill levels and in-
formation on compensation packages. An employment law advisor helps organizations
design interview questions.

WebHire™ Agent is an intelligent agent that searches for qualified applicants
based on job specifications. When WebHire Agent identifies a potential candidate, an
e-mail is automatically sent to the candidate to generate interest. WebHire Agent then
ranks applicants according to the skills information it gains from the Web search; the
information is stored so that new applicants are distinguished from those who have
already received an e-mail from the site.

Yahoo!® Resumes, a feature of WebHire, allows recruiters to find potential
employees by typing in keywords on the Yahoo! Resumes search engine. Employers
can purchase a year’s membership to the recruiting solution for a flat fee; there are no
per-use charges.

Job Seeker’s Criteria

Position (responsibilities)

Salary

Location

Benefits (health, dental, stock options)

Advancement

Time Commitment

Training Opportunities

Tuition Reimbursement

Corporate Culture

Fig. F.3Fig. F.3Fig. F.3Fig. F.3 List of a job seeker’s criteria.

App_F_CareerResources.fm Page 1339 Monday, July 23, 2001 4:30 PM

1340 Career Opportunities Appendix F

F.3.2 Problems with Recruiting on the Web
The large number of applicants presents a challenge to both job seekers and employers. On
many recruitment sites, matching resumes to positions is conducted by resume-filtering
software. The software scans a pool of resumes for keywords that match the job description.
While this software increases the number of resumes that receive attention, it is not a fool-
proof system. For example, the resume-filtering software might overlook someone with
similar skills to those listed in the job description, or someone whose abilities would enable
them to learn the skills required for the position. Digital transmissions can also create prob-
lems because certain software platforms are not always acceptable by the recruiting soft-
ware. This sometimes results in an unformatted transmission, or a failed transmission.

A lack of confidentiality is another disadvantage of online career services. In many
cases, a job candidate will want to search for job opportunities anonymously. This reduces
the possibility of offending the candidate’s current employer. Posting a resume on the Web
increases the likelihood that the candidate’s employer might come across it when recruiting
new employees. The traditional method of mailing resumes and cover letters to potential
employers does not impose the same risk.

According to recent studies, the number of individuals researching employment posi-
tions through traditional means, such as referrals, newspapers and temporary agencies, far
outweighs the number of job seekers researching positions through the Internet.9 Optimists
feel, however, that this disparity is largely due to the early stages of e-business develop-
ment. Given time, online career services will become more refined in their posting and
searching capabilities, decreasing the amount of time it takes for a job seeker to find jobs
and employers to fill positions.

F.3.3 Diversity in the Workplace

Every workplace inevitably develops its own culture. Responsibilities, schedules, dead-
lines and projects all contribute to a working environment. Perhaps the most defining ele-
ments of a corporate culture are the employees. For example, if all employees were to have
the same skills and the same ideas, the workplace would lack diversity. It might also lack
creativity and enthusiasm. One way to increase the dynamics of an organization is to em-
ploy people of all backgrounds and cultures.

The Internet hosts demographic-specific sites for employers seeking to increase diver-
sity in the workplace. By recruiting people from different backgrounds, new ideas and per-
spectives are brought forth, helping businesses meet the needs of a larger, more diverse
target audience.10

Blackvoices.com and hirediversity.com are demographic-specific Web
sites. BlackVoices™, which functions primarily as a portal (a site offering news, sports and
weather information, as well as the ability to search the Web), features job searching capa-
bilities and the ability for prospective employees to post resumes. HireDiversity is divided
into several categories, including opportunities for African Americans, Hispanics and
women. Other online recruiting services place banner advertisements on ethnic Web sites
for companies seeking diverse workforces.

The Diversity Directory (www.mindexchange.com) offers international career-
searching capabilities. Users selecting the Diversity site can find job opportunities, infor-
mation and additional resources to help them in their career search. The site can be searched

App_F_CareerResources.fm Page 1340 Monday, July 23, 2001 4:30 PM

Appendix F Career Opportunities 1341

according to demographics (African American, Hispanic, alternative lifestyle, etc.) or by
subject (employer, position, etc.) via hundreds of links. Featured sites include Bilin-
gualJobs.com, Latin World and American Society for Female Entrepreneurs.

Many sites have sections dedicated to job seekers with disabilities. In addition to pro-
viding job-searching capabilities, these sites include additional resources, such as equal
opportunity documents and message boards. The National Business and Disability Council
(NBDC) provides employers with integration and accessibility information for employing
people with disabilities, and the site also lists opportunities for job seekers.

F.4 Recruiting Services
There are many services on the Internet that help employers match individuals to positions.
The time saved by conducting preliminary searches on the Internet can be dedicated to in-
terviewing qualified candidates and making the best matches possible.

Advantage Hiring, Inc. (www.advantagehiring.com) provides employers with
a resume-screening service. When a prospective employee submits a resume for a partic-
ular position, Advantage Hiring, Inc. presents Net-Interview™, a small questionnaire to
supplement the information presented on the resume. The site also offers SiteBuilder, a ser-
vice that helps employers build an employee recruitment site. An online demonstration can
be found at www.advantagehiring.com. The demonstration walks the user through
the Net-Interview software, as well as a number of other services offered by Advantage
Hiring (see Fig. B.4).

Recruitsoft.com is an application service provider (ASP) that offers companies
recruiting software on a pay-per-hire basis (Recruitsoft receives a commission on hires
made via its service). Recruiter WebTop™ is the company’s online recruiting software. It
includes features such as Web-site hosting, an employee-referral program, skill-based
resume screening, applicant-tracking capabilities and job-board posting capabilities. A
demonstration of Recruiter WebTop’s Corporate Recruiting Solutions can be found at
www.recruitsoft.com/process. The demonstration shows how recruiting solu-
tions find and rank potential candidates. More information about Recruitsoft’s solution can
be viewed in a QuickTime media player demonstration, found at www.recruit-
soft.com/corpoVideo.

Peoplescape.com is an online service that helps employers recruit employees and
maintain a positive work environment once the employee has been hired. In addition to
searches for potential candidates, Peoplescape offers PayCheck™, LegalCheck™ and Peo-
pleCheck™. These services help to ensure that compensation offers are adequate, legal
guidelines are met and candidates have provided accurate information on their resumes and
during the hiring process. For job seekers, Peoplescape offers searching capabilities,
insights to career transitions, a job compensation calculator that takes benefits and bonuses
into consideration when exploring a new job possibility and a series of regularly posted arti-
cles relevant to the job search.11

To further assist companies in their recruiting process, Web sites such as Refer.com
reward visitors for successful job referrals. Highly sought-after positions can earn thou-
sands of dollars. If a user refers a friend or a family member and he or she is hired, the user
receives a commission.

Other online recruiting services include SkillsVillage.com, Hire.com, Mor-
ganWorks.com and Futurestep.com™.

App_F_CareerResources.fm Page 1341 Monday, July 23, 2001 4:30 PM

1342 Career Opportunities Appendix F

F.4.1 Testing Potential Employees Online

The Internet also provides employers with a cost-effective means of testing their prospec-
tive employees in such categories as decision making, problem solving and personality.
Services such eTest help to reduce the cost of in-house testing and to make the interview
process more effective. Test results, given in paragraph form, present employers with the
interested individual’s strengths and weaknesses. Based on these results, the report sug-
gests interview methods, such as asking open-ended questions, which are questions that re-
quire more than a “yes” or “no” response. Sample reports and a free-trial test can be found
at www.etest.net.

Employers and job seekers can also find career placement exercises at www.advi-
sorteam.net/AT/User/kcs.asp. Some of these services require a fee. The tests
ask several questions regarding the individual’s interests and working style. Results help
candidates determine the best career for their skills and interests.

Fig. F.4Fig. F.4Fig. F.4Fig. F.4 Advantage Hiring, Inc.’s Net-Interview™ service. (Courtesy of
Advantage Hiring, Inc.)

App_F_CareerResources.fm Page 1342 Monday, July 23, 2001 4:30 PM

Appendix F Career Opportunities 1343

F.5 Career Sites
Online career sites can be comprehensive or industry specific. In this section, we explore a
variety of sites on the Web that accommodate the needs of both the job seeker and the em-
ployer. We review sites offering technical positions, free-lancing opportunities and con-
tracting positions.

F.5.1 Comprehensive Career Sites

As mentioned previously, there are many sites on the Web that provide job seekers with ca-
reer opportunities in multiple fields. Monster.com is the largest of these sites, attracting
the greatest number of unique visitors per month. Other popular online recruiting sites include
JobsOnline.com, HotJobs.com, www.jobtrak.com and Headhunter.net.

Searching for a job online can be a conducted in a few steps. For example, during an
initial visit to JobsOnline.com, a user is required to fill out a registration form. The
form requests basic information, such as name, address and area of interest. After regis-
tering, members can search through job postings according to such criteria as job category,
location and the number of days the job has been posted. Contact information is provided
for additional communication. Registered members are offered access to XDrive™
(www.xdrive.com), which provides 25 MB of storage space for resumes, cover letters
and additional communication. Stored files can be shared through any Web browser or
Wireless Application Protocol (WAP)-enabled device. Driveway.com offers a similar
service, allowing individuals to store, share and organize job search files online. An online
demonstration of the service can be found at www.driveway.com. The animated demo
walks the user through the features offered by the service. Driveway.com offers 100 MB
of space, and the service is free.12 Other sites, such as Cruel World (see the Cruel World
feature), allow users to store and send their resumes directly to employers.

Cruel World13

Cruel World is a free, online career advancement service for job seekers. After becom-
ing a registered member, your information is matched with available positions in the
Cruel World database. When an available job matches your criteria, JobCast®, a fea-
ture of Cruel World, sends an e-mail alerting you of the available position. If you are
interested, you can send your resume to the employer that posted the position, custom-
ized to the job’s requirements. If you do not wish to continue your search, you can sim-
ply send a negative response via e-mail.

The client list, or the list of companies seeking new employees through Cruel
World, can be viewed at www.cruelworld.com/corporate/aboutus.asp
(Fig. B.5). Additional features on the site include hints for salary negotiation; a self-
assessment link to CareerLeader.com, where, for a small fee, members can reas-
sess their career goals under the advisement of career counselors and a relocation cal-
culator for job seekers who are considering changing location.

Employers seeking to hire new talent can post opportunities through Cruel World.
posting positions requires a fee. A demonstration of the service can be viewed at
www.cruelworld.com/clients/quicktour1.asp. The demonstration is a
three-step slide of JobCast.

App_F_CareerResources.fm Page 1343 Monday, July 23, 2001 4:30 PM

1344 Career Opportunities Appendix F

F.5.2 Technical Positions
Technical positions are becoming widely available as the Internet grows more pervasive.
Limited job loyalty and high turnover rates in technical positions allow job seekers to find
jobs that best suit their needs and skills. Employers are required to rehire continuously to
keep positions filled and productivity levels high. The amount of time for an employer to
fill a technical position can be greatly reduced by using an industry-specific site. Career
sites designed for individuals seeking technical positions are among the most popular on-
line career sites. In this section, we review several sites that offer recruiting and hiring op-
portunities for technical positions.

e-Fact F.3
It costs a company 25 percent more to hire a new technical employee than it does to pay an
already employed individual’s salary.14 0.0

Dice.com (www.dice.com) is a recruiting Web site that focuses on technical
fields. Company fees are based on the number of jobs the company posts and the frequency

Fig. F.5Fig. F.5Fig. F.5Fig. F.5 Cruel World online career services. (Courtesy of Cruel World.)

Cruel World13 (Cont.)

App_F_CareerResources.fm Page 1344 Monday, July 23, 2001 4:30 PM

Appendix F Career Opportunities 1345

with which the postings are updated. Job seekers can post their resumes and search the job
database for free. JustComputerJobs.com directs job seekers toward 39 specific
computer technologies for their job search. Language-specific sites include JustJava-
Jobs.com, JustCJobs.com and JustPerlJobs.com. Hardware, software and
communications technology sites are also available. Other technology recruiting sites
include HireAbility.com, Bid4Geeks.com, HotDispatch.com and
www.cmpnet.com/careerdirect.

F.5.3 Wireless Positions

The wireless industry is developing rapidly. According to WirelessResumes.com, the
number of wireless professionals is 328,000. This number is expected to increase 40 percent
each year for the next five years. To accommodate this growth, and the parallel demand for
professionals, WirelessResumes.com has created an online career site specifically for
the purpose of filling wireless jobs (see the WirelessResumes.com feature).

The Caradyne Group (www.pcsjobs.com), an executive search firm, connects job
seekers to employers in the wireless technology field. Interested job seekers must first fill
out a “Profile Questionnaire.” This information is then entered into The Caradyne Group’s
database and is automatically matched to an open position in the job seeker’s field of exper-
tise. If there are no open positions, a qualified consultant from The Caradyne Group will
contact the job seeker for further a interview and discussion. Jobs4wireless.com also
provides job seekers with employment opportunities in the wireless industry.

F.5.4 Contracting Online

The Internet also serves as a forum for job seekers to find employment on a project-by-
project basis. Online contracting services allow businesses to post positions for which they
wish to hire outside resources, and individuals can identify projects that best suit their in-
terests, schedules and skills.

e-Fact F.4
Approximately six percent of America’s workforce falls into the category of independent con-
tractor.15 0.0

WirelessResumes.com: Filling Wireless Positions

WirelessResumes.com is an online career site focused specifically on matching
wireless professionals with careers in the industry. This narrow focus enables business-
es to locate new employees quickly—reducing the time and expense attached to tradi-
tional recruiting methods. Similarly, candidates can limit their searches to precisely the
job category of interest. Wireless carriers, device manufacturers, WAP and Bluetooth
developers, e-commerce companies and application service providers (ASPs) are
among those represented on the site.

In addition to searching for jobs and posting a resume, WirelessRe-
sumes.com provides job seekers with resume writing tips, interviewing techniques,
relocation tools and assistance in obtaining a Visa or the completion of other necessary
paperwork. Employers can use the site to search candidates and post job opportunities.

App_F_CareerResources.fm Page 1345 Monday, July 23, 2001 4:30 PM

1346 Career Opportunities Appendix F

Guru.com (www.guru.com) is a recruiting site for contract employees. Independent
contractors, private consultants and trainers use guru.com to find short-term and long-term
contract assignments. Tips, articles and advice are available for contractors who wish to learn
more about their industry. Other sections of the site teach users how to manage their busi-
nesses, buy the best equipment and deal with legal issues. Guru.com includes an online
store where contractors can buy products associated with small-business management, such
as printing services and office supplies. Companies wishing to hire contractors must register
with guru.com, but individuals seeking contract assignments do not.

Monster.com’s Talent Market™ offers online auction-style career services to free
agents. Interested users design a profile, listing their qualifications. After establishing a
profile, free agents “Go Live” to start the bidding on their services. The bidding lasts for
five days during which users can view the incoming bids. At the close of five days, the user
can choose the job of his or her choice. The service is free for users, and bidding employers
pay a commission on completed transactions.

eLance.com is another site where individuals can find contracting work. Interested
applicants can search eLance’s database by category, including business, finance and mar-
keting (see Fig. B.6). These projects, or requests for proposals (RFPs), are posted by com-
panies worldwide. When users find projects for which they feel qualified, they submit bids
on the projects. Bids must contain a user’s required payment, a statement detailing the
user’s skills and a feedback rating drawn from other projects on which the user has worked.
If a user’s bid is accepted, the user is given the project, and the work is conducted over
eLance’s file-sharing system, enabling both the contractor and the employer to contact one
another quickly and easily. For an online demonstration, visit www.elance.com and
click on the demonstration icon.

FreeAgent (www.freeagent.com) is another site designed for contracting
projects. Candidates create an e.portfolio that provides an introductory “snapshot” of their
skills, a biography, a list of their experience and references. The interview section of the
portfolio lists questions and the applicant’s answers. Examples of e.portfolios can be found
at www.freeagent.com/splash/models.asp. Free Agent’s e.office offers a ben-
efits package to outside contractors, including health insurance, a retirement plan and reim-
bursement for business-related expenses.

Other Web sites that provide contractors with projects and information include
eWork® Exchange (www.ework.com), MBAFreeAgent.com, Aquent.com and
WorkingSolo.com.

F.5.5 Executive Positions

Next, we discuss the advantages and disadvantages of finding an executive position online.
Executive career advancement sites usually include many of the features found on compre-
hensive job-search sites. Searching for an executive position online differs from finding an
entry-level position online. The Internet allows individuals to continually survey the job mar-
ket. However, candidates for executive-level positions must exercise a higher level of caution
when determining who is able to view their resume. Applying for an executive position online
is an extensive process. As a result of the high level of scrutiny passed on a candidate during
the hiring process, the initial criteria presented by an executive level candidate often are more
specific than the criteria presented by the first-time job seeker. Executive positions often are
difficult to fill, due to the high demands and large amount of experience required for the jobs.

App_F_CareerResources.fm Page 1346 Monday, July 23, 2001 4:30 PM

Appendix F Career Opportunities 1347

SixFigureJobs (www.sixfigurejobs.com) is a recruitment site designed for
experienced executives. Resume posting and job searching is free to job seekers. Other
sites, including www.execunet.com, Monster.com’s ChiefMonster™
(www.chiefmonster.com) and www.nationjob.com are designed for helping
executives find positions.

F.5.6 Students and Young Professionals
The Internet provides students and young professionals with tools to get them started in the
job market. Individuals still in school and seeking internships, individuals who are just
graduating and individuals who have been in the workforce for a few years make up the
target market. Additional tools specifically designed for this demographic (a population de-
fined by a specific characteristic) are available. For example, journals kept by previous in-
terns provide prospective interns with information regarding what to look for in an
internship, what to expect and what to avoid. Many sites will provide information to lead
young professionals in the right direction, such as matching positions to their college or
university major.

Experience.com is a career services Web site geared toward the younger popu-
lation. Members can search for positions according to specific criteria, such as geo-

Fig. F.6Fig. F.6Fig. F.6Fig. F.6 eLance.com request for proposal (RFP) example. (Courtesy of
eLance, Inc.]

App_F_CareerResources.fm Page 1347 Monday, July 23, 2001 4:30 PM

1348 Career Opportunities Appendix F

graphic location, job category, keywords, commitment (i.e. full time, part time,
internship), amount of vacation and amount of travel time. After applicants register, they
can send their resumes directly to the companies posted on the site. In addition to the
resume, candidates provide a personal statement, a list of applicable skills and their lan-
guage proficiency. Registered members also receive access to the site’s Job Agent. Up to
three Job Agents can be used by each member. The agents search for available positions,
based on the criteria posted by the member. If a match is made, the site contacts the can-
didate via e-mail.16,17

Internshipprograms.com helps students find internships. In addition to posting
a resume and searching for an internship, students can use the relocation calculator to com-
pare the cost of living in different regions. Tips on building resumes and writing essays are
provided. The City Intern program provides travel, housing and entertainment guides to
interns interviewing or accepting a position in an unfamiliar city, making them feel more
at home in a new location.

In addition to its internship locators, undergraduate, graduate, law school, medical
school and business school services, the Princeton Review’s Web site
(www.review.com) offers career services to graduating students. While searching for a
job, students and young professionals can also read through the site’s news reports or even
increase their vocabulary by visiting the “word for the day.” Other career sites geared
toward the younger population include campuscareercenter.com, brassring-
campus.com and collegegrads.com.

F.5.7 Other Online Career Services
In addition to Web sites that help users find and post jobs online, there are a number of Web
sites that offer features that will enhance searches, prepare users to search online, help ap-
plicants design resumes or help users calculate the cost of relocating.

Salary.com helps job seekers gauge their expected income, based on position, level
of responsibility and years of experience. The search requires job category, ZIP code and
specific job title. Based on this information, the site will return an estimated salary for an
individual living in the specified area and employed in the position described. Estimates are
returned based on the average level of income for the position.

In addition to helping applicants find employment, www.careerpower.com pro-
vides individuals with tests that will help them realize their strengths, weaknesses, values,
skills and personality traits. Based on the results, which can be up to 10–12 pages per test,
users can best decide what job categories they are qualified for and what career choice will
be best suited to their personal ambitions. The service is available for a fee.

InterviewSmart™ is another service offered through CareerPower that prepares job
seekers of all levels for the interviewing process. The service can be downloaded for a min-
imal fee or can be used on the Web for free. Both versions are available at www.career-
power.com/CareerPerfect/interviewing.htm#is.start.anchor.

Additional services will help applicants find positions that meet their unique needs, or
design their resumes to attract the attention of specific employers. Dogfriendly.com,
organized by geographic location, helps job seekers find opportunities that allow them to
bring their pets to work, and cooljobs.com is a searchable database of unique job
opportunities.

App_F_CareerResources.fm Page 1348 Monday, July 23, 2001 4:30 PM

Appendix F Career Opportunities 1349

F.6 Internet and World Wide Web Resources

Information Technology (IT) Career Sites

www.dice.com
This is a recruiting Web site that focuses on the computer industry.
www.guru.com
This is a recruiting site for contract employees. Independent contractors, private consultants and train-
ers can use guru.com to find short-term and long-term work.

www.hallkinion.com
This is a Web recruiting service for individuals seeking IT positions.

www.techrepublic.com
This site provides employers and job seekers with recruiting capabilities and information regarding
developing technology.

www.justcomputerjobs.com
This site serves as a portal with access to language-specific sites, including Java, Perl, C and C++.

www.bid4geeks.com
This career services site is geared toward the technical professional.

www.hotdispatch.com
This forum provides software developers with the opportunity to share projects, discuss code and ask
questions.

www.techjobs.bizhosting.com/jobs.htm
This site directs job seekers to links of numerous technological careers listed by location, internet,
type of field, etc.

Career Sites

www.careerbuilder.com
A network of career sites, including IT Careers, USA Today and MSN, CareerBuilder attracts 3 mil-
lion unique job seekers per month. The site provides resume-builder and job-searching agents.

www.recruitek.com
This free site caters to jobs seekers, employers and contractors.

www.monster.com
This site, the largest of the online career sites, allows people looking for jobs to post their resumes,
search job listings and read advice and information about the job-search process. It also provides a
variety of recruitment services for employers.

www.jobsonline.com
Similar to Monster.com, this site provides opportunities for job seekers and employers.

www.hotjobs.com
This online recruiting site offers cross-listing possibilities on additional sites.

www.jobfind.com
This job site is an example of locally targeted job-search resources. JobFind.com targets the Bos-
ton area.

www.flipdog.com
This site allows online job candidates to search for career opportunities. It employs intelligent agents
to scour the Web and return jobs matching the candidate’s request.

App_F_CareerResources.fm Page 1349 Monday, July 23, 2001 4:30 PM

1350 Career Opportunities Appendix F

www.cooljobs.com
This site highlights unique job opportunities.

www.careerhighway.com
This site presents an opportunity for job seekers and employers to match up and register the career-
specific information for which they are searching.

www.inetsupermall.com
This site aids job searchers in creating professional resumes and connecting with employers.

www.wirelessnetworksonline.com
This site helps connect job searchers to careers for which they are qualified.

www.careerweb.com
This site highlights featured employers and jobs and allows job seekers and employers to post and
view resumes, respectively.

Executive Positions

www.sixfigurejobs.com
This is a recruitment site designed for experienced executives.

www.leadersonline.com
This career services Web site offers confidential job searches for mid-level professionals. Potential
job matches are e-mailed to job candidates.

www.ecruitinginc.com
This site is designed to search for employees for executive positions.

Diversity

www.latpro.com
This site is designed for Spanish-speaking and Portuguese-speaking job seekers. In addition to pro-
viding resume-posting services, the site enables job seekers to receive matching positions via e-mail.
Advice and information services are available.

www.blackvoices.com
This portal site hosts a career center designed to match African American job seekers with job oppor-
tunities.

www.hirediversity.com
In addition to services for searching for and posting positions, resume-building and updating services
are also available on this site. The site targets a variety of demographics including African Americans,
Asian Americans, people with disabilities, women and Latin Americans.

People with Disabilities

www.halftheplanet.com
This site represents people with disabilities. The site is large and includes many different resources
and information services. A special section is dedicated to job seekers and employers.

www.wemedia.com
This site is designed to meet the needs of people with disabilities. It includes a section for job seekers
and employers.

www.disabilities.com
This site provides users with a host of links to information resources on career opportunities.

App_F_CareerResources.fm Page 1350 Monday, July 23, 2001 4:30 PM

Appendix F Career Opportunities 1351

www.rileyguide.com
This site includes a section with opportunities for people with disabilities, which can be viewed at
www.dbm.com/jobguide/vets.html#abled.

www.mindexchange.com
The diversity section of this site provides users with several links to additional resources regarding
people with disabilities and employment.

www.usdoj.gov/crt/ada/adahom1.htm
This is the Americans with Disabilities Act home page.

www.abanet.org/disability/home.html
This is the Web site for The Commission on Mental and Physical Disability Law.

janweb.icdi.wvu.edu
The Job Accommodation Web site offers consulting services to employers regarding integration of
people with disabilities into the workplace.

General Resources

www.vault.com
This site provides potential employees with “insider information” on over 3000 companies. In addi-
tion, job seekers can search through available positions and post and answer questions on the message
board.

www.wetfeet.com
Similar to vault.com, this site allows visitors to ask questions and receive “insider information”
on companies that are hiring.

Free Services

www.sleuth.com
On this site job seekers can fill out a form that indicates their desired field of employment. Job
Sleuth™ searches the Internet and returns potential matches to the user’s inbox. The service is free.

www.ajb.org
America’s Job Bank is an online recruiting service provided through the Department of Labor and the
state employment service. Searching for and posting positions on the site are free.

www.xdrive.com
This free site provides members with 25 MB of storage space for housing documents related to a us-
er’s job search. XDrive is able to communicate with all browser types and has wireless capabilities.

www.driveway.com
Similar to XDrive.com, this Web site provides users with 100 MB of storage space. Users can back
up, share and organize information about various job searches. Driveway.com works on all plat-
forms.

Special Interest

www.eharvest.com/careers/index.cfm
This Web site provides job seekers interested in agricultural positions with online career services.

www.opportunitynocs.org
This career services site is for both employers and job seekers interested in non-profit opportunities.

www.experience.com
This Web site is designed specifically for young professionals and students seeking full-time, part-
time and internship positions.

App_F_CareerResources.fm Page 1351 Monday, July 23, 2001 4:30 PM

1352 Career Opportunities Appendix F

www.internshipprograms.com
Students seeking internships can search job listings on this site. It also features City Intern, to help
interns become acquainted with a new location.

www.brassringcampus.com
This site provides college grads and young professionals with less than five years of experience with
job opportunities. Additional features help users buy cars or find apartments.

Online Contracting

www.ework.com
This online recruiting site matches outside contractors with companies needing project specialists.
Other services provided through eWork include links to online training sites, benefits packages and
payment services and online meeting and management resources.

www.elance.com
Similar to eWork.com, eLance matches outside contractors with projects.

www.freeagent.com
FreeAgent matches contractors with projects.

www.MBAFreeAgent.com
This site is designed to match MBAs with contracting opportunities.

www.aquent.com
This site provides access to technical contracting positions.

www.WorkingSolo.com
This site helps contractors begin their own projects.

Recruiting Services

www.advantagehiring.com
This site helps employers screen resumes.

www.etest.net
This site provides employers with testing services to assess the strengths and weaknesses of prospec-
tive employees. This information can be used for better hiring strategies.

www.hire.com
Hire.com’s eRecruiter is an application service provider that helps organizations streamline their
Web-recruiting process.

www.futurestep.com
Executives can register confidentially at Futurestep.com to be considered for senior executive
positions. The site connects registered individuals to positions. It also offers career management ser-
vices.

www.webhire.com
This site provides employers with end-to-end recruiting solutions.

Wireless Career Resources

www.wirelessresumes.com
This site connects employers and job seekers with resumes that focus on jobs revolving around wire-
less technology.

www.msua.org/job.htm
This site contains links to numerous wireless job-seeking Web sites.

App_F_CareerResources.fm Page 1352 Monday, July 23, 2001 4:30 PM

Appendix F Career Opportunities 1353

www.jobs4wireless.com
This site searches for jobs in the wireless telecommunications field.

www.staffing.net
This site allows job seekers to discover openings in the world of wireless technology and communi-
cations.

www.wiwc.org
This site’s focus is wireless communication job searching for women.

www.firstsearch.com
At this site a job seeker is able to discover part-time, full-time and salary-based opportunities in the
wireless industry.

www.pcsjobs.com
This is the site for The Caradyne Group, which is an executive search firm that focuses on finding job
seekers wireless job positions.

www.cnijoblink.com
CNI Career Networks offers confidential, no-charge job placement in the wireless and telecommuni-
cations industries.

SUMMARY
• The Internet can improve an employer’s ability to recruit employees and help users find career op-

portunities worldwide.

• Job seekers can learn how to write a resume and cover letter, post them online and search through
job listings to find the jobs that best suit their needs.

• Employers can post jobs that can be searched by an enormous pool of applicants.

• Job seekers can store and distribute resumes digitally, receive e-mail notification of possible posi-
tions, use salary and relocation calculators, consult job coaches and use self-assessment tools when
searching for a job on the Web.

• There are approximately 40,000 career-advancement services on the Internet today.

• Finding a job online can greatly reduce the amount of time spent applying for a position. Potential
candidates can also learn more about a company by visiting its Web site.

• Most sites are free to job seekers. These sites typically generate their revenues by charging em-
ployers who post their job opportunities, and by selling advertising space on their Web pages.

• Sites such as Vault.com and WetFeet.com allow job seekers to post questions about employ-
ers and positions in chat rooms and on bulletin boards.

• On many recruitment sites, the match of a resume to a position is conducted with resume-filtering
software.

• A lack of confidentiality is a disadvantage of online career services.

• According to recent studies, the number of individuals researching employment positions through
means other than the Internet, such as referrals, newspapers and temporary agencies, far outweighs
the number of Internet job seekers.

• Career sites designed for individuals seeking technical positions are among the most popular on-
line career sites.

• Online contracting services allow businesses to post positions for which they wish to hire outside re-
sources, and allow individuals to identify projects that best suit their interests, schedules and skills.

• The Internet provides students and young professionals with some of the necessary tools to get
them started in the job market. The target market is made up of individuals still in school and seek-

App_F_CareerResources.fm Page 1353 Monday, July 23, 2001 4:30 PM

1354 Career Opportunities Appendix F

ing internships, individuals who are just graduating and individuals who have been in the work-
force for a few years.

• There are a number of Web sites that offer features that enhance job searches, prepare users to
search online, help design applicants’ resumes or help users calculate the cost of relocating.

• Web recruiting reaches a much larger audience than posting an advertisement in the local news-
paper.

• There are a variety of sites that allow employers to post jobs online. Some of these sites require a
fee, which generally runs between $100–200. Postings remain on the Web site for approximately
30–60 days.

• Employers should try to post to sites that are most likely to be visited by eligible candidates.

• When designing a job posting, defining what makes a job position unique and including information
such as benefits and salary might convince a qualified candidate to further investigate the position.

• The Internet hosts demographic-specific sites for employers seeking to increase diversity in the
workplace.

• The Internet has provided employers with a cost-effective means of testing their prospective em-
ployees in such categories as decision making, problem solving and personality.

TERMINOLOGY

SELF-REVIEW EXERCISES
F.1 State whether each of the following is true or false. If false, explain why.

a) Online contracting services allow businesses to post job listings for specific projects that
can be viewed by job seekers over the Web.

b) Employment networks are Web sites designed to provide information on a selected com-
pany to better inform job seekers of the corporate environment.

c) The large number of applications received over the Internet is considered an advantage
by most online recruiters.

d) There is a greater number of individuals searching for work on the Web than through all
other mediums combined.

e) Sixteen percent of America’s workforce is categorized as independent contractors.

F.2 Fill in the blanks in each of the following statements:
a) There are approximately online career services Web sites on the Internet to-

day.
b) The Internet hosts demographic-specific sites for employers seeking to increase

 in the workplace.
c) In the 24 hours following the Super Bowl, job searches occurred on Mon-

ster.com.
d) Many recruitment sites use to filter through received resumes.
e) Employers should try to post to sites that are most likely to be visited by can-

didates.

corporate culture open-ended question
demographic pay-per-hire
end-to-end recruiting solutions request for proposal (RFP)
entry-level position resume-filtering software
online contracting service

App_F_CareerResources.fm Page 1354 Monday, July 23, 2001 4:30 PM

Appendix F Career Opportunities 1355

ANSWERS TO SELF-REVIEW EXERCISES
F.1 a) True. b) True. c) False. The large number of applicants reduces the amount of time a re-
cruiter can spend interviewing and making decisions. Despite screening processes, many highly qual-
ified applicants can be overlooked. d) False. The number of individuals researching employment
positions through other means, such as referrals, newspapers and temporary agencies, far outweighs
the number of Internet job seekers. e) False. Six percent of America’s workforce is categorized as in-
dependent consultants.

F.2 a) 40,000. b) diversity. c) 5 million. d) resume-filtering software. e) eligible.

EXERCISES
F.3 State whether each of the following is true or false. If false, explain why.

a) RFP is the acronym for request for proposal.
b) The Internet has provided employers with a cost-effective means of testing their prospec-

tive employees in such categories as decision making, problem solving and personality.
c) Online job recruiting can completely replace other means of hiring employees.
d) Posting a job online is less expensive than placing ads in more traditional media.
e) A lack of confidentiality is a disadvantage of online career services.

F.4 Fill in the blanks in each of the following statements:
a) Finding a job online can greatly the amount of time spent applying for a po-

sition.
b) is an example of a Web site in which contractors can bid on projects.
c) When designing a job posting, defining what makes the position unique and including

information such as and might convince a qualified candidate
to further investigate the position.

d) The Internet hosts for employers seeking to increase diversity in the work-
place.

e) The Internet provides employers with a cost-effective means of testing their prospective
employees in such categories as , and .

F.5 Define the following
a) corporate culture
b) pay-per-hire
c) request for proposal (RFP)
d) resume-filtering software

F.6 (Class discussion). In this appendix, we discuss the shortcomings and advantages of recruit-
ing on the Internet. Using the text, additional reading material and personal accounts answer the fol-
lowing questions. Be prepared to discuss your answers.

a) Do you think finding a job is easier on the Web? Why or why not?
b) What disadvantages can you identify?
c) What are some of the advantages?
d) Which online recruiting services do you think will be most successful? Why?

F.7 Many of the career services Web sites we have discussed in this appendix offer resume-
building capabilities. Begin building your resume, choosing an objective that is of interest to you.
Think of your primary concerns. Are you searching for a paid internship or a volunteer opportunity?
Do you have a specific location in mind? Do you have an opportunity for future employment? Are
stock options important to you? Find several entry-level jobs that meet your requirements. Write a
short summary of your results. Include any obstacles and opportunities.

App_F_CareerResources.fm Page 1355 Monday, July 23, 2001 4:30 PM

1356 Career Opportunities Appendix F

F.8 In this appendix, we have discussed online contracting opportunities. Visit FreeAgent
(www.freeagent.com) and create your own e.portfolio, or visit eLance (www.elance.com)
and search the requests for proposals for contracting opportunities that interest you.

F.9 In this appendix, we have discussed many career services Web sites. Choose three sites. Ex-
plore the opportunities and resources offered by the sites. Visit any demonstrations, conduct a job
search, build your resume and calculate your salary or relocation expenses. Answer the following
questions.

a) Which site provides the best service? Why?
b) What did you like? Dislike?
c) Write a brief summary of your findings, including descriptions of any features that you

would add.

WORKS CITED
The notation <www.domain-name.com> indicates that the citation is for information found at the
Web site.

1. J. Gaskin, “Web Job Sites Face Tough Tasks,” Inter@ctive Week 14 August 2000: 50.

2. J. Gaskin, 50.

3. M. Berger, “Jobs Supermarket,” Upside November 2000: 224.

4. <www.vault.com>

5. M. Berger, 224.

6. Cisco Advertisement, The Wall Street Journal 19 October 2000: B13.

7. M. Feffer, “Posting Jobs on the Internet,” <www.webhire.com/hr/spotlight.asp>
18 August 2000.

8. <www.webhire.com>

9. J. Gaskin, 51.

10. C. Wilde, “Recruiters Discover Diverse Value in Web Sites,” Information Week 7 February
2000: 144.

11. <www.jobsonline.com>

12. <www.driveway.com>

13. <www.cruelworld.com>

14. A.K. Smith, “Charting Your Own Course,” U.S. News and World Report 6 November 2000: 58.

15. D. Lewis, “Hired! By the Highest Bidder,” The Boston Globe 9 July 2000: G1.

16. <www.experience.com>

17. M. French, “Experience Inc., E-Recruiting for Jobs for College Students,” Mass High Tech 7
February–13 February 2000: 29.

App_F_CareerResources.fm Page 1356 Monday, July 23, 2001 4:30 PM

G
Unicode®

Objectives
• To become familiar with Unicode.
• To discuss the mission of the Unicode Consortium.
• To discuss the design basis of Unicode.
• To understand the three Unicode encoding forms:

UTF-8, UTF-16 and UTF-32.
• To introduce characters and glyphs.
• To discuss the advantages and disadvantages of using

Unicode.
• To provide a brief tour of the Unicode Consortium’s

Web site.

App_G_Unicode.fm Page 1357 Monday, July 23, 2001 4:31 PM

1358 Unicode® Appendix G

G.1 Introduction
The use of inconsistent character encodings (i.e., numeric values associated with charac-
ters) when developing global software products causes serious problems because comput-
ers process information using numbers. For instance, the character “a” is converted to a
numeric value so that a computer can manipulate that piece of data. Many countries and
corporations have developed their own encoding systems that are incompatible with the en-
coding systems of other countries and corporations. For example, the Microsoft Windows
operating system assigns the value 0xC0 to the character “A with a grave accent” while the
Apple Macintosh operating system assigns that same value to an upside-down question
mark. This results in the misrepresentation and possible corruption of data because data is
not processed as intended.

In the absence of a widely-implemented universal character encoding standard, global
software developers had to localize their products extensively before distribution. Local-
ization includes the language translation and cultural adaptation of content. The process of
localization usually includes significant modifications to the source code (such as the con-
version of numeric values and the underlying assumptions made by programmers), which
results in increased costs and delays releasing the software. For example, some English-
speaking programmers might design global software products assuming that a single char-
acter can be represented by one byte. However, when those products are localized for Asian
markets, the programmer’s assumptions are no longer valid, thus the majority, if not the
entirety, of the code needs to be rewritten. Localization is necessary with each release of a
version. By the time a software product is localized for a particular market, a newer version,
which needs to be localized as well, may be ready for distribution. As a result, it is cumber-
some and costly to produce and distribute global software products in a market where there
is no universal character encoding standard.

In response to this situation, the Unicode Standard, an encoding standard that facili-
tates the production and distribution of software, was created. The Unicode Standard out-
lines a specification to produce consistent encoding of the world’s characters and symbols.
Software products which handle text encoded in the Unicode Standard need to be localized,
but the localization process is simpler and more efficient because the numeric values need
not be converted and the assumptions made by programmers about the character encoding
are universal. The Unicode Standard is maintained by a non-profit organization called the

Outline

G.1 Introduction
G.2 Unicode Transformation Formats
G.3 Characters and Glyphs
G.4 Advantages/Disadvantages of Unicode
G.5 Unicode Consortium’s Web Site
G.6 Using Unicode
G.7 Character Ranges

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

App_G_Unicode.fm Page 1358 Monday, July 23, 2001 4:31 PM

Appendix G Unicode® 1359

Unicode Consortium, whose members include Apple, IBM, Microsoft, Oracle, Sun Micro-
systems, Sybase and many others.

When the Consortium envisioned and developed the Unicode Standard, they wanted
an encoding system that was universal, efficient, uniform and unambiguous. A universal
encoding system encompasses all commonly used characters. An efficient encoding system
allows text files to be parsed easily. A uniform encoding system assigns fixed values to all
characters. An unambiguous encoding system represents a given character in a consistent
manner. These four terms are referred to as the Unicode Standard design basis.

G.2 Unicode Transformation Formats
Although Unicode incorporates the limited ASCII character set (i.e., a collection of char-
acters), it encompasses a more comprehensive character set. In ASCII each character is rep-
resented by a byte containing 0s and 1s. One byte is capable of storing the binary numbers
from 0 to 255. Each character is assigned a number between 0 and 255, thus ASCII-based
systems can support only 256 characters, a tiny fraction of world’s characters. Unicode ex-
tends the ASCII character set by encoding the vast majority of the world’s characters. The
Unicode Standard encodes all of those characters in a uniform numerical space from 0 to
10FFFF hexadecimal. An implementation will express these numbers in one of several
transformation formats, choosing the one that best fits the particular application at hand.

Three such formats are in use, called UTF-8, UTF-16 and UTF-32, depending on the
size of the units—in bits—being used. UTF-8, a variable width encoding form, requires one
to four bytes to express each Unicode character. UTF-8 data consists of 8-bit bytes
(sequences of one, two, three or four bytes depending on the character being encoded) and
is well suited for ASCII-based systems when there is a predominance of one-byte charac-
ters (ASCII represents characters as one-byte). Currently, UTF-8 is widely implemented in
UNIX systems and in databases. [Note: Currently, Internet Explorer 5.5 and Netscape
Communicator 6 only support UTF-8, so document authors should use UTF-8 for encoding
XML and XHTML documents.]

The variable width UTF-16 encoding form expresses Unicode characters in units of
16-bits (i.e., as two adjacent bytes, or a short integer in many machines). Most characters
of Unicode are expressed in a single 16-bit unit. However, characters with values above
FFFF hexadecimal are expressed with an ordered pair of 16-bit units called surrogates. Sur-
rogates are 16-bit integers in the range D800 through DFFF, which are used solely for the
purpose of “escaping” into higher numbered characters. Approximately one million char-
acters can be expressed in this manner. Although a surrogate pair requires 32 bits to repre-
sent characters, it is space-efficient to use these 16-bit units. Surrogates are rare characters
in current implementations. Many string-handling implementations are written in terms of
UTF-16. [Note: Details and sample-code for UTF-16 handling are available on the Unicode
Consortium Web site at www.unicode.org.]

Implementations that require significant use of rare characters or entire scripts encoded
above FFFF hexadecimal, should use UTF-32, a 32-bit, fixed-width encoding form that
usually requires twice as much memory as UTF-16 encoded characters. The major advan-
tage of the fixed-width UTF-32 encoding form is that it uniformly expresses all characters,
so it is easy to handle in arrays.

App_G_Unicode.fm Page 1359 Monday, July 23, 2001 4:31 PM

1360 Unicode® Appendix G

There are few guidelines that state when to use a particular encoding form. The best
encoding form to use depends on computer systems and business protocols, not on the data
itself. Typically, the UTF-8 encoding form should be used where computer systems and
business protocols require data to be handled in 8-bit units, particularly in legacy systems
being upgraded because it often simplifies changes to existing programs. For this reason,
UTF-8 has become the encoding form of choice on the Internet. Likewise, UTF-16 is the
encoding form of choice on Microsoft Windows applications. UTF-32 is likely to become
more widely used in the future as more characters are encoded with values above FFFF
hexadecimal. Also, UTF-32 requires less sophisticated handling than UTF-16 in the pres-
ence of surrogate pairs. Figure G.1 shows the different ways in which the three encoding
forms handle character encoding.

G.3 Characters and Glyphs
The Unicode Standard consists of characters, written components (i.e., alphabetic letters,
numerals, punctuation marks, accent marks, etc.) that can be represented by numeric val-
ues. Examples of characters include: U+0041 LATIN CAPITAL LETTER A. In the first
character representation, U+yyyy is a code value, in which U+ refers to Unicode code val-
ues, as opposed to other hexadecimal values. The yyyy represents a four-digit hexadecimal
number of an encoded character. Code values are bit combinations that represent encoded
characters. Characters are represented using glyphs, various shapes, fonts and sizes for dis-
playing characters. There are no code values for glyphs in the Unicode Standard. Examples
of glyphs are shown in Fig. G.2.

The Unicode Standard encompasses the alphabets, ideographs, syllabaries, punctua-
tion marks, diacritics, mathematical operators, etc. that comprise the written languages and
scripts of the world. A diacritic is a special mark added to a character to distinguish it from
another letter or to indicate an accent (e.g., in Spanish, the tilde “~” above the character
“n”). Currently, Unicode provides code values for 94,140 character representations, with
more than 880,000 code values reserved for future expansion.

G.4 Advantages/Disadvantages of Unicode
The Unicode Standard has several significant advantages that promote its use. One is the
impact it has on the performance of the international economy. Unicode standardizes the
characters for the world’s writing systems to a uniform model that promotes transferring
and sharing data. Programs developed using such a schema maintain their accuracy because
each character has a single definition (i.e., a is always U+0061, % is always U+0025). This
enables corporations to manage the high demands of international markets by processing
different writing systems at the same time. Also, all characters can be managed in an iden-
tical manner, thus avoiding any confusion caused by different character code architectures.
Moreover, managing data in a consistent manner eliminates data corruption, because data
can be sorted, searched and manipulated using a consistent process.

Another advantage of the Unicode Standard is portability (i.e., the ability to execute
software on disparate computers or with disparate operating systems). Most operating sys-
tems, databases, programming languages and Web browsers currently support, or are plan-
ning to support, Unicode.

App_G_Unicode.fm Page 1360 Monday, July 23, 2001 4:31 PM

Appendix G Unicode® 1361

A disadvantage of the Unicode Standard is the amount of memory required by UTF-
16 and UTF-32. ASCII character sets are 8 bits in length, so they require less storage than
the default 16-bit Unicode character set. However, the double-byte character set (DBCS)
and the multi-byte character set (MBCS) that encode Asian characters (ideographs) require
two to four bytes, respectively. In such instances, the UTF-16 or the UTF-32 encoding
forms may be used with little hindrance on memory and performance.

Another disadvantage of Unicode is that although it includes more characters than any
other character set in common use, it does not yet encode all of the world’s written charac-
ters. One additional disadvantage of the Unicode Standard is that UTF-8 and UTF-16 are
variable width encoding forms, so characters occupy different amounts of memory.

G.5 Unicode Consortium’s Web Site
If you would like to learn more about the Unicode Standard, visit www.unicode.org.
This site provides a wealth of information about the Unicode Standard. Currently, the home
page is organized into various sections: New to Unicode, General Information, The Con-
sortium, The Unicode Standard, Work in Progress and For Members.

The New to Unicode section consists of two subsections: What is Unicode? and
How to Use this Site. The first subsection provides a technical introduction to Unicode
by describing design principles, character interpretations and assignments, text processing
and Unicode conformance. This subsection is recommended reading for anyone new to
Unicode. Also, this subsection provides a list of related links that provide the reader with
additional information about Unicode. The How to Use this Site subsection contains
information about using and navigating the site as well hyperlinks to additional resources.

The General Information section contains six subsections: Where is my Char-
acter?, Display Problems?, Useful Resources, Enabled Products, Mail Lists
and Conferences. The main areas covered in this section include a link to the Unicode

Character UTF-8 UTF-16 UTF-32

LATIN CAPITAL LETTER A 0x41 0x0041 0x00000041

GREEK CAPITAL LETTER
ALPHA

0xCD 0x91 0x0391 0x00000391

CJK UNIFIED IDEOGRAPH-
4E95

0xE4 0xBA 0x95 0x4E95 0x00004E95

OLD ITALIC LETTER A 0xF0 0x80 0x83 0x80 0xDC00 0xDF00 0x00010300

Fig. G.1Fig. G.1Fig. G.1Fig. G.1 Correlation between the three encoding forms.

Fig. G.2Fig. G.2Fig. G.2Fig. G.2 Various glyphs of the character A.

App_G_Unicode.fm Page 1361 Monday, July 23, 2001 4:31 PM

1362 Unicode® Appendix G

code charts (a complete listing of code values) assembled by the Unicode Consortium as
well as a detailed outline on how to locate an encoded character in the code chart. Also, the
section contains advice on how to configure different operating systems and Web browsers
so that the Unicode characters can be viewed properly. Moreover, from this section, the
user can navigate to other sites that provide information on various topics such as, fonts,
linguistics and other standards such as the Armenian Standards Page and the Chinese GB
18030 Encoding Standard.

The Consortium section consists of five subsections: Who we are, Our Members,
How to Join, Press Info and Contact Us. This section provides a list of the current
Unicode Consortium members as well as information on how to become a member. Privi-
leges for each member type—full, associate, specialist and individual—and the fees
assessed to each member are listed here.

The Unicode Standard section consists of nine subsections: Start Here, Latest Ver-
sion, Technical Reports, Code Charts, Unicode Data, Updates & Errata, Uni-
code Policies, Glossary and Technical FAQ. This section describes the updates
applied to the latest version of the Unicode Standard as well as categorizing all defined
encoding. The user can learn how the latest version has been modified to encompass more
features and capabilities. For instance, one enhancement of Version 3.1 is that it contains
additional encoded characters. Also, if users are unfamiliar with vocabulary terms used by
the Unicode Consortium, then they can navigate to the Glossary subsection.

The Work in Progress section consists of three subsections: Calendar of Meetings,
Proposed Characters and Submitting Proposals. This section presents the user with
a catalog of the recent characters included into the Unicode Standard scheme as well as
those characters being considered for inclusion. If users determine that a character has been
overlooked, then they can submit a written proposal for the inclusion of that character. The
Submitting Proposals subsection contains strict guidelines that must be adhered to
when submitting written proposals.

The For Members section consists of two subsections: Member Resources and
Working Documents. These subsections are password protected; only consortium mem-
bers can access these links.

G.6 Using Unicode
The primary use of the Unicode Standard is the Internet; it has become the default encoding
system for XML and any language derived from XML such as XHTML. Figure G.3 marks
up (as XML) the text “Welcome to Unicode!” in ten different languages: English, French,
German, Japanese, Kannada (India), Portuguese, Russian, Spanish, Telugu (India) and Tra-
ditional Chinese. [Note: The Unicode Consortium’s Web site contains a link to code charts
that lists the 16-bit Unicode code values.]

Line 1 of the document specifies the XML declaration that contains the Unicode
encoding used. A UTF-8 encoding indicates that the document conforms to the form
of Unicode that uses sequences of one to four bytes. [Note: This document uses XML entity
references to represent characters. Also, UTF-16 and UTF-32 have yet to be supported by
Internet Explorer 5.5 and Netscape Communicator 6.] Line 6 defines the root element,
UnicodeEncodings, which contains all other elements (e.g., WelcomeNote) in the
document. The first WelcomeNote element (lines 9–15) contains the entity references for

App_G_Unicode.fm Page 1362 Monday, July 23, 2001 4:31 PM

Appendix G Unicode® 1363

the English text. The Code Charts page on the Unicode Consortium Web site contains
the code values for the Basic Latin block (or category), which includes the English
alphabet. The entity reference on line 10 equates to “Welcome” in basic text. When
marking up Unicode characters in XML (or XHTML), the entity reference &#xyyyy; is
used, where yyyy represents the hexadecimal Unicode encoding. For example, the letter
“W” (in “Welcome”) is denoted by W. Lines 11 and 13 contain the entity refer-
ence for the space character. The entity reference for the word “to” is on line 12 and the
word “Unicode” is on line 14. “Unicode” is not encoded because it is a registered trademark
and has no equivalent translation in most languages. Line 14 also contains the !
notation for the exclamation mark (!).

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- Fig. G.3: Unicode.xml -->
4 <!-- Unicode encoding for ten different languages -->
5
6 <UnicodeEncodings>
7
8 <!-- English -->
9 <WelcomeNote>

10 Welcome
11
12 to
13
14 Unicode!
15 </WelcomeNote>
16
17 <!-- French -->
18 <WelcomeNote>
19
Bienvenu
5;
20
21 au
22
23 Unicode!
24 </WelcomeNote>
25
26 <!-- German -->
27 <WelcomeNote>
28
Wilkomme
E;
29
30 zu
31
32 Unicode!
33 </WelcomeNote>
34
35 <!-- Japanese -->
36 <WelcomeNote>

Fig. G.3Fig. G.3Fig. G.3Fig. G.3 XML document using Unicode encoding (part 1 of 3).

App_G_Unicode.fm Page 1363 Monday, July 23, 2001 4:31 PM

1364 Unicode® Appendix G

37 Unicode
38 へょぅこそ!
39 </WelcomeNote>
40
41 <!-- Kannada -->
42 <WelcomeNote>
43 ಸುಸ್ವಗತ
44
45 Unicode!
46 </WelcomeNote>
47
48 <!-- Portuguese -->
49 <WelcomeNote>
50 Séja
51
52
Bemvindo
53
54 Unicode!
55 </WelcomeNote>
56
57 <!-- Russian -->
58 <WelcomeNote>
59 Добро
60
61
пожаловаD
2;ъ
62
63 в
64
65 Unicode!
66 </WelcomeNote>
67
68 <!-- Spanish -->
69 <WelcomeNote>
70
Bienveni
4;a
71
72 a
73
74 Unicode!
75 </WelcomeNote>
76
77 <!-- Telugu -->
78 <WelcomeNote>
79
సుసావగతం
80
81 Unicode!
82 </WelcomeNote>
83

Fig. G.3Fig. G.3Fig. G.3Fig. G.3 XML document using Unicode encoding (part 2 of 3).

App_G_Unicode.fm Page 1364 Monday, July 23, 2001 4:31 PM

Appendix G Unicode® 1365

The remaining WelcomeNote elements (lines 18–90) contain the entity references
for the other nine languages. The code values used for the French, German, Portuguese and
Spanish text are located in the Basic Latin block, the code values used for the Traditional
Chinese text are located in the CJK Unified Ideographs block, the code values used for
the Russian text are located in the Cyrillic block, the code values used for the Japanese text
are located in the Hiragana block, and the code values used for the Kannada and Telugu
texts are located in their respective blocks.

[Note: To render the Asian characters on a Web browser, the proper language files
must be installed on your computer. For Windows XP/2000, the language files can be
obtained from the Microsoft Web site at www.microsoft.com. For additional assis-
tance, visit www.unicode.org/help/display_problems.html.]

84 <!-- Traditional Chinese -->
85 <WelcomeNote>
86 欢迎
87 使用
88
89 Unicode!
90 </WelcomeNote>
91
92 </UnicodeEncodings>

Fig. G.3Fig. G.3Fig. G.3Fig. G.3 XML document using Unicode encoding (part 3 of 3).

App_G_Unicode.fm Page 1365 Monday, July 23, 2001 4:31 PM

1366 Unicode® Appendix G

G.7 Character Ranges
The Unicode Standard assigns code values, which range from 0000 (Basic Latin) to
E007F (Tags), to the written characters of the world. Currently, there are code values for
94,140 characters. To simplify the search for a character and its associated code value, the
Unicode Standard generally groups code values by script and function (i.e., Latin charac-
ters are grouped in a block, mathematical operators are grouped in another block, etc.). As
a rule, a script is a single writing system that is used for multiple languages (e.g., the Latin
script is used for English, French, Spanish, etc.). The Code Charts page on the Unicode
Consortium Web site lists all the defined blocks and their respective code values. Figure
G.4 lists some blocks (scripts) from the Web site and their range of code values.

SUMMARY
• Before Unicode, software developers were plagued by the use of inconsistent character encoding

(i.e., numeric values for characters). Most countries and organizations had their own encoding sys-
tems, which were incompatible. A good example is the individual encoding systems on the Windows
and Macintosh platforms.

Script Range of Code Values

Arabic U+0600–U+06FF

Basic Latin U+0000–U+007F

Bengali (India) U+0980–U+09FF

Cherokee (Native America) U+13A0–U+13FF

CJK Unified Ideographs (East Asia) U+4E00–U+9FAF

Cyrillic (Russia and Eastern Europe) U+0400–U+04FF

Ethiopic U+1200–U+137F

Greek U+0370–U+03FF

Hangul Jamo (Korea) U+1100–U+11FF

Hebrew U+0590–U+05FF

Hiragana (Japan) U+3040–U+309F

Khmer (Cambodia) U+1780–U+17FF

Lao (Laos) U+0E80–U+0EFF

Mongolian U+1800–U+18AF

Myanmar U+1000–U+109F

Ogham (Ireland) U+1680–U+169F

Runic (Germany and Scandinavia) U+16A0–U+16FF

Sinhala (Sri Lanka) U+0D80–U+0DFF

Telugu (India) U+0C00–U+0C7F

Thai U+0E00–U+0E7F

Fig. G.4Fig. G.4Fig. G.4Fig. G.4 Some character ranges.

App_G_Unicode.fm Page 1366 Monday, July 23, 2001 4:31 PM

Appendix G Unicode® 1367

• Computers process data by converting characters to numeric values. For instance, the character “a”
is converted to a numeric value so that a computer can manipulate that piece of data.

• Without Unicode, localization of global software requires significant modifications to the source
code, which results in increased cost and in delays releasing the product.

• Localization is necessary with each release of a version. By the time a software product is localized
for a particular market, a newer version, which needs to be localized as well, is ready for distribu-
tion. As a result, it is cumbersome and costly to produce and distribute global software products
in a market where there is no universal character encoding standard.

• The Unicode Consortium developed the Unicode Standard in response to the serious problems cre-
ated by multiple character encodings and the use of those encodings.

• The Unicode Standard facilitates the production and distribution of localized software. It outlines a
specification for the consistent encoding of the world’s characters and symbols.

• Software products which handle text encoded in the Unicode Standard need to be localized, but
the localization process is simpler and more efficient because the numeric values need not be con-
verted.

• The Unicode Standard is designed to be universal, efficient, uniform and unambiguous.

• A universal encoding system encompasses all commonly used characters; an efficient encoding sys-
tem parses text files easily; a uniform encoding system assigns fixed values to all characters; and an
unambiguous encoding system represents the same character for any given value.

• Unicode extends the limited ASCII character set to include all the major characters of the world.

• Unicode makes use of three Unicode Transformation Formats (UTF): UTF-8, UTF-16 and UTF-32,
each of which may be appropriate for use in different contexts.

• UTF-8 data consists of 8-bit bytes (sequences of one, two, three or four bytes depending on the
character being encoded) and is well suited for ASCII-based systems when there is a predomi-
nance of one-byte characters (ASCII represents characters as one-byte).

• UTF-8 is a variable width encoding form that is more compact for text involving mostly Latin char-
acters and ASCII punctuation.

• UTF-16 is the default encoding form of the Unicode Standard. It is a variable width encoding form
that uses 16-bit code units instead of bytes. Most characters are represented by a single unit, but some
characters require surrogate pairs.

• Surrogates are 16-bit integers in the range D800 through DFFF, which are used solely for the pur-
pose of “escaping” into higher numbered characters.

• Without surrogate pairs, the UTF-16 encoding form can only encompass 65,000 characters, but with
the surrogate pairs, this is expanded to include over a million characters.

• UTF-32 is a 32-bit encoding form. The major advantage of the fixed-width encoding form is that it
uniformly expresses all characters, so that they are easy to handle in arrays and so forth.

• The Unicode Standard consists of characters. A character is any written component that can be rep-
resented by a numeric value.

• Characters are represented using glyphs, various shapes, fonts and sizes for displaying characters.

• Code values are bit combinations that represent encoded characters. The Unicode notation for a code
value is U+yyyy in which U+ refers to the Unicode code values, as opposed to other hexadecimal
values. The yyyy represents a four-digit hexadecimal number.

• Currently, the Unicode Standard provides code values for 94,140 character representations.

• An advantage of the Unicode Standard is its impact on the overall performance of the international
economy. Applications that conform to an encoding standard can be processed easily by computers
anywhere.

App_G_Unicode.fm Page 1367 Monday, July 23, 2001 4:31 PM

1368 Unicode® Appendix G

• Another advantage of the Unicode Standard is its portability. Applications written in Unicode can be
easily transferred to different operating systems, databases, Web browsers, etc. Most companies cur-
rently support, or are planning to support, Unicode.

• To obtain more information about the Unicode Standard and the Unicode Consortium, visit
www.unicode.org. It contains a link to the code charts, which contain the 16-bit code values for
the currently encoded characters.

• The Unicode Standard has become the default encoding system for XML and any language derived
from XML, such as XHTML.

• When marking up XML-derived documents, the entity reference &#xyyyy; is used, where yyyy rep-
resents the hexadecimal code value.

TERMINOLOGY

SELF-R\EVIEW EXERCISES
G.1 Fill in the blanks in each of the following.

a) Global software developers had to their products to a specific market before
distribution.

b) The Unicode Standard is an standard that facilitates the uniform production
and distribution of software products.

c) The four design basis that constitute the Unicode Standard are: , ,
 and .

d) A is the smallest written component the can be represented with a numeric
value.

e) Software that can execute on different operating systems is said to be .
f) Of the three encoding forms, is currently supported by Internet Explorer 5.5

and Netscape Communicator 6.

G.2 State whether each of the following is true or false. If false, explain why.
a) The Unicode Standard encompasses all the world’s characters.
b) A Unicode code value is represented as U+yyyy, where yyyy represents a number in bi-

nary notation.
c) A diacritic is a character with a special mark that emphasizes an accent.
d) Unicode is portable.

&#xyyyy; notation portability
ASCII script
block surrogate
character symbol
character set unambiguous (Unicode design basis)
code value Unicode Consortium
diacritic Unicode design basis
double-byte character set (DBCS) Unicode Standard
efficient (Unicode design basis) Unicode Transformation Format (UTF)
encode uniform (Unicode design basis)
entity reference universal (Unicode design basis)
glyph UTF-8
hexadecimal notation UTF-16
localization UTF-32
multi-byte character set (MBCS)

App_G_Unicode.fm Page 1368 Monday, July 23, 2001 4:31 PM

Appendix G Unicode® 1369

e) When designing XHTML and XML documents, the entity reference is denoted by
#U+yyyy.

SELF-REVIEW ANSWERS
G.1 a) localize. b) encoding. c) universal, efficient, uniform, unambiguous. d) character. e) por-
table. f) UTF-8.

G.2 a) False. It encompasses the majority of the world’s characters. b) False. The yyyy represents
a hexadecimal number. c) False. A diacritic is a special mark added to a character to distinguish it
from another letter or to indicate an accent. d) True. e) False. The entity reference is denoted by
&#xyyyy.

EXERCISES
G.3 Navigate to the Unicode Consortium Web site (www.unicode.org) and write the hexa-
decimal code values for the following characters. In which block are they located?

a) Latin letter ‘Z.’
b) Latin letter ‘n’ with the ‘tilde (~).’
c) Greek letter ‘delta.’
d) Mathematical operator ‘less than or equal to.’
e) Punctuation symbol ‘open quote (“).’

G.4 Describe the Unicode Standard design basis.

G.5 Define the following terms:
a) code value.
b) surrogates.
c) Unicode Standard.
d) UTF-8.
e) UTF-16.
f) UTF-32.

G.6 Describe a scenario where it is optimal to store your data in UTF-16 format.

G.7 Using the Unicode Standard code values, create an XML document that prints your first and
last name. The documents should contain the tags <Uppercase> and <Lowercase> that encode
your name in uppercase and lowercase letters, respectively. If you know other writing systems, print
your first and last name in those as well. Use a Web browser to render the document.

G.8 Write a JavaScript program that prints “Welcome to Unicode!” in English, French, German,
Japanese, Kannada, Portuguese, Russian, Spanish, Telugu and Traditional Chinese. Use the code val-
ues provided in Fig. G.3. In JavaScript, a code value is represented through an escape sequence
\uyyyy, where yyyy is a four-digit hexadecimal number. Call document.write to render the text
in a Web browser.

App_G_Unicode.fm Page 1369 Monday, July 23, 2001 4:31 PM

Index

Symbols
- 1023
-- operator 256
! (logical NOT, also called logical

negation) 297, 298, 939
!= operator 213, 917, 1020
comment character 911, 963
#! directive 981
#! shebang directive 911
$ 1010
$ metacharacter 918, 920, 927,

1023
$ type symbol 912
$_ special variable 948
% 210
% format character 976
% modulus operator 976
% type symbol 912, 924
%= 968
%> 835
%\> escape sequence for %> 1127
%ENV hash in Perl 924
& 983
& operator for string concatenation

786
&#xyyyy; notation 1363
&& logical AND operator 297,

939
¼ 117
< 116, 117
(BTS) BizTalk Server 670
* 205, 209, 669, 1023
* quantifier 920

**= 968
*/ 206
*= 968
+ for string concatenation 214
+ operator for addition 209
+ operator for string concatenation

207
+ operator is used in an expression

consisting of varying data
types 786

+ quantifier 919, 920
++ operator 256
+= 968
+= operator 256, 975
+= statement 973
. 1014, 1023
.. range operator 916
/ 209
/= 968
/i 1023
/s 1023
/x 1023
: 965
; semicolons to terminate

statement 912
< 983, 1020
< operator 917
<!-- and --> XHTML comment

delimiters 1126
<% 835
<% %> delimiters 854
<%-- and --%> JSP comment

delimiters 1126

<% and %> scriptlet delimiters
1126

<%! and %> declaration delimiters
1126

<%= and %> expression delimiters
1126

<%= and %> JSP expression
delimiters 1123

<%@ and %> directive delimiters
1160

<%@ and %> directive delimiters
1154

<= 213, 1020
<= operator 917
<> diamond operator 933
<? 653
<?php 1010
<\% escape sequence for <% 1127
-= operator 968
= operator 207
== operator 213, 917, 1020
=> operator 1017
=~ operator 918
> 1020
> operator 917
> write mode 933
>= 213, 1020
>= operator 917
>> append mode 933
? quantifier 920
?: operator 236
?> 653
@ 666

iw3htp2IX.fm Page 1372 Monday, July 23, 2001 4:31 PM

Index 1373

@ type symbol 912, 915
[[:<:]] 1023
[[:>]] 1023
[] 1017, 1023
[] operator 971, 973
\ 202
\- 209
\ character 1029
\ line-continuation character 968
\n newline escape sequence 202
\r 202
\t 202
^ 1023
^ metacharacter 918, 920, 927
{} curly braces in CGI.pm

functions 922
{m,n} quantifier 919
{n,} quantifier 919
{n} quantifier 919
|| (logical OR) 297, 298
” 203
’ 203

Numerics
127.0.0.1 (localhost)

1071
16.7 million colors 66
1-Click system 1191
24-by-7 1188
3G 744

A
a element 110, 115, 750
a element and data binding 540
A scoping example 339
abbreviating assignment

expressions 255
About.com 1194
abs 405
Abs(x) 792
absolute attribute value

(style) 174
absolute measurement 188
absolute positioning 24, 173, 174
absolute value 405, 792
absolute value 444
absolute-length measurement in

CSS 169
absolutePosition property

520
abstract data type (ADT) 813
abstraction 423
Access (Microsoft database

product) 707, 709

accessibility 1269, 1271, 1291,
1292, 1301, 1302, 1305,
1306

Accessibility Wizard 1292,
1294, 1296, 1301

Accessibility Wizard
initialization option 1294

Accessibility Wizard mouse
cursor adjustment tool 1296

Accessibility... 186
accessing other frames 447
accessor method 813, 816
Accounts option in the Tools

menu 46
acquire an image 65
action 3, 197, 813
action attribute 135
Action button 49
action element 1289
action symbol 232
action/decision model of

programming 235
actions to be executed 230
ActionScript 24, 585, 603, 609,

623
ActionScript event 598, 605,

616, 625
activate a text field 206
Activate method of Charac-

ter object 1249
active color 67
active layer 71
Active Server Pages (ASP) 17,

26, 27, 609, 682, 692,
694, 784, 834, 893

Active Server Pages communicate
with databases 859

active tool 67, 587
active tool options bar 67
ActivePerl 911, 952
ActiveState 952
ActiveX component 832, 870
ActiveX control 18, 519, 522,

685, 861
ActiveX Data Objects (ADO)

704, 725
ActiveX server component 686
actual loss 1210
actual malice 1210
.acw 1302
Ada 8
ADA (Americans with Disabilities

Act) 1268
add property 498, 499
add to selection 84, 591
addCone method 505

addCone property 496, 504
addCookie method of HttpS-

ervletResponse 1065,
1091

addForum.asp 886, 890
Adding a background image with

CSS 176
Adding a user style sheet in

Internet Explorer 5.5 187
Adding a wave filter to text 499
Adding integers on a Web page

using VBScript 795
adding text to an image 70
addition 210, 785
addition assignment operator (+=)

255
addition operator (+) 209
addition script 203
Addition script “in action” 203
addition.html 795
addPoint method of the light

filter 501, 502, 505
addPost.asp 886, 896, 899,

903
Address bar 37
Address Book 52
address book 48
Addresses button 48
addText method 660
AddTimeMarker method 570
AddTimeMarker1 571
AddTimeMarker2 571
adjustment layer 92, 93, 94
Adleman, Leonard 1204
administrative section of the

computer 5
ADO (ActiveX Data Objects)

704, 727, 859
Adobe (www.adobe.com) 44
Adobe Acrobat Reader 44
ADODB Open method 862
ADODB.Connection object

862
ADODB.Recordset 862
AdRotator ActiveX Component

872
adrotator.jsp 1145
ADT 813
advanced accessibility settings in

Microsoft Internet Explorer
5.5 1305

Advanced sorting and filtering
533

Advanced tab 56
Advantage Hiring, Inc. 1341

iw3htp2IX.fm Page 1373 Monday, July 23, 2001 4:31 PM

1374 Index

advertising 872, 1086, 1197,
1198

advjhtp1-taglib.tld 1168
Afaria 773
affiliate program 1199
Age of Knowledge 1188
AIFF (Audio Interchange File

Format) 1225
airbrush tool 76, 80
airline reservation system 22, 398
alert 740
alert dialog 201, 334, 756
alert method 404, 458
alert method of window object

201
algorithm 230, 248
align attribute of <jsp:plu-

gin> action 1139
all collection 438, 452
all value (clear property) 180
all.html 438
alpha filter 491, 492
alpha transparency 95
alphanumeric character 919
alt attribute 113, 1271
Alt key 464
<alt> tag 1305
alt tag 877
AltaVista 1194
AltaVista

 (www.altavista.com)
41

altkey property of event
object 464

Amaya editor 648
Amazon.com 1189, 1190, 1191
America Online

(www.aol.com) 37
America’s Job Bank 1339
American National Standards

Institute (ANSI) 1212
American Society for Female

Entrepreneurs 1341
Americans with Disabilities Act

(ADA) 1268
ammonia.xml 653
ampersand 786
ampersand (&) operator for string

concatenation 786
amplitude of a sine wave 501
Analytical Engine 8
anchor 69, 89
anchor 416
anchor (a) element 409
anchor elements (a) with an href

property 453

anchor method 409, 416, 417
anchors collection 452
And (logical AND) 785
AND keyword 720
Angle of Arrival (AOA) 739
angular form 499
animate a light source 503
Animate checkbox 580
animated 576
animated button 589
animated character 28, 29, 1224,

1236
animated GIF 24, 579
animated media effect 24
animateTransform element

1259
animation 23, 576, 1265
animation cell 91
animation effect 1244
animations available for each

character 1244
anonymous log-in 46
anonymous String object 407
ANSI (American National

Standards Institute) 1212
answer element 1290
anti-alias 69, 601
anti-virus software 1208
any digit 820
Apache HTTP Server 1060
Apache Software Foundation

683, 692, 698, 1059,
1069

Apache Tomcat server 1069
Apache Web server 15, 25, 682,

683, 692, 911, 1069
APDCM compression 598
API (Application Programming

Interface) 655
append 1038
append list method 972, 973
append mode 848
append mode (>>) 933
appendChild method 659
Apple Computer, Inc. 9, 1359
applet 861
applet elements in the XHTML

document 452
applets collection 452
application implicit object

1124
Application Programming

Interface (API) 655
application scope 1124, 1143
application service provider (ASP)

1341

Apply button 57
apply method 506, 507, 510
Applying a shadow filter to text

489
Applying borders to elements 183
Applying changes to the glow

filter 493
Applying light filter with a

dropshadow 501
Applying the alpha filter 491
Aquent.com 1346
Arc 547, 549
archive attribute of

<jsp:plugin> action
1139

area element 148, 453
argument 317, 319, 405
arial font 166
arithmetic and logic unit (ALU) 5
arithmetic assignment operators:

+=, -=, *=, /= and %= 256
arithmetic calculation 209
arithmetic mean (average) 211
arithmetic operation 21
arithmetic operator 209, 784,

785
Arithmetic operators 209
arithmetic operators (VBScript)

785
arithmetic tutor 1265
arithmetic with complex numbers

828
arithmetic with fractions 829
ARPA 8
ARPAnet 8, 9
arrange layers 93
Array 316
array 22, 366, 912, 914, 1016
array function 1017
Array method sort 380, 381
Array object 368, 369, 371,

372, 403, 405
Array object’s length property

405
Array object’s sort method

405
array of color values 495
array of strings containing the

token 414
arrays.html 804
arrays.php 1017
arrow 241
arrow operator (=>) 922
arrow tool 591, 594
article.xml 636
as 1017

iw3htp2IX.fm Page 1374 Monday, July 23, 2001 4:31 PM

Index 1375

ASC 714, 715
Asc 807
ascending order 23, 540, 669,

715
ASCII 381, 1359
ASCII character set 341
ASCII character set Appendix

1316
ASCII character set appendix

1316
.asp 832
ASP (Active Server Pages) 27,

692, 694, 784, 834
ASP application 850
ASP document that validates user

login 868
ASP file 832
.asp file 833
ASP Toolbox home page 878
asp.dll 833
assembly language 6
<assign> tag (<assign>…</

assign>) 1284
assign a value to a variable 207
assign a value to an object 816
assign element 1290
assigning an object to a variable

820
assignment operator 207, 214,

258, 913, 1016
assignment operator = associates

right to left 218
assignment statement 207
associate from left to right 259
associate from right to left 210,

218, 259
associate left to right 218
associative array 924
associativity 259
associativity of operators 210,

219
associativity of the JavaScript

operators 301
asterisk (*) 152, 710
asterisk (*) indicates

multiplication 209
asterisk (*) occurence indicator

644
asymmetric key 1203
asynchronous 889
AT&T 12, 737
AT_BEGIN constant 1177
AT_END constant 1177
Atn(x) 792
atomArray element 654
ATTLIST element 644

attribute 404, 436
attribute (data) 19, 22, 704
attribute node 666
attribute of an element 104
attribute of tag library

descriptor 1172
attributes (data) 197, 811
attributes property

(Folder) 841
auction 1189
auctions.yahoo.com 1193
AuctionWeb 1192
audio 28, 49, 1058, 1200
audio clip 1226, 1230, 1233
audio element 1254
audio format 1225
audio speaker 5
Aural Style Sheet 1306
AuralCSS 1291
authentication 1202, 1203,

1204, 1206
authentication information 1062
author style 185
author style overriding user style

188
Autocomplete 39
autoFlush attribute of page

directive 1161
automatic conversion 207
automatic duration 337
Automatic Location Identification

(ALI) 737
Automatic Number Information

(ANI) 737
AutoStart 566, 568, 571, 575,

577, 579
autostart attribute 1250
AutoStart property 578
availability 1202
average calculation 245
AVI (Video for Windows) 1225

B
\B metacharacter 920
\b metacharacter 920
B2B (business-to-business) 1192
Back button 39
background audio 1227
Background Color 65, 589,

590
background color 67, 68, 81, 554
background-color property

165, 170, 176, 178
background layer 93

background-attachment
property 178

BackgroundAudio.html
1227

background-image property
178

background-position
property 178

background-repeat
property 178

backslash (\) escape character
200

backslash (\) in a string 200
balance 1226
balance between performance and

good software engineering
322

balance property 1225
BalloonHide event of

Microsoft Agent 1248
BalloonShow event of

Microsoft Agent 1248
bandwidth 37, 1224
bank 741
barter 1195
Base 2 logarithm of Euler’s

constant 406
base case 342
base e 405
baseline 133
Basic 7
basic XHTML colors 468
beanName attribute of

<jsp:useBean> action
1143

beginning of a string 820
behavior 404
behaviors (methods) 197, 811
Bell Laboratories 15
bevel 84, 90
bgsound 1225, 1226
bgsound property balance

1225
bgsound property volume

1226
bgsound’s src property 1225
bid 1193
Bid4Geeks.com 1345
BilingualJobs.com 1341
binary (base 2) number system

1318
binary comparison 808
binary format 341
binary operator 207, 209, 298
Binary Runtime Environment for

Wireless (BREW) 26

iw3htp2IX.fm Page 1375 Monday, July 23, 2001 4:31 PM

1376 Index

binary search 382
bind external data to XHTML

elements 23, 518
binding data to a table element

529, 530
binding data to an img element

527
binding operator 918
binding operator (=~) 918
bit (size of unit) 1359
bitmap 1254
bitmap color mode 65
BizTalk 25, 670
BizTalk element (BizTalk)

671
BizTalk Framework 670
BizTalk message 670
BizTalk Schema Library 670
BizTalk server 670
BizTalk Server (BTS) 670
BizTalkexample.xml 670
black 466
Blackvoices.com 1340
blank line 247, 320
blend function 509
blending between images 507
Blending between images with

blendTrans 506
blending mode 78, 93
blendTrans filter 23
blendTrans transition 505,

506, 507, 509
blink method 409, 415, 416
blink value 168
block 338
block dimension 176
block element 1288
block-level element 176, 180
<block> tag (<block>…</

block>) 1284
block-level element 482
blue 466
blueprint 812
Bluetooth 26, 772, 1345
Bluetooth Consortium 773
blur filter 496, 497, 499
blur text or an image 482
blur tool 76
blur.html 496
body tags <body>…</body>

1253
body element 104, 105, 174,

198, 319
Body element (BizTalk) 671
body object 452
body of a for 276, 281

body of a loop 279
body section 104
<body> tag 196
bodycontent element of tag

library descriptor 1168
BodyContent interface 1177
BodyTag interface 1174
BodyTagSupport class 1164,

1166, 1173
BOF (beginning-of-file) 523,

524, 527
Bohm 305
bold 466
bold value 170, 178
bolder value 178
bondArray element 654
bonus chapter for Java developers

28
book.xml 646
book.xsd 646, 647
Boolean object 423
boolean subtype 798
border 180, 182
border 492, 494, 535, 877
border attribute 130
border of a table 214
border properties 184
border-collapse: col-

lapse 483
border-color property 184
border-left-color

property 184
border-style property 184
border-style: groove 466,

551
border-top-style property

184
border-width property 184,

441
Borland (developers of InterBase)

728
boss function/worker function

317
bottom margin 174, 175, 178
bottom property 444
bottom tier 25, 684
bounce 552
Bounce parameter 566
bounce.html 550
bounce2.html 554
BounceKeys 1296, 1298
bounding box 69, 89
box 180, 548
box dimension 181
Box In 509
box in 23

box model 180
Box model for block-level

elements 182
Box Out 509
box out 509
box that arc encloses 549

 200
br (line break) element 116
br (line break) element (
)

176
br function 929
braces ({}) 239
bracket expression 1023
brackets that enclose subscript of

an array 368
braille display 1271, 1291
braille keyboard 1291
brand 1197
branding 1197
Brassringcampus.com 1348
break 789
break apart 611
break out of a nested set of

structures 294
break statement 287, 291, 294
break statement in a for

structure 291
<break> tag (<break>…</

break>) 1284
BREW (Binary Runtime

Environment for Wireless)
26, 772

brick-and-mortar 1189
brightness 67, 68
broadband connection 37
broadcasting 1210
Browse access permission 689
browser compatibility 609
browser preview 74
Browser property 878
browser request 133
browser window 37
browser-specific pages 450
BrowserType object 878
brush pressure 83
Brush Script 83
brush size 81, 82
bubbling 464
bubbling.html 473
buffer attribute of page

directive 1161
build version 794
building block 760
building block appearance 302
building block approach 13
building blocks 230, 272

iw3htp2IX.fm Page 1376 Monday, July 23, 2001 4:31 PM

Index 1377

builtin attribute
(atomArray) 654

builtin attribute
(bondArray) 654

built-in metacharacter 921
built-in types 813
bullet 287
bulletin board 27, 885
business logic 685, 861, 927,

929, 1029, 1031, 1103
business rule 685, 927, 1029
business-to-business (B2B) 1192
business-to-consumer (B2C)

application 736
business-to-employee (B2E)

application 736
button click 21
button click event 335
button down state 596
button hit state 596
button over state 596
button property of event

object 464
button state 595
button symbol 594, 595
button up state 596
byte subtype 798

C
C How to Program 15
C programming language 102,

635, 909
C++ 3, 15
C++ programming language 12
cable modem 36
cache 57, 683
cache Web pages 1079
Calculating compound interest

with for 282
Calculating factorials with a

recursive function 343
calculation 209
calculator 830
calendar/tickler file 1266
Call 795
call ActionScript 628
call-by-reference 376, 377
call-by-value 376, 377
call element 1290
call handling 1200
called function 317
caller 317
callerID attribute 1290
calling attention to an image 1265
calling function 317

CallXML 29, 1284
CallXML element 1290
callxml element 1286
CallXML hangup element 1285
CampusCareerCenter.com

1348
cancel bubbling of an event 472
Cancel button 206
cancel event bubbling 474
cancelBubble property of

event object 464, 472,
474

caption 794
caption element 130, 1275
Caption property 1246
card 744
Career.com 1339
CareerLeader.com 1343
CareerPath.com 1339
CareerWeb 1339
caret (^) 820
caret metacharacter (^) 1023
carriage return 202
carrier 738
carry bit 1325
Cascading Style Sheets (CSS) 10,

15, 18, 20, 102, 162, 451
Cascading Style Sheets, Level 2

specification 189
Case 789
case insensitive 784
case label 287
case sensitive 198, 205, 240,

748, 753, 785, 807, 808
cases in which a switch would

run together 287
CAST eReader 1273
catalog 1190, 1196
catching an exception 979
CBool 798
CByte 798
Cc: (Carbon Copy) field 49
CCur 798
CDATA flag 645
CDate 798
CDbl 798
CD-ROM 1224
ceil method 405
Cell of Origin (COO) 739
Cellular Telecommuncations and

Internet Association (CTIA)
742

center 466
Center for Applied Special

Technology 1273, 1306
center value 178, 180

centered vertically 178
central processing unit (CPU) 5
centralized control 9
CERN 10
certificate repository 1204
certification authority 1204,

1205
CGI (Common Gateway

Interface) 27, 909, 953
CGI 101 953
.cgi file extension 909
CGI module 921
cgi module 982, 985, 989, 996
CGI script 135, 909, 910
CGI tutorial 953
cgi-bin directory 695, 696,

909, 921
chained expression 967
chance 325
change is the rule 812
Changing the Internet Options

in IE5.5 57
Changing values of the chroma

filter 484
character 407, 1024, 1360
character class 1024
character is displayed on the

screen 1248
character is hidden 1248
character is moved on the screen

1248
Character method of the

Characters collection
1244

Character method Stop 1245
Character object 1248
Character object’s Speak

method 1245
Character panel 593
character processing capabilities

407
character processing methods of

String object 409, 410
character set 1359
character string 197
character string constant 785
character string literal 785
character’s size is changed 1248
CharacterProcess-

ing.html 409
Characters collection 1238
charAt 408, 409, 410
charCodeAt 408, 409, 410
Chat (software from Microsoft)

19
checkbox 136

iw3htp2IX.fm Page 1377 Monday, July 23, 2001 4:31 PM

1378 Index

checkbox 497
checked attribute 139
checked property 499
Checkerboard Across 509
checkerboard across 23
Checkerboard Down 509
chemical information 652
Chemical Markup Language

(CML) 652, 673
ChiefMonster 1347
child node 655
childNodes property 658
children collection 439
children.html 440
<choice> tag (<choice>…</

choice>) 1284
chomp function 938
chop function 1038
Chr 807, 1249
chroma filter 484, 485, 491
chroma.html 484
cHTML (Compact HyperText

Markup Language) 26
Cingular 737
CInt 796, 798
ciphertext 1203
circle 121
"circle" attribute value 121
Circle In 509
Circle Out 509
circle out 23
circular gradient 491, 554
circular hotspot 148
clarity 14
Class 811, 816
class attribute 166, 168, 184,

442
class attribute of <jsp:use-

Bean> action 1143
Class-average program with

sentinel-controlled
repetition 248

Class-average program with
counter-controlled repetition
242

Class definition 815
class libraries 13
class name 815
class-average problem 242, 247
classes 812
classes.html 817
classid 519, 1234, 1235
classid attribute 610
className property 444
clear dictionary method 974
clear element 1290

clear property value all 180
clearDigits element 1290
clearInterval 446, 1231
clearTimeout 446
click the mouse 23, 457
click-through 1199
Clicker 4 1304
client 812, 813, 833
client connect to server 1059
client of an object 197
client-server networking 1120
client side 4
client-side JavaScript 23
client-side script 816
client-side scripting 26, 685
client-side validation 816
client-side VBScript 784, 797
client tier 25, 685, 699
client/server 1058
client/server application 1190
client/server computing 10
client/server relationship 1058
clientX property of event

object 464
clientY property of event

object 464
clipboard 87, 620
clipboard event 474
CLng 798
clock.asp 834
clock.jsp 1122
close (Connection data

object) 724
close (Cursor data object)

725
close function 933
close method 996
clouds filter 99
Cloudscape 1103
CLSID:333C7BC4-460F-

11D0-BC04-
0080C7055A83 519

CLSID:369303C2-D7AC-
11d0-89D5-
00A0C90833E6 547

CLSID:D7A7D7C3-D47F-
11D0-89D3-
00A0C90833E6 568, 575

cm (centimeter) 169
CML (Chemical Markup

Language) 25, 634, 673
CNET (www.download.com)

45
COBOL (COmmon Business

Oriented Language) 7, 102

code attribute of <jsp:plu-
gin> action 1139

code value 1360
codebase attribute 610
codebase attribute of

<jsp:plugin> action
1139

CODEC 1225
coin tossing 325
col element 131
colgroup element 131
collapse 483
collection 438, 726, 889
collections of data items 366
Collegegrads.com 1348
collision 641, 1204
colon (:) 163, 165, 295
color 524
color attribute of the glow filter

495
color blending mode 93, 100
color constant 798
color Mode 65
color name 163
color of a shadow 491
Color Picker dialog 67, 68, 78
color property 163, 165, 166,

170
color swatch 67, 590
color wheel 68
cols attribute (frameset) 152
cols attribute (table) 136
colspan attribute 131, 492
column 388
column number 710
com (top level domain) 686
COM.cloud-

scape.core.RmiJdb-
cDriver 1107

ComicsML 655
comma 422
Command collection 1246
Command event for agent control

1245
Command event handler 1246
Command object in ADO 727
command-and-control software 8
Commands collection’s Add

method 1246
Commands object 1246
comma-separated list 214, 218
comma-separated list of

arguments 405
comma-separated list of the field

names to select 710

iw3htp2IX.fm Page 1378 Monday, July 23, 2001 4:31 PM

Index 1379

comma-separated list of variable
names 205

// (comment) ActionScript 628
comment 103, 207, 636, 802,

1126
comment character (#) 911
commercial application 7
commit 724
commit a response 1067
Common Gateway Interface 909
Common Gateway Interface

(CGI) 27, 134
Common Object Request Broker

Architecture (CORBA)
1058

Common Programming Error 13
Compact HyperText Markup

Language (cHTML) 26,
743, 771

companion Web site 30
comparator function 382
compare.php 1020
comparing JavaScript’s if

structure to VBScript’s If
structure 788

comparison constant 798
comparison operator 784, 916,

1019
comparison operators (VBScript)

785
compile function 976
compiled program 7
compiler 6
complex type 647
complexType element 648
component 12
component.asp 873
compound interest 281
compound interest calculator 828
compound interest with for 282
compound statement 239, 251,

294, 295, 321
comprehensive job site 1334
Comprehensive Perl Archive

Network (CPAN) 940, 952
compression 73, 1225
compression algorithm 73, 94
compression quality 73, 95
Compression type 598
CompuServe 94
computer 4
Computer name: field 686
computer program 4
computer programmer 4
computer security 1202

computer-assisted instruction
(CAI) 360, 361

Computing the sum of the
elements of an array 374

concat method 408
concatenate 784, 811
concatenate strings 318
concatenation 244
concatenation operator 1014
concatenation operator + 408, 784
condition 212, 296
condition is false 212
condition is true 212
conditional expression 236, 237
conditional operator (?:) 236,

259
cone light source 503, 505
cone source lighting 504
conference element 1290
config implicit object 1125
confusing equality operator ==

with assignment operator =
214

connect function 994
connect method 941
connecting control structures in

sequence 301
Connection data object 724
Connection interface 1106
Connection object (ADO)

727, 994
connector symbol 233
Const 798
constant 406
constant variable 335
constrain proportions 69, 76, 591
constructor 419, 423
Contact 49
contact smart card 1202
contact.html 111, 116
contactless smart card 1202
container 1121
container element 637
contemporary community

standard 1210
content attribute of a meta tag

148
content provider 737
Contents and Index 42
contentType attribute of page

directive 1161
Context element of serv-

er.xml file 1072
context menu 475
context node 666
context root 1071, 1074, 1083

continue statement 291, 292,
295

continue statement in a for
structure 292

continue statement in a nested
for structure 295

control structure 272, 301, 788,
916

control-structure stacking 301
control structure’s body 788
control variable 275
control variable’s name 275
controlling expression of a

switch 287
controls attribute 1251
conversion 207
conversion function 798
convert a binary number to

decimal 1323
convert a hexadecimal number to

decimal 1323
convert an octal number to

decimal 1323
convert to an integer 208
Convert to Symbol 594
converting strings to all uppercase

or lowercase letters 407
cookie 27, 56, 849, 858, 945,

989, 1043, 1086, 1087,
1198

Cookie class 992, 1064, 1065,
1090

cookie creation 871
cookie deleted when it expires

1087
cookie domain 1094
cookie expiration 1087
Cookie module 989
cookie name 1090
cookie protocol 1095
cookie value 1090
Cookies directory 948
Cookies directory after a cookie

is written 949
Cookies directory before a

cookie is written 948
cookies disabled 1087
Cookies property 878
cookies.html 1044
cookies.php 1045
Cooljobs.com 1348
coordinate system 464
coordinates of mouse cursor inside

client area 464
coords element 148
copy 87

iw3htp2IX.fm Page 1379 Monday, July 23, 2001 4:31 PM

1380 Index

copy and paste 88
copy dictionary method 974
Copy Frames 612
Copy Merged menu 91
Copy method (Folder) 842
Copy property (File) 841
CopyFile method

(FileSystemObject)
840

CopyFolder 842
CopyFolder method

(FileSystemObject)
840

copyright 1210
CORBA Packages 1058
CORDA Technologies 1271
cornsilk 525
corporate culture 1337, 1340
corporate marketing strategy 738
Cos 791
cos method 405
Cos(x) 792
cosine 405
count downward 279
count function 713, 1017
count list mehod 973
counter 241
counter-controlled repetition 251,

21, 241, 242, 250, 272,
273, 276

Counter-controlled repetition with
the for structure 275

Examples
Counter-controlled repetition
273

counter-controlled loop 289
counter-controlled repetition with

for 275
Courier font 166, 486
CPAN (Comprehensive Perl

Archive Network) 940, 952
CPAN archive 952
CQL++ 728
cracker 1208
craps 329
create directories 840
createAttribute method

661
createComment method 661
createElement method 661
CreateElement method

(xmlFile) 893
CreateFolder method

(FileSystemObject)
840

CreateObject method 872

CreateObject method
(Server) 886

CreateTextFile method
(FileSystemObject)
840

createTextNode method 661
Creating shapes with the

Structured Graphics
ActiveX Control 547

credit card 1201
credit-card fraud 1201
crisis management 1200
Critter font 166
CRM (customer relationship

management) 1200
crop box 84
Crop selection 84
crop tool 76, 84, 85
cross-frame scripting 447
Crtl-Z character 964
Cruel World 1343
cryptography 1203
cryptosystem 1203
CSng 798
CSS (Cascading Style Sheets) 10,

20, 29, 1274, 1277
CSS filter property 482
CSS left attribute 444
CSS padding 495
CSS property 163
CSS rule 165
CSS validation results 173
CSS version 173
CSS Web site 450
CSS2 1277
CStr 798
Ctrl-D character 964
Ctrl key 464
ctrlKey property of event

object 464
curly brace ({}) 165
curly braces ({}) in CGI.pm

functions 922
currency subtype 798
currency values 793
cursive font 166
cursor 202
cursor (Connection data

object) 724
Cursor data object 724, 725
cursor: hand 534
cursor method 995
Cursor object 996
Custom shape menu 87
custom shape tool 87, 89
custom tag 1164

custom tag attribute 1169
custom tag handler 1174
custom tag library 28, 1120,

1164
custom tag with attributes 1170
customer relationship

management (CRM) 736,
740, 1200

customer service 1189
customize a home page 849
customize proportions 617
customize speech output

properties 1248
cyan 466
Cyber Classroom CD 30
cyberspace 1210

D
\D metacharacter 920
\d metacharacter 920
darkseagreen 529
Dartmouth University 7
Darwin Streaming Server 1252
dashed line 548
dashed value (border-style

property) 184
data 4, 197
data abstraction 813
Data Access Components

(MDAC) SDK Overview
site 728

Data Access Technologies Web
site 541

data binding 23, 518, 519, 520,
727

data-binding event 475
data binding with a element 540
data binding with button

element 540
data binding with div element

540
data binding with frame element

540
data binding with iframe

element 540
data binding with img element

540
data binding with input type =

checkbox element 540
data binding with input type =

hidden element 540
data binding with input type =

password element 540
data binding with input type =

radio element 541

iw3htp2IX.fm Page 1380 Monday, July 23, 2001 4:31 PM

Index 1381

data binding with input type =
text element 541

data binding with marquee
element 541

data binding with param element
541

data binding with select
element 541

data binding with span element
541

data binding with table element
541

data binding with textarea
element 541

data integrity 816
data-intensive application 518
data members 817
Data path of a typical CGI-based

application 910
data rendering 533
data representation of the ADT

813
data source 475, 527
data source name (DSN) 833
Data Source Object (DSO) 24,

518
data structure 366
data tier 25, 684
data type 787, 813
data-type attribute 669
data.html 1039
data.php 1012
database 4, 19, 41, 102, 703,

833, 1060, 1103, 1190,
1192, 1195

database access 861, 1059, 1103
database connectivity 939, 1039
database handle 724, 940, 1042
Database Interface (DBI) 724,

939
database management system

(DBMS) 703
Database password.txt

containing user names and
passwords 938

database.asp 861
database.php 1040
databound object 475
databound properties 519
datafld attribute 520, 522,

528
datasrc attribute 520, 522,

528, 529
DataURL property 520, 522
date 793
date and time manipulations 417

Date and Time methods of the
Date object 420

date format constant 798
date manipulation 316
Date object 22, 417, 420, 422,

430
Date object set methods for the

local time zone 421
Date object’s get methods for the

local time zone 419
Date.parse 422
Date.UTC 422
date/time constant 798
date/time subtype 798
DATE_GMT variable 932
DATE_LOCAL variable 932
DateCreated property (File)

840
DateCreated property

(Folder) 841
DateLastAccessed property

(File) 840
DateLastAccessed property

(Folder) 841
DateLastModified property

(File) 840
DateLastModified property

(Folder) 841
DateTime.html 420
DB-API (Database Application

Programming Interface)
724, 994, 996

DB-API 994
DBCS (double byte character set)

1361
DBD::mysql driver 939
DBI (Database Interface) 724
DBI module 939
DB2 703
dbx module 725
dbx_close function 725
dbx_cmp_asc function 726
dbx_cmp_desc function 726
dbx_connect function 726
dbx_error function 726
dbx_query function 726
dbx_sort function 726
de facto client-side scripting

language 784
de facto language for ASP 784
De Morgan’s laws 312
deallocated 807
debugging 103
December 418, 422
decimal (base 10) number system

1318

decipher 1203
decision 3
decision making 21, 284
decision symbol 233, 234
deck 744
declaration 204, 205, 231, 1122,

1126
declare variables in the parameter

list of a function 320
declared implicitly 836
Declaring styles in the head of a

document 164
declaring VBScript variables 836
decoration 168
decreasing order of precedence

218
decrement 272
decrement operator (--) 256
decryption 1203
decryption key 1203
dedicated communications line 9
dedicated server 1252
deep indentation 238
deeply nested structure 304
def keyword 965
default case 287, 327
default case in switch 288
default directory 687, 690, 693
Default FTP Site 688
default namespace 642
default servlet 1074
default setting 56, 1302
Default SMTP Virtual Server

688
default sorting order is ascending

714
default string to display a text field

206
Default style 70
default to Public 814
Default Web Site 688
default.asp 886, 887
defaultnamespace.xml 642
definite repetition 241
degrees to radians 791
deitel:BooksType 647
deitel@deitel.com 30
deja.com news group search

engine 728
del element 117
DELETE 709, 720
DELETE FROM 720
delete layer 73
Delete method (Folder) 842
Delete property (File) 841
delete request 1063

iw3htp2IX.fm Page 1381 Monday, July 23, 2001 4:31 PM

1382 Index

DeleteFile method
(FileSystemObject)
840

DeleteFolder method
(FileSystemObject)
840

delimiter 413, 422, 835, 938,
1038

delimiter string 414
demand-sensitive pricing 1195
demographic 1197
Demonstrating date and time

methods of the Date object
419

Demonstrating the logical
operators 299

Demonstrating the onload event
459

Demonstrating the onmouse-
move event 462

Department of Defense (DOD) 8
deploy a Web application 1071
deployment descriptor 1071,

1072, 1107
DESC 715
DESC specifies descending 714
descending order 23, 532, 540
description element 1073
deselect 592
Deselect command 79
destroy method of Servlet

1107
destructive read in 209
Developer Shed 728
development environment 67
DHTML References 451
diacritic 1360
dial-up connection 37
dialog 21, 201, 756
dialogPrompt.wmls 756
diamond operator <> 933
diamond symbol 233, 234, 235,

241, 279
dice-rolling program using arrays

375
Dice-rolling program using arrays

instead of switch 375
Examples

Dice-rolling program using
arrays instead of switch
375

Dice.com 1344
dictionary 27, 969, 973
dictionary key 973
dictionary value 973
die function 934, 1031, 1042

Differences between
preincrementing and
postincrementing 257

digit 407, 1318
digital camera 65
digital cash 1201
digital cellular phone 743
digital certificate 1204, 1206
digital clock 1265
digital copies 1211
digital signature 1203, 1204
Digital Subscriber Line (DSL) 36
digital transaction 1201
digital wallet 1201
Dim 814
Dimensions 589
DirectAnimation 24, 546
DirectAnimation Path Control

565, 566
DirectAnimation reference site

546
DirectAnimation Sequencer

Control 573
DirectAnimation Sprite Control

576
DirectAnimation subset of

Microsoft’s DirectX
software 546

direction property 491, 499
directive 1121, 1160
directory 839
DirectX 24
Disabilities Issues Task Force 737
disc 118, 121
"disc" attribute value 121
disconnect method 942
discussion group 885
disk 4, 5, 11
disk space 57
dismiss (or hide) a dialog 201
Disney Music Page 1260
Display Color Settings 1295
display-name element 1073
Display Settings 1293
Displaying CGI environment

variables 922
Displaying multiple lines in a

dialog 201
distortion 499
distributed application 17, 723
distributed computing 10
distributed denial-of-service

attack 1208
dithering 94
div element 176, 180, 482

div element and data binding
540

div element containing an image
491

div function 929
diversity 1340
divide and conquer 21, 316, 318
division 210
division (floating-point) 785
division (integer) 785
division by zero 247
division operator (\) 784
D-link 1271
DNS (domain name server) 687
DNS lookup 687
Do Until/Loop 788, 789, 791
do while ActionScript 628
Do While/Loop 788, 789, 791
Do/Loop Until 788, 789, 791
Do/Loop While 788, 789, 791
do/while 788
do/while flowchart 289
do/while repetition structure

233, 289, 290, 291, 302,
305

doAfterBody method of
interface BodyTag 1174

docBase attribute 1072
doctype-public attribute

665
doctype-system attribute

665
document 403
document is printed 476
document is unloaded 476
document object 197, 207, 451
Document Object Model (DOM)

635, 655
document object’s images

collection 1245
document object’s write

method 199
document object’s writeln

method 197, 199
document reuse 652
document root 666
Document Type Definition (DTD)

635, 637
document type definition in CGI

programs 922
document.all collection 439
document.forms 496
document.location 450
Document.Write 804
document.write 447

iw3htp2IX.fm Page 1382 Monday, July 23, 2001 4:31 PM

Index 1383

document.writeln method
257

DOCUMENT_NAME variable 932
documentElement property

658
DOD (Department of Defense) 8
doDelete method of HttpS-

ervlet 1061, 1063
doEndTag method of interface

Tag 1167
doGet method of HttpServ-

let 1062, 1063, 1064,
1066, 1079

Dogfriendly.com 1348
doInitBody method of

interface BodyTag 1174
dollar amount 283
dollar sign ($) 205, 820
DOM (Document Object Model)

635, 655
DOM API (Application

Programming Interface) 655
domain name 686
domain name server (DNS) 687
DOMDocument object 886
DOMExample.html 656
doOptions method of HttpS-

ervlet 1063
DoPlayPause 1251
doPost method of HttpServ-

let 1062, 1063, 1064,
1079, 1091

doPut method of HttpServ-
let 1063

doStartTag method of
interface Tag 1167

dot operator (.) 336, 405
doTrace method of HttpS-

ervlet 1063
dotted value (border-style

property) 184
double 1011
double-byte character set (DBCS)

1361
double equals 214
double opt-in 741
double quotation (") mark 197,

203, 635, 975
double-quote character 200
double-quote (") character as part

of string literal 274
double-selection structure 233,

252
double-subscripted array 22, 388
double subtype 798

double value (border-style
property) 184

download 1226
download from the server 482
download time 72
downloading 39, 56
drive 839
drive exists 840
Drive FSO 839
Drive object 842
Drive properties 842
Drive property (File) 841
Drive property (Folder) 841
drive type constant 798
DriveExists method 840
driver handle 724
Driveway.com 1343
Drop Shadow 84
drop shadow 70, 71, 481, 482
dropShadow filter 501, 502,

503
DSL (Digital Subscriber Line) 36,

37
DSN 833
DSO (Data Source Object) 24,

519
DTD (Document Type Definition)

635, 637
dtd argument in start_html

function 922
.dtd file extension 637
DTD repository 646
dummy value 245
duplicate ActionScript 628
duplicate symbol 626
dur attribute (img) 1254
duration 337
duration 510
Duration parameter 566
dynamic array 803, 805, 807,

830
Dynamic cone source lighting 503
dynamic content 28, 438, 444,

457, 784, 1120, 1125
Dynamic HTML 4, 18, 1103
Dynamic HTML event handling

22
Dynamic HTML Object Model

18, 23, 436, 442
dynamic memory allocation

operator 368
dynamic modification of an

XHTML document 452
Dynamic Net 699
dynamic positioning 444
dynamic pricing 1189

dynamic source 1228
dynamic style 441, 443, 444
Dynamic styles in action 443
dynamic text 604
Dynamicimg.html 1229
dynamicposition.html 444
dynamicstyle.html 441
dynamicstyle2.html 443
dynsrc 1228

E
e-business 1193, 1195
e-check 1201
e-commerce 1189, 1190, 1193
e-mail server 46
E911 Act 737
EagleEyes 1292
Eastern Standard Time 422
eBay 1189, 1193
EBNF (Extended Backus-Naur

Form) grammar 643
ECHO command 930, 932
ECMA (European Computer

Manufacturer’s Association)
20, 195, 219

ECMA-262 26
ECMAScript 195, 219
ECMAScript standard 195
e-commerce 17, 740
economic prosperity 11
e-coupon 738
edge pixel blending 74
EDI (Electronic Data Interchange)

1211
edit images in layers 91
Edit menu 86, 87
editing button symbols 595
editing stage 595, 600, 625
editing tool 67, 611
education 1213
efficient (Unicode design basis)

1359
EFT (electronic funds transfer)

1201
eLance.com 1346
electronic commerce 17
Electronic Data Interchange (EDI)

1189, 1211
electronic funds transfer (EFT)

1189, 1201
electronic mail (e-mail) 8, 688
element 647
!ELEMENT element 644
element gains focus 470
element loses focus 470

iw3htp2IX.fm Page 1383 Monday, July 23, 2001 4:31 PM

1384 Index

element of chance 324
element type declaration 644
elements in an array 914
elements.xsl 664
elimination of the goto statement

304
ellipse shape tool 100
elliptical marquee tool 76
else ActionScript 607, 608
else block 968, 981
else clause 927
ElseIf 788
em (size of font) 169, 188
em element 163
emacs text editor 103
Emacspeak 1272
e-mail (electronic mail) 8, 18, 39,

46, 112
e-mail anchor 112
email message editor 848
e-marketing 738
e-marketing strategy 1197
embed a media clip 1230
embed element 1230
embed elements in an XHTML

document 452
embed HTML element 1130,

1139
embed RealPlayer objects 1249
embed tag 609
embedded 585
embedded style sheet 20, 163,

165
EmbeddedAudio.html 1230
EmbeddedVideo.html 1232
embedding audio streams in pages

1250
embedding audio with the embed

element 1230
embedding RealPlayer in a Web

page 1260
embeds collection 452
empty array 370
empty body 198
empty element 114, 116, 639
EMPTY keyword 645
empty statement 218, 240, 278
empty string 299, 408, 410, 787,

914
enabled 484, 486
encapsulate 404, 811
encipher 1203
enclose script code in an XHTML

comment 198
Encoding 1225
encoding 1358

encoding algorithm 1225
encoding application 1225
encoding declaration 1285
encryption 1203, 1204
end a keypress 475
End Function 802
End If 788
end of a script 197
end of a string 820
“end of data entry” 245
end of session message 1286,

1289
End Sub 797
end tag 104
end_html function 924
ending index 415
engineering application 7
Enhance menu 100
Enhanced Observed Time

Difference (E-OTD) 739
enterFrame ActionScript 625
Entering a username and password

935
entering keystrokes 457
entity

& 645
δ 652
> 645
∫ 652
< 645

entity reference 116, 1362
entry point of control structure

301
<enumerate> tag (<enu-

merate>…</enumer-
ate>) 1284

environ data member 983
environment variable 921, 1024,

1026, 1070
environment variables (PHP)

1026
EOF (end-of-file) 520, 523, 524,

862, 867
EOF property of recordSet 523
epoch 992
equal priority 210
equal to 785
equality and relational operators

213, 215
equality operator 212, 296, 297,

785, 1019
equality operators and Strings

407
equality operators in Perl 916
equals equals 214
Eqv (logical equivalence) 785

Erase 807
eraser tool 76, 611
Eratosthenes 399
ereg function 1021, 1022
ereg_replace function 1024
eregi function 1023
Err object 862
error dialog 460
error handling 23, 457, 462
error-handling code 460
error message 198, 871
Error object in ADO 727
error page 1148
errorPage attribute of page

directive 1154, 1161
Errors collection in ADO 727
escape character 200
escape character (\) 975
escape early from a loop 291
escape sequence 200, 916, 968,

1126, 1127
escape sequence \" 274
escaping special characters 916
EST for Eastern Standard Time

422
Euler’s constant 406
European Computer

Manufacturer’s Association
(ECMA) 20, 26

EVAL_BODY_INCLUDE constant
1168

even 802
event 21, 334, 335, 662
event attribute 457, 458, 468
event bubbled up to document

level 474
event bubbling 472, 473, 474
event canceled 474
event handler 22, 335, 1289
event handling 21, 334, 457
event handling function 335
event model 18, 23, 457, 473
event object 452, 463, 464,

468, 503
event procedure 798
event.ctrlKey 540
event.offsetX 501
event.offsetY 501
event-driven programming 22
Events onfocus and onblur

468
Events onmouseover and on-

mouseout 465
Events onsubmit and onreset

470
e-wallet 28

iw3htp2IX.fm Page 1384 Monday, July 23, 2001 4:31 PM

Index 1385

eWork Exchange 1346
ex (“x-height” of the font) 169
ex value 274
example using switch 284
example1.html 1254
example1.smil 1252
Examples

Accessing other frames 447
addForum.asp 890
Adding a background image

with CSS 176
adding a forum 890
Adding a user style sheet in

Internet Explorer 5.5 187
Adding a wave filter to text
499

Adding integers on a Web
page using VBScript 795

Adding time markers for script
interaction 571

Addition script “in action”
203
Addition.html 203
addition.html 795
addPost.asp 899
adrotator.jsp 1145
Advanced sorting and filtering
533
advanced.html 167
advancedsort.html 533
Algebraic equation marked up

with MathML 649
ammonia.xml 653
analysis.html 254
Applying a shadow filter to

text 489
Applying borders to elements
183

Applying changes to the glow
filter 493

Applying the alpha filter
491

Arithmetic operators 209
Array manipulation 1017
arrays.html 804
arrays.php 1017
article.xml 636
ASP document for connecting

to a database 861
ASP document that allows the

user to log into a site 863
ASP document that responds

to a client request 838
ASP that posts user

information to pro-
cess.asp 850

Authors table from
Books.mdb 705
average.html 242
Average2.html 248
background.html 176
BackgroundAudio.html

1227
BinarySearch.html 385
bindimg.html 527
Binding data to a table

element 529
Binding data to an img

element 527
BizTalkexample.xml

670
Blending between images with
blendTrans 506
book.xml 646
book.xsd 647
borders.html 183
borders2.html 184
Box model for block-level

elements 182
BreakLabelTest.html

294
BreakTest.html 291
Business letter DTD 644
Business letter marked up as

XML 639
Calculating compound interest

with for 282
Calculus expression marked

up with MathML 651
CallXML example that reads

three ISBN values 1286
Changing values of the chro-
ma filter 484

Class-average program with
counter-controlled repetition
242

Class-average program with
sentinel-controlled repetition
248
classes.html 817
clock.asp 834
clock.jsp 1122
CML markup for ammonia

molecule 653
Code listing for redi-
rect.asp 877
compare.php 1020
comparison.html 215
Complex XHTML table 131
component.asp 873
Computing the sum of the

elements of an array 374

contact.html 111, 116
Contents of guest-
book.txt for Fig. 25.12
849
ContinueLabelT-
est.html 296
ContinueTest.html 293
Controlling multiple elements

with the Path Control 567
cookies.html 1044
cookies.php 1045
Counter-controlled repetition

with the for structure 275
Craps.html 330
Creating a Shape With the

Oval Tool 590
CSS validation results 173
data.html 1039
data.php 1012
database.asp 861
database.php 1040
declared.html 164
Declaring styles in the head

of a document 164
default.asp 887
defaultnamespace.xml

642
Demonstrating background

audio with bgsound 1227
Demonstrating date and time

methods of the Date object
419

Demonstrating Microsoft
Agent and the Lernout and
Hauspie TruVoice text-to-
speech (TTS) engine 1238

Demonstrating server-side
ActiveX components 873

Demonstrating the
DirectAnimation Path
Control 565

Demonstrating the logical
operators 299

Demonstrating the onload
event 459

Demonstrating the on-
mousemove event 462

Differences between
preincrementing and
postincrementing 257

DirectAnimation Sequencer
Control 574

Displaying multiple lines in a
dialog 201, 757

Displaying the cookie’s
contents 1047

iw3htp2IX.fm Page 1385 Monday, July 23, 2001 4:31 PM

1386 Index

Displaying the environment
variables 1025
DOMExample.html 656
DoWhileTest.html 290
Dynamic cone source lighting
503

Dynamic positioning 444
Dynamic styles 441
Dynamic styles in action 443
Dynamicimg.html 1229
elements.xsl 664
EmbeddedAudio.html

1230
EmbeddedVideo.html

1232
Embedding audio with the

embed element 1230
Embedding RealPlayer in a

Web page 1250
Embedding video with the

embed element 1232
Error message generated by
instantpage.asp 860

Event bubbling 473
Events onfocus and on-
blur 468

Events onmouseover and
onmouseout 465

Events onsubmit and on-
reset 470

Example using switch 284
example1.html 1254
example1.smil 1252
Expression marked up with

MathML 649
expression.php 1021
External source file newov-
al.txt 556

External style sheet
(styles.css) 170
external.html 170
FactorialTest.html

343
FibonacciTest.html

346
fig23_11.wml 760
fig23_2.wml 747
fig23_4.wml 750
fig23_5.wml 752
fig23_7.wml 754
fig23_9.wml 757
File listing for footer.sh-
tml 854

File listing for header.sh-
tml 853

First program in JavaScript
196
first.php 1010
Floating elements, aligning

text and setting box
dimensions 181
floating.html 181
footer.shtml 854
ForCounter.html 275
Form including radio buttons

and drop-down lists 140
Form to query a MySQL

database 1039
form.html 134, 1026
form.php 1029
form2.html 137
form3.html 140
formatting.xsl 895
forumASP.xml 894
forumASP_transformed
.html 896
forums.xml 887
Framed Web site with a nested

frameset 154
frameset for cross-frame

scripting 447
functionSet.wmls 763
games.xml 663
Gathering data to be written as

a cookie 1044
getVar.wml 762
getVariable.wmls 761
globals.php 1025
Guest book Active Server

Page 843
GuestBean.java 1148
guestbook.asp 843
GuestBookTag.java

1175
GuestBookTagExtraIn-
fo.java 1178
GuestDataBean.java

1149
Handling script errors by

handling an onerror event
460

Header elements h1 through
h6 108
header.html 108
header.shtml 853
hello.xml 1285
IE5.5 displaying arti-
cle.xml 638

Image with links anchored to
an image map 146
index.html 150

index2.html 154
Inheritance in style sheets 167
InitArray.html 369
InitArray2.html 372
InitArray3.html 389
Initializing multidimensional

arrays 389
Initializing the elements of an

array 372
Initializing the elements of an

array to zeros 369
Inline styles 162
inline.html 162
Inserting special characters

into XHTML 116
instantpage.asp 850
interest.html 282
introdatabind.html

519
invalid.html 903
isbn.xml 1286
JavaScript program for

examination-results problem
254
letter.dtd 644
letter.xml 639
Linear search of an array 383
Linking an external style sheet
170

Linking to an e-mail address
111

Linking to other Web pages
109
links.html 109, 144
list.html 119
Listing for namespace.xml

641
LogicalOperators.ht-
ml 299
login.asp 863
Looping through the all

collection 438
main.html 104, 149
main.vxml 1278
mathml.html 651
mathml1.html 649
mathml2.html 650
maximum.html 322
MediaPlayer.html 1233
Memory locations after values

for variables number1 and
number2 have been input
208

message forum document 886
minimum.html 800

iw3htp2IX.fm Page 1386 Monday, July 23, 2001 4:31 PM

Index 1387

Miscellaneous String
methods 766

Modifying text size with the
em measurement 186, 188

Moving through a recordset
using JavaScript 523
moving.html 523
name.asp 838
name.html 837
namespace.xml 641
nav.html 114, 152
Navigating the object

hierarchy using collection
children 440

Nested and ordered lists in
XHTML 119

News article formatted with
XML 636

Object referencing with the
Dynamic HTML Object
Model 437

Obtaining user input through
forms 1029
operators.php 1014
PassArray.html 378
Passing arrays and individual

array elements to functions
378
password.html 1032
password.php 1034
path1.html 565
path2.html 567
picture.html 112, 146
piglatin.html 810
Placing images in XHTML

files 112
planet.svg 1257
Playing a video with the img

element’s dynsrc property
1228

Positioning elements with CSS
173
positioning.html 173
positioning2.html 175
Precedence of arithmetic

operators 211
Printing on multiple lines with

a single statement 200
Printing on one line with

separate statements 199
process.asp 855
Program that determines the

smallest of three numbers
800

Program to simulate the game
of craps 330

Publication page of Deitel’s
VoiceXML page 1280
publications.vxml

1280
Querying a database and

displaying the results 1040
RandomInt.html 325
readCookies.php 1047
real.html 1250
redirect.asp 877
Relational database structure
704

Relative positioning of
elements 175

Responding to mouse events
with the Sprite Control 578

Result set formed by selecting
data from a table 705
RollDie.html 327, 375
Rolling a six-sided die 6000

times 327
Rotating a shape in three

dimensions and scaling up
and down 557
Rotator.java 1144
sample forum 894
Schema-valid XML document
646

Scoping example 339
scoping.html 339
Searching Strings with in-
dexOf and lastIndexOf
411
sequencer.html 574
Setting and displaying a

variable using WMLScript
762

Setting box dimensions and
aligning text 178
shapes.svg 1256
ShapesApplet.java

1140
Shifted and scaled random

integers 325
Simple Active Server Page
834

Simple animation with the
Sprite Control 577

Simple Class definition 815
Simple data binding 519
Simple form with hidden fields

and a text box 134
Simple PHP program 1010
Simple Property Get

procedure 815

Simple Property Let
procedure 814

Simple WML document 747
site.css 903
site.html 798
SMIL document with images

and sound 1252
Some common escape

sequences 202
sort.html 380
Sorting an array with sort

380
Sorting data in a table 531
sorting.html 531
sorting.xml 666
sorting.xsl 667
sprite2.html 578
SquareInt.html 319
squareNumbers.wmls

758
Squaring a number using

programmer-defined
functions 760

String methods charAt,
charCodeAt, from-
CharCode, toLower-
case and toUpperCase
409
stringMisc.wml 766
style.css 904
styles.css 170
submitlogin.asp 868
Sum.html 280
SumArray.html 374
Summation with for 280
SVG document example 1255
SVG document with animated

elements 1257
SwitchTest.html 284
Table optimized for screen

reading using attribute
headers 1275
table1.html 128
table2.html 131
tablebind.html 529
template for message forum

XML document 889
template.xml 889
Transitions using reveal-
Trans 509

triggering an onclick event
458
tutorial.html 1238
Type conversion 1012
Unicode.xml 1363

iw3htp2IX.fm Page 1387 Monday, July 23, 2001 4:31 PM

1388 Index

Unordered lists in XHTML
118

User style sheet 187
user_absolute.html

186
user_relative.html

188
userstyles.css 187
Using a binary search 385
Using a labeled break

statement in a nested for
structure 294

Using a labeled continue
statement in a nested for
structure 296

Using default namespaces 642
Using equality and relational

operators 215
Using gradients and Rotate
552

Using images as link anchors
114

Using internal hyperlinks to
make your pages more
navigable 144

Using keyword Step in
VBScript’s For repetition
structure 790

Using local icons as link
anchors 750

Using meta to provide
keywords and a description
149

Using PHP’s arithmetic
operators 1014

Using programmer-defined
function square 319

Using programmer-defined
functions to square a number
758

Using regular expressions
1021

Using relative measurements
in author styles 189

Using SourceURL and Mou-
seEventsEnabled 554

Using String method
split and Array method
join 414

Using the blendTrans
transition 505

Using the blur filter with the
add property false then
true 496

Using the break statement in
a for structure 291

Using the continue
statement in a for structure
293

Using the do/while
repetition structure 290

Using the flip filter 483
Using the navigator object

to redirect users 449
Using the object element to

embed the Windows Media
Player ActiveX control in a
Web page 1233

Using the Real Player 8 plug-
in to display a SMIL
document 1254

Using the string comparison
operators 1020

Using the WMLBrowser
object’s getVar method
761

Using VBScript arrays 804
Using VBScript classes and

regular expressions 817
Using VBScript code to

respond to an event 798
Using VBScript string

processing functions 809
Using XSLT to create

elements and attributes 664
Validating a CSS document
172

Various border-styles
184

Verifying a username and
password 1034

Viewing the XHTML
generated by Fig. 25.2 836

Web page with user styles
enabled 187

Web site using two frames:
navigational and content 150

Welcome back message
displayed by in-
stantpage.asp 860
welcome.html 196
welcome2.html 199
Welcome2TagHandler.j
ava 1171
welcome3.html 200
welcome4.html 201
welcomeDoc.wmls 753
WelcomeTagHan-
dler.java 1167
WhileCounter.html 273
width.html 178
withheaders.html 1275

withoutheaders.html
1273

WML document to call
function welcome 754

WMLScript listing for dia-
logPrompt.wmls 756

WMLScript listing for
stringMisc.wmls 763

WMLScript listing for wel-
comeDoc.wmls 753

Writing a cookie to the client
1045

XHTML document displayed
in the left frame of Fig. 5.9.
152

XHTML document generated
by process.asp 858

XHTML document that
requests an ASP 837

XHTML form for gathering
user input 1026

XHTML form for obtaining a
username and password
1032

XHTML markup methods of
the String object 415

XHTML table 128
XHTML table without

accessibility modifications
1273

XML document that marks up
the forum 887

XML document using
Unicode encoding 1363

XML Schema document for
books.xml 647

XSLT to transform XML
forum document into HTML
895

except block 979, 980, 989
exception handling 27, 979
exception implicit object

1125, 1156, 1161
exceptions 979
exchanging a symmetric secret

key 1203
exclamation point 795
EXEC command 930, 932
executable statement 231
Execute (such as ISAPI appli-

cations or CGI) access
permission 689

Execute access permission 691,
692

execute method 725, 942, 996
executemany method 725

iw3htp2IX.fm Page 1388 Monday, July 23, 2001 4:31 PM

Index 1389

Exercise
scoping.html 355
volume.html 357

Exercises
15 Puzzler 1266
Analog Clock 1265
Animation 1265
Another Dangling-Else

Problem 268
Arithmetic Tutor 1265
Calendar/Tickler File 1266
Calling Attention to an Image
1265

Check Protection 431
Crossword Puzzle Generator
434

Dangling-Else Problem 268
De Morgan’s Laws 312
Digital Clock 1265
Image Flasher 1265
Karaoke 1265
Limericks 429
Metric Conversion Program
432

Morse Code 1266
Mystery 310, 313
Mystery Script 265, 267
On-Line Product Catalog
1265

Pig Latin 429
Printing Dates in Various

Formats 430
Reaction Time/Reaction

Precision Tester 1265
Sieve of Eratosthenes 399
Special Section: Advanced

String Manipulation
Exercises 430

Spelling Checker 433
sum.html 264
Text Analysis 430
The Twelve Days of Christmas

Song 311
Tortoise and the Hare 400,
1265

Turtle Graphics 399
Video Browser 1265
Word Equivalent of a Check

Amount 431
Exit Do 791
Exit For 791
exit from a Property procedure

816
Exit Function 802
Exit Property 816
Exit Sub 802

<exit> tag (<exit>…</ex-
it>) 1284

exiting the Python interpreter 964
exp method 405
Exp(x) 792
expand selection 99
Experience.com 1347
expiration date of the cookie 946
expire 859
exponential method 405
exponentiation 210, 785, 968
exponentiation operator (^) 282,

784
export to Flash Player 600, 608
expression 606, 1122, 1126
expression.php 1021
extend list method 973
Extended Backus-Naur Form

(EBNF) grammar 643
extends attribute of page

directive 1160
Extensible Business Reporting

Language (XBRL) 648
Extensible HyperText Markup

Language (XHTML) 10,
19, 102

extensible language 813
Extensible Markup Language

(XML) 10
Extensible Stylesheet Language

(XSL) 635, 663
Extensible Stylesheet Language

Transformations (XSLT) 25
Extensible User Interface

Language (XUL) 648, 656
extension mapping 1074
extension of class styles 169
external DTD 637
external linking 169
External source file 556
external style sheet 169
External style sheet

(styles.css) 170
Extra Keyboard Help 1297,

1299

F
F1 key (help key) 475
fade in 482, 505
fade out 482, 505
fade transition 509
Fahrenheit temperature 359
false 234, 472
fatal logic error 239
fclose function 1039

feathering 77
Federal Communications

Commission (FCC) 742
Federal Trade Commission (FTC)

737
feof function 1038
fetchall 725, 996
fetchmany method 725
fetchone 725
fetchrow_array method 942
fgets function 1038
field access operator (.) 336
field delimiter 522
Field object in ADO 727
FieldDelim 522
Fields collection in ADO 727
FieldStorage class 989, 996
15 Puzzler 455, 1266
fig23_11.wml 760
fig23_2.wml 747
fig23_4.wml 750
fig23_5.wml 752
fig23_7.wml 754
fig23_9.wml 757
fig27_02.pl 911
fig27_04.pl 912
fig27_05.pl 914
fig27_06.pl 917
fig27_07.pl 918
fig27_11.pl 922
fig27_12.html 925
fig27_13.pl 927
fig27_14.shtml 930
fig27_15.pl 932
fig27_16.html 935
fig27_17.pl 936
fig27_19.pl 940
fig27_20.pl 942
fig27_21.html 945
fig27_22.pl 946
fig27_25.pl 949
file 839
file attribute constant 798
file attribute of include

directive 1162
file format 94
File FSO 839
file handle 1038
file I/O constant 798
File menu 39, 72
file processing 4
File properties 840
File properties and methods 840
file size 72, 590
File System Object (FSO) 839,

842

iw3htp2IX.fm Page 1389 Monday, July 23, 2001 4:31 PM

1390 Index

file transfer 50
File Transfer Protocol (FTP) 688
file type 72
FileExists method

(FileSystemObject)
840

filehandle 932
filename attribute (forum)

886
FileSystemObject 839
FileSystemObject method

840
fill color 591
Fill dialog 78
fill layer 81
fill selection 78
fill style 548
fill style effect 552
fill styles available with the

Structured Graphics Control
548

fill with color 78
<filled> tag (<filled>…</

filled>) 1284
fills 24
Filter 534, 808
filter 23, 76, 81, 82, 481, 482,

483
filter attribute 483
filter changes properties 476
filter CSS property 505
filter function 540
filter property 482
Filter property of the TDC 540
filter: blendTrans 506
filter: chroma 485
filter: dropShadow 502
filter: flipv 483
filter: glow 494
filter: shadow 490
filter: wave 500
filter:alpha 492
filter:wave 1231
filtered 23
filtering 533
filtering data 518
filters are scriptable 23
Filters menu 82
filters to flip text 482
final value of control variable 279
final value of the control variable

272, 275
financial risk 741
finish method 942
finishopacity 491
firewall 1208

First Amendment 1210
First program in JavaScript 196
first refinement 246
first request to a servlet 1061
first.php 1010
firstChild property 658
Fix(x) 792
fixed 409, 416
fixed-size array 803, 805
fixed template data 1121
fixed template text 1121
Fixedsys font 166
.fla file format 589
flag value 245
Flash Player plug-in 586, 600,

625
flip an object horizontally 482
flip.html 483
FlipDog.com 1335
fliph filter 23, 483
flipv filter 23, 482, 483
floated element 180
floating 180
Floating elements, aligning text

and setting box dimensions
181

floating-point number 244, 787
floor 405, 429
floor method 331
flow of control 219
flow of text 180
flow text around div element 180
flowchart 21, 232, 289
flowchart symbol 301
flowcharting a for repetition

structure 279
Flowcharting JavaScript’s

sequence structure 232
flowcharting the do/while

repetition structure 291
Flowcharting the double-selection

if/else structure 236
Flowcharting the single-selection

if structure 235
Flowcharting the while

repetition structure 241
flowline 232
flush attribute of <jsp:in-

clude> action 1131
flush the output buffer 1067
focus 470
focus group 1197
Folder FSO 839
Folder object 841
Folder properties and methods

841

FolderExists method
(FileSystemObject)
840

font 69
font face 69
font-family property 166,

441, 486
Font Size dialog 1293
font-size property 163, 166,

274
font-style property 178
font weight 69
font-weight property 170,

178, 550
fontFamily property 441, 444
font-family: monospace

466
fontSize property 444, 445
font-weight: bold 466
footer.shtml 854
fopen function 1038
for attribute of the script

element 457
For repetition structure 789, 791
for repetition structure 233,

275, 277, 279, 302, 305,
458, 788, 933, 968, 1017,
1042

for structure header 276
for/in repetition structure 233,

305, 374, 375, 391, 666
For/Next 788
foreach structure 916, 1017,

1043
foreground color 67, 68, 78, 80,

81, 86, 548, 554
foreground color with which to fill

shapes 548
foreign key 709
<form> tag (<form>…</

form>) 1280, 1284
form 20, 128, 133, 468, 470,

472, 1062
form 471
form element 135
form element of a Web page

1060
form elements in an XHTML

document 452
form field 470
form GUI component 206
form processing 457
form reset 476
form.html 1026
form.php 1029
format attribute 1290

iw3htp2IX.fm Page 1390 Monday, July 23, 2001 4:31 PM

Index 1391

Format documents using my
style sheet check box 186

FormatCurrency 793
FormatDateTime 793
FormatNumber 793
FormatPercent 793
formatting function 791, 793
formatting.xsl 895
Forms 799
forms in XHTML 924
Fortran 102
Fortran (FORmula

TRANslator) 7
forumASP.xml 886, 894
forumASP_transformed.h

tml 896
forums element 886
forums.xml 886, 887
forward a request 1130, 1154
Forward button 39
forward slash 666
forward slash character (/) 114
fputs function 1038
fraction 829
fractional parts of dollars 283
frame 20, 150, 576, 577, 586,

1276
Frame Delay 580
frame element 152
Frame Rate 589
Framed Web site with a nested

frameset 154
frames 451
frames collection 447, 448,

452
frames per second 589
frameset document type 150
frameset for cross-frame

scripting 447
framesloaded ActionScript

626
free download 1259
free images and sound 1226
free scripts 220
free Yahoo! ID 849
FreeAgent 1346
Freedom Scientific 1289
FreeSpace 842
freq property 500, 501
frequency of a wave 501
FROM 867
FROM clause of a SELECT query

715
From element (BizTalk) 671
FROM SQL keyword 709
fromCharCode 408, 409, 410

FSCommand ActionScript 627
FSO instance 848
FSO type 839
FTP (File Transfer Protocol) 45,

688
FTP address 46
FTP directory 45
FTP server 46
FTP site 46
ftp:// 45
Full Computer Name: field

686
fully qualified host name 686
fully qualified name (SQL) 721
Function 802
function 21, 316, 605, 606, 607,

608, 627, 939
function (or local) scope 338
function body 321
function call 317
function call operator 319
function calls that wrap arguments

in parentheses 795
function definition 320
function maximum 324
function parameter 321
function parseFloat 324
function parseInt 207
Function procedure 802, 809
functions for interacting with the

user 791
functions for obtaining

information about the
interpreter 791

functionSet.wmls 763
Futurestep.com 1341

G
g modifying character 920, 921
gain focus 470
gallery.yahoo.com 112
gambling casino 324
game of craps 330, 335, 337
game playing 324
games.xml 663
Gates, Bill 7
gateway 1207
General options tab 57
generating XHTML dynamically

during script processing 415
generic font family 166
GenericServlet class from

javax.servlet 1061
Genie 29, 1236
geocode 737

Geography Markup Language
(GML) 656

Georgia font 166
GestureAt method of Char-

acter object 1249
Get 1244
get dictionary method 974
get method 23, 859
get request 1062, 1064, 1066,

1091, 1095
get request type 135, 683, 1290
GetAbsolutePathName

method
(FileSystemObject)
840

GetAdvertisement method
872

GetAttention animation
1245

getAttribute method 661
getAttribute method

(xmlItem) 889
getAttribute method of Ht-

tpSession 1099
getAttributeNames method

of HttpSession 1099
getAttributeNode method

661
getAttributes method 659
getChildAtIndex method

660
getChildNodes method 659
getComment method of Cook-

ie 1094
getCookies method of Ht-

tpServletRequest
1064, 1091

getCreationTime method of
HttpSession 1099

getData method 661
getDate 417, 420
getDay 418, 420
getDigits element 1288,

1289
getDocumentElement

method 660
getDomain method of Cookie

1094
GetDrive method

(FileSystemObject)
840

GetDriveName method
(FileSystemObject)
840

getElementsByTagName
method 660

iw3htp2IX.fm Page 1391 Monday, July 23, 2001 4:31 PM

1392 Index

GetFile method
(FileSystemObject)
840

GetFileName method
(FileSystemObject)
840

getFirstChild method 659
GetFolder method

(FileSystemObject)
840

getFullYear 418, 419, 420
getHours 418, 420
getID method of HttpSes-

sion 1099
getLastAccessedTime

method of HttpSession
1099

getLastChild method 659
getLength method 660, 661
getmaxAge method of Cookie

1094
getMaxInactiveInterval

method of HttpSession
1099

getMilliseconds 418, 420
getMinutes 418, 420
getMonth 418, 420
getName method 661
getName method of Cookie

1094
getNamedItem method 660
getNextSibling method 659
getNodeName method 659
getNodeType 659
getNodeValue 659
getOutputStream method of

HTTPServletRe-
sponse 1065, 1067

getParameter method of Ht-
tpServletRequest
1064, 1077

getParameterNames method
of HttpServletRe-
quest 1064

getParameterValues
method of HttpServle-
tRequest 1064, 1086

getParameterValues
method of JSP request
object 1137

GetParentFolderName
method
(FileSystemObject)
840

getParentNode 659

getPath method of Cookie
1094

getPreviousSibling 659
getQueryString method of

HttpServletRequest
1111

getRequestURL method of
HttpUtils 1111

gets 214
gets the value of 214
getSeconds 418, 420
getSecure method of Cookie

1094
getServletConfig method

of Servlet 1061
getServletInfo method of

Servlet 1061
getSession method of Ht-

tpServletRequest
1064, 1099

getTagName method 661
GetTempName method

(FileSystemObject)
840

getTime 418
getTimeZone 419
getTimezoneOffset 418,

420
getURL ActionScript 625, 627
getUTCDate 417
getUTCDay 418
getUTCFullYear 418
getUTCHours 418
getUTCMilliSeconds 418
getUTCMinutes 418
getUTCMonth 418
getUTCSeconds 418
getValue method 661
getValue method of Cookie

1091, 1094
getValues method 660
getVar.wml 762
getVariable.wmls 761
getVariableInfo method of

TagExtraInfo 1177
getVersion method of Cook-

ie 1095
getWriter method of HTTPS-

ervletResponse 1065,
1067

GIF (CompuServe Graphics
Interchange Format) 73, 94

.gif file 833
global function 340

Global Mobile Commerce
Interoperability Group
(GMCIG) 740

Global object 340
Global Positioning System (GPS)

739
global scope 338
Global System for Mobile

Communications (GSM)
Association 742

global variable 21, 338, 382,
1286

$GLOBALS variable 1024
globals.php 1025
glow 481, 482
glow filter 493, 494, 495
glowing edges filter 99
glyph 1360
GML (Geography Markup

Language) 656
GMT (Greenwich Mean Time)

417, 422
Good Programming Practice 13,

14
Google (www.google.com) 41
goto ActionScript 616, 617,

627
goto element 1290
goto elimination 231
goto statement 231
<goto> tag (<goto>…</go-

to>) 1284
gotoAndPlay ActionScript

626
gotoAndStop ActionScript

616, 621
gradient 552, 554
gradient effect 491
gradient fill 554
gradient option 80
gradient tool 80, 81
Gradients menu 80
grain filter 99
<grammar> tag (<gram-

mar>…</grammar>)
1284

graphic symbol 594
graphical representation of an

algorithm 232
graphical user interface (GUI) 4,

21, 870
Graphics Interchange Format

(GIF) 19, 73, 94, 112
graphics package 482
gray 466
gray filter 23, 487

iw3htp2IX.fm Page 1392 Monday, July 23, 2001 4:31 PM

Index 1393

grayscale 66
grayscale color mode 65
grayscale image effect 487
greater than 785
greater than or equal to 785
greatest common divisor (GCD)

360
green 466
Green research project 16
Greenwich Mean Time (GMT)

417, 422
grid 86, 91
Grid Preferences dialog 86
groove 551
groove value (border-style

property) 184
GROUP BY clause 713
GROUP BY SQL keyword 709
grouped object 601, 602
grouping element 176
GSM 742
gt operator 917
guest book 843, 847
GuestBean.java 1148
guestbook.asp 843
GuestBookTag.java 1175
GuestBookTagExtraIn-

fo.java 1178
GuestDataBean.java 1149
GUI 870
GUI (graphical user interface) 4,

21
GUI component 206
Gunning Fog Index 1272, 1306

H
h1 header element 108
h6 header element 108
hacker 1208
hand 534, 540
Handheld Devices Markup

Language (HDML) 771
handle 724, 940
handle an event in a child element

472
handle attribute (BizTalk) 671
handling script errors 460
Handling script errors by handling

an onerror event 460
handshake point 1069
hardware 3, 4
has_key dictionary method 974
hash 912, 924
hash function 1203
hash mark 522

hash value 1203
</head> tag 198
<head> tag 196
head 104
head element 104, 165, 1253
head section 104
header 108, 1087
header cell 130
header element 108, 289
header function 922
header row 522
header.html 108
header.shtml 853
headers attribute 1274
Headhunter.net 1343
Height 65
height 877, 1235
height attribute 112, 113, 751
height attribute of <jsp:plu-

gin> action 1139
height of a point source 503
height property 180, 482
Height property of Charac-

ter object 1249
help 475
Help menu 42
Helvetica font 166
Henter-Joyce 1289, 1307
hexadecimal (base 16) number

system 1318
hexadecimal color value 68
hexadecimal notation 590
hexadecimal value 117
hidden 506, 507, 540
hidden tools 75
hidden value (border-style

property) 184
hide a dialog 201
hide complexity 1224
Hide event of Microsoft Agent

1248
hide global variable names 338
“hiding” of implementation details

317
Hiding state 1244
Hiding states for a character

1244
hierarchical boss function/worker

function 317
high-level language 6
high-precision floating-point

value 245
high priority messages 49
highest level of precedence 210
Hints palette 67
Hire.com 1341

HireAbility.com 1345
Hirediversity.com 1340
History 39
history 40
history object 452
History palette 87, 88
hit area 595
hit state 626
Hits method 878
Home button 57
home page 57
Home Page Reader (HPR) 1272
Horizontal Blinds 509
horizontal portal 1194
horizontal positioning 178
horizontal rule 20, 118
horizontal tab 202
host name 1068
HotBot (www.hotbot.com)

41
Hotbot.com 1194
HotDispatch.com 1345
HotJobs.com 1338, 1343
hotspot 91, 146
hotwired.lycos.com/

webmonkey/00/50/
index2a.html 122

hours since midnight 418
hovering 465
HPR (Home Page Reader) 1272
<hr /> tag (horizontal rule) 118
hr element 118
hr function 923
href attribute 110, 146, 750
HSB color model 67
hspace attribute of <jsp:plu-

gin> action 1139
htdocs directory 693, 698
.htm (XHTML file extension)

103
.html (XHTML file name

extension) 103
HTML (HyperText Markup

Language) 102
html element 104
.html file extension 921
HTMLStandardColors.txt

519
HTTP (HyperText Transfer

Protocol) 682, 683, 688,
1059, 1062, 1086, 1290

HTTP connection 921, 1024
HTTP header 859, 922, 1091
HTTP host 921, 1024
HTTP post request 859

iw3htp2IX.fm Page 1393 Monday, July 23, 2001 4:31 PM

1394 Index

HTTP protocol (HyperText
Transfer Protocol) 832

HTTP request 1062
HTTP request type 683, 1062
http:// 37, 45
http://messen-

ger.msn.com 55
http://www.w3.org/

2000/10/XMLSchema
URI 647

HTTP_COOKIE environment
variable 948

$HTTP_COOKIE_VARS 1047,
1048

HTTP_HOST environment
variable 924

HTTP_USER_AGENT 878
HttpServlet interface from

javax.servlet.http
1061, 1062, 1066

HttpServletRequest
(javax.serv-
let.http) 1125

HttpServletRequest
interface from jav-
ax.servlet.http 1063,
1064, 1066, 1099

HttpServletResponse
(javax.serv-
let.http) 1125

HttpServletResponse
interface from jav-
ax.servlet.http 1062,
1063, 1064, 1066

HttpSession (jav-
ax.servlet.http)
1125

HttpSession interface from
javax.servlet.http
1064, 1095, 1099, 1117

HttpUtils class 1111
hue 67, 68, 94
Hue/Saturation adjustment layer

93
Hue/Saturation dialog 93
hybrid language 15
hyperlink 39, 109, 416, 417,

753
hyperlink location 409
hyperlink target 417
hypertext link 625
HyperText Markup Language

(HTML) 102, 771
HyperText Transfer Protocol

(HTTP) 682, 1059

I
i modifying character 920
IBM 7, 9
IBM Corporation 1359
IBM Personal Computer 9
icon 795
id attribute 176, 458
id attribute (molecule) 654
id attribute of <jsp:useBean>

action 1143
ID card 1198
Identification tab in the Net-

work dialog 686
identifier 233, 338
identifier followed by a colon 295
IE5.5 637
IE5.5 (Internet Explorer 5.5) 36,

37, 39, 41, 42, 44, 46, 56,
57

IE5.5 Help 42
iepluginurl attribute of

<jsp:plugin> action
1139

if 788
if ActionScript 606, 608, 626,

628
if block 967
if selection structure 239
if single-selection structure 284,

302, 305
if structure 212, 305, 917
<if> tag (<if>…</if>) 1284
if/else 788
if/else double-selection

structure 284, 302, 305
if/else selection structure 233,

253
If/Then/Else/End If 788
If/Then/End If 788
ifFrameLoaded ActionScript

627
iframe element and data binding

540
IIS (Internet Information Services)

25, 682, 687, 745, 833,
870, 885

illusion of motion 482, 496, 576
image 1226
image centered vertically 178
image clarity 73
image editing program 74
image filter 487
image flasher 1265
image hyperlink 115
image map 20, 147

image mask 486
Image menu 89
Image object 465
image processing effect 501
image quality 73, 74
image slicing 91
image window 66
image/gif 165
image’s coordinate system 464
images in Web pages 112
images.txt 527
img element 112, 113, 115,

174, 527, 1228, 1271
img element and data binding

540
img element’s dynsrc property

1228
img elements in an XHTML

document 453
img function 934
immutable 971, 973
i-mode 26
Imp (logical implication) 785,

786
implementation details are hidden

811
implicit object 1124
implicit object scopes 1124
#IMPLIED flag 644
Import 611
import attribute of page

directive 1154, 1160, 1161
import method 985
import tag 921
in (inches) 169
include a resource 1130
INCLUDE command 930
include directive 1131, 1160,

1162
Inclusive Technology 1304
incompatible browser 462
Incorporating a Web-page hit

counter and displaying
environment variables using
server-side includes 930

increment 272
increment a control variable 279
increment and decrement

operators 257
increment control variable 274
increment expression 278
increment operator (++) 256
increment section of for structure

277
increment.html 257
indefinite repetition 245

iw3htp2IX.fm Page 1394 Monday, July 23, 2001 4:31 PM

Index 1395

indent statement in body of if
structure 214

indentation 219
indentation body of control

structure 275
indentation convention 236
indentation in Python code 966
independent software vendor

(ISV) 832
index 408, 803
index 0 807
index 1 807
index list method 973
index value 1043
index.html 447
indexOf 408, 411, 412, 430
indices for the characters in a

string 410
inequality operator 785
infinite loop 240, 251, 276, 289
infinitely loop an audio clip 1236
info attribute of page directive

1161
Info panel 591
information hiding 404, 811, 812
information tier 684, 699
Informix 703
inherit a style 166
inheritance 166
Inheritance in style sheets 167
init method of Servlet 1061,

1107
initial value 272, 275
Initial value of control variable

279
initial value of control

variable 272
initialization 272, 277, 278
initialization expression in for

structure header 277
initialization parameter 1107
initialization phase 247
initialize 242
initializer list 371, 372, 388
initializer method for an object

419
Initializing multidimensional

arrays 389
Initializing the elements of an

array 372
initializing the elements of an

array to zeros 369
initiate script 459
init-param element 1107
inline-level element 176
inline scripting 196, 457

inline style 162, 165
inline style sheet 20
inline styles 162
inline styles override any other

styles 163
inner for structure 295, 391
innerHTML property 436, 438,

439, 440, 444, 445
innermost pair of parentheses 210
innerText 437, 459, 464, 466,

520, 524, 535, 536
innerText property 438, 490,

491
<input> 1271
input device 5
input dialog 794, 798
input element 136
input type = "checkbox"

469
input type = "text" 469
input type = checkbox

element and data binding
540

input type = hidden element
and data binding 540

input type = password
element and data binding
540

input type = radio element
and data binding 541

input type = text element
and data binding 541

input unit 5
InputBox 794, 796
INRIA (Institut National de

Recherche en Informatique
et Automatique) 11

INSERT INTO operation 718
INSERT INTO SQL keyword

709
Insert Keyframe 597
insert layer 601
insert list method 973
insertBefore method 659
inset value (border-style

property) 184
instance 594
instance of a class 812
instance variable 812
instance variable Private 816
instance variable Public 816
instantiated 811
instantpage.asp 850
Institut National de Recherche en

Informatique et
Automatique (INRIA) 11

InStr 807, 809
InStrRev 809
int function 968
Int(x) 792
integer 787, 1011
integer subtype 798
integral symbol (MathML) 651
integrity 1202, 1203
intelligent agent 1195, 1335
intensity value 66
interaction with a character 1248
interactive animated character 29,

1236
interactive animated movies 585
interactive help file 95
interactive mode 939, 963
interactively interpreted python

statements 964
interactivity 739
InterBase 728
interchangeable part 405
interest 281
interest rate 281
interface 404, 457
interface Servlet 1060
interlacing 95
internal hyperlink 146
internal linking 20, 143
Internet 1, 8, 1057
Internet and World Wide Web

How to Program 17
Internet and World Wide Web

Programming Multimedia
Cyber Classroom 14

Internet Connection Tutorial 37
Internet Connection Wizard

(ICW) 37, 42
Internet Explorer 95, 784, 1066
Internet Explorer (IE) 1255
Internet Explorer 5 (IE5) 637
Internet Explorer 5.5 (IE5.5) 19,

102, 113, 450, 885
Internet Explorer 5.5 object model

451
Internet Information Services (IIS)

25, 682, 687, 745, 833,
870, 885, 1069

Internet mailing list 1197
Internet newsgroup 19
Internet Options dialog 56, 57,

866
Internet Options in the Tools

menu 866
Internet Protocol (IP) 9, 1206
Internet Protocol (IP) address 686

iw3htp2IX.fm Page 1395 Monday, July 23, 2001 4:31 PM

1396 Index

Internet Service Provider (ISP)
36, 37, 46, 135

Internet Services Manager 687
Internshipprograms.com

1348
interpolation 74, 913, 1011
interpret 196
interpret <body> 208
interpret <head> 208
interpreted 963
interpreted program 7
interpreter 14, 784
interpreter program 6
Interrupt method of Char-

acter object 1249
InterviewSmart 1348
intranet 26, 784
Introduction 885, 963
intrusion detection system 1208
invalid document 646
invalid.html 886
invalidate method of Ht-

tpSession 1099
invert filter 23, 487, 489
invert selection 78, 84
invoke a function 317
IP (Internet Protocol) 9, 1206
IP (Internet Protocol) address 686
IP address 1198, 1206
IPSec (Internet Protocol Security)

1207
IPSec Developers Forum 1207
IPSec Working Group of the IETF

1207
is 980
isAncestor 660
IsArray 791
isbn attribute 667
IsDate 791
ISDN (Integrated Services Digital

Network) 37
IsEmpty 791
isErrorPage attribute of page

directive 1156, 1161
isFinite function 341
isNaN 424
isNaN function 341
isNew method of HttpSes-

sion 1099
IsNumeric 791
IsObject 791
iSolve 1195
ISP (Internet Service Provider)

36, 37, 46, 135
IsRootFolder property

(Folder) 841, 842

isset function 1034
isThreadSafe attribute of

page directive 1161
italic 178
item method 660
item method (childNodes)

658
Item object 573, 574
items dictionary method 974
iteration 439
iteration of the loop 272, 275,

277
iterative solution 342

J
J2ME (Java 2 Micro Edition) 26
Jacopini 305
Jakarta project 1059
jakarta.apache.org 1059
jakarta-tomcat-3.2.1

1069
January 418
Java 6, 16, 28
Java 2 Micro Edition (J2ME) 26
Java applet 685, 833
Java Community Process 1059
Java Development Kit (Java SDK

1.3) 1277
Java Plug-in 1130, 1139, 1141
Java programming language 635,

662
Java Server Pages 1.1

specification 1120, 1162
Java servlet 27
java.net package 1058
java.rmi package 1058
java.sun.com/j2ee 1179
java.sun.com/products/

jsp 1179
java.sun.com/products/

jsp/download.html
1121

java.sun.com/products/
servlet 1179

JAVA_HOME environment
variable 1070

JavaScript 3, 4, 7, 13, 15, 22,
104, 609, 685, 784, 832,
835

JavaScript interpreter 195, 198
JavaScript keywords 233
JavaScript Mall 260
JavaScript on the World Wide

Web 260

JavaScript program for
examination-results problem
254

JavaScript property 878
JavaScript Reference 260
JavaScript scripting language 195
JavaScript tutorial 220
JavaScript’s control structures

301
JavaScript’s single-entry/single-

exit sequence, selection and
repetition structures 302

JavaServer Pages (JSP) 27, 28,
1058

JavaServer Pages (JSPs) 1120
javax.servlet package

1058, 1061, 1066
javax.servlet.http 1058
javax.servlet.http

package 1061, 1066, 1090
javax.servlet.jsp 1058,

1120
javax.serv-

let.jsp.tagext 1120
javax.serv-

let.jsp.tagext
package 1164

JAWS (Job Access with Sound)
1291, 1307

JDBC 1059
JDBC (Java Database

Connectivity) 1059, 1103
Jigsaw Web server 1060
jigsaw.w3.org/css-val-

idator 172
jobfind.com 1338
Jobs.com 1339
JobsOnline.com 1343
Join 808
join method 378, 414
joining tables 709, 715
Joint Photographic Experts Group

(JPEG) 19, 79, 112
JPEG (Joint Photographic Experts

Group) 79, 94, 95
JPEG image quality 79
jreversion attribute of

<jsp:plugin> action
1139

JScript 20, 195, 219
JSML 1306
JSP (JavaServer Pages) 28
JSP action 1121
JSP comment 1126
JSP container 1121
JSP declaration 1122, 1126

iw3htp2IX.fm Page 1396 Monday, July 23, 2001 4:31 PM

Index 1397

JSP directive 1121, 1160
JSP error page 1148
JSP escape sequence 1126, 1127
JSP expression 1122, 1126
JSP expression delimiters <%=

and %> 1123
<jsp:forward> action 1130
<jsp:getProperty> action

1131, 1145
JSP implicit object 1124
<jsp:include> action 1130,

1131, 1162
<jsp:param> 1141
<jsp:param> action 1130
<jsp:params> 1141
<jsp:plugin> 1141
<jsp:plugin> action 1130,

1139
JSP scriptlet 1126
<jsp:setProperty> action

1131, 1147, 1154
JSP standard actions 1130
<jsp:useBean> action 1130,

1143, 1154
<jsp:usebean> action 1164
jspDestroy method 1122
jspInit method 1122
jspinsider.com 1179
_jspService method 1121,

1126
jsptags.com 1179
jspversion element of tag

library descriptor 1168
JspWriter (package jav-

ax.servlet.jsp) 1125
Jumbo browser 652
JumpStart Kit 670
JustCJobs.com 1345
JustComputerJobs.com

1345
JustJavaJobs.com 1334,

1345

K
karaoke 1265
Keio University 11
key 922
key algorithm 1204
key function 1017
key interactions between message

forum documents 887
key/value pair 973
keyboard 4, 5
KeyError exception 988, 993
keyframe 591, 597

keys (in a hash) 924
keys dictionary method 973,

974, 993
keys function 924
keystroke 23, 457, 482
keyword 233, 1016, 1199
keyword argument 994
Keyword extern 754
keyword module 965
keyword Set 848
khaki 535
KIS (keep it simple) 14

L
label 295
labeled break statement 294
labeled break statement in a

nested for structure 294
labeled compound statement 295
labeled continue statement

295
labeled for structure 295
labeled repetition structure 295
labeled statement 294
Laboratory for Computer Science

8
LAN (local area network) 9
language attribute of page

directive 1160
@LANGUAGE processing directive

835
large cache 57
large relative font size 166
larger 406
larger relative font size 166
Lark non-validating XML parser

673
lasso tool 75, 76, 611
last-in, first-out (LIFO) data

structure 813
last statement 939
lastIndexOf 408, 411, 412,

413, 430
LaTeX software package 648
Latin World 1341
layer 91, 600
Layer menu 70, 93
layer name 93
layer opacity 93
layer options menu 90
layer order 93
layer overlapping elements 174
layer style 70, 90
Layer Styles 70
Layer Styles palette 70, 71, 84

Layer via Copy command 84
layer visibility 84
Layers palette 71, 72, 73, 90,

92, 93
LBound 803, 806
LCase 807, 809
lead 740
LEAP 728
Left 808, 809
left margin 174, 175, 178,

180
left property 444, 445
Left property of Character

object 1249
left speaker 1226
left-to-right evaluation 212
Len 807
len function 979
length function 934
length method 371, 375
length of an array 367, 371
length property 405, 658
length property of the all

collection 439
Lernout and Hauspie TruVoice

text-to-speech (TTS) engine
1237, 1238, 1244

less than 785
less than or equal to 785
letter 407
letter.dtd 644
letter.xml 639
letters 205
level of precedence 210
levels of nesting 274
levels of security 56
 (list item) tag 118
libel 1210
Library panel 594
lifetime 337
light filter 501, 502
light filter with a dropshadow

501
light source 502
light source shining on your page

501
lightcyan 529
lighter value 178
Lighting Angle 71
lime 466
Limericks 429
line 24
line 548
line break XHTML tag 200
line-continuation character 795
line drawing 94

iw3htp2IX.fm Page 1397 Monday, July 23, 2001 4:31 PM

1398 Index

line segment 550
line shape tool 89
line style 548
line weight 85
line width 548
linear gradient 491, 554, 592
linear search 382
linear search of an array 383
linearized 1273
LinearSearch.html 383
line-continuation character (\)

968
line-through value 169
link 409, 417
link element 171, 453
<link> tag (<link>…</

link>) 1284
linked list 813, 816
Linking an external style sheet

170
linking external style sheets 169
links collection 453
links.html 109
links2.html 118
Linux 692
liquify default mode 83
Liquify filter 82
liquify filter 83
list 20, 27, 915, 968, 969, 972
list of values 22
list.html 119
listen for events 335
literal 197
literal character 820, 918, 1022
live-code approach 3, 19, 21
load method 993
load method (xmlDocument)

658
Load method (xmlFile) 889
Load method of the Charac-

ters collection 1238
Load Pictures setting 56
load servlet into memory 1061
loading an image 56
loadMovie ActionScript 627
local area networks (LANs) 9
local time zone method 417
local variable 318, 337, 338,

797, 805
local variable names 338
localhost 686
localhost (127.0.0.1)

1068, 1071
localization 1358
localtime function 992

location in memory 204, 208,
376

location object 452
location of the mouse cursor 464
Location-Pattern Matching 739
Location property 800
locationID attribute 671
locationType attribute 671
log 405
log file 1198, 1209
log-file analysis 1198
Log(x) 792
LOG10E 406
logarithm 405, 792
logging feature 1286
logic element 1289
logic error 206, 239, 240, 244,

247, 259, 278, 889
logical AND (&&) operator 297,

298, 939
logical And operator 786
logical decision 4
logical Eqv 786
logical Imp 786
logical negation (!) operator 297,

298, 939, 1038
logical Not 786
logical operator 297, 299, 301,

784, 786
logical Or 786
logical OR (||) 297, 298
logical OR (or) operator 934
logical unit 5
logical Xor 786
login.asp 863
long name format 841
long subtype 798
longdesc attribute 1271
Look-and-Feel Observation 13
Loop 788
loop 246
loop 1227
loop body 278
loop-continuation condition 274,

277, 278, 279, 289
loop-continuation test 289, 292,

295
loop counter 272
Loop option 580
loop property 1226, 1230
loop terminates 283
loop-terminating condition 371
loop through frames repeatedly

578
looping 439

Looping through the all
collection 438

Lord Byron 8
lose focus 476
lossless format 94
lossy format 95
Lovelace, Ada 8
lower bound 803
lowercase letter 198, 205
lowercase string 807
Lst 1249
lt operator 917
LTrim 808
lvalue 259
Lynx 1276

M
m-by-n array 388
m modifying character 920
m// 918
machine dependent 6
machine language 6, 7, 33
Macromedia Flash 585
Macromedia Shockwave 44
magenta 466
Magic Wand 76, 84
magic wand tool 76
magnetic lasso 76
magnifying glass 75
mailto: URL 110
main menu bar 87, 88
main.html 104
maintenance of software 13
major version 794
manipulate files 840
manipulating databases in Perl

939
map element 147
margin 180
margin-bottom attribute

(div) 180
margin-left attribute (div)

180
margin-left property 169
margin property 180
margin-right attribute (div)

180
margin space 182
margin-top attribute (div)

180
margins for individual sides of an

element 180
marketing campaign 1197, 1198
marketing mix 1197
marketing research 1197

iw3htp2IX.fm Page 1398 Monday, July 23, 2001 4:31 PM

Index 1399

markup language 19, 102, 1292
MarkupMethods.html 415
maroon 466
marquee 76
marquee element 475
marquee element and data

binding 541
marquee events 475
marquee tool 75, 76
Marquee tool options bar 77
mask filter 486
mask.html 486
masking effect 611, 613
masking layer 611
Massachusetts Institute of

Technology (MIT) 11
match attribute 666
match method 979, 988
match operator (m//) 918
match preceding character one or

more times 919
match request parameters 1154
Math 403
math functions 791, 792
Math method floor 424
Math method round 429
Math object 22, 299, 405, 406
Math object methods 405
Math object’s max method 324
Math object’s pow method 282
Math object’s random method

324
Math.E 406
Math.floor 325, 327, 328,

331, 375
Math.LN10 406
Math.LN2 406
Math.LOG10E 406
Math.LOG2E 406
Math.max 323
Math.PI 407
Math.pow 316
Math.random 325, 327, 328,

331, 340, 375, 397
Math.round 316, 501
Math.sqrt 405
Math.SQRT1_2 407
Math.SQRT2 407
mathematical calculation 316,

405, 754
mathematical constant 406
Mathematical Markup Language

(MathML) 648
MathML (Mathematical Markup

Language) 25, 634, 648
mathml.html 651

mathml1.html 649
mathml2.html 650
matte color 73, 74
matte selector 73
MaVerick 728
max 406
maxDigits attribute 1288
maximum age of a cookie 859,

1087
maximum function 322
maxlength attribute 136
maxOccurs attribute 648
maxTime attribute 1289, 1290
MBAFreeAgent.com 1346
MBCS (multi-byte character set)

1361
m-business 736
McIntosh, Jason 655
m-commerce 740
m-commerce application 743
.mdb 833
mean (average) 211
meaningful named variables 335
media clip in an infinite loop 1236
Media Player ActiveX control

1232, 1235
MediaPlayer.html 1233
medium relative font size 166
medium value 184
member access operator (.) 336
memory 4, 5, 11
memory function 921
memory storage in regular

expressions 919
memory unit 5
<menu> tag (<menu>…</

menu>) 1280, 1284
merchant 1199
merchant account 1201
merchant server 1190
merge down layer 90
Merlin 29, 1236
message dialog 334, 795
message digest 1203
message element 898
message forum 885, 886
message forum template 886
message forums main page 887
message integrity 1204
message window 39
messages.yahoo.com/in-

dex.html 885
messenger.msn.com 55
meta element 148, 149, 1124
meta tag 1199

metacharacter 918, 921, 1023,
1024

metasearch engine 41
method 197, 316
method = "get" 135
method = "post" 135, 1028
method attribute 135, 1290
method prompt 207
method Size 842
method UTC 422
method writeln 207
methods 811
Methods of the Date object 417
Methods of the String object

408
metric conversion program 433
MFC (Microsoft Foundation

Classes) 12, 812
microbrowser 744
micropayment 28
microprocessor chip technology

11
Microsoft 7, 1359
Microsoft Access 707, 709
Microsoft Agent 29
Microsoft Agent Character Editor

1236
Microsoft Agent characters and

animations 1237
Microsoft Agent control 1236
Microsoft Agent downloads area

1259
Microsoft Agent event 1248
Microsoft Agent Web site 1244
Microsoft Developer Network’s

download site 1226
Microsoft DHTML, HTML and

CSS Web site 450
Microsoft Dynamic HTML Object

Model 18
Microsoft Internet Explorer 4, 36,

42, 43, 49, 56, 57
Microsoft Internet Explorer

accessibility options 1304
Microsoft Internet Information

Server (IIS) 1060
Microsoft Linguistic Sound

Editing Tool 1236
Microsoft Magnifier 1293
Microsoft MFC (Microsoft

Foundation Classes) 12,
812

Microsoft Narrator 1302, 1303
Microsoft NetMeeting 50, 52, 53,

54, 55

iw3htp2IX.fm Page 1399 Monday, July 23, 2001 4:31 PM

1400 Index

Microsoft Network
(essen-
tials.msn.com/ac-
cess) 37

Microsoft Network
(www.msn.com) 41

Microsoft On-Screen Key-
board 1303, 1304

Microsoft Outlook Express 19
Microsoft Scripting Runtime

Library 839
Microsoft Speech Recognition

Engine 1236, 1245
Microsoft SQL Server 703, 727
Microsoft UDA architecture 725
Microsoft Universal Data Access

Technologies (UDA) Web
site 541

Microsoft Visual Basic 784
Microsoft Web server 784
Microsoft Windows Script

Technologies page 219
Microsoft XML Document Object

Model object 658
Microsoft’s DirectAnimation

reference site 546
Microsoft’s msxml parser 655
Microsoft’s PowerPoint 482
Microsoft’s streaming media

technologies 1259
Microsoft’s version of JavaScript

219
Mid 808
middle tier 25, 685, 699, 1103
middle-tier business logic 26,

1103
MIDI (.mid) format 1260
MIDI (Musical Instrument Digital

Interface) 1225, 1236
MIDI file 1236
Miller Test 1210
Miller v. California 1210
MIME (Multipurpose Internet

Mail Extension) type 165,
172, 1065, 1067, 1251

MIME type for streaming audio
1251

min function 966
minimum.html 800
minOccurs attribute 648
minor version 794
MinorVer property 878
minus sign (-) to sort descending

532
minus sign in Internet Explorer

637

mirror text or images horizontally
and vertically 23

mirror text or images vertically
and horizontally 482

mismatch error 786
MIT (Massachusetts Institute of

Technology) 11
MIT’s Project Mac 8
MJPEG (Motion JPEG) 1225
mm (millimeters) 169
mn element 652
Mobile Electronic Transactions

(MeT) 740
mobile operators 741
Mobile Virtual Network Operators

(MVNO) 741
Mobile Wireless Internet Forum

1217
MobShop 1195
Mod 785, 802
modem 36
modifiability 812
modify Private data 813
modifying character 920
Modifying text size with the em

measurement 186, 188
module 316, 686, 921, 976
modulo division 968
modulo operator 967
modulus 210, 785
modulus operator (%) 209
modulus operator Mod 802
molecular information 652
molecule element 654
monospace 166, 486
Monotone 1249
Monster.com 1334, 1338,

1343, 1346
monthly compound interest

calculator 828
MorganWorks.com 1341
Morse Code 432, 1266
motion 482, 496
motion tween 602, 603
mouse 5
mouse button pressed down 476
mouse button released 476
Mouse Button Settings 1300
mouse capture 23, 457
mouse click 21, 482
mouse coordinate 462
mouse cursor 202, 462, 464,

1296
mouse cursor over an element 169
mouse drag 475
mouse drag begins 476

mouse drag ends 475
mouse event 554
mouse-event capturing 554
mouse events with the Sprite

Control 578
mouse is double-clicked 475
mouse pointer 201, 206
Mouse Speed dialog 1301
MouseEventsEnabled 554,

579
MouseKeys 1300
mouseover 1230
move a light source 503
move an oval 550
move cursor over an image 464
Move event of Microsoft Agent

1248
move files 840
Move method (Folder) 842
Move property (File) 841
move tool 69, 70, 76
MoveDown 1245
MoveFile method

(FileSystemObject)
840

MoveFolder 842
MoveFolder method

(FileSystemObject)
840

MoveLast 523
MoveLeft 1245
moveLight function 503
moveLight method 503
MoveNext 520, 524, 528
MoveNext method 523
MovePrevious method 523,

524, 527
MoveRight 1245
MoveUp 1245
movie clip symbol 594, 617
movie dimension 590
Movie Explorer 595
Movie Properties dialog 589
moving a selection 77
moving the mouse 457
Moving through a recordset using

JavaScript 523
Mozilla project 656
MP3 (MPEG Layer 3) 1225
m-payments industry 740
MPEG (Moving Pictures Experts

Group) 1225
msdn.microsoft.com/

scripting/de-
fault.htm?/script-
ing/vbscript 794

iw3htp2IX.fm Page 1400 Monday, July 23, 2001 4:31 PM

Index 1401

msdn.microsoft.com/
workshop/languages/
clinic/
scripting051099.asp
820

MsgBox 794, 795, 796, 798
MsgBox constant 798
MSN Messenger Service 46, 54,

55
msqrt element 652
msubsup element 652
msxml 886
msxml parser 637
Muinar 597
mulit-byte character set (MBCS)

1361
multi-tier application 4, 25, 684,

699
multidimensional array 806
multimedia 4, 740, 1057
multipath 737
multiple conditions 297
multiple filters 483
multiple light source 503
multiple-line comment (/* and

*/) 205
multiple Path Controls 567
multiple selection 78
multiple-selection structure 233,

288
multiple-subscripted array 388
multiplication 785
multiplication operator (*) 209
multiply blend mode 100
Multipurpose Internet Mail

Extension (MIME) type 165
multitasking 8
multithreading 8, 1057
multitier architecture 1103
multitier client-server application

1059
multitier Web-based survey using

XHTML, servlets and JDBC
1104

mutable 972
mutator 813
My Network Places 686
MySQL 15, 28, 723, 994, 1009,

1039
MySQL AB Web site 727
MySQL data directory 940
mysql directory 940
MySQL driver 939
MySQL reference manual 723
mysql_connect function

1042

mysql_error function 1042
mysql_fetch_row function

1043
mysql_query function 1042
mysql_selectdb function

1042
MySQLdb module 994

N
\n escape sequence 912
\n metacharacter 920
n-tier application 25, 684, 699
name attribute 136, 334, 647
name attribute of <jsp:param>

action 1137
name attribute of <jsp:plu-

gin> action 1139
name attribute of <jsp:set-

Property> action 1147
name element of tag library

descriptor 1168
name node-set function 669
name of a variable 208
name of an attribute 104
name of the anchor 416
Name property (File) 841
Name property (Folder) 841
Name property of Character

object 1249
name/value pair 1077, 1130
name-your-price 1195
name.asp 838
name.html 837
namespace prefix 641
namespace prefix xsd 647
namespace.xml 641
NaN 244, 341, 408, 410, 424
NaN (not a number) 206
Narrator reading Notepad text

1303
NASA Multimedia Gallery 1260,

1265
natural language of a computer 6
natural logarithm 405, 792
natural logarithm of 10 406
natural logarithm of 2 406
nav.html 114
navigate the objects in a collection

450
navigating the object hierarchy

440
Navigating the object hierarchy

using collection children
440

navigation bar 89, 90

navigation tool 75
navigational frame 150
navigator object 450, 452
navigator.appName 449,

450
navigator.appVersion 450
navigator.html 449
navy 466
ne operator 917
negation 785
negative binary number 1317
negative image effect 487
negligent 1210
nested building block 304
NESTED constant 1177
nested element 105
nested for structure 294, 295,

391
nested for/in structure 391
nested frameset element 153,

155
nested if or if/else structure

297
nested if structure 238
nested if/else structure 237
nested list 119, 169
nested or embedded parentheses

210
nested structure 304
nesting 235, 274, 306
nesting multiple-line comments

206
nesting rule 303
NetMeeting 19
Netscape 1255, 1362
Netscape Communicator 36, 95,

102
Netscape’s Navigator 4
network administrator 46
Network and Dialup Connec-

tions explorer 686
network card 36
Network dialog 686
Network Identification 686
Network Neighborhood 686
network of networks 9
network security 1202, 1208
NetZero (www.netzero.com)

37
neutral gray 66
New 815
New Adjustment Layer 93
New button 49
new Date object 419
New dialog 65, 66
new image 66, 93

iw3htp2IX.fm Page 1401 Monday, July 23, 2001 4:31 PM

1402 Index

new layer 92, 601
new operator 369, 371, 419
new symbol 617
newline 202
newline character (\n) 202, 1038
News server 46
newsgroup 19
next 172
next function 1017
nextSibling property 659
NIC 36
no-repeat property 178
no stroke 612
node 662
nodeName property 658
node-set function 669
nodeValue property 659
noembed tag 610
noframes element 152
non-content-related means 1210
non-object subtype 814
None 978, 988
none value 178
none value (border-style

property) 184
nonfatal logic error 239
non-repudiation 1202
nonvalidating XML parser 635
normal blending mode 78
Normal tone of voice 1249
normal value 178
Not (logical negation) 785
not a number 206, 244
not equal to 785
Notepad 103
Nothing 820
noun 12
nouns in a system-requirements

document 812
nspluginurl attribute of

<jsp:plugin> action
1139

NTT DoCoMo 743
null 260, 659
null value 705
Number object 206, 422, 423
number of colors 72, 73
Number property 862
Number Systems Appendix 1317
Number.MAX_VALUE 424
Number.MIN_VALUE 424
Number.NaN 424
Num-

ber.NEGATIVE_INFINI
TY 341, 424

Num-
ber.POSITIVE_INFINI
TY 341, 424

numbers 793
numeric context 914
NumFrames 577
NumFramesAcross 577
NumFramesDown 577

O
object 12, 22, 197, 403, 812
object 1271
object-based programming 2, 3,

22, 404, 812
object-based programming

language 403
object element 519, 522,

1232, 1233, 1237
object hierarchy 436
object HTML element 1130,

1139
object model 22
object-oriented language 12
object-oriented programming

(OOP) 2, 3, 15
Object referencing with the

Dynamic HTML Object
Model 437

object speak 404, 811
object subtype 820
OBJECT tag 546
object tag 577, 609
object technology 22
object think 404, 811
oblique value 178
occurence indicator 644
octal number system (base 8)

1318
Ocularis 1291
ODBC (Open Database

Connectivity) 725
odbc module 1001
off-by-one error 276, 367
off-line 39
Offers element (BizTalk) 671
offsetLeft 1245
offsetParent property 1245
offsetTop 1245
offsetX 464, 501
offsetX property of event

object 464
offsetY 464, 501
offsetY property of event

object 464
OK button 201, 757

olive 466
omit-xml-declaration

attribute 665
on ActionScript 606, 608, 616,

621, 628
onabort Dynamic HTML event

475
onafterprint Dynamic

HTML event 476
onafterupdate Dynamic

HTML event 475
onbeforecopy Dynamic

HTML event 474
onbeforecut Dynamic HTML

event 474
onbeforeeditfocus

Dynamic HTML event 476
onbeforepaste Dynamic

HTML event 474
onbeforeprint Dynamic

HTML event 476
onbeforeunload Dynamic

HTML event 476
onbeforeupdate Dynamic

HTML event 475
onblur event 468, 470, 471,

472
onbounce Dynamic HTML

event 475
oncellchange Dynamic

HTML event 475
onchange Dynamic HTML

event 476
onchange event 485, 486, 531,

532, 1251
onclick 554, 557
OnClick event 797, 811, 820
onclick event 335, 411, 412,

414, 457, 458, 473, 474,
492, 495, 506, 520, 525,
1227, 1231, 1236

onClipEvent ActionScript
625, 626, 628

oncontextmenu Dynamic
HTML event 475

oncopy Dynamic HTML event
474

oncut Dynamic HTML event
475

ondataavailable Dynamic
HTML event 475

ondatasetchanged Dynamic
HTML event 475

ondatasetcomplete
Dynamic HTML event 475

ondblclick 554

iw3htp2IX.fm Page 1402 Monday, July 23, 2001 4:31 PM

Index 1403

ondblclick Dynamic HTML
event 475

ondrag Dynamic HTML event
475

ondragend Dynamic HTML
event 475

ondragenter Dynamic HTML
event 475

ondragleave Dynamic HTML
event 475

ondragover Dynamic HTML
event 476

ondragstart Dynamic HTML
event 476

ondrop Dynamic HTML event
476

one-dimensional array 806, 829
one-element tuple 972
one statement per line 218
one’s complement 1325
onerror event 460, 461, 462
onerror event to launch error-

handling code 460
onerror.html 460
onerrorupdate Dynamic

HTML event 475
ones position 1318
onfilterchange 507, 510
onfilterchange Dynamic

HTML event 476
onfilterchange event 509
onfinish Dynamic HTML

event 475
onfocus event 468, 470, 471,

472
onfocusblur.html 468
onHangup element 1289
onhelp Dynamic HTML event

475
onkeydown Dynamic HTML

event 475
onkeypress Dynamic HTML

event 475
onkeyup Dynamic HTML event

475
online auction 1192
online contracting services 1345
online payment 1201
online product catalog 1265
online radio station 1260
online recruiting 1336
online Tour 42
onload 459, 460, 490, 500, 502,

504, 507, 510, 520, 575,
1231, 1238

onload event 338, 369, 370,
373, 391, 437, 443, 447

onload.html 459
onlosecapture Dynamic

HTML event 476
onmarker 570, 571
onMaxSilence element 1288,

1289
onmousedown 554
onmousedown Dynamic HTML

event 476
onmousemove 462, 503, 554
onmousemove event 462
onmousemove.html 462
onmouseout 554, 579
onmouseout event handler 579
onmouseover 464, 465, 554,

578, 579
onmouseoverout.html 465
onmouseup 554
onmouseup Dynamic HTML

event 476
onpaste Dynamic HTML event

475
onpropertychange Dynamic

HTML event 476
onreadystatechange

Dynamic HTML event 476
onreset 470
onreset Dynamic HTML event

476
onreset event 457, 470, 472
onresize Dynamic HTML

event 476
onrowenter Dynamic HTML

event 475
onrowexit Dynamic HTML

event 475
onrowsdelete Dynamic

HTML event 475
onrowsinserted Dynamic

HTML event 475
onscroll Dynamic HTML

event 476
onselect Dynamic HTML

event 476
onselectstart Dynamic

HTML event 476
onstart Dynamic HTML event

475
onstop Dynamic HTML event

476
onsubmit 470, 472
onsubmitreset.html 470
onTermDigit element 1288,

1289

onunload Dynamic HTML
event 476

opacity 93, 95
opacity 491
opacity of an alpha filter 492
open database 1061
Open Database Connectivity

(ODBC) 725
open file 840, 1061
open function 932
Open Software Description

Format (OSD) 1212
open source 692, 723
open technology 634
OpenAsTextStream propery

(File) 841
OpenGIS Consortium 656
OpenTextFile 848
OpenTextFile method

(FileSystemObject)
840

operand 207
OperationalError 995
operator ! (logical negation) 299
operator LIKE 711
operator new 368
operator precedence 210
operator precedence chart 1048
operators of equal priority 210
operators.php 1014
opt-in 738, 741, 1197
opt-out 741
optimize 72, 73
optimized version 73
Option Explicit 787, 796,

835, 836
option item 868
Option Pack 698
optional argument 794
options request 1063
Or (logical OR) 785
or logical OR operator 934
Oracle 703
Oracle Corporation 1359
order attribute 669
ORDER BY clause 714, 715
ORDER BY SQL keyword 709
order in which actions are

executed 230
order-processing technology

1190
ordered list 119, 121, 287
org (top level domain) 686
org.omg 1058
Organize Favorites 43
origin 548

iw3htp2IX.fm Page 1403 Monday, July 23, 2001 4:31 PM

1404 Index

os module 983
os.environment.keys

method 983
OSD (Open Software Description

Format) 1212
out implicit object 1125
out-of-range element 972
outer for loop 295
Outlook Express 19, 46, 56
output device 5
Output displaying the cookie’s

content 949
output unit 5
outset value (border-style

property) 184
Oval 547, 550, 551, 555, 556,

558, 570
oval 24
Oval method 570
oval symbol 233
oval tool 591
overflow boundaries 180
overflow property 180
overhead cost 1195
overlapped building block 304
overlapping images 509
overlapping text 176
overline value 168

P
p (paragraph) element 105, 482,

748
packet 8
packet-based communication

1058
packet-switching 8, 743
padding 495
padding-bottom value 180
padding CSS style 491
padding-left value 180
padding-right value 180
padding space 182
padding-top value 180
padding value 180
padding: 1ex 483
page attribute of <jsp:for-

ward> action 1135
page attribute of <jsp:in-

clude> action 1131
page directive 1148, 1154,

1160
page directive attributes 1160
page implicit object 1125
page loads 567
page scope 1124, 1143, 1154

PageContext (package jav-
ax.servlet.jsp) 1125

pageContext implicit object
1125, 1167

PageContext interface 1173
PageCounter 878
PageHit method 878
Paint Shop Pro 112
Paintbrush options bar 81
paintbrush tool 80, 81, 611
paintbucket tool 76, 80
painting tool 67, 80
palette 66
palette well 66, 67, 70
Palm handheld computer 743
PAN 772
par element 1253
param attribute of <jsp:set-

Property> action 1147
param element and data binding

541
param function 927
parameter 318, 319
parameter DataURL 522
Parameter object in ADO 727
parameter UseHeader 522
Parameters collection in ADO

727
parent element 166
parent folder 842
parent frame 448
parent movie 594, 595
parent node 655
ParentFolder 842
ParentFolder property

(File) 841
ParentFolder property

(Folder) 841
parentheses 297
parentheses around conditions in

VBScript are optional 788
parentheses for condition in if

structure 218
parentheses force order of

evaluation 210
parentheses in JavaScript 210
parentheses in regular expressions

919, 921
parenthetical memory in PHP

1023
parentNode property 659
parse 422
parsed character data 645
parseFloat function 318,

324, 341

parseInt function 204, 207,
215, 244, 249, 318, 341

parsePostData method of
HttpUtils 1111

parseQueryString method
of HttpUtils 1111

parser 635
Pascal 3, 8, 15, 102
pass-by-reference 376, 377
pass-by-value 376, 377
passing arrays 378
Passing arrays and individual

array elements to functions
378

passing arrays to functions 22
passing individual array elements

to functions 378
Passport 55
passport account 55
password 540
password box 136
password.html 1032
password.php 1034
password.txt 938
paste 87, 91
Paste Frames 612
patent 1211
path attribute 1072
Path Control 24, 565, 566
path element 1257
path mapping 1074
Path property (File) 841
Path property (Folder) 841
path3.html 571
pattern matching 816, 820
Pattern property 820
pattern we wish to match 820
payroll program 6
pc (picas—1 pc = 12 pt) 169
#PCDATA flag 645
PDF (Portable Document Format)

44
PDML (Product Data Markup

Language) 648
Peoplescape.com 1341
percent sign (%) modulus operator

209
percentage 169, 793
perfect number 360
Performance Tip 13
performance-intensive situation

294
Perl 15, 682, 695
Perl (Practical Extraction and

Report Language) 7, 17,
909, 1010

iw3htp2IX.fm Page 1404 Monday, July 23, 2001 4:31 PM

Index 1405

Perl 5.6 implementation for
Windows 952

perl command 911
Perl-compatible regular

expression 1021
Perl data type 912
Perl Database Interface (DBI) 939
Perl interpreter 911
Perl Journal 953
Perl Mongers 953
Perl network programming 953
Perl Package Manager (PPM) 939
Perl script for counting Web page

hits 932
Perl script that queries a MySQL

database for author
information 942

Perl script that queries a MySQL
database for authors 940

Perl.com 952
Perl/CGI 27
Perl’s metacharacters 920
Perl’s modifying characters 920
Perl’s quantifiers 919
Perlmonth 953
permission-based 738
persistent information 1086
personal area network (PAN) 772
personal computing 9
personal digital assistant (PDA)

735, 743
personal information 1209
Personal Web Server (PWS) 25,

682, 690, 833, 885
personalization 1086, 1197
phase property 500, 501
phase shift of a wave 501
photograph 95
PhotoShop document (psd)

extension 92
PhotoShop Elements 64, 112,

579
PHP 15, 27, 682, 698
PHP comment 1011
.php extension 1012
PHP keyword 1016
PHP quantifier 1023
physical path on the server 850
PI 407
pi 245
PI (processing instruction) 653
PI target 653
PI value 654
picture element (pixel) 169, 404
picture.html 112
Pie 553

Pie method 549
Pig Latin 429, 809
piglatin.html 810
ping 95
piping 910
Pit 1249
pitch of character’s voice 1249
pixel 75, 77, 92, 112, 169, 591
pixelated 75
.pl file extension 909, 911
place holder in an initializer list

371
plain text 1203
planet.svg 1257
platform 4
Play 1234, 1244
play 506, 507, 510
play ActionScript 627
play element 1290
Play method 566, 574
Play method of the Path Control

573
play, pause and stop a media clip

1230
playhead 616, 621, 625
PlayRate method 579
plug-in 19, 26, 44
plugins collection 453
plugins.com

(www.plugins.com/
plugins/photoshop)
96

plus sign (+) occurence indicator
644

plus sign in Internet Explorer 637
PM 422
PNG (Portable Network Graphics)

format 95
Pocket PC 743
point-based reward 1198
point light source 502
point-of-sale transaction 1201
point-to-point connection 1207
Polygon 547, 572
Polygon method 549
polygon tool 89
polygonal lasso 76
PolyLine 547, 556, 558
PolyLine method 550
PolyLine value 566
polynomial 212, 213
pop list method 973
popping 812
popup window 460
pornography 1210
port 1069

port 80 1068
port 8080 1068
port number 1068
portability 14, 1360
Portability Tip 13, 14
Portable Operating System

Interface (POSIX) 1021
portable program 14
portal 1189, 1194
position 794
position 556
position (0, 0) 794
position number 366
position of a light source 503
position of the mouse 462
position property 173, 444
position zero 803
position: absolute 445,

463, 469, 472
position: relative 528
positional notation 1318
positional value 1319
positional values in the decimal

number system 1319
Positioning elements with CSS

173
POSIX extended regular

expression 1021
post message 885
post method 847, 848, 850, 859
post method 924
post request 1062, 1064, 1066,

1079, 1091, 1095, 1103
post request type 135, 683, 1028,

1290
postdecrement 257
postdecrement operator 256
PostgreSQL 725, 728
postincrement 259
postincrement operator 256, 259
pound sign (#) 750
pound-bang directive 981
pow method 282, 406
power 406
PowerPoint 482
PowerPoint effects 505
PPM (Perl Package Manager) 939
ppm command 939
PR (public relations) 1197, 1200
PR Web 1200
Practical Extraction and Report

Language (Perl) 909, 1010
pre element 202
precedence 210, 244, 259
Precedence and associativity of

operators 301

iw3htp2IX.fm Page 1405 Monday, July 23, 2001 4:31 PM

1406 Index

precedence and associativity of
operators 219

Precedence and associativity of
the operators discussed so
far 259

precedence chart 210
Precedence of arithmetic operators

211
predecrement 257
predecrement operator 256
predefined constant 798
predefined dialog from the

window object 203
predefined function 791
predicate method 816
Preferences 86
prefix attribute of taglib

directive 1166
prefix vb 798
preg_match function 1021
preincrement 259
preincrement operator 256, 258
“prepackaged” function 316
prepare method 942
PreparedStatement

interface 1106
presentation logic 685
presentation of a document 19,

102
presentation-like effect 24
Preserve 806
Preserve Transparency 85
preserve transparency 73
press a key 475
press release 1200
pressing a keyboard key 22
previous 172
priceline.com 1192
primary colors in light 66, 68
primary key 704, 707
primary memory 5
primary storage 5
prime 360
prime integer 399
Princeton Review 1348
principal 281
principle of least privilege 338
print function 912, 963, 1011
Print Screen key 93
print statement 1010
printing an array in double quotes

915
printing dates in various formats

430
printing literal strings in single

quotes 916

Printing on multiple lines with a
single statement 200

Printing on one line with separate
statements 199

println method of Print-
Writer 1067

PrintWriter class 1065,
1067

priority 49, 210
Priority button on the toolbar 49
privacy 1202, 1203
privacy invasion 1086
Private 805, 816
Private data members 817
Private data of a class 829
Private instance variables of a

class 814
Private instance variables of an

object 816
private key 1203, 1204
Private method 817
private Web site 934, 1031
probability 325
problem statement 21
procedural programming 12, 22
procedure 230, 797
process.asp 855
processing instruction 653
processing phase 247
processing unit 4
processor 635
Product Data Markup Language

(PDML) 648
product.html 224
productivity 11
program 195
program construction principles

272
program control 195, 231
program development 195
program-development

environment 7
program-development process 21
program development tool 248
program modifiability 812
program structuring unit 306
Program that determines the

smallest of three numbers
800

Program to analyze username and
password entered to an
XHTML form 936

Program to simulate the game of
craps 330

programmer-defined function 21,
317

programmer-defined function
square 319

Examples
Programmer-defined maxi-
mum function 322

programmer-defined maximum
function 322

programmer-defined type 812
programming language 5
Programs tab 56
progressive encoding 95
Project Mac 8
prolog 636
promotion 740, 1086, 1197,

1200
prompt 794
prompt dialog 203, 206, 214,

324, 334
prompt method of window

object 203, 206
<prompt> tag (<prompt>…</

prompt>) 1284
prompt to a user 206
properties 814
Properties of the Math object 406
properties separated by a

semicolon 163
property attribute of

<jsp:setProperty>
action 1147, 1154

property DriveLetter 842
Property Get 814, 815
Property Let 814, 815
property Path 841
Property procedures 814
property SerialNumber 842
Property Set 814, 815
property ShortName 841
propertyName property of

event object 464
protocol 1059
psd (PhotoShop Document)

extension 92
pseudo-class 169
pseudo-random floating-point

number 792
pseudocode 21, 231, 248
pseudocode for examination-

results problem 253
pseudocode If statement 234
pseudocode If/Else structure 236
pseudocode representation of the

top 252
psychographic 1197
pt (point) 166
Public 805, 817

iw3htp2IX.fm Page 1406 Monday, July 23, 2001 4:31 PM

Index 1407

public access 46
Public Get 817
Public interface of a class 813
public key 1203, 1204
public-key algorithm 1203
public-key cryptography 1204
Public Let 817
Public method 813
Public Property 817
public relations (PR) 1197, 1200
Public set method 816
publish 608
published state 600
publisher network 739
pull strategy 738
purple 466
push down a key 475
push strategy 738
pushing 812
put request 1063
PWS (Personal Web Server) 25,

682, 690, 833, 885
.py extension 964
Python 15, 27, 662, 682, 696
Python interactive mode 964
Python programming language

635
Python prompt 964
.pyw extension 964

Q
Qualcomm 26, 772
quantifier 919, 1023
query method 813
question mark (?) 795
question mark (?) occurence

indicator 644
QuickStart menu 65
QuickTime 1225
quotation (’) mark 197
qw operator 916

R
r raw-string character 978
radial gradient 592
radian 791, 792
radio 139
radix 341, 423
raising an exception 979
Random 509
random 792
random access memory (RAM) 5
random ActionScript 606, 608

Random Bars Horizontal
509

random bars horizontal 23
Random Bars Vertical 509
Random Dissolve 509
random dissolve 23, 481, 482,

509
random method 324, 327, 331,

340, 375, 397
Randomize 792
range checking 813
range function 968
range operator (..) 916
Rapid Application Development

(RAD) 812, 963
Rasmus Lerdorf 1009
raster 90
raster graphic 74, 86, 590
raster image 74
raster tool 80
raw compression 598
raw string 978
raw_input function 968
RDBMS (relational database

management system) 684,
723

re module 974, 976
re.I flag 978
reach 1197
read 1038
Read access permission 689,

691, 692
read and write text files 839
read-only mode 934
read-only property 815
readability 103, 1272, 1306
readCookies.php 1047
readyState property 476
real.html 1250
RealJukebox 1259
RealNetwork Basic Server G2

1252
RealNetworks RealPlayer 29
RealNetworks site 1259
RealPlayer 1225, 1252, 1260
RealPlayer plug-in 1251, 1260
receiving email 19
receiving section of the computer

5
record (or row) 704
record set 704
recordAudio element 1291
recordset 464
recordset 520, 523
recordSet object 523
Recordset object in ADO 727

recordset property 522
recordset property of event

object 464
Recruitsoft.com 1341
Rect 547
Rect method 549
rectangle flowchart symbol 301
rectangle symbol 232, 241
rectangle tool 86, 591
rectangular gradient 491
rectangular hotspot 148
rectangular marquee tool 76, 77,

91
recursion 341, 439
recursion step 342
recursive base case 342
recursive call 342
recursive descent 669
Recursive evaluation of 5! 343
recursive function 21, 341
red 466
ReDim 804, 806
ReDim Preserve 804, 807
redimension 807
redimmable array 803
REDIRECT 877
redirect a request 1082
redirect users 449
redirect.asp 877
redirecting requests to other

resources 1082
redirection 910
reduce server load 457
redundant parentheses 212
Refer.com 1341
reference 815, 820
reference.html 437
refinement 246, 252
Refresh button 208
Refresh button 39, 57
refresh interval 1124
refresh method 754
RegexObject object 978
region attribute (img) 1254
region element 1253
registering the event handler 335
registration 1193
regular expression 27, 816, 817,

916, 918, 974, 1019,
1021

regular-expression processing
976

regular expressions in VBScript
821

regular lasso 76
regular raster layer 90, 92

iw3htp2IX.fm Page 1407 Monday, July 23, 2001 4:31 PM

1408 Index

reinvent the wheel 405
relational database 703, 704
relational database management

system (RDBMS) 684, 723
relational database model 704
relational operator 212, 215,

296, 297, 784, 1020
relational operators and strings

407
Relative 571, 575
relative length 180
relative-length measurement 169
relative measurement 188
relative positioning 174
Relative positioning of elements

175
relative value 175
release ActionScript 621
releaseCapture method is

invoked 476
reload an XHTML document 208
Reload button 208
Rem 802
remainder after division 210
remark 802
remote method calls 1058
Remote Method Invocation (RMI)

Package 1058
Remote Procedure Call (RPC)

672
RemoteWare 773
remove list method 973
removeAttribute method

661
removeChild method 659
removeMovieClip

ActionScript 628
removeNamedItem method

660
Repeat method 566, 571, 575,

577, 578
repeat value 178
repeat-x value 178
repeat-y value 178
repeating infinitely 245
repetition 21, 302
repetition structure 241, 246,

290, 291
Replace 808
replaceChild method 659
request for proposal 1346
request implicit object 1125
request message (SOAP) 672
request method 683, 1062
Request object 848, 893
request parameter 1086

request scope 1124, 1143, 1154
request-time error 1121
request type 1062
required element of tag library

descriptor 1172
requirements document 21
Research Information Exchange

Markup Language (RIXML)
655

reserve price 1192
Reset 534
reset 469, 476
reset a form 457
reset function 1017
"reset" input 136
Reset Palette Locations menu

66, 67
resize proportionately 612
resizing dynamic arrays 805
resolution 65
resolution dependent 74
resolution independent 75
respond to user action 457
Response 833, 872
response 1126
response implicit object 1125
response message (SOAP) 672
Response.Write 849
restricted access FTP site 46
result set 704
result tree 663
resume 1335, 1340, 1343
resume-filtering software 1340
return 202, 317
return by reference 377
return keyword 948, 967
return statement 320, 322
returnValue 471, 472
reusability 318
reusable componentry 12
reusing components 13
revealTrans filter 509, 510
reverse auction 1192
reverse list method 973
reverse order 809
Revert 83
RGB color model 65, 67
RGB triplet 548, 554
RGB value of a light 503
RGBA (Red, Green, Blue, Alpha)

95
ridge value (border-style

property) 184
Right 808
right margin 174
right property 444

right property value (text-
align) 180

right speaker 1226
right value 175, 180
Ritchie, Dennis 15
Rivest, Ron 1204
RIXML (Research Information

Exchange Markup
Language) 655

RMI used between Java objects
1058

Rnd 792
Robby the Robot 29, 1236
Rogue Wave 12
roll of a die 325
rollback 724
rolling a six-sided die 325
rolling a six-sided die 6000 times

327
rollover effect 464, 465
rollover images 464
root element 636, 637, 1362
root folder 842
root-layout 1253
root node 655
Rotate 552, 557
rotate circle around z-axis 554
Rotate function 554
Rotate method 552
rotate option for motion tween

623
rotating a shape in three

dimensions 557
rotation 556
Rotator.java 1144
round 325, 405
round to the next largest number

792
round to the next smallest number

792
Round(x, y) 792
rounded rectangle 549
RoundRect 547
RoundRect method 549
Route element (BizTalk) 671
row of a table 335
rowcount 725
rows attribute (textarea) 136
rowspan attribute (tr) 131
RPC (Remote Procedure Calls)

672
RSA algorithm 1206
RSA Security, Inc. 1204
rtexprvalue element of tag

library descriptor 1172
RTrim 808

iw3htp2IX.fm Page 1408 Monday, July 23, 2001 4:31 PM

Index 1409

rule body 165
Rule of Entity Integrity 707
Rule of Referential Integrity 709
rule 3 303
rule 2 302
Rules for forming structured

programs 303
run element 1290
Run scripts (such as ASP)

access permission 689
run-time error 198
run-time logic error 206

S
\S metacharacter 920
\s metacharacter 920
s modifying character 920
Sable Markup Language 1260
Salary.com 1348
sales-force automation 740
sales tracking 1200
Sample Rate 598
sans-serif font 593
sans-serif font 166
saturation 67, 68, 94
Saturday 418
Save As 39
save disk space 57
Save for Web dialog 72, 73, 74,

79, 95, 580
Save method (xmlFile) 894
Save Picture As... 39
savings account 281
SAX (Simple API for XML) 635,

662
SAX-based parser 662
scalable compression 95
Scalable Vector Graphics (SVG)

markup language 648, 1254
scalar 912
scalar value 912
scale 612
Scale Effects 70
scale factor 619
Scale method 556
scaling 556
scaling factor 327
scaling the range of random

numbers 325
scaling up and down 557
scaling.html 557
scanned image 95
scanner 65
scene 594
schema 635, 643, 645

schema element 647
Schema library (BizTalk) 670
schema repository 646
schema valid 646
scientific and engineering

application 7
scope 337
scope attribute of <jsp:use-

Bean> action 1143
scope of a bean 1130
scoping 339
scoping.html 355
screen 4
screen capture 93, 94
screen coordinate system 464
screen object 452
screen reader 1271, 1272, 1289,

1302, 1305
screen resolution 169
script 20, 104, 195, 1366
script element 797
script elements in the XHTML

document 453
script error 461
script font 166
script interpreter 198
script-level variable 338
<script> tag 196, 197, 198,

854
script tag 458
Script to process user data from

fig27_12.xhtml 927
ScriptEngine 794
ScriptEngineBuildVer-

sion 794
ScriptEngineMajorVer-

sion 794
ScriptEngineMinorVer-

sion 794
scripting 3, 20, 457, 1120, 1125
scripting element 1121
scripting engine 784, 794, 835
scripting host 685
scripting language 14, 22, 197
Scripting Runtime Library 839
scriptlet 1058, 1121, 1126
Scripts access permission 691,

692
scripts collection 453
scroll bar and window border size

dialog 1294
Scroll Lock key 1245, 1246
scroll up or down the screen 176
scroll value 178, 180
scrolling the browser window 178

scrolling up or down the screen
457

Search 41
search engine 41, 105, 148, 684,

1079, 1197, 1199
search-engine ranking 1199
search method 978
search the Internet 1062
searching an array 22
Searching Strings with in-

dexOf and lastIndexOf
411

SearchingStrings.html
411

second-degree polynomial 212,
213

second refinement 246, 247, 253
secondary memory 11
secondary research 1197
secondary storage unit 5
secret key 1203
secret-key cryptography 1203
secure access to a Web site 1058
secure protocol 1094
Secure Socket Layer (SSL) 28
secure sockets layer (SSL) 1207
security 738, 1189, 1201, 1202
security constraint 1057
security issues involving the

Common Gateway Interface
953

security level 689, 691, 692
security measure 56
Security tab 56
SELECT 867
select 799
select attribute 666
Select Case/End Select

788, 789
select element 484, 485, 497
SELECT query 710
SELECT SQL keyword 709
selectable 481
selected 492
selected attribute 143
selection 21, 302
selection criteria 711
selection marquee 76
selection structure 232
selection tool 67, 76
self-documenting 205
semicolon (;) 163, 165, 197,

199, 205
semicolon on line by itself 218
semicolon resulting logic error

218

iw3htp2IX.fm Page 1409 Monday, July 23, 2001 4:31 PM

1410 Index

semicolons (;) to terminate
statement 912

semitransparent 482
send writeln message to the

document object 405
sendEvent element 1290
sending email 19
sending sqrt message to Math

object 405
sendRedirect method of Ht-

tpServletResponse
1083, 1084

sentinel 250
sentinel-controlled repetition 21,

246, 247, 250
sentinel value 245, 246
separation of structure from

content 162
seq element 1253
sequence 21, 302, 305
sequence structure 232, 246
sequence type 121
Sequencer Control 24, 565, 573
sequential execution 231
serif font 166
server 10, 17, 481, 685, 816
server address 46
server-based database processing

518
server host name 1068
server load 23, 457
Server method CreateOb-

ject 862
Server object 872, 886
server root directory 850
server side 4
server-side ActiveX component

870, 872
server-side ActiveX control 832
server-side component 1060
server-side form handler 683
Server-Side Include (SSI) 850,

930
server-side include file 854
server-side processing delays 481
server-side script 685
server-side scripting statement

835
server.xml 1072
ServerVariables method

878
service 197
service method of Servlet

1061, 1062
servlet 28, 1058
servlet container 1060, 1061

servlet element 1073
servlet engine 1060
Servlet interface 1060, 1066
servlet lifecycle 1060, 1061
servlet mapping 1072
servlet-mapping element

1073, 1074
servlet-name element 1073,

1074
servlet resource 1111
servlet terminates 1061
servlet-class element 1073
ServletConfig interface

1061, 1107
ServletConfig interface

(pacakge javax.serv-
let) 1125

ServletContext interface
1061

ServletContext interface
(pacakge javax.serv-
let) 1124

ServletException class
1062, 1080

ServletOutputStream class
1065, 1067

ServletRequest 1062
ServletRequest interface

1061, 1062, 1063
ServletRequest interface

(javax.servlet) 1125
ServletResponse interface

1062, 1064
ServletResponse interface

(javax.servlet) 1125
session 1285
session attribute 1290
session attribute of page

directive 1161
session implicit object 1125
Session method Abandon 849
Session object 849
session scope 1124, 1143
session tracking 849, 850, 1086
sessionID 1285
Set 547, 815, 848
Set Automatic Timeouts 1301
Set-Cookie: header 946
SET keyword 719
set method 23, 813
set property value 820
setAttribute method 661
setAttribute method of Ht-

tpServletRequest
1099

setAttribute method of Ht-
tpSession 1099

setAttribute method of
PageContext 1177

setAttributeNode method
661

setClientCloudscapeCP
1110

setComment method of Cook-
ie 1094, 1095

setContentType method of
HttpServletRe-
sponse 1065, 1067

setcookie function 1044
setData method 661
setDate 418, 420
setdefault dictionary method

974
setDomain method of Cookie

1095
SetFillColor 547, 548, 553,

554, 556, 558
SetFillColor method 551
SetFillStyle 547, 553, 556,

558
SetFillStyle method 548
SetFont 547, 558
SetFont method 549
setFullYear 418, 420, 422
setHours 418, 420
setInterval 459, 494, 496,

504, 1231
setInterval method 446
SetLineColor 548, 558
SetLineColor method of the

Structured Graphics Control
546

SetLineStyle 547, 548, 550,
551, 555, 556, 558

SetLineStyle method 548
setMaxAge method of Cookie

1095
setMilliSeconds 418
setMinutes 418, 420
setMonth 418, 420
setNamedItem method 660
setPath method of Cookie

1095
setProperty ActionScript

628
setSeconds 419, 420
setSecure method of Cookie

1095
setServerCloudscapeCP

1109
SetSource 1251

iw3htp2IX.fm Page 1410 Monday, July 23, 2001 4:31 PM

Index 1411

setTagName method 661
SetTextureFill 550, 551,

555
setTime 419
setTimeout method 446
Setting box dimensions and

aligning text 178
setting up window element size

1295
Settings... button 57
settype function 1013
setUTCDate 418
setUTCFullYear 418
setUTCHours 418
setUTCMilliseconds 418
setUTCMinutes 418
setUTCMonth 418
setUTCSeconds 419
setValue method 661
setValue method of Cookie

1094, 1095
setVar method 754
setVariable ActionScript

607, 628
setVersion method of Cook-

ie 1095
Sgn(x) 793
shadow 567
shadow direction 491
Shadow Distance 71
shadow filter 489, 491, 499
Shakespeare 431
Shamir, Adi 1204
Shape 571, 575
shape 548
shape filled with color 548
shape layer 86, 100
Shape parameter 566
shape select tool 87
shape tool 75, 76, 86
Shape tool options bar 86, 89
shape transformation 556
shape tween 602, 617
shapes.html 547
shapes.svg 1256
ShapesApplet.java 1140
shebang directive (#!) 911, 981
Shift key 464
shift the range of numbers 325
shifted and scaled random integers

325
shifting value 327
shipping section of the computer 5
shopping bot 1195
shopping cart 849, 1087, 1190,

1196

short-circuit evaluation 785
short linear path 565
Short Message Service (SMS)

739, 743
short-circuit evaluation 298
shortcut 75, 78, 79, 81, 87, 600
ShortName property (File)

841
ShortName property (Folder)

841
ShortPath property (Folder)

841
Show event of Microsoft Agent

1248
Show Grid 86
ShowControls parameter

1235
Showing state 1244
ShowSounds 1296, 1297
.shtml file extension 930
sibling node 655
side effect 376
Sieve of Eratosthenes 22, 399
signal value 245
silicon chip 3
silver 466
Simple API for XML (SAX) 635,

662
Simple Class definition 815
simple condition 296, 297
simple custom tag 1165
Simple data binding 519
Simple Mail Transfer Protocol

(SMTP) 688
Simple Object Access Protocol

(SOAP) 672
Simple Perl program 911
Simple Property Get

procedure 815
Simple Property Let

procedure 814
simple sharp inner bevel 84, 90
simplest flowchart 302, 303, 305
simplicity 306
Simplify Layer 90
Simula 12
simulate the game of craps 332
simulation and game playing 324
sin method 406
Sin(x) 793
sine waves 501
sine-wave distortions 499
single-entry/single-exit control

structure 234, 301
single-entry/single-exit piece 304

single-entry/single-exit structure
235

single-line comment (//) 205,
207

single quotation (’) mark 197,
274

single-quote character 711
single-quote character (’) 635,

976
single-selection if structure 234
single-selection structure 233
single subtype 798
SingleThreadModel

interface 1062, 1161
singleton 972
site directory 45
site.css 903
site.html 798
sites visited by the browser user

452
SixFigureJobs 1347
size attribute (input) 136
Size event of Microsoft Agent

1248
Size property (File) 841
Size property (Folder) 842
skew 89
SkillsVillage.com 1341
skip remainder of a switch

structure 291
SKIP_BODY constant 1167
slander 1210
slice 408
slow connection 56
small cache 57
small circle symbol 233, 241
small relative font size 166
smaller value 406
smallest relative font size 166
smart card reader 1202
smartphone 773
SMIL (Synchronized Multimedia

Integration Language) 25,
634, 655, 1292

SMS 743
SMS Web portal 743
sneakernet 9
SOAP (Simple Object Access

Protocol) 672
socket 1058, 1206
socket-based communications

1058
soft key 757
software 5
Software Engineering

Observation 13

iw3htp2IX.fm Page 1411 Monday, July 23, 2001 4:31 PM

1412 Index

software reusability 318, 812
software reuse 13
solid line 548
solid value (border-style

property) 184
Some common escape sequences

202
Sort 534
sort function 924
sort in ascending order 532
sort in descending order 532
sort list method 973
sort method 380, 382, 405,

530
sort order 540
Sort property of the TDC 532
sorting 709
Sorting an array with sort 380
sorting and filtering data 518
sorting by multiple columns 533
sorting data 22, 380
sorting data in a table 531
sorting in XSL 669
sorting order 714
sorting.xml 666
sorting.xsl 667
sound 1224
sound card 1224
SoundSentry 1296, 1297
source-code form 103
source string 408
source tree 663
SourceURL 554, 577, 578
Space 808
spam 1198
span as a generic grouping

element 176
span attribute 131
span element 176, 570
span element and data binding

541
span function 929
Spd 1249
Speak method 1245, 1248
special character 116, 117
special effects 482
special folder constant 798
Special Section: Advanced String

Manipulation Exercises 430
specificity 167
specify attributes of a custom tag

1169
speech device 130
speech output tag 1248
speech recognition 29, 1236,

1277, 1291, 1307

speech recognition engine 1236,
1245

speech synthesis 29, 1291, 1306,
1307

speech synthesizer 113, 1291
speech technology 28
Speech Technology Hyperlinks

Page 1260
speed of character’s speech 1249
Speed property of Character

object 1249
speed up Web browsing 57
spelling checker 434
spider 1199
Spinner site 1260
Split 809
split 408, 413
split function 938, 1038
Split Horizontal In 509
split horizontal in 23
Split Horizontal Out 509
Split Vertical In 509
Split Vertical Out 509
SplitAndSubString.html

414
splitting a statement in the middle

of an identifier 205
sports element 666
spread of a cone 505
spread of a light source 505
Sprite Control 24, 565
sprite.html 577
SQL (Structured Query Language)

15, 703, 709, 727
SQL Club 728
SQL query keyword 709
SQL School 728
SQL script 1109, 1110
SQL Server 727
SQL Server 7.0 Web Site 727
SQL Server Magazine 728
Sqr(x) 793
sqrt 405, 406
SQRT1_2 407
SQRT2 407
SQSH database 728
square 121
"square" attribute value 121
square brackets [] 366
square root 405, 406, 793
square root of a negative integer

813
squareNumbers.wmls 758,

759
square-root symbol (MathML)

651

src attribute 112, 115
src attribute (img) 753
src attribute of the embed

element 1251
src property 465, 1226
srcElement 463, 465
srcElement.width 501
SRE_Match object 978
SRE_Pattern object 976
SSI (Server-Side Include) 930
SSI statement 850
SSL (Secure Socket Layer) 28,

1206, 1207
stack 812, 816
stacked building blocks 304
stacked control structures 248
stacking 235, 301, 306
stacking rule 302
stage 586, 587
stand-alone computer 10
stand-alone unit 9
standard actions 1130
Standard Generalized Markup

Language (SGML) 634
:standard import tag 921
standard input (STDIN) 910
standard output (STDOUT) 910,

933
standard Web resolution 65
start ActionScript 628
start tag 104
start_html function 922
startCS 1109
starting angle of the arc in degrees

549
starting color 491
starting index 415
state information 945
stateless protocol 1086
statement 197, 205, 320
statement handle 724, 940
statement terminator 197
static document 832
static duration 338
Static Text 604
status bar 67, 334
status bar of the browser window

460, 461, 462
status property 336
Stein, Lincoln 922
Step keyword 790
StickyKeys 1296, 1298
stop a timer 446
stop ActionScript 615, 627
stop all animations of specified

type for a character 1249

iw3htp2IX.fm Page 1412 Monday, July 23, 2001 4:31 PM

Index 1413

Stop button 1226
Stop button 39
Stop method 578, 579
StopAll method of Charac-

ter object 1249
stopAllSounds ActionScript

627
stopDrag ActionScript 628
store-builder 1196
store.Yahoo.com 1196
storefront model 1189
straight-line form 210
strcmp function 1020
StrComp 808
streaming audio 29, 1224, 1250,

1251
streaming media 1259
streaming video 29, 1249
strength 494, 499, 501
strength property of the glow

filter 495
strength property of wave

filter 500
strftime function 992
strike 409, 416
strike-out text 417
strikethrough 550
String 808
string 197, 787, 1011
String assigned to a variable in a

declaration 407
string comparison 381
string concatenation 207, 214,

244
string concatenation operator (+)

408
string constant 407, 798
string context 914
string literal 197, 407
string manipulation 316, 754
String method split 430
String methods charAt, char-

CodeAt, fromCharCode,
toLowercase and toUp-
perCase 409

String object 407, 408, 409
String object’s methods that

generate XHTML markup
tags 415

string representation 246
string representation of the

number 423
string subtype 798
string’s length 410
stringMisc.wml 766
Strips Left Down 509

Strips Left Up 509
Strips Right Down 509
Strips Right Up 509
strips right up 23
stroke color 591
Stroke dialog 85
stroke selection 84, 99
strong element 110
Stroustrup, Bjarne 12, 15
StrReverse 809
structure of a document 19, 162
structured flowchart 305
Structured Graphics ActiveX

Control 546, 547
structured programming 2, 3, 7,

12, 219, 230, 272, 301,
306

Structured Query Language (SQL)
703, 709

structured systems analysis and
design 12

style attribute 162, 163, 274
style attribute (path) 1257
style class 165, 166
style element in an XHTML

document 453
Style Settings dialog 71
style sheet 104, 1305
style.css 886, 904
stylesheet element 665, 889
styleSheets collection 453
Sub 797
sub 409, 416
sub element 117
sub keyword 939
Sub procedure 805
<subdialog> tag (<subdi-

alog>…</subdialog>)
1284

sub-initializer list 388
sub-initializer list for a row 388
submit 469, 472
submit attribute 1290
"submit" input 136
submitlogin.asp 868
subroutine 939
subscript 117, 366, 388
substr 408
substr method 934, 942
substring 408
substrings of a string 407, 760
subtraction 210, 785
sum (SQL) 1107
sum function 669
summary attribute 130, 1275
Summation with for 280

Sun Microsystems, Inc. 1359
Sun Microsystems, Inc. Java Web

site 1111
Sunday 418
sup 409, 416, 417
sup element 117
supercomputer 4
superscript 117
supply chain management 1189
surrounding box 548
SVG (Scalable Vector Graphics)

648
.swf file format 600
switch foreground and

background colors 81
switch multiple-selection

structure 233, 284, 287,
288, 302, 305, 788

Sybase 703
Sybase, Inc. 1359
Symantec 1208
symbol 594, 1358
symbol behavior 594
symmetric cryptography 1203
Sync 598
Synchronized Multimedia

Integration Language
(SMIL) 655, 1252, 1292

synchronous 889
syntax error 198, 239, 259
sys.exit function 998
system caret 1305
SYSTEM flag 637
system path variable 964
System Properties window

686

T
\t metacharacter 920
TA (terminal adapter) 37
tab 202
Tab key 470
tab stop 202
table 19, 102, 388, 1273, 1274
table body 130
table data 130
table element 130, 215, 281
table element and data binding

541
table head element 130
table heading 282
table of values 22
table row 130
Tabular Data Control (TDC) 24,

519, 522, 727

iw3htp2IX.fm Page 1413 Monday, July 23, 2001 4:31 PM

1414 Index

tag 19, 26
tag element of tag library

descriptor 1168
tag extension mechanism 1121
tag handler 1165, 1166, 1167,

1170, 1173
Tag interface 1166, 1167
tag library 28, 1120, 1121,

1160, 1164
tag library descriptor 1165, 1168,

1172, 1177
tagclass element of tag library

descriptor 1168
TagExtraInfo class 1177
taglib directive 1160, 1164,

1166
taglib directive attributes 1165
tagName property 439, 440
tagPrefix attribute of taglib

directive 1165
TagSupport class 1164, 1166
TalkWallet 781
tan method 406
Tan(x) 793
tangent 406
tape 5
Target 568, 571, 575
target = "_blank" 153
target = "_self" 153
target = "_top" 153
target market 738, 1198
target of a hyperlink 416, 417
Target parameter 566
targetNamespace attribute

647
targetSessions attribute

1290
tbody (table body) element 130
Tcl/Tk 963
TCP (Transmission Control

Protocol) 9
TCP/IP 9, 1068
TCP/IP (Transmission Control

Protocol/Internet Protocol)
1206

TcX 723
<td> (table data) tag 215
td element 130
td function 923
TDC (Tabular Data Control) 24,

519, 522, 727
teal 466
teiclass element of tag library

descriptor 1177
telephone number as a string 429
template.xml 886, 889

termDigits attribute 1289,
1290

terminal adaptor (TA) 37
terminate a loop 244, 246
terminate nested looping

structures 294
termination phase 247
terminator 197, 788
ternary operator 236
Test Movie 600
Testing and Debugging Tip 13,

14
TeX software package 648
Text 547, 558
"text" value of type attribute

331
text 541
text-align: center 466
text alignment 69, 83, 601
text analysis 431
text attribute (xmlItem) 889
text balloon for a character is

hidden 1248
text balloon for a character is

shown 1248
text-based browser 113
text box 136
text-decoration property

168, 170
text editor 103
text element 1285, 1286, 1288
text field 604
text field in which user types a

value 206
"text" input 136
Text method 549
text node 659
text qualifier 522
text-to-speech (TTS) 1286, 1302
text-to-speech engine 1236
text tool 593
text/html MIME type 1065,

1067
text/javascript 165
text-align 180
textarea 136
textarea element 136
textarea element and data

binding 541
TextQualifier property 520,

522
TextStream FSO 839, 848
TextStream method Close

849
TextStream method ReadAll

849

TextStream method Write-
Line 849

TextStream object 843
texture 551
tfoot (table foot) element 131
th (table header column) element

130, 1274
th function 923
<th> tag 282
The Diversity Directory 1340
The Music Room site 1260
The National Business and

Disability Council (NBDC)
1341

The Station 1259
The Twelve Days of Christmas

song 311
thead element 130
Then 789
thick border width 184
thin border width 184
thin client 1059
third tier 1103
3D 561
three-dimensional effect 482
three dimensions 556, 557
three-tier distributed application

861, 1103
three-dimensional appearance

481
Ticketmaster.com 1212
tile the image only horizontally

178
tile the image vertically and

horizontally 178
tile the texture 552
tiling no-repeat 178
tiling of the background image

178
Time Difference of Arrival

(TDOA) 739
time function 992, 1044
time interval 24
time manipulation 316
time marker 570, 573
time module 990
time token 990
timeline 586, 594, 602, 617,

618
timeout 1301
timer 446, 459
times 793
Times New Roman font 166
timesharing 12
timestamp attribute

(message) 898

iw3htp2IX.fm Page 1414 Monday, July 23, 2001 4:31 PM

Index 1415

title
element 667

title tag (<title>…</ti-
tle>) 1276

title argument in
start_html function 922

title attribute of <jsp:plu-
gin> action 1139

title bar 105, 202
title bar of a dialog 201
title element 105, 748
title image 81
title of a document 104
TLD (top-level domain) 686
tlibversion element of tag

library descriptor 1168
TLS (Transport Layer Security)

1207
To element (BizTalk) 671
toggleHighQuality

ActionScript 627
ToggleKeys 1297, 1299
tokenization 413
tokenize a string 413
tokenizing 407
tokens 413, 430
tokens in reverse order 430
toLocaleString 419, 420
toLowerCase 408, 409, 411
Tomcat 1065, 1110
Tomcat documentation home page

1070
Tomcat server 1059, 1068
Tomcat shut down 1071
Tomcat start 1070
tomcat.bat 1070
tomcat.sh 1070
TOMCAT_HOME environment

variable 1070
tone of voice 1249
tool options 587, 611, 612
tool tolerance 76, 78
toolbar 66
toolbox 66, 67, 69, 75, 76, 86
tools 69
top 245, 252, 812
top 174
top-down, stepwise refinement

245, 251, 252
top-left corner of object on which

the event was triggered 464
top-level domain (TLD) 686
top margin 174, 175, 178
top property 444
Top property of Character

object 1249

top tier 25, 685
top.html 447
Tortoise and the Hare 22, 400
toString 419, 420, 423
total 242
toUpperCase 409, 411
toUTCString 419, 420
Towers of Hanoi 22, 362
Towers of Hanoi for the case with

four disks 362
tpj.com 953
<tr> (table row) tag 215
tr (table row) element 130
Tr function 923
tr function 923
trace ActionScript 628
trace request 1063
track 1292
traditional marketing 738
traffic 1197
trailing space characters 808
transaction 25
transaction support 1200
transfer of control 231
Transform Shape submenu 89
transformation 89
transition 23, 476, 481, 482,

505, 510
transition between images 506
transition between pages 481
transition property of an image

512
Transitions using revealTrans

509
Translate 550
Translate function to move an

oval 550
Translate method 552, 554
translation step 5
translation-time error 1121
translation-time include 1160
translator program 6
Transmission Control Protocol

(TCP) 9
Transmission Control Protocol/

Internet Protocol (TCP/IP)
1206

transmit audio and video 1058
Transparency checkbox 580
transparency effects 484, 491
transparent background 580
transparent GIF 71, 74, 91
Transport Layer Security (TLS)

1207
Trashcan button 72, 87
traverse an array 389

tree-based model 662
Tree structure for article.xml

656
triangulation 737
triggered event 463
triggering an onclick event 458
trigonometric 405
trigonometric cosine 405
trigonometric sine 406
Trim 808
triple-quoted string (’’’) 976
trips to the server 685
True 789
true 234
truncate 244
truth table 297, 299
truth table for the && logical AND

operator 297
truth table for the || (logical OR)

operator 298
truth table for the logical negation

operator 299
truth table for VBScript logical

operators 786
try block 979, 980, 989
TTS (text-to-speech) engine

1285, 1286
TTS engine 1237, 1244
tuple 27, 969, 971
tuple unpacking 972
turnkey solution 1213
Turtle Graphics 399
tutorial.html 1238
tweening 602
24-hour clock format 422
twip 794
two-dimensional array 388, 389,

806, 829
two’s complement 1325
twos position 1320
type = "checkbox" 469, 471
type = "reset" 469
type = "submit" 469
type = "text/javascript"

198
type attribute 121, 136, 197,

458, 647, 664, 1251
type attribute of <jsp:plu-

gin> action 1139
type attribute of <jsp:use-

Bean> action 1143
type layer 71, 72
type of a variable 208
Type options bar 69, 71, 83
Type property (Folder) 842
type selection tool 83, 84

iw3htp2IX.fm Page 1415 Monday, July 23, 2001 4:31 PM

1416 Index

type tool 67, 69, 70, 71, 75, 76
TypeName 792

U
U+yyyy (Unicode notational

convention) 1360
Ubarter.com 1195
UBound 803, 806
UCase 807
UDA (Universal Data Access)

725
UDA architecture 725
ul element 118
UML (Unified Modeling

Language) 1212
unambiguous (Unicode design

basis) 1359
unary increment operator (++)

256
unary operator 298
unbounded value 648
undef 1016
undef value 914
undefined 259
underline 169
underline value 168, 170
underscore (_) wildcard character

712
underscore character (_) 795
Undo command 87
unescape method 341
Unicode 407, 409
Unicode Consortium 1359
Unicode Standard 30, 1358
Unicode Standard design basis

1359
Unicode value 409, 410
Unified Modeling Language

(UML) 1212
uniform (Unicode design basis)

1359
uniform opacity 491
Uniform Resource Identifier

(URI) 641
Uniform Resource Locator (URL)

37, 682
UniSys 95, 909
United States 742
universal (Unicode design

principle) 1359
Universal Coordinated Time

(UTC) 417
Universal Data Access (UDA)

725

Universal Data Access
Technologies Web site 541

Universal Resource Locator
(URL) 37, 642

University of Illinois at Urbana-
Champaign 8

Unix 12, 15, 683, 692
unloadMovie ActionScript

627
unnecessary parentheses 212
unordered list 118
unordered list element (ul) 118
unstructured flowchart 305
UP.SDK Getting Started Guide

745
update dictionary method 974
UPDATE operation 719
UPDATE SQL keyword 709
uploading 46
upper bound 803
uppercase letter 198, 205
uppercase string 807
URI (Uniform Resource

Identifier) 641, 1059
uri attribute of taglib

directive 1165, 1166
URI path of a resource 1131
URL 37, 39, 642
URL (Uniform Resource Locator)

682
URL (Universal Resource

Locator) 642
URL formats 1060
URL pattern 1074
url-pattern element 1073,

1074
url(fileLocation) 178
use statement 921
usemap attribute 148
user action 457
user agent 1271, 1305
user-defined type 812
user element 898
user experience 740
user-initiated event 482
user interface 685, 861, 1103
user profile 1198
user style 187, 189
User style sheet 187
user style sheet 185, 188
Using a labeled break statement

in a nested for structure
294

Using a labeled continue
statement in a nested for
structure 296

Using arrays 914
Using equality and relational

operators 215
Using internal hyperlinks to make

pages more navigable 144
Using keyword Step in

VBScript’s For repetition
structure 790

Using meta to provide keywords
and a description 149

Using programmer-defined
function square 319

Using relative measurements in
author styles 189

Using scalar variables 912
Using String method split

and Array method join
414

Using the blendTrans
transition 505

Using the blur filter with the
add property false then
true 496

Using the break statement in a
for structure 291

Using the continue statement
in a for structure 293

Using the do/while repetition
structure 290

Using the eq, ne, lt and gt
operators 917

Using the flip filter 483
Using the mask filter 486
Using the matching operator 918
Using the navigator object to

redirect users 449
Using VBScript arrays 804
Using VBScript classes and

regular expressions 817
Using VBScript code to respond to

an event 798
Using VBScript string processing

functions 809
UTC 417, 419, 422
UTF-8 1359, 1362
UTF-16 1359
UTF-32 1359
utility or helper method 819

V
valid 635, 643
validate information 816
validate input 253
Validating a CSS document 172
validating XML parser 635

iw3htp2IX.fm Page 1416 Monday, July 23, 2001 4:31 PM

Index 1417

validation 685, 927, 1029
validation service 106
validator.w3.org 106, 122
validator.w3.org/file-

upload.html 106
valign attribute (th) 133
Value 800
value 868
value attribute 136, 1290
value attribute of

<jsp:param> action
1137

value attribute of <jsp:set-
Property> action 1148

value data member 988
value name 922
value of a variable 208
value of an attribute 104
value property 531
ValueError exception 980
valueOf 419
values dictionary method 974
van Rossum, Guido 963
<var> tag (<var>…</var>)

1284
var attribute 1288, 1290
VAR keyword 932
var keyword 204, 320
var to declare variables is not

required 205
variable 204, 604, 812
variable creation in Perl 913
variable name 205
variable’s scope 277
variables defined in body of a

function 337
variant 787
variant function 791
variant has been initialized 791
variant subtype 787, 789
variant treated as a number 787
variant variable 802
varient has not been initialized

791
Various border-styles 184
various markup languages derived

from XML 655
VarType 792, 798
Vault.com 1337
vbCrLf 858
vbLongDate 793
VBScript 7, 26, 784, 832
VBScript calculator 830
VBScript control structure 788
VBScript formatting function 793
VBScript interpreter 794

VBScript language reference 821
VBScript math function 791
VBScript operator precedence

chart 821
VBScript operators and their

precedence 784
VBScript procedure 797
VBScript property 878
VBScript scripting engine 784
VBScript tutorial 821
VBScript variable 835
VBScript variables explicitly

declared 835
VBScript’s If structure 788
vbShortTime 793
vbTextCompare 808
vector 75
vector equation 590
vector graphic 74, 75, 86, 590,

1254
vector image 75
vector layer 86, 87, 92
vector object 90
vector tool 92
verbs in a system-requirements

document 812
Verdana font 166
verify correct format 819
VeriSign 1204
Verizon 737
version declaration 1285
Version property 878
vertex 148
vertex of the polygon 549
vertical and horizontal positioning

178
Vertical Blinds 509
vertical blinds 23
vertical blinds effect 481
vertical portal 1194
vertical spacing 275
vi text editor 103
ViaVoice 1272, 1277
video 49, 1058, 1224, 1233
video browser 1265
video clip 1228, 1230
video format 1225
video game 24, 546
video technology 28
View menu 86
View menu’s Source command

685
viewBox attribute (svg) 1256
viewing newsgroups 56
virtual directory 687, 690

Virtual Directory Creation
Wizard 688

virtual in the SSI 850
virtual memory operating system

12
virtual path 850
virtual private network (VPN)

1207
virus 1208
visibility 506
visible 507
Visible property 1246
Visual Basic 784
Visual Basic 6 documentation 821
Visual Basic Script (VBScript)

784
Visual Basic Scripting Edition

(VBScript) 26, 784
visual effect 481
visual transition 512
voice command 1245, 1246
voice command set 1246
Voice property 1246
voice recognition engine 1245
Voice Server SDK 1.0 1277
voice synthesis 1277
voice technology 1284
VoiceXML 25, 29, 634, 655,

1277, 1278, 1280, 1291,
1306

VoiceXML tag 1284
Vol 1249
volume 1225, 1226
volume of audio 1230
volume property 1226, 1227
Voxeo (www.voxeo.com)

1284, 1286
Voxeo Account Manager 1286
VPN (virtual private network)

1207
vspace attribute of <jsp:plu-

gin> action 1139
<vxml> tag (<vxml>…</

vxml>) 1284

W
-w command-line option in Perl

911
\W metacharacter 920
\w metacharacter 920
\w pattern 919
W3C (World Wide Web

Consortium) 10, 11, 15,
29, 31, 122, 672

iw3htp2IX.fm Page 1417 Monday, July 23, 2001 4:31 PM

1418 Index

W3C Candidate Recommendation
11

W3C CSS Recommendation 172
W3C CSS Validation Service 172
W3C homepage 31
W3C host 11
W3C member 11
W3C Proposed Recommendation

11
W3C Recommendation 10, 102,

645
W3C Recommendation track 11
W3C Working Draft 11
WAI (Web Accessiblity Initiative)

1271
WAI Quick Tip 1271
wait element 1290
walking.gif 576
Wall, Larry 909, 910
WAP (Wireless Application

Protocol) 26, 744
WAP application 736
WAP-enabled mobile device 744
WAP Forum 736
WAP gap 1207
WAP gateway 744
WAR (Web application archive)

file 1071
.war file extension 1071
warehousing section of the

computer 5
Warp text button 71
Warp Text dialog 71
Wartnose Agent character 1238,

1266
watercolor filter 99
WAV (Windows Waveform)

1225
.wav file 1230
wave filter 499, 1230
Web Accessibility Initiative

(WAI) 1269, 1306
Web application 1071, 1072
Web application archive (WAR)

file 1071
Web application deployment

descriptor 1071
Web application deployment tool

1072
Web browser 36, 37
Web Content Accessibility

Guidelines 1.0 1270, 1272,
1274, 1277

Web Content Accessibility
Guidelines 2.0 (Working
Draft) 1271

Web Developer's Virtual Library
953

WEB-INF 1071, 1075
WEB-INF/classes 1071
WEB-INF/lib 1071
Web page 102
Web page hit counter 930
Web page with user styles enabled

187
Web-safe palette 68, 590
Web server 103, 133, 682, 686,

744, 909, 1039, 1043,
1058, 1069, 1121

Web servers that support servlets
1069

Web site to browse 1058
Web site using two frames:

navigational and content
150

Web sites for streaming media
1259

web.eesite.com/forums
885

web.xml 1071, 1072, 1074
web-app element 1073
webapps 1071
Web-based application 27, 102
WebHire 1338
Webmaster 909
Website Abstraction 220
webteacher.com 219
Welcome2TagHandler.ja-

va 1171
welcomeDoc.wmls 753
WelcomeServlet 1065, 1066
WelcomeServlet that

responds to a simple HTTP
get request 1065

WelcomeTagHandler.java
1167

well-formed document 635
well-known port number 1069
WHERE 720
WHERE clause 719
WHERE clause condition 711, 715
WHERE clause in a SELECT query

711
WHERE clause’s LIKE pattern

711
WHERE SQL keyword 709
while 788, 789
while ActionScript 628
while loop 966, 1038
while repetition structure 233,

240, 246, 248, 253, 276,
302, 305

while structure 936
While/Wend 788, 789, 791
While/Wend or Do While/

Loop 788
white 503
white 467
whiteboard 50
whitespace character 218, 234,

413, 422, 765, 779
whitespace characters in strings

197
whole-number part 792
Wideband Code Division Mulitple

Access (W-CDMA) 743
Width 65
width 482
width 877, 1235
width attribute 112, 113, 130,

751
width attribute of <jsp:plu-

gin> action 1139
width attribute value (style)

180
Width property of Character

object 1249
width-to-height ratio 113
wildcard character 711
Window menu 70
window object 201, 207, 403,

451, 452, 461
window object’s alert method

404
window object’s prompt

method 204, 206
window object’s status

property 404
window.alert method 201
window.clearInterval

1231
window.event 471
window.onerror 461
window.prompt method 249,

284
window.setInterval 459,

494, 496, 499, 504, 550,
552, 573, 1231

window.status 336, 461
Windows 2000 686
Windows 95/98 683
Windows Media Player 1260
Windows Media Player ActiveX

control 1230, 1232
Windows NT 683
Windows Projector EXE 608
Windows Wave file 1230
WinZip 598

iw3htp2IX.fm Page 1418 Monday, July 23, 2001 4:31 PM

Index 1419

Wipe Down 509
Wipe Left 509
wipe left 23
Wipe Right 509
Wipe Up 509
wireless advertising 738
Wireless Application Protocol

(WAP) 736, 744, 1207,
1345

wireless device 26, 743, 744
wireless Internet 744
wireless Internet access 743
wireless local access 742
Wireless Markup Language

(WML) 26, 648, 685, 744
wireless operators 741
wireless PKI (WPKI) 1204
wireless transport layer security

(WTLS) 1207
WirelessResumes.com 1345
wireline 742
With 818
With/End With 820
WML 744
WML (Wireless Markup

Language) 648, 685, 759
WML tag 744
WMLBrowser object 754
word boundary 919
word equivalent of a check

amount 432
word processor 411
Wordpad 103
WorkingSolo.com 1346
workstation 10
World Time Standard’s Universal

Coordinated Time 417
World Wide Web (WWW) 10,

29, 102, 1057
World Wide Web browser 1058
World Wide Web Consortium

(W3C) 10, 15, 29, 634,
672, 1269, 1306

World Wide Web server 1058
worm 1208
WPKI (wireless PKI) 1204
write 1038
Write access permission 689
Write method 872
write method 199
write mode (>) 933
write text files 839
writeln method 197, 199
writing a cookie 989
Writing a cookie to the client 946

WTLS (wireless transport layer
security) 1207

essentials.msn.com/ac-
cess (Microsoft Network)
37

www.1024kb.net/
perlnet.html 953

www.activestate.com 952
www.adobe.com 64, 95
www.adobe.com (Adobe) 44
www.advantagehir-

ing.com 1341
www.advisorteam.net/

AT/User/kcs.asp 1342
www.altavista.com

(Altavista) 41
www.amazon.com 1193
www.aol.com (America

Online) 37
www.apache.org 1059
www.businesswire.com

1200
www.careerpower.com 1348
www.cdnow.com 1190
www.cdt.org 1214
www.cgi.resourcein-

dex.com 953
www.cgi101.com 953
www.channelseven.com

1215
www.chiefmonster.com

1347
www.cpan.org 940
www.cybercash.com 1213
www.debit-it.com 1214
www.deitel.com 30, 110, 687
www.deja.com 885
www.download.com (CNET)

45
www.driveway.com 1343
www.dtd.com 646
www.ecash.net 1214
www.echarge.com 1214
www.ecma.ch/stand/

ecma-262.htm 195
www.eff.org 1214
www.eMarketer.com 1215
www.epaynews.com/ar-

chives/ 781
www.etest.net 1342
www.etoys.com 1190
www.ework.com 1346
www.execunet.com 1347
Flashkit 597
www.flooz.com 1214
www.freeagent.com 1346

www.freeperlcode.com 953
www.google.com (Google) 41
www.hotbot.com (HotBot) 41
www.hut.fi/~jkytojok/

micropayments 1214
www.icat.com 1213
www.ietf.org/ht-

ml.charters/ipsec-
charter.html 1207

www.infogate.com 1214
www.infowave.com 773
www.ip-sec.com 1207
www.isolve.com 1195
www.jasc.com 112
www.jmac.org/projects/

comics_ml 655
www.jmarshall.com/

easy/cgi 953
www.jobfind.com 1339
www.jobtrak.com 1343
www.keywordcount.com

1199
www.mcafee.com 1208
www.mercata.com 1195
www.mindexchange.com

1340
www.mobshop.com 1195
www.mozilla.org/xpfe/

languageSpec.html
656

www.msn.com (Microsoft
Network) 41

www.mwif.org 1217
www.mysql.org 939
www.nationjob.com 1347
www.netzero.com (NetZero)

37
www.opengis.org 656
www.perl.com 911, 952
www.perl.com/CPAN/RE-

ADME.html 952
www.perl.com/CPAN/

scripts/index.html
952

www.perl.org 952
www.perlarchive.com 953
www.perlmonth.com 953
www.photoshop-cafe.com

96
www.planetphoto-

shop.com 96
www.plugins.com 45
www.plugins.com/plu-

gins/photoshop
(plugins.com) 96

www.pm.org 953

iw3htp2IX.fm Page 1419 Monday, July 23, 2001 4:31 PM

1420 Index

www.prenhall.com/dei-
tel 30

www.privaseek.com 1214
www.prnewswire.com 1200
www.prweb.com 1200
www.python.org 1000
www.radicchio.cc 1217
www.recruitsoft.com/

corpoVideo 1341
www.recruitsoft.com/

process 1341
www.review.com 1348
www.rixml.org 655
www.rsasecurity.com 1204
www.shockwave.com 45
www.sixfigurejobs.com

1347
www.sounds.muinar.com

597
www.speakeasy.org/

~cgires 953
www.stars.com/Author-

ing/CGI 953
www.stars.com/Author-

ing/Languages/Perl
953

www.symantec.com 1208
www.terion.com 773
www.tiac.net/users/

seeker/search-
enginesub.html 1215

www.trintech.com 1213
www.unicode.org 1361
www.verisign.com 1204
www.visa.com/nt/chip/

info.html 1214
www.visa.com/pd/ewal-

let/main.html 1214
www.voicexml.org 655
www.voxeo.com (Voxeo)

1284, 1286
www.w3.org 11, 1179
www.w3.org/2000/10/

XMLSchema 648
www.w3.org/Amaya/User/

BinDist.html 648
www.w3.org/AudioVideo

655
www.w3.org/CGI 953
www.w3.org/Consortium/

Process/Process-
19991111/pro-
cess.html#RecsCR 11

www.w3.org/Graphics/
PNG 95

www.w3.org/markup 102

www.w3.org/TR/WD-xsl 665
www.w3.org/TR/xhtml1 122
www.w3.org/XML/Schema

637, 645
www.w3schools.com/xht-

ml/default.asp 122
www.webdeveloper.com/

html/
html_metatags.html
1214

www.webhire.com 1338
www.web-

search.about.com/
internet/websearch/
insub2-m02.htm 1199

www.worldcallex-
change.com 1192

www.xcellenet.com 773
www.xdrive.com 1343
www.xhtml.org 122
www.xml.com/xml/pub/

Guide/XML_Parsers
635

www.yahoo.com (Yahoo) 37,
41

X
x coordinate 654, 794
x-large relative font size 166
x modifying character 920, 921
x-small relative font size 166
XBRL (Extensible Business

Reporting Language) 25,
634, 648

XDrive 1343
XHTML 1065
XHTML (Extensible HyperText

Markup Language) 4, 10,
15, 29, 102, 685, 771,
1362

XHTML (HyperText Markup
Language) 771

XHTML and CSS Web site 450
XHTML color 468
XHTML color table data 519
XHTML comment 103
XHTML document 902, 1065,

1123
XHTML document to read in

cookie data from user 945
XHTML document with an

interactive form 925
XHTML form 133, 334
XHTML form 983

XHTML markup methods of the
String object 415

XHTML markup methods of the
String object 415

XHTML Recommendation 122
XMI (XML Metadata Interchange

Format) 1212
XML (Extensible Markup

Language) 4, 10, 24, 634,
744, 1362

XML as language for creating new
markup languages 25

XML declaration 636, 637
XML Document Object Model

655
.xml file extension 635
XML GL (XML Guidelines)

1277
XML Guidelines (XML GL)

1277
XML markup 635
XML message forum 886
XML Metadata Interchange

Format (XMI) 1212
xml namespace 641
XML node 655
XML parser 635, 673
XML processor 635
XML Schema 25, 645
XML Validator 637
XML version 636
XML.com 673
XML.org 672
xmlns keyword 642
Xor (exclusive OR) 785
xray filter 23, 487
.xsd extension 646
xsd:date 648
xsd:double 648
xsd:int 648
xsd:string 648
xsd:time 648
XSL (Extensible Stylesheet

Language) 635, 663
.xsl extension 663
XSL specification 672
XSL template 666
XSL Transformations (XSLT)

663
XSL variable 669
xsl:attribute 894
xsl:for-each element 666
xsl:output 665
xsl:value-of element 666

iw3htp2IX.fm Page 1420 Monday, July 23, 2001 4:31 PM

Index 1421

XSLT (Extensible Stylesheet
Language Transformations)
25, 886

XSLT (XSL Transformations)
663

XSLT document 894
XUL (Extensible User Interface

Language) 648, 656
xx-large relative font size 166
xx-small relative font size 166
xy-coordinate 148, 491

Y
y coordinate 654, 794
Yahoo SQL Club 728
Yahoo! 1339
Yahoo! (www.yahoo.com) 37,

41

Yahoo! (Yahoo.com) 1189,
1194

Yahoo! ID 849
Yahoo! Web site 849
yellow 467

Z
zero-based counting 277
ZeroDivisionError

exception 979
zeroth element 366
zIndex 507, 509, 510
z-Index 573
z-index 174, 509, 510, 556,

558, 570
zoom in 75
zoom tool 590

iw3htp2IX.fm Page 1421 Monday, July 23, 2001 4:31 PM

	Internet & World Wide Web
	Contents
	Preface
	1 Introduction to Computers and the Internet
	2 Microsoft® Internet Explorer 5.5
	3 Photoshop® Elements
	4 Introduction to XHTML: Part 1
	5 Introduction to XHTML: Part 2
	6 Cascading Style Sheets™ (CSS)
	7 JavaScript: Introduction to Scripting
	8 JavaScript: Control Structures 1
	9 JavaScript: Control Structures II
	10 JavaScript: Functions
	11 JavaScript: Arrays
	12 JavaScript: Objects
	13 Dynamic HTML: Object Model and Collections
	14 Dynamic HTML: Event Model
	15 Dynamic HTML: Filters and Transitions
	16 Dynamic HTML: Data Binding with Tabular Data Control
	17 Dynamic HTML: Structured Graphics ActiveX Control
	18 Dynamic HTML: Path, Sequencer and Sprite ActiveX Controls
	19 Macromedia® Flash™ : Building Interactive Animations
	20 Extensible Markup Language (XML)
	21 Web Servers (IIS, PWS and Apache)
	22 Database: SQL, MySQL, DBI and ADO
	23 Wireless Internet and m-Business
	24 VBScript
	25 Active Server Pages (ASP)
	26 Case Study: Active Server Pages and XML
	27 Perl and CGI (Common Gateway Interface)
	28 Python
	29 PHP
	30 Servlets
	31 JavaServer Pages (JSP)
	32 e-Business & e-Commerce
	33 Multimedia: Audio, Video, Speech Synthesis and Recognition
	34 Accessibility
	A XHTML Special Characters
	B Operator Precedence Chart
	C ASCII Character Set - Missing
	D Number Systems
	E XHTML Colors
	F Career Opportunities
	G Unicode®
	Index

